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ABSTRACT

The far-field radiation pattern of an antenna may be determined as the fast Fourier transform

(FFT) of the aperture distribution. when the antenna is electrically large and a detailed pattern in

two dimensions is required, computer run-times exceeding an hour may result. A more tfnie-

efficient algorithm for computing the discrete Fourier transform (DFT) may result in a more effec-

tive analysis and design process. Significant savings in cpu time will improve the computer turn-

around time and circumvent the need to resort to weekend runs.

A FORTRAN program to calculate the DFT using the Winograd Fourier transform algorithm

was adapted to the 113M 360/91 computer and extended to handle complex input data vectors up to

length N = 5040, Transforms may be computed for any data length given by the product of four

mutually prime numbers selected from the integers 16, 9, 8, 7, 5, 4, 3, and 2 (e.g., N = 9 . 8 . 7 . 5 =

2520). The WFT was used to compute antenna patterns for copinase and linear phase gradient

apertures. The results were essentially identical to those previously computed with a conventional

radix-2 FFT.

Significant lime savings were realized with the WFT program. RLm-lime comparisons were

made between wFT lengths of 1008, 2520 and 5040 and FFT lengths of 1024, 2048, and 4096,

respectively. A minimum 4.6 to I speed advantage was demonstrated over this range. On the basis

of the WFT timings it was estimated that two-dimensional transforms would require about one min-

ute, ten minutes, and 40 Minutes for the 1008, 2520, and 5040 point transforms, respectively. This
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is sufficient to make two-dimensional transforms up to N = 2520 feasible within reasonable com-

puter run-time limitations.
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FAR-FIELD RADIATION PATTERNS Of APERTURE ANTENNAS

BY THE WINOGRAD FOURIER TRANSFORM ALGORITHM

INTRODUCTION

The computation of far-Geld radiation patterns of aper
t
ure antennas using the Fourier trans-

form is well documented in the literature (Ref, 1 and 2) and in current use. The fast Fourier trans-

form (FFT) algorithm is used in this application because of its computational speed advantage over

the conventional discrete Fourier transform (DFT). Even so, computer run times exceeding one

hour are expected as analysis techniques are extended to two-dimensional problems. A significant

reduction in epu run time would allow more effective analysis and design as computer runs may not

be so time consuming as to be relegated to weekend runs only. Furthermore, the financial savings

may be significant.

Recent studies (Ref. 3 and 4) have explored the feasibility of using the fast Walsh transform

(FWT) for this application. While time savings oil order of ten to one were reported, the FWT

gave only marginally satisfactory results for real data and failed to produce the normal squint associ-

ated with a linear phase gradient oil 	 aperture distribution. Additionally, there were serious diffi-

culties in calibrating the sequency axis.

Other investigators (Ref. 5, 6, 7, 8, 9, and 10) have reported oil new algorithm for computing

the DFT. The Winograd Fourier transform algoritlint (WFT) requires substantially fewer multiplica-

tions than the FFT while the number of additions, for some cases, remains near FFT levels. The

WFT may be used effectively oil 	 data sequences where the number of elements is prime. For

long transform lengths, however, the number of additions becomes excessive and a direct applica-

tion of the WFT becomes impractical. In this case it is useful to employ a combination of "small-N")

WFT algorithms with a multidimensional expansion to extend the range of application to data

lengths in excess of several thousand.

FROM DISCRETE" FOURIER TRANSFORM TO DISCRETE CONVOLUTION

The DFT of a data vector x(n) _ { x(0), x(1), • • • • x(N — 1)} is defined as:

t



N-I	 /
-j 1 Zn A

X(k) _	 X000-ON	 k---O,  1, 2, • • • N- 1
n=U

N-I

Ex(n)wnk
H-0

where

-j On)
w=e N

'file DFT is to discrete-time Signals what the Couricr transform

X(jw) =
J
	x(t)e-1(T)nt dt	 (2)
U

is to continuous-time signals. Tiv. extension of equation (2) to the DFT of equation (1) an be

viewed Intuitively.

Equation (1) describes the generation of N equations from which the elements in the DFT

X(0), X(1), • • • X(N- 1) may be computed:

X(0)	 i	 I	 1	 1	 x(0)

X(I)	 I w 1	 w'-	 ... wN-1	 x(I)

X(2)	 1 w2	 w4	 ... w'-(N-1)	 x(2)

X(N-1)	 1 w N -1 w2(N-1) ... w(N-1)(N-1)	 x(N-1)

Using the f 1, r algorithm to evaluate this matrix product results in a very substantial computational

reduction over a direct calculation. The complexity of computation arises from the (N - 1) by

(N - 1) lower right-hand section of the transform matrix:

I

(1)

1)



N-1

X(k) _	 x()I)Wkn k = 1, 2, - - • N - 1	 (4)

n=1

From X(k) we can retrieve X(k) by

N-I

^	 X(0) = E X(11)

11-0 (5)

X(k) = x(0) + X(k) k = 1, 2, • - • N - I

Consider the case where N = S. Equation (4) then becomes:

X(I)	 wl	 w2 W3	w4 x(1)

X(2) w2	 w4 w l	W3 x(2)

X(3) W3	 w1 w4	w2 x(3)

X(4)	 w4	 W3 W2	 w l x(4)

where the exponents of w are written modulo 5, i.e., w8 = W 5 • W3 = W3 , as WS = 1. A simple per-

mutation of rows and columns in (G) will demonstrate how the DFT process may be converted to

cyclic convolution. First interchange the last two columns and ther the last two rows:

X(1) wi	 w2 W4	 W3 x(l)

X(2) w2	 W4 w3	w1 x(2)

X(4) W4	 w3 w l	 W2 x(4)

X(3) W3	 W 1 W2	 w4 x(3)

Next reverse the order of the input data x(2), x(3), x(4):

X(1) w1	 W3	 W4	 w2 rx(l)

X(2) W2	 w l	W3	 W4 x(3)

X(4) w4	 w2	w 1	w3 x(4)

X(3) w3	 W4	 w2	wl x(2)

3

l

i

(
r



Careful examination reveals that the above matrix product conforms to the definition of dis-

crcte circular convolution:

N—I

y(k) = x(n) * h(n) _ E x(n)h(k - n)	 (9)

a=o

k= 1,2,1•IN

Convolution is more easily understood from a graphical description as tine mathematical process

of equation (9) may not be clear. Figure I demons'k'rates graphically the convolution of x(n) and

h(n), Both x(n) and h(n) are depicted as periodic discrete data series of length four. For the case of

k = O,h(-n) is seen to be the mirror image of h(n), h(I - n) is simply h(-n) shifted right one sam-

pling interval. y(1) may then be computed as the sum of products of x and h as shown. The other

y(k) terms may be similarly found as demonstrated in the figure.

Equation (8) describes the Convolution:

J R(i), X(2), X(4), X(3) } _ { x(I), x(3), x(4), x(2) } * { w l , w2 , w4 , w3 j	 (10)

The graphical details of this convolution may be studied in Figure 2. Note that upon convolving the

two data sets of equation (10), the cicnnents X(1), X(2), X(4), X(3) respectively are computed. Sig-

nificantly, the elements X(k) of the DFT are now to be computed from a convolution operation.

This transition was accomplished by a mapping of the matrix indices and is always possible for N

equal to a prime or a prime power. For a mathematical description of the mapping process see

Kolba and Parks (Ref. 9).

FAST DISCRETE CIRCULAR CONVOLUTION

Winograd (Ref. 6 and 7) has demonstrated an operational advantage to computing the DFT by

changing to a discrete circular convolution operation. tie presents an algorithm for performing

short length cyclic convolution in a tninialum number of multiplies. The concept employs polyno-

mial multiplication modulo a third polynomial.
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3	
0

O
h
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h(2- n)h2 0	 °	 y(2)= hixo +hoxt +h3x2+h2x3

	

0	 113	 0 °	
^

O

ho

o	 h^	 0

11(3-n)	 h2	 0	 y(3)=h2x0+hix^+hOx2+h3x3

	

h3 0	 0

	

O	 0

ho

	

0	 ht	 o

11(4-n)	 0	 112	 o	 y(4)=h3xo+h2x1+htx2+hox3

113	 0
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Figure 1. Graphical convolution of the Periodic Data Sets x(n) and h(n)
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•	 O

X(1) = w i x(1) +w3 x(3) + W4 x(4) +w2x(2)

0 
0 ^t I • ^ 0	 0 0 o X(2)=w2x(1)+wlx(3)+w3x(4)+w4x(2)

!I w

W.
o W2 0

W4 0

W3 O d

0 0
w1

W2 0

O W4 O

W
3 O

o c

X(4) = W4 x(1) +w2 x(3) +w l x(4) +w3x(2)

X(3) = w3 x(1) +w4 x(3) +w2 x(4) A-wlx(2)

Figure 2. Graphical Convolution of IR(I), X(2), X(4), X(3) }

= { x( 1 ), x(3 ), x(4), x(2) ^ * { WI, w2 , w4, W31
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{	 The cyclic convolution 1101) * x(n) can be evaluated from the N coefficients oft

Y(z) = H(z) - X(z) mod (z N - 1)

where

N-1
H(z)= 

57, 
11 kzk= 111 +"IZ I +11222+.., +1114-1ZN-1

k=e

N-1
X(z) _: U Xkzk = XO + x I Z I + x2 22 + , ... + X N- I 

ZN- I

%-a

Winograd states that the minimum number of required multiplies is equal to 2N - K where K is the

number of irreducible polynomials into which z N - 1 may be factored, i.e.,

ZN - I = II QI(z)
	

(12)
1-

To demonstrate this theorem consider the convolution 1110, 111,112,113 1 * { x O , x I, x21 X 3 1 as

presented earlier in Figure I.

Y(I) = x0 110 +x 1 113 +X-2 112 +x3111

y(2) = x0 11 1 +x 1 110 + x 2 11 3 + x3112
(13)

y(3) = x0112 + x 1 11 1 + X-9 "'0 +x3113

y(4) = x0 11 3 +x 1 11 2 +x2111 +x3110

The y(k) may be evaluated from the polynomial multiplication:

YI(Z)=(XO+x1z+X')Z2+x323) • (11 0 +" I z+11 2 z2+11323)

_ (x0 11 0) + (X 0 11 1 +X 1 11 O )z + (x O b' + x1 111  + x 2 11 O )z2 + (x0 11 3 + x 1 11 2 +x2 11 1 + X311O)z3

+(x 1 113 +X2112 +x 3 11 1 )z4 +(x' 11 3 +x 3 112 )25 +(x3113)Z6

= YO + y I z + Y ') Z2 + Y3 z3 + Y4 i
4 + YS Z5 + YGzG	 (14)

It is now required to find Y(z) = Y  (z) nlod (7 4 - 1).

7
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The notion of modulo arithmetic is from the concept of congruency, Two integers a and b

are said to be congruent mod M if

:I=b+kM	 (15)

where k is an integer and M is the modulus, This may be written as:

a = b ntod (M)

The integer b may be found as the remainder of the quotient a/M as may be easily demonstrated,

From equation (15) we have

a — kM=b

and hence:

k
M

kM
b

gives b as a nemaindei,

t.Xtending this concept to polynomials we compute Y(z) = Y I ( •r.) mod (z4 — 1) as tltc

remainder In the synthetic division Y 1 (z)/(z4 — 1), This results in

Y(z)= (YO + Y4)+(y i +Y5)z+(y2 +yOz2 +y3 7 3	 (16)

Note that there are N = 4 coefficients resulting from

Y(z) 1.1(z) • X(z) mod (z4 - 1)

and that upon close observation they are found to be y(1), y(2), y(3), and y(4) of equation (13), i.e.,

YO +y4 = Xtlho +X1113 +X2112) +X3 " 1 = y(1)

y 1 +ys=X0llt+xlh0 +X '2113+X3112=y(2)

8
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Y2 i• y6 = x0 11 2 +x
I" I  +x2 11 0 +x3 11 3 = y(3)

y3= x0113 +x1112 +x2111+x3110=y(4)

The above example has demonstrated the logistics of performing the multiplication of two

polynomials modulo another polynomial and specifically how the convolution results are recovered.

This process may be accomplished in a more computationally efficient manner using the polynomial

version of the Chinese remainder theorem (Ref. 9), We may first evaluate H(z) and X(z) modulo

the irreducible polynomial factors of zN - I, i.e., Q I (z) and then find Y(z) as

ti

Y(z) =	YI(z)Sl(z)1	 mod (zN - 1)	 (17)

I=1	 J
where

Y1(7) = 1-11(z)XI(z) mod (Qi(z))

HI (z) = H(z)
	

mod (Qi(z))

XI (z) = X(z)
	

mod (QI(z))

S i (z) _° 1
	

mod (Q i (z)) i = ;, 2, .	 K

To demonstrate the operations described by equation ( 17) we muy continue with the convolu-

tion example 1110, h I , 112, 113 j * { x0 , x 1 , x21 x3 } as presented earlier. For this case N = 4, hence

H(7) = h0 +)1 I z+112 22 +113 z3

X(z) = z0 + X I z + X222 + x3 z3

as before.

The irreducible real factors of z4 - 1 are

9
	 (z4- 1)=(z+1)(z- 1)(22+1)

Note that the number of irreducible factors K = 3, and hence the number of required multiplies to

compute the convolution is 2N - K = 5.

9



The Xl(z) and ll i(z) polynomials are determined next. X 1 (7.) is found by:

X l (z) = X0 +X l z+X22'-+x 3 23 mod (z+1)

Computationally X 1 (z) is computed as the remainder in X(z)/(z + 1). Similarly X 2 (z) and X3(2)

may be found and we have:

X 1 (z) = X(z) mod (z+1)=x0- XI+X2 - X3=x01

X2 (2) = X(z) mod(z- 1)=x0 +x 1 +x2 +x3 =xo	 (18)

X3 (2) = X(z) mod (z2+1)=(x1-x3)2+(xp-x2)= x0 +xI

Since H(z) has the same form as X(z), the 1 .1 1 (2) polynomials will have the same form as the

X 1 (z) polynomials:

111(2)=H(z) 'nod (z+1)=h0-h 1+h2-h3=1101

1.12(2) =M(z) mod (z-1) = h0 +11 1 +h,+h3 =11p	 (19)

1 . 13 (2) = F1(z) mad (z2+1)=(h1-h3)z+(h0-h2)=h0+h1z

We may now Lind the Y l (z) polynomials as

Y i (z) = 1-1 1 (z)X 1 (z) mod (z+1)=h^xI=yI

Y2 (z) = 1-1 2 (z)X2(z) mod (z- 1) = 113x3 	=yo	 (20)

Y3 (z) = 1113 (2)X3 (2) mod (z2 + 1)

= hjxjz2 +(110x1 +111 0)z+fi0x0 mod (z2+1)

= 01	 +1	 +1	 13x3 13X3)2(13X3 -13x3)

=y3 + yj z

10
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The YI (z) polynomials may be written as

Y I(z) = 11 1 x0 =yI

Y2(z) = 110 x0 = y0	 (21)

Y3 (z)=(110x0 -hlx^)+[(110 -111)(x1 -xo)+110x0 +113X 1 ]z

=vo+viz

Next let

	

m I = 110 x0	 m4 = hQ xQ

	

III,) = 110X0	 m5 = hj xi	 (22)

n1 3 =(110-h^)(x1 -x0)

These are the five multiplies that will be required to complete the convolution in this example. The

YI (z) polynomials may be rewritten in the form

YI(z)=III,

	

Y2(z) = 111 2 	 (23)

Y3 (z) = (1114 - 111 5 ) + (1n 3 + 1114 + 1115)z

We need yet to express Y(z) in terms of the Y I (z) factors as per equation (16):

Y(z) = Y I (z)S I (z) + Y2(z)S 2 (z) + Y3 (z)S 3 (z) mod (z4 - 1)

To do so, however, we must first determine the S I (z) polynomials. These are found in accordance

with equation (16) to be:

I
SI(z)=-'/a(z3-z2+z- 1)

S 2 (z) = % (z3 + z2 +z + 1)	 (24)

S 3(z) = ''/n(z4 - 2z2 + 1)	
t.
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These I11UY be checked by verifying Ihul SI(z) = I 1110d (QI(1.» us 

-l4(Z3 - 1.2 + 1. - J) = I 1110d (1. + I) 

l4(7.3 +z2 +1.+ 1)= I 1110d (1.- I) 

l4(1.4 - 21.2 + I) = I 1110d (1.2 + I) 

Now Y(1.) is found to be: 

Y(1.) = 1111 [-l4(1.3 - 1.2 +1.- I)J 

+ 1112 [l4(1.3 + 1.2 + 1. + I)] 

+ [(1114 - 1115) + (1113 + 1114 + 1115)1.] [l4(1.4 - 21.2 + I)J 1110d (1.4 _ I) 

+ (-111 1 + 1112 + 1113 + 1114 + 111 5 )1. 

+ (111 1 + Jl12 - 21114 + 21115)z2 

+ (-m l + Jl12 - 21113 - 2m4 -' 2m5)1.3 

+ (m4 - 1115)1.4 

+ (m3 + 1114 + m5)1.5 1110d (z4 - I) 

".~. . ,~- -, -, ~ 
.' ! 

(25) 

(26) 

(27) 

Recalling the mcthod of deterl11ining one polynol11iull11odulo another, equation (27) was found as 

the rcmainder in the synthetic division 4Y(1.)/(z4 - I). As with equation (16), the eoefIicients of 1. 

arc the clel11ents of the convolution example, i.e.: 

12 



y(1) = %(111 1 +in ? +2m4 -2m S )	 =X0110+X1113+x2112+x3111
y

y(2) = %(-m,+  m2 + 21113 + 21114 + 2m 5 ) = x0111 + x1110 +x 2 11 3 + X3112	
(28)

y(3) = ''/4(m 1 +ln,) -21114 +2mS )	 =x0112+x1111+x2110+x3113

y(4) = '/a(-111 1 + 1112 - 21113 - 21114 - 2m 5 ) = x0113 + x 1112 + x2111 + x3110

This last result may be verified by performing the indicated multiplications and additions.

COMPUTING THE DISCRETE FOURIER TRANSFORM WITH FAST

CONVOLUTION TECHNIQUES

The fast convolution algorithm may now be applied to the task of computing the discrete

Fourier transform, This is done by performing the indicated convolution in equation (8) to find

X(1), X(2), X(4), and X(3). In this application 11 0 , 111,112, and 11 3 are w l , w2 , w4 , and w3 , respec-

tively, as seen by comparing Figures I and 2. Similarly, x 0 , x 1 , x21 and x 3 are x(1), x(3), x(4), and

x(2), the input data vector,

The terms 110 , 110 , 110 ,111 > x0 > s0, x0 and x 1 of equations (18) and (19) may be found as;

110=w1-w2+w4-w3 =2.236

11 2= w 1 +w2 +w4 +w3= 1.0

11 3 = w l - w4 = -J 1.902

111=e 2 - w3= -J 1. 176

x0 = x(I)- x(3) +x(4)- x(2)

X2= = x(1) +x(3) + x(4) + x(2)

x0 = x(I) - x(4)

x 1 = x(3) — x(2)

From these results the m i terns in equation (22) may be computed and subsequently the con-

volution results of equation (28) found. This results in the intermediate transform values X(k). The

DFT is then calculated from equation (5). The process is now complete and the results for an N = 5

computational algorithm are summarized in Table 1 [from Kolba and Parks (Ref. 9) and Winograd

13



Table I

Computational Algorithm for an N = 5 DFT Using Fast Discrete Convolution

[from Kolba and Parks (Ref. 9) and Winograd (Ref, 7)]

al=x(I)+x(4) a5=a2+a4

a 2 = x(1) — x(4) a6 = al — a3

a3 = x(2) + x(3) a7 = a 1 + a3

a4 = x(2) — x(3) a8 = x(0) + 117

III I = 0,951 as cl = x(0) — ills

1112 = 1.539 a 2 c') = C l +m4

1113 = 0,363 a4 c3 = Cl — m4

111
4 = 0.55916 c4=n'I—m3

111
5 = %a7 c5=1112—m1

X (0) = as

X(1)—c2-1c4

X(2) = c3 — jc5

X(3) = c3 + jc5

X(4) = c2 + jo4

(Ref. 7)]. The number of calculations required is observed to be 17 additions and 5 multiplications

(the multiplication by 114 may be accomplished by two word shifts on sonic FORTRAN compilers).

The x(n) input data vector may be complex in which case these are complex adds and multiplies,

Computational algoritluns for other short length transforms may be found in Winograd (Ref. 7),

Silverman (Ref. 8 and 10), and Kolba and Parks (Ref. 9). The number of computations required for

these several short-length WFT algorithms is compared with radix-2 FFT requirements in Table 2,

The computational advantage of the WFT is clearly seen.

14
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Table 2

Number of Calculations for Short-Length WFT and FF'r

WFT	 FFT

N
Multiplies Adds M a!' 1 n1 i^s Adds

2 0 2 1 2

3 2°' 6

4 0 8 4 8

5 5* 17

7 8 36

8 2 26 24 48

9 10* 49

16 10 68 32 64

*The number of multiplies may be reduced by using word shifts,

For large N the WFT algorithm for fast convolution gels out of control. Furthermore, the

number of additions becomes excessive and the WFT loses its computational advantage. Conse-

quently it is necessary to use a o,jmbination of short-length transforms to realize the speed advantage

of the WFT for transform lengths of practical importance.

LONG-LCNGTlI TRANSFORMS

Winograd Fourier transforms of practical lengths in the several thousands may be computed as

a combination of short-length transforms. This is accomplished by converting an N = M t M2 • • . MR

(where the M i are mutually prime integers) length transform into R shorter transforms of lengths MI

for i = 1, 2, • • • R. This is equivalent to a mapping from one to R dimensions.

The DFT of equation (1)

N-1

X(k) _ 57, x(n)Wnk

n=a

15



incorporates an index n which orders the input data vector and au, index k ordering the transform

output results. A mapping from one to two dimensions requires that each index map to two

indices, i.e.,

n-^ (1f 1 ,n2)

k - (k1,k2)

With this mapping the DFT may be written as

MI-1	 \I2-1

n,k'	 nikl
X(k q, k2) =	^x(nl,n2)%Vnl_	 Whi

n1=0	 n2-a

L. 	 ..,.M1-I
	

(29)

k, = 0,1, •• •M Z - I

where

nl,	 1

nh

N=MIM2

and M I and b1 2 are relatively Prime.

The two-dimensional DFT of equation (29) is found by first' computing M t transforms of

length M2

Ali-1

n2k2

Y( a l l , k2) _	 X(111'n^) WM2

n2-a

and then Mn transforms of length hil

n11-1

X(k l , k2 ) = EY(nl , k2) WM;k,
q i=o

16



The above mapping follows the method of Kolba and Parks (Ref. 9) and is referred to as a

prime factor FFT algorithm. Winograd (Ref. 6 and 7) presents another method of structuring short-

length transforms to accomplish tite same end. This technique is referred to as the nested algorithm.

From all 	 point of view the major consideration between the two algorithms is

the amount of computational effort, The computational requirements of these algorithms for

several values of N are compared in Table 3, In general, the nested algorithm requires fewer multl-

plies, while the prime factor algorithm requires substantially fewer adds. The total number of calcu-

lations is substantially fewer for the prime factored algorithm.

Table 3

Comparison of Prime Factor and Nested Algorithms

N Factors
Prime Factor Algorithm Nested Algorithm

Multiplies Acids Total Multiplies Adds Total

252 9 . 7 . 4 1024 6344 7368 848 7128 7976

504 9 . 7 . 8 2300 13948 16248 1704 15516 17220

1260 9 . 5 . 7 . 4 7136 40288 47424 5168 50184 55352

2520 9 . 5 . 7 . 8 15532 86876 102408 10344 106667 117011

The particular computer available and the relative timings for floating-point multiplication and

addition would dictate which algorithm would be more time efficient in any application. Tile coal-

pater used in this study was the IBM 360/91 at Goddard Space Flight Center. The 360191 is a very

fast system utilizing a high-speed "cashe-pipeline". Floating-point multiplication and addition

require essentially the same execution time, Hence, the nested algorithm was judged faster and

selected for application on this system.

APPLICATION TO APERTURE ANTENNAS

As discussed earlier, the far-field radiation pattern of all 	 antenna can be determined to

a good approximation as the DFT of the aperture field distribution. In this application it appears

17
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desirable to replace the FFT, which is currently used, with the faster WFT algorithm. Perhaps the

savings in cpu run lime would permit extension of the analysis program to two-dimensional geo-

nnctrics with several thousand data elements along each axis. At this time a reasonable estimate of the

maximum input data vector size is about five thousand. This would allow analysis of a one meter

antenna at 180 Gliz with half wavelength sampling.

A FORTRAN IV program to calculate the NFT was adapted to run on the IBM 360191 cony

linter and extended to handle data vectors up to 5040 points with double precision arithmetic (See

Appendix). Transforms may be computed for any data length given by the product of four mutually

prime numbers selected from the integers 2, 3, 4, 5, 7, 8, 9, and 16 (e.g., N = 9 X 8 X 7 X 5 = 2520).

As a basis for comparing the performance of this WFT program with the conventional FFT, a

benchmark aperture distribution of special interest was selected. The distribution specified is sine

cn it 	 with it 20 (lb edge taper and is representative of focal-point fed parabolic antennas

exhibiting axial symmetry. This distribution is described by 0.0909 + 0.9091 sin nÎ , nn = 0,
'

I, 2, • • • , N — 1; where N is the number of samples in the aperture. The antenna diameter is speci-

fied as 20 feet and the wavelength as 0.44973 feet.

A 2520 and 5040 point WFT analysis were performed on this antenna and the results coin-

pared with a 4096 point FFT computation. Theoretically the WFT and FFT algorithms give

exactly the same results so this comparison is intended as a ver'fication of the correctness of the

WFT program. Figure 3 presents the 5040 point WFT and 4096 point FFT results, Tine two

patterns are essentially identical except for minor differences in the higher order lobes This differ-

ence is oil 	 order of half a db and is entirely the result of differences in precision in the two

programs. The WFT was run in double precision (8 byte data length) and the FFT in quartic preci-

sion (16 byte data length).

A 2520 and 5040 point NFT are compared in Figure 4. The results are very nearly identical.

The only significant difference is the amount of detail produced. Understandably, the 5040 point

transform yields twice as much detail as the 2520 point transform.

18
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Figure 5 demonstrates the new algorithm's ability to handle complex input data, A 360° linear

phase gradient was imposed on the benchmark aperture, resulting in the expected squint. The differ-

ence In results as computed by the FFT and WFT is again due to the greatly extended precision

specified in the FFT program..

The interval timer available on the 360191 system library at CSFC was used to time the WFT

and FFT subroutines. For this comparison the Ff T subroutine was rewritten In double precision

math so that both transform algorithms would be judged oil 	 same basis, The interval timer is

represented as accurate to the nearest 0,01 second, The results of this test are presented In Table 4.

WFT and FFT timings are compat.d for values of N that are as numerically close as possible given

the different constraints on N for the two algorithms, The adjusted time ratio is determined by

scaling the time ratio by the ratio of the number of data samples for the two algorithms.

Table 4

WFT and FFT Timing Results

Number of Data
Samples CPU Time

(Sec)
Time
Ratio

Adjusted
Time Ratio

WFT FFT

1008 0.06
7.2 7.0

1024 0.43

2048 0.90
3.8 4.6

2520 0.24

4096 1.90
4.0 4.9

5040 0.48

Clearly the WFT shows a mininnim 4,6 to I speed advantage over the FFT for the range of N

considered, This is considered a significant improvement in speed. On the basis of these timings it

is estimated that two-dimensional WFT computations would require about one minute, ten minutes,

and 40 minutes for the 1008, 2520, and 5040 point transfornns, respectively. Using the conventional
k
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FFT program, approximately seven minutes, 31 minutes, and 130 minutes would tie required for

the 1024, 2048, and 4096 point transforms,

'Co achieve the large N capability of the WFT program it was necessary to nest the summations

described by equation (29) three and four deep. The limits oil 	 summations are the prime

composites which make up N (e.g., N = 2 X 5 X 7 X 9 = 630). 'flic ordering of these factors greatly

affects tiie run time for a given N. Minimum cpu time is realized when the composite trmnsforms

are ordered in some optimum way, Table 5 presents the optimum ordering for N = 504, 1008,

2520, and 5040. Any departure from this ordering will result in .ui increase in run time by as much

as 100 percent.

Table 5

Optimum Ordering of Composite Transforms

for Large N WFT

N Order	 —^

504 8.9.7.1

1008 7.16.9.1

2520 7.9.5.8

5040 16.5.7.9

OTHER ALGORITHMS

Other possibilities exist for fast DFT computations. Morris (Ref. 11) reports that a radix-4

FFT algorithm outperforms tiie WFT oil computer systems (DEC 1'DP-I 1/55 and the IBM-

370/168). His work indicates that in this comparison the WFT execution times were about 20 to

40 percent longer.

Reed and Truong (Ret'. 12) have suggested that replacing the convolution operation in equa-

tion (8) with a complex integer transform operation will result in fewer multiplications than either

the FFT or the WFT. Several papers by these authors have demonstrated the feasibility of perforni-

ing cyclic convolution by a combination of two N X N integer transforms, a multiplication of two

23
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R,

I X N matrices, and an N X N inverse integer transform. The transforms and the inverse transform

are performed with wiird shifts and integer additions. This results in a rather significant reduction

in the total number of multiplications and converts them from floating-point to integer operations.

However, the number of required additions is approximately tripled; consequently, the total num-

ber of mathematical operations is increased. Oil basis of these observations it appears that the

use of integer transfornis offers no advantage over either the FFT or the WFT for systems like the

IBM 360/9l where floating-point multiplication and addition require about the same time. A clear

advantage call 	 demonstrated for micro-processor based systems for which the ratio of multipli-

cation to addition times may be several orders of Magnitude.

CONCLUSION

Use of the WFT algoritlun In antenna analysis appears to be a very successful application. The

radix-2 FFT as used in computing far-field radiation patterns of aperture antennas may be replaced

by the WFT with no degradation in performance and with a considerable improvement in speed.

Over the range of N from about 1000 to 5000 the WFT demonstrated a minimum 4.6 to 1 speed

advantage over the presently used FFT. This is sufficient to make two-dimensional transforms up

to N = 2520 feasible within reasonable computer run time limitations.

As new algorithms and transforms are introduced into the study of antennas, more powerful

analysis and design techniques will become available to the design engineer.
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APPENDIX

FORTRAN PROGRAM FOR COMPUTING THE FAR-FIELD RADIATION PATTERN

USING THE WFT ALGORITHM

This section presents two FORTRAN subroutines. The first (GOODFT) uses the WFT algo-

rithm to compute the DFT for complex input data up to length N = 5040. The second (PATOUT)

computes the far-field radiation pattern from the transform results, The WFT subroutine is an en-

hancement of a program contributed by Dean Kolba (Ref. 9) from Rice University. An N = 16

WFT algorithm was added to the original program structure to extend the maximum range from

N = 2520 rto N = 5040. In addition, the program was rewritten in double precision,

The length of the DFT, N, must be a product of no more than four mutually prime factors

chosen from the integers 2, 3, 4, 5, 7, 8, 9, and 16. These factors are named M1, M2, M3, and M4.

If not all four factors are used the unused factors are set equal to 1. The factors of one must be last

in the sequence of M's in the program. The other 110 variables used in the subroutine are:

NFT = number of nonunity factors

KOUT = output indexing constant

= KI + K2 + K3 + K4 (mod N)

where

K1=M2•M3•M4 or =0forMi=1

K2=M1 • M3 • M4 or =OforM2=1

K3 = M1 • M2 • M4 or = 0 for M3 = 1

K4 = M1 • M2 • M3 or =OforM4 = 1

XR(N) = r^al part of input data

XI(N) = imaginary part of input data

A(N) = real part of transform results

B(N) = imaginary part of transform results
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To illustrate the above, consider the case N = 5 . 3 . 2 . 1 = 30. The above input variables are:

.	 a	 N=-30

. NFT=3

M1 = 5	 K1=6

M2 = 3	 K2=10

M3 = 2	 K3='15

M4 =1	 K4 = 0

KOOT = 31 `(mod 30) = 1

The ordering of the M's is not significant with respect to the quality of the transform results,

but does have a very important affect on the run-time for the subroutine. Table 5 presented the

optimum ordering for the four cases N = 504, 1008, 2520, and 5040. Departure ' from these orders

may increase the cpu timings by more than 100 percent.

The DFT is cyclic in nature and hence to compute the transform of a non-cyclic, finite data

set ;x(n)^ it is necessary to append a relatively large number of zeros to both ends of the aperture

distribution, About 75 to 90 percent of the input . data should be made up of these embedded

zeros. This will establish an adequate ground , plane about the ap: rture and reduce the effects of

folding or aliasing•

The subroutine PATOUT requires as input the length of the DFT (N), the transform results

from GOODFT (A&B), and the sampling interval (T) in wavelengths. To prevent aliasing T 5 N/2.

The output of the subroutine is the magnitude (in db) and the phase (in degrees) of the antenna

gain as a function of polar angle starting at a line drawn broadside to the antenna and through its

center. For this statement to be true it is necessary that the input aperture distribution to

GOODFT be specified according to the same geometry. The aperture data must be input starting

at the antenna midpoint and proceeding to the edge. The zeros are imbedded next, followed by the

other half of the aperture data starting at the edge and ending at the center.
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SIIRRnUTINE GOODFT(XR,Xl,M,M1,M2,M3,M4,NFT,KOUT,A,B)
C THE SUBROUTINE GOODFT COMPUTES A LENGTH N OFT OF THE INPUT DATA WHICH IS IN
C 1'WO VECTORS, XR THE REAL PARTAND XI THE IMAGINARY PART. BOTH XR AND X1 ARE
C LENGTH N VECTORS. THE LENGTH OF THE OFT, N, MUST BE A PRODUCT OF AT MOST
C FO(lR MUTUALLY PRIME FACTORS. THE POSSIBLE FACTORS ARE 293,495,798,9 AND 16.
C THESE FACTORS ARE M1, 142, M3, AND M4. IF THE FOUR FACTORS ARE NOT ALL USED,
C THE UNUSED FACTORS ARE SET EQUAL TO 1. FOR EXAMPLE WITH N=309 WE HAVE
C M1=5, M 2 = 3, M3=2, AND M4=1. THE FACTORS OF ONE MUST BE THE LAST OF THE MIS.
C THE NUMBER OF NONUNITY FACTORS IS NFT. KOUT IS AN OUTPUT INDEXING CONSTANT
C WHICH IS PRECOMPIITED. KOUT=(K1+K2+K3+K4)MOD N WHERE K1=M2*143=M4,
C K2=M1*M3*M4, K3=ML*M2*04, K4=M1*M2*M3, AND K2=0 IF M2=1, K3=0 IF M3 = 1, AND
C K4=0 IF M4 = 1. FOR EXAMPLE,-N=30, K1=6, K2=10, K3=159 K4=0 AND KOUT=31MOD 30
C =1. THE TRANSFORMED RESULTS ARE STORED IN TWO LENGTH N VECTORS, A AND B. A
C CONTAINS THE REAL PART AND B CONTAINS THE IMAGINARY PART OF THE -RESULTS.

IMPLICIT REAL*8 (A—H2O-2)
DIMENSION XR(5040),XI(501•0),UR(16),UI(16),1(16),A(5040),B(5040)
REAL*R MR1,MR2,MR3,MR4,MRS,MR6,MR7,MRR,MR9,MR10,MR11,MR12,MR13
RFAL*8 MR14,MR15,MR16,MR17,MR1R,MR19,MR20,MRRI,MR22,MR23,MR24
REAL*R MR25,MR26,MR27,MR28,MR29,MR30,MI1,MI2,MI3,M14,MI5,M16,M17
REAL*R M18,M19,MI10,0111,MI12,MI13,MI14,MI15,MI16,MI17,M118,MI19
REAL*8 M120,M121,MI22,M123,MI24,MI25,M126,MI27,MI28,M129,MI30
NF=NFT

C ORDER FACTORS FOR TRANSFORMS OF LENGTH M1
MM 1=141
MM2=M2
MM3=143
MM4=M4
GO TO 20

10 GO TD(12,13,14),NF
C ORDER FACTORS FOR TRANSFORMS OF LENGTH M2

12 MM1=M2
MM2=M1
MM3=M3
MM4=M4
Go Tn 20

C ORDER FACTORS FOR TRANSFORMS OF LENGTH M3
13 MM1=M3

MM2=M1
MM3=M2
MM4=M4
GO TO 2.0

C ORDER FACTORS FOR TRANSFORMS OF LENGTH M4
14 MM1=M4

MM2=M1
MM3=M2
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MM4=M3
C INDEXING INITIALIZATION FOR THE TRANSFORMS

20 N2=0
N3=0
N4=0
K1=MM2*MM3*MM4
K2=MM14MM3*MM4
K3=MM1*MM2*MM4
K4=MM1*MM2*MM3
I(1)=O

C INPUT INDEXING ALONG ONE DIMENSION
2.1 DO 22 J=2,MM1

I(J)=I(J-1)+K1
IF(I(J).LT.N) GO TO 22
I(J)=I(J)-N

22 CONTINUE
C TRANSFERRING DATA TO TEMPORARY VECTORS UR AND UI

30 on 31 J-I,MM1
IJ=I(J)+1
UR(J)=XR(IJ)

31'UI(J)=XI(IJ)
C TRANSFORM URtUI

GO Tn(50,200,300.400.500,50,700.800,900,50.50r5095O,50.50r1600),MM
2.1

C PLACF RESULTS OF TRANSFORM BACK IN XR AND XI
40 DO 4 1 J=J,MM1

iJ=1(.))+1
XR(IJ)=UR(J)

41 XI(IJ)=Ul(.))
C TESTING FOR COMPLETION OF THIS FACTOR'S TRANSFORMS

IF(N2,NE.MM2-1) GO TO 51
N2=0
IF(N3.NE.MM3-1) GO TO 52
N3=0
IF(N4.NE.MM4-1) 60 TO 53

50 NF=NF-1
IF(NF.En.0) GO TO 1000
Go TO 10

C INPUT INDEXING ALONG, OTHER DIMENSIONS
51 N2=N2+1

DO 54 J=1.MMI
I(J)=I(J)+K2
IF(I(J).LT.N).GO TO 54
I(J)=I(J)-N

54 CONTINUE.

t
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ORIG -:,I, i'.vlI; Id

nn TO 3n
52 N3=N3+1

1(1)=K3*N3+K4*N4
IF(1(1).LT.N) GO TO 21
I(1)=1(1)-N
GO TO 21

53 N4=N4+1
1(1)=K4*N4
GO TO 21

C IINSCRAMRI„ING TRANSFORM RESULTS
1000 11=1

J=1
GO TO Inol

1002 IF(.I.GT.N) GO TO 1003
I1=II+KnUT

100 4 IF(II.LE.NI GO TO 1001
11=11-N
GO TO 1004

1001 AIJ)=XR(II)
B(.))=-XI(IT)
J=J+1
GO TO 1002

C 2 POINT TRANSFORM
200 (JRX=UR(1)+UR(2)

OIX=Ul(1)+UI(2)
IIR(21=UR(11-UR(2)
111(2)=U1(1)-UI(2)
(IR (1)=URX
hill)=IIIX
GO TO 40

C 3 POINT TRANSFORM
300 AR-UR(2)+UR(3)

AI=UI(2)+UI(3)
MR1=-1.5DO*AR
MIL=-1.5DO*AI
MR2=n.8660254038D0#(UR(2)-lJR(3))
MI2=0.06602.5403800*(UI(2)-UI(3))
UR(l1=AR+UR(1)
(11(1)=AI+UI(1)
MR1= (1R(1)+MR1
MI1=111(1)+MI1
UR(2)=MRY-MI2
01(2)=MI1+MR2
OR(3)=MR1+M12
(II (3)=MI1-MR2

fi
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On TO 40
C 4 POINT TRANSFORM

400 AR1=UR(1)+11R(3)
A11= UI(1)+UI(3)
AR2=UR(1)-UR(3)
AI2=UI(1)-UI(3)
A93=WR(2)+UR(4)
Al3=UI(?)+U1(4)
AR4=lIR(2)-UR(4)
A14=U1(?)-U1(4)
lIR (11 =AR1+AR3
l)1(1)=AI1+4I3
lIR(2)=AR2-AI4
111(2)=Al2+AR4
WR(3)=AR1-AR3
111(3)=A11-AI3
t)R(4)=AR2+AI4
UI(4)=4I2-AR4
GO Tn 40

C 5 POINT TRANSFORM
500 AR1=UR(2)+U9(5)

A11=UI(7)+UI(5)
AR2=11R(?)-UR(5)
AI2=UI(7)-111(5)
AR3=UR(3)+UR(4)
AI3=UI(3)+UI(4)
AR4=UR(3)-UR(4)
A14= lll(3) -UI(4)
AR5=AR1+AR3
AI5=AIL+AI3
MR1=0.951056516300#(AR2+AR4)
M11=0.9510565163nO*(AI2+AI4)
MR2-1.538841769DO*4R2
IAl2=1.53894176900#AI?
MR3=0.363271264nn0*AR4
M.13=0.3632712640nOvA14
MR4=0,5590169944n0>k(AR1-AP.3)
M14=n.559O169944DO*(AIl-AI3)
MRS=-1.25D0%,AR5
MI5=-1.2500*AI5
11R(1)=UR(1)+AR5
Ili(1)=UI(1)+AI5
MR5=UR(1)+MR5
MI5=UI(1)+MI5
AR1=MR5+MR4

i
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OTri^^^^I' PAGE ISAll=MI5+M 14	 ^}	 (^j}(^[,IlY
AR2=MR5-MR4
Al2=MI5-MI4
AR3-MR1-MR3
AI3=Mll-MI3
AR4=MR1-MR2
A14=MT1-M12
UR(9)=AR1-AI3
111(2)=All+AR3
IIR(3)=AR2+AI4
01(3)=412-AR4
I1R(41=AR2-AI4
111(4) =Al2 +AR4
t)R(5)=ARI+AI3
(11(5)=A I1-AR3
GO Tn 40

7 POINT TRANSFORM
700 AR1=(1R(2)+UR(7)

All=UI(2)+UI(7)
AR2=UR(2)-(IR(7)
AI2=01121-U1(7)
AR3-UR(3)+UR(6)
A13=UI(3)+UI(6)
AR4=UR(31-UR(6)
A14=UI(3)-UI(6)
AR5=UR(4)+UR(5)
A15=UI(4)+UI(5)
AR6=(JR(4)-UR(5)
AI6=(11(4)-UI(5)
AR7=AR1+AR3+AR5
A17=Ai1+AI3+A15
MR1=-1.16666666700*AR7
MI1=-1.16666666700*A17
MR2=0.790156468A00*(ARI-AR5)
M12=0.790156468Rn0*(A11-418.)
MR3=0.05585426800*(AR5-AR3)
M13=0.05585426800*(A15-AI3)
MR4=0.7343022010n*(4R3-AR1)
M14=0.7343022010n*(AI3-All)
MR5=0.44095855200*(AR2+AR4-AR6)
M15=0.44095855200*(Al2+4I4-A16)
MR6=0.34087293100*(AR2+AR6)
M16=0.34087293100*(Al2+A16)
MR7=-0.53396936100*(-AR6-AR4)
M17=-0.53396936100*(-A16-AI4)

sr'
i

}
r
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MRS-0.A74842291o0*(AR4-AR2)
MIA-0.874842291DOm(A14-Al21
UR( I ) =IIR(I)+AR7
UI(1)=UI(1)+AI7
AR1=UR(1)+MR1
411=UI(1)+MI1
AR2=ARI+I4R2+14R3
Al2=AI1+MI2+M13
AR3=ARI-MR2-MR4
413=AI1-M12-M14
AR4=AR I-MR3+f,IR4
A14=All-M13+M14
AR5=MR5+MR6+MR7
AI5=M15+MI6+M17
AR6=MR5-MR6-MRH
AI6=MI5-MI6 -MIN

AR7=MR5-MR7+MRA
AI7=MI5-M17 +1419

(IR(2)=AR2-AI5
UI(2)=Al2+AR5
0R(3)=AR3-AI6
01(3)=413+AR6
IIR(4)=AR4+AI7
I11 (4) =A 14-4R7
UR15)=AR4-A17
01(5)=A14+AR7
IIR ( 6) =AR3+AI6
UI(6) =413-AR6
UR(7)=AR2+AI5
III (7) =A I2,-AR5
GO TO 40

A POINT TRANSFORM
Ron AR1=11R(2)-UR(R)

All=UI(2)-UI(A)
AR2-UR(2)+UR(A)
Alt=UI(2)+UI(R)
AR3=(IR(4)-UR(6)
A13=01(4)-UI(6)
AR4=1)R ( 4 ) + UR (6 )
A14-UI(4)+U1(6)
AR5=UR(1)-UR(5)
AI5=UI(1)-UI(5)
AR6=UR(1)+UR(5)
AI6=U1(1)+U1(5)
AR7=UR(3)-UR(7)

i'
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A17=11I131-UII71
AR8=UR(3)4UR(7)
AIA-UI131+UI(7)
MR1=0.7071067S1?00*(ARI+AR31
M11=0.7071067AI?00la(A11+A13)
MR?=n.7071067812nO*(AR2-AR4)
MI2=0.707106751200*(Al2-A141
14R3=AR?+AR4
M13=AI2+414
MR4=AR6+ARR
M14=AI6+419
MR5=AR6-ARR
M15=.416-AIR
MR6=AR).-AR3
MI6=All-A13
MR7=AR5+MR2
M17=A15+MI2
MRS=AR5-MR2
MIA=A15-MI2
MR9=AR7+MR1
M19-A17+Mll
MR10=AR7-MP1
MI10=AI7-Mll
1)R(1)=MR4+MR3
UII11=M14+1413
OR121=MR7-1419
111121=M17+MR9
OR131=MR5-MI6
UI(31=MI5+MR6
OR14)=MR9+14110
M (4)=MIA-MR10
URI51=14114-MR3
111151=M14-1413
11R(A)=MRS-MlIn
1)1(6)=MI9+MR10
11R(7)=MR5+MI6
UI(7)=tAI5-MR6
1IR 191=MR7+M19
111 IA ) =h!17-MR9
GO Tn 40

9 PnINT TRANSFORM
90n ARL=11R(2)+I1R(9)

411=UII2I+UI(9)
AR2=1)R(2)-UR(9)
Al2=U1('?)-Ul(9)
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AR3=UR131+1IR(R)

AI3=()1(3)+UI(RI
AR4=IIR(3)-UR(R)
A14=UI13)-11I(Al
4R5=UR(5)+UR(hl
A15=UI15)+111(6)
AR6=UR(5)-UR(h)
Aih=111(5)-11116)
Ak7=UR(4)+UR(7)
A17=U1(4)+Ill(7)
ARR=l1R(k)-UR17)
AIR=ll1(4)-Ul(7)
AR=ARI+AR3+AR5
AI=4II+AI3+A(5
MRl=-n.5004AR7
MI1=-n.51`)0^W7
MR?=n.966n25403RD()*AR8
M12=0.AA60?54n3Hn0*AIA
MR3rn.1974h54?n0*(-ARI+AR51
M13-n.1974654?nOK^(-AI1+4I5)
MR4=n,5695790?OO*(ARI-AR3)
M14-n,5AA5790?nn*(A11-A13)
MR5=n.37I113hD0o(-AR3+AR5)
MI5=n.3711136nn+x(-A13+A15)
MRh=n.5425317900*(AR?-AR6)
MI6=n.54?5317900*(AI?-A16)
MR7=0.10025579nn*(AR?+Ak4)
M17=0.ln0?$519nO*(AI2+AI4.)
MRR=0.44227597Dna1-AR4-AR4'
MLR=n.4422759700*(-AI4-A 6)
MR9=-1.5DO*AR
M19=-1.5nO*AI
MRln=0.8660?5403Hr)O*(Ak?-AR4+AR6)
14110=n.A660254038DO*(AI?-AI4+A16)
AR 1=lJR (I)+MR1
A11 =ill III+MI1
UR(I)=AR+AR7+ L1R(II

ill (1)=AI+A17+Ul(1)
AR=UR11)+MR9
A7=UI(l)+M19-

AR2=MR4-14RS
AI2=M14-MI5

AR3=MR3+MR4

413=MI3+MI4
AR4=MR7-14R8
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A14=M17-MIA
AR5=14R6-MR7
A15=MJ6-M17
AR6=4R2-MR5-MR3+AR1
AI6-Al2-1415-M13+AI1
AR7=AR3+MR3+t4R5+AR1
A17=A13+MI3+MI5+A11
ARH=-AR3-AR2+AR1
AlA=-A]3-Al2+All
MR1=MR6-MRR
MI1=M16.•M18
MR3=AR4+MR1+MR2
M13=A14+M11+1412
MR4=AR5+MR1-MR2
MI4=A15+MI1-MI2
MR5=AR5-AR4+MR2
MI5=AI5-AI4+MI2
IIR(2)=AR6-MI3
U1(2)=A16+MR3
UR(3)=AR7-M 14
11 T (3) =A I 74•MR4
t1R(4)=AR-MI10
UI(4)=AI+MR10
lJR(5)=AR8-MI5
UI(5)=AIR+MR5
IJR(6)=ARR+MI5
111(6)=AIR-MR5
OR(71=AR+M110
111(7)=A1-MRIO
IIR(R)=AR7+M14
(J1(H)=AT7-MR4
I1R(9)=AR6+MT3
IJ1(9)=A16-MR3
GO TO 40

C 16 POINT TRANSFORM
1600 AR1=UR(1)+IIR(9)

All=U111)+tJl(9)
AR2=UR(5)+UR(13)
Al2=UI(5)+UI(13)
AR3=UR(3)+IIR(11)
A13=tll(3)+U1(11)
AR4=UR(31-UR(11)
AI4=UI(3)-UI(ll)
AR5=l1R(7)+UR(15)
A15=U1(7)+01.(15)

37
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AR6=UR17)-UR(15)
A16=UI(7)-UI(15)
AR7=UR(2)+UR(10)
AI7=LII(2)+UI(10)
ARP=U0.( 2)-UR(10)
AIR=UI(2)-UI(10)
AR9=UR14)tUR(12)
AI9=111(4)+UI(12)
AR10=1JR14)-UR(12)
4110=UI(4)-UI(12)
AR11=UR(61+UR(14)
Atll=111(6)+UI(14).
40.1?=UR(6)-UR.(141
A112=UI(6)-UI(14)
AR13=UR(R)+UR(16)
A113=UI(8)+U M 6)
AR14=UR(R)-UR(16)
AI14=UI(R)-UI(16)
AR15=AR1+AR2
AI15=Ail.+AI2
AR16=AR3+AR5
A116=A13+A15
AR17=AR15+4R16
A117=4115+AI16
ARIA=4R7+AR11
AI1R=AI7+A111
AR19=AR7-AR11
AI19=A17-AIII
AR20=AR9+AR13
Al20=AI9+Ai13
A921=AR9-ARI3
Al21=419-.A113
AR22=AR1R+AR20
Al22=AI1R+AI20
AR23=ARR+AR14
Al23=AIR+AI14
AR24=ARR-AR14
Al24=AIR-A114
AR25=AR10+AR12
AI?5=Ai1.0+4112
AR26=AR12-AR10
AI26=A1.12-AIL0
AR31=1JR(1)-UR(9)
A131=111(1)-U1(9)
lIR(1)=AR17+AR22
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nRIGINAL PAGE
^, pi1^It QUt1LIlY,

111(1)=A117+Al22
OR191=AR17-.AR22
llI(9)=A117-AI22
AR29=AR15-AR16
Al29=A115-A116
AR30-AR1-AR2
AI30=AI1-Al2
MR1=0.7071067H12n0*(AR19-4R21)
Mf1=0.7071067R12n0%'(A119-Al21)
MR2=0.7071067H1200*(AR4-AR6)
M12=n.7071067R1200*(AI4-A16)
MR3=n.3926H3432400*(AR24+Ak26)
M13=0.3826834324004,(Al24+AI26)
MR4=1.306562965n O*AR24
1414=1.3n65629650n*AI24
MR5=-n.541196100lnn*4R26
M15=-0.541196100100*AI26
AR32=ARl8-AR20
A132=-4118+4120
AR33=AR3-AR5
A133=-AI3+AI5
AR34=1)R( 5 ) -11R ( 131
A134=-111(5)+1)1(13)
NiR6=n.•In71067812n0#(AR19+4821)
M16=-0.707106781PONI (AI19+A 1211
MR7=0.7071067R1200A(AR4+AR6)
M17=-0.707106781200,X(A14+AI6)
MR8=0.923279532500*(AR23+Ak25)
MIR=-0.9238795325no*(Al23+Al25)
r4R9=-n. 5411961001n0aAR23
Id I9=0.541196100100*AI23
MR10=1.30656296500>%AR25
MI10=-1.30656296500*AI25
MR11=AR30+MR1
MI11=Af30+MI1
MR12=AR30-MR1
M112=AI30-Mil
MR13=AR33+MR6
MI13=AI33+MI6
MR14=FIR6-AR33
M114=M16-4133
MR15=AR31+MR2
M115=AI31+M12
14R16=AR31-MR2
M116=A131-M12

r
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MR17=MR4—MR3
MI17=MI4—MI3
MRI8=MR5—MR3
Ml IA=MI5—MI3
MR19=MR15+MR17
M119=M115+MI17
MR20=MR15—MR17
MI20=5115—M[17
MR21=MR16+MR 1A
5121=MI16+MIIA
MR22=MRI6—MR IS
MI22=M116 — Ml 19
MR23=AR34+MR7
M123=AI34+MI7
MR24=AR34—MR7
MI24=AI34—MI7
MR75=MRR+MR9
MI25=M1R+M19
MR26=14RA—MR10
MI76=MIA—MIIO
MR27=MR73+MR25
MI27=MI23+MI25
MR2R=MR73—t4R25
MI2A=MI23—MI25
MR29=MR24+MR26
M129=MI24+MI26
MR30=MR24—MR26
M130.=MI24—M]26
OR(2)=MR 19+te 127
IJI(2)=MI19+MR27
OR(3) =MR 11+M 113
111(31=MI11+MR 13
WR(4)=MR22—M130
UI(4)=MI22—MR30
LJR(5)=AR29+AI32
LII(5)=4129+AR32
OR(6)=MR2I+M I29
LII(6)=M I21+MR29
OR(7)=MR12+M 114
UI(7)=M112+MR14
UR( 8)=MR20—M128
Ill (A ) =M I 20 — I+R 2A
UR( 10)=MR20+1,1128
LJ1110)=M120+MR2A
US 111) =MR I2—M114

40
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ORIGINAL PAGO IS

Ob` POOR QUALM

111(111=M112-NR14
OR(1?)=MR2I-M129
IJIl1.2)=MI21-MR?9
OR(13)=AI129-A132
(11(13)=AI29-AR3?
UR(14)=MR22+14130
1)1(14)=M 12?+MR30
OR( 15) =MR 11-M113
1)IIl5)=Mill-MR13
OR( 16)=NIR 19-14127
111(16)=14119-MR?7
GM To 40

1003 RFTURN
FND
SORRnl1TINE PATOOT(N,T)
IMPLICIT REA(*g (A-H,n-7)
CDM14nN/nFT/A(5040),R(5n40)
WRITF(6,45)

45 F(1RMAT(IH1,43X,25HFAR F1FLD'ANTENNA PATTERN/7X,5HANGLF,4X,7HMAC(nR
2),5X.514PHASE)

DFG=57.?957795131Dn
DO 50 I=1,N
S=(1-11/(N**T)
IF(S.GT.1 •.0) CO TO 60
C2=A(I)**2+9(1)**?
CDR=10.000*nLnfln(C?/C1?)
PHA=DATANIR(II/A(I))$OEG
IF(9(I).LT.0.0) PHA=PHA+180.0nO
ANG=nARSIN(S)*DFG
WRITF(6,70)ANG,C08,PHA

50 CnNTINIIE
60 CnNT1Nl1G
7n FORh'AT(3(3X,FIO.4,F1n.4.F10.4))

RFTURN
FND

41
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