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SUMMARY

A series of microwave measurements was conducted to determine the
radar cross section (RCS) of the Space Shuttle Orbiter vehicle at a
frequency and at aspect anglesapplicable to re-entry radar acquisition
and tracking. The measurements were performed in a microwave anechoic
chamber using a 1/15th-scale model and a frequency applicable to C-band
tracking radar;;. The data were digitally recorded and processed to
yield statistical descriptions useful for prediction of orbiter re-entry
detection and tracking ranges.

Analysis of the data yielded the following results for the Space
Shuttle Orbiter:

1. 'The median RCS of the orbiter vehicle exhibited a gradual increase
from approximately +10 decibels relative to 1 square Dieter (dBsm) at
nose aspects to approximately +27 dBsm at tail aspects.

2. Large peak values of RCS at aspect angles near 90 degrees were
observed in and above the yaw plane of the orbiter.

3. Smaller peak values of RCS at aspect angles near 45 degrees were
observed in the yaw plane of the orbiter.

4. The dynamic range of orbiter RCS amplitude scintillation was
approximately 10-15 decibels (dB).

5. The nose and tail aspect RCS values were not strongly correlated
with tilt or roll angles.

6. The orbiter vehicle generally meets or exceeds proposed minimum
RCS requirements for acquisition and tracking by C-band ground-based
radars during re-entry.

7. Median RCS for the orbiter are summarized in the table below.

Median Radar Cross Section (dBsm)
Tilt Angle Roll Angle Aspect Angle (Degrees)
(Degrees) De rees 0 45 90 135 180 225 270 315

0 0 9.3 17.2 30.2 22.9 28.2 20.3 44.0 17.2

-5 0 6.4 14.3 20.6 18.9 30.3 20.3 22.6 13.1

+5 0 9.1 15.1 36.1 21.3 30.7 21.4 35.8 15.0

-10 0 5.1 11.6 20.3 18.3 27.4 18.4 20.3 11.7

+10 0 12.3 17.1 36.0 21.5 31.0 21.3 36.0 17.0

0 10 11.2 15.3 35.6 19.1 29.5 21.2 21.4 12.6

0 20 5.9 11.2 30.0 19.7 31.7 17.8 15.3 10.3

0 30 10.1 11.7 26.3 19.4 32.8 18.1 15.3 10.2

0 40 11.8 12.9 27.5 19.7 27.3 16.6 22.1 14,1

0 50 6.8 13.5 31.1 20.5 25.7 15.6 15.8 8.5

0 60 13.4 14.7 30.3 16.7 28 1 18.1 15.2 13.4

0 70 12.5 15.0 30.8 19.6 28.1 19.4 19.5 14.6

0 80 11.0 15.1 34.6 19.4 29.4 19.0 27.9 14.3

0 1	 90 1	 10.2 1	 14.7 1	 32.8 1	 19.5 1	 25.5 21.4 1	 35.7 15.2



INTRODUCTION

The Pacific Missile Test Center (PACMISTESTCEN) was funded by the
National Aeronautics and Space Administration (NASA), Johnson Space
Center, Houston, Texas, to conduct RCS measurements on a scale model
of the Space Shuttle Orbiter vehicle. Authorization, funds, and work
requirements were established by NASA Defense Purchase Request T-3445F
of 22 August 1977.

These measurements were designed to yield results applicable to
ground-based, C-band radar acquisition and tracking of the Space Shuttle
Orbiter vehicle during re-entry.

Measurements were made on a 1/15th-scale model of the orbiter at roll
angles from 0 to 90 degrees at intervals of 10 degrees, and at tilt angles
of +10, +5, -5, and -10 degrees. The measurement frequency of 94
Gigahertz (GHz) was selected on the basis of equipment and model avail-
ability and yielded a full-scale frequency of 6.27 GHz. Vertical
polarization was used for all tilt cuts and for the 0- through 50-degree
roll cuts. Horizontal polarization was used for the 60- through 90-degree
roll cuts. Due to target symmetry, the roll data are valid for both
positive and negative roll angles. Several of the tilt cuts were
measured over aspect angles more than 180 degrees but less than 360
degrees. In these cases, target symmetry allowed the missing data to be
supplied by replicating corresponding portions of the measured data.
Table 1 summarizes the test parameters for the RCS measurements of the
Space Shuttle Orbiter model.

This report is submitted as fulfillment of project requirements.

DESCRIPTION OF MODEL

The Space Shuttle Orbiter model, shown in figures 1 through 5, is
a 1/15th-scale model of molded-fiberglass shell construction manufactured
by Pacific Miniatures, Incorporated, Alhambra, California. The model
length is 2.27 meters, the wing span is 1.59 meters, and the height is
1.16 meters.

Major features of the orbiter are the ogival noise, flat-sided
fuselage, thick wings with curved leading edges, vertical stablizer,
Orbital Manuevering System (OMS) rocket engine pods, rocket engine
exhaust bells, speed brake, and lifting-body curvature of the vehicle
underside. The model wings, vertical stabilizer, and speed brake are
removable and the cargo-bay doors may be opened. The model engine
exhaust bells are made of metal.

The surface of the model, including the interior of the cargo bay,
is coated with conductive silver paint to simulate the metallic
construction of the vehicle. Measurements of the surface resistance
were made to establish the uniformity, integrity, and conductivity of
the surface coating. The actual orbiter vehicle is partially covered
by various types and thickness of thermal protective system (TPS)
material. Several antennas are also covered by TPS. Due to the
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difficulty in modeling such materials and antennas, it was determined
to model the entire orbiter surface as a metallic skin. This modeling
will generally provide a minimum radar backscatter result for targets
such as the orbiter (references 1 and 2).

The conductive surface of the model was overpainted with the
orbiter color scheme. In addition to enhancing the appearance of the
model, this paint layer provides a protective coating for the silver
paint.

MEASUREMENT TECHNIQUE

The RCS measurements of the orbiter model were conducted in the
small PACMISTESTCEN microwave anechoic chamber (figure 6). The chamber,
approximately 5 meters high by 8 meters wide by 23 meters long, provides
an electromagnetic environment approximating free space at the measurement
frequency. The walls, ceiling, and floor of the chamber at lined with
microwave absorber which attenuates reflections of microwave energy
radiated within the chamber and isolates the chamber enclosure from
microwave energy radiated externally. The model was positioned on a
vertical styrofoam column extending halfway to the ceiling near one
end of the chamber. The measurement equipment was located at the
opposite end of the chamber, with the measurement system antennas
positioned at the same level as (and approximately 18 meters from) the
model. A typical equipment configuration, shown in figure 7, consists
of a highly stable radio frequency (RF) energy source, a transmitting
antenna, a receiving antenna, a canceling network, a receiver, and a
data recording system.

The signal generated by the stable microwave source is radiated
by the transmitting antenna which provides illumination of the target
with field density variations of less than 2 deci'oels (dB). The back-
scattered signal, captured by the receiving antenna, is detected and
recorded. In the absence of a target, a residual signal is received
from chamber wall reflections and from crosstalk between antennas. This
residual signal is canceled by coupling a portion of the transmitted
signal into the receiver through a microwave network. The network
provides amplitude and phase control of the coupled signal to effect
cancellation. After canceling the residual signal, the system is
calibrated in terms of absolute RCS by measuring the signal backscattered
from a simple metallic shape (typically a cylinder) of known, RCS. This
procedure establishes a reference RCS level which provides a calibration
for the subsequent model measurement. Consistent with equation (2) below,
the calibration level is adjusted by the square of the s('ale factor to
compensate for the effect of scaling. Subsequent to cancellation and
calibration, the model is positioned on the column in such a way that
prescribed aspects are presented to the measurement system as the column
is rotated. Data are acquired as the column rotates through a complete
revolution.
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The theory of scale measurements requires that the wavelength be
scaled by the same factor as the model in order that the ratio of
target dimensions to wavelength remain constant. The measurements,
performed at microwave frequencies greater than the required full-scale
frequencies by a factor equal to the scale factor, yield a relative
measure of RCS. Absolute calibration is obtained by measuring a
metallic object of simple shape and of known RCS. The relation between
the RCS of a target, 6T , and the RCS of a scale model, aM, is given by
the equation:

aT = aM (scale factor) 2 	(1)

which, for the measurements reported here, is

6T = aM (15.0) 2 = 225 QM	 (2)

COORDINATE SYSTEMS

PACMISTESTCEN System

The coordinate system used for the measurements defines the position
of the target and the positioner column with respect to the measurement
system antennas. For the measurements reported here, the model was
positioned on the column in such a way that the roll axis of the model
was normal to the longitudinal axis of the column. The following terms
describe the coordinate system, diagrammed in figure 8.

ASPECT ANGLE: The angle defining the rotation of the column about
its longitudinal axis. Aspect angle is zero when the nose of the model
is aligned with the midpoint between the measurement antennas. Aspect
angle becomes positive with counterclockwise rotation of the column from
zero, and becomes negative with clockwise rotation from zero. A 360-degree
rotation of the column presents the necessary aspect angles to record one
pattern.

ROLL ANGLE: The angle defining the rotation of the model about its
roll axis with respect to the supporting column. Roll angle is zero
when the pitch axis of the model is normal to the longitudinal axis of
the column, and becomes positive with declination of the port wing.

TILT ANGLE: The angle defining the inclination of the column toward
or away from the measurement site. Tilt angle is zero when the column is
vertical, and positive when the column is inclined toward the measurement
&.'_te.

PITCH ANGLE: The angle defining the rotation of the model about
its pitch axis. Pitch angle is zero when the longitudinal or roll axis
of the model is horizontal, and becomes positive with declination of the
nose.
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BISTATIC ANGLE: The angle subtended by the lines of sight from
the target to the transmitting and receiving antennas. If the bistatic
angle is essentially zero, the measurement is termed monostatic.

POLARIZATION: Polarization defines the direction of the transmitted
electric field vector with respect to the chamber floor. Polarization
is termed horizontal when the electric field vector is parallel to the
chamber floor, and vertical when the electric field vector is normal
to the chamber floor. The receiving antenna is oriented to receive
backscattered energy polarized in the same direction as the transmitted
energy.

NASA System

The NASA coordinate system (reference 1) differs from that used in
this report. The two coordinates used are defined as follows:

AZIMUTH ANGLE: The angle in the yaw plane measured clockwise from
the nose. The angles range from 0 degrees (nose) to 180 degrees (tail)
and continue to 360 degrees (nose).

ELEVATION ANGLE: The angle normal to the yaw plane at a specified
azimuth angle measured downward from the target yaw axis. The angles
range from 0 degrees (directly over the target) to 180 degrees (directly
beneath the target). An elevation angle of 90 degrees defines the yaw
plane.

RCS PATTERN COVERAGE

Figure 9 illustrates the coverage provided by the measurements in
this report. The axes are in NASA coordinates. The cross-hatched
region indicates the desired coverage for 450 nautical mile acquisition
from Pt. Pillar and Vandenberg AFB radars (reference 1). The single-
hatched region shows the additional coverage desired for 150 nautical
mile acquisition from San Nicolas Island and the FRC station near
Edwards AFB (reference 1). The five horizontal lines (+80, +85, +90,
+95, and +100 degrees elevation) illustrate the +10-, +5-, 0-, -5-,
and -10-degree tilt cuts, respectively. The curved lines indicate
the roll coverage from 10 to 80 degrees roll. The 0-degree roll cut is
the same as the 0-degree tilt cut. The 90-degree roll cut lies on the
0-degree azimuth and 180-degree azimuth coordinate lines.

DATA ACQUISITION

The RCS of the target is digitally recorded on magnetic tape by a
data acquisition system specifically designed for this purpose. The
system consists of an analog-to-digital converter which is enabled by
pulse outputs from a digital shaft encoder mounted on the target
positioner. The data are sampled at selected angular intervals, digitized,
and recorded on a seven-track incremental digital tape recorder. The
format of the data allows direct access to digital computer processing.

tii a
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The recording system allows a resolution of 0.1 dB, an accuracy of
+0.1 dB, a dynamic range of 80 dB, and a minimum intersample spacing
of 0.01 degree.

The data were sampled at 0.02-degree intervals. All data were
digitally recorded on magnetic tape and retained for future reference.
Data processing was performed by an IBM 7094 computer using a library
of programs specifically designed for this purpose. The graphs of
processed data are reproductions from 24x images on microfiche
generated with a computer-controlled Stromberg Datagraphix SD-4460 plotter.

DATA PROCESSING

The RCS of aircraft targets, observed at microwave frequencies,
exhibit large, erratic fluctuations as a function of aspect angle.
Figure 10 shows a typical recording of the RCS of an aircraft plotted
versus aspect angle. The RCS data recorded as a function of aspect angle
span a relatively large dynamic range, typically 40 to 60 dB. In order
to be accurately recorded and displayed, the data are usually converted
to logarithmic form. Because RCS is proportional to the echo signal
power, the RCS is expressed in terms of dBsm by the relation

QdBsm - 10 log asquare meters* The large fluctuations, caused by complex
interference among signals backscattered from various parts of the target,
preclude a concise quantitative description of the RCS. Therefore, the
data must be treated statistically for the majority of applications to
radar system analyses. From the wide variety of statistical processes
which can be applied to the data, the following were selected to provide
results of general utility.

Continuous Percentiles

A technique for smoothing fluctuations in the raw data consists of
determining the cumulative probability distribution of the data contained
in a small angular sector and plotting various percentiles as a function
of aspect angle. The 50th percentile, termed the median value, represents
the value of RCS that exceeds 50 percent of the data samples within the
angular interval. Similarly, the 10th and 90th percentiles represent the
values of RCS that exceed 10 and 90 percent, respectively, of the data
samples. The median yields a central value of RCS, while the 10th and
90th percentiles define extreme values of RCS. Prior reports and other
investigators have customarily selected an angular interval of 10 degrees.
A more significant treatment consists of analyzing the statistics of
the data that would be observed if the aspect angle varied randomly
about a given angle. This condition is representative of the RCS behavior
as a radar observes a target at a nominally fixed aspect angle with
flight-induced perturbations. Data are processed by computing the
percentiles of RCS resulting from aspect angle variations that are
normally distributed with a standard deviation of 2 degrees. The
computations, repeated as the aspect angle interval is stepped in
1-degree increments, yield a nearly continuous plot of the percentiles.
Figure 11 shows a typical result of data processed by this method. The
upper line superimposed on the raw data is the 90th percentile, the
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i center line is the 50th percentile (median), and the lower line is the
10th percentile. For clarity, the percentiles in the report are
displayed separately from the raw data.

Fourth Root of RCS

In many radar system analyses, acquisition range is a variable of
interest and importance. Acquisition range is related to radar system
parameters and RCS of the target by the radar range equations:

PTG2a2a

RMAX _
(4T) 3PRMIN

where RMAX = maximum acquisition range

PT	= transmitted power

PRMIN = minimum detectable received power

G	 = antenna gain

X	 = wavelength

6	 = target RCS

Equation (3) can be rewritten to separate the radar parameters from
the target RCS as:

P G 2 X 
2	 1/4

T	
61J4	 (4)RMAX =

(41r) `P
RMIN

For a given radar with fixed parameters, the terms in the brackets
comprise a lumped constant; the acquisition range is, therefore, propor-
tional to the fourth root of RCS. A plot of the fourth root of RCS as
a function of aspect angle exhibits the relative acquisition range for
radars observing the target. In addition to graphically portraying the
acquisition range envelopes, the fourth root of RCS provides a convenient
compression of the large dynamic range of the data, thus obviating the
need for expressing them in terms of dB„ Figure 12 shows a typical polar
plot of the fourth root of median RCS derived from the 50th percentile
values described in the preceding section. Values are plotted relative to
a 1 square meter target.

(3)
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Anomalies in the recording process caused minor perturbations in
the data at +40 degrees aspect angle on pattern 77-2581, and at +65
degrees aspect angle on pattern 77-2584. These perturbations are of
very short angular extent and do not affect the conclusions of this
report in any way.

RESULTS AND DISCUSSION

Aspect Angle Dependence

The median RCS of the Space Shuttle Orbiter exhibits a gradual
increase as the aspect angle is increased from the nose. In general,
the median nose-aspect RCS is approximately +10 dBsm, rising approx-
imately 1 dB per 10-degree increase in aspect angle from the nose for
the first 70 degrees. After the peak at 90 degrees aspect angle, the
median RCS increases from approximately +15 dBsm at 120 degrees aspect
to +27 dBsm at the tail, rising approximately 2 dB per 10-degree
increase in aspect angle.

Large peak values of RCS, occasionally exceeding the measurement
limit of +45 dBsm, occur at aspect angles normal to the longitudinal
(roll) axis of the vehicle. These large values are due, at low roll
angles, to reflections from the side of the fuselage, the vertical
stablizer, and the OMS engine pods. At high roll angles these peaks
are due to reflections from the top and bottom of the fuselage and wings.
At intermediate roll angles above the yaw plane the apparent sources of
the RCS peak are the fuselage and the fuselage-wing dihedral.

Lesser peaks occur at approximately 45 degrees aspect angle from
the nose in the yaw plane due to reflections from the leading edge of
the wings.

Values of the median RCS of the orbiter at every 45 degrees of
aspect angle from the nose for each pattern are tabulated in Table 2.
Plots of the 10th, 50th, and 90th percentiles and mean value of RCS
of the orbiter are shown in figures 14 through 27. Polar plots of
the median acquisition range relative to that for a 0 dBsm (1 square
meter) target are shown in figures 28 through 41. The RCS amplitude
scintillation is approximately 10 to 15 dB.

Tilt Angle Dependence

The median RCS of the Space Shuttle Orbiter is a weak function of
tilt angle for the region of +10 degrees tilt. (Note that the RCS
of the orbiter measured at a tilt angle of +10 degrees corresponds to
a 360-degree view of the orbiter at a fixed elevation angle of 10
degrees above the yaw plane.) There is a slight decrease in median
RCS for the nose and tail region at negative tilt angles. The broadside
peak is prominent at 0-, +5-, and +10-degree tilt angles, but is 10 to 23
dB lower at -5- and -10-degree tilt angles. This effect is attributed
to shadowing of the fuselage, OMS engine pods, and tail regions by the
wings at these negative tilt angles.
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Roll Angle Dependence

The median RCS of the Space Shuttle Orbiter is a weak function of
roll angle. The peak at 90 degrees aspect angle is r:c minent at 0-,
80-, and 90-degree roll angles, but is a minor featu,s — for roll angles
where the wing shields the fuselage. At 20-, 30-, and 50-degree roll
angles, the median RCS exhibits a broad minimum from 0 to 40 degrees
aspect angle. This minimum is approximately 3 to 7 dB below the median
RCS in this region for all other roll angles. In general, the median
RCS as a function of roll angle exhibits the same values and structure
described in the discussion of aspect angle dependence.

Comparison with Predicted RCS

The RCS of the Space Shuttle Orbiter has been predicted by calculations
of the RCS of geometric shapes chosen to approximate the vehicle config-
uration (references 1 and 2). Except for regions of peak RCS, the
predictions tend to underestimate the RCS values in the forward quadrant.
The predictions are most accurate in the region of 60 to 75 degrees
aspect angle. The predicted peak values at 45, 80, and 90 degrees
aspect angle are too large. Figure 13 illustrates the difference between
the measured and calculated RCS for the 0- through 90  degree aspect
angle region in the yaw plane.

Applicability of Results

The results of RCS measurements of a scale model of the Space Shuttle
Orbiter, as reported herein, may be used for predictions of acquisition
range by C-band radars during re-entry and in-orbit tracking. These
results represent a probable minimum - RCS configuration of the orbiter
vehicle. Extension of these results to other vehicle configurations
and frequencies is not recommended.

Acquisition of the Space Shuttle Orbiter on re-entry is subject to
many constraints (references 1 through 5). However, it has been determined
that an FPQ-6 radar requires a minimum RCS of +5 dBsm for detection at
450 nautical mile (reference 3). The RCS of the orbiter vehicle generally
meets or exceeds this minimum requirement for acquisition and tracking
by C-band ground-based radars during re-entry.
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Table 1. Summary of Test Parameters for
Radar Cross Section Measurements of

Space Shuttle Orbiter Model

Pattern
r

Tilt Roll Polarization* Figures

77-2579 0 0 Vertical 14, 28
t

77-2581 -5 0 Vertical 15, 29

77-2582 +5 0 Vertical 16, 30

77-2583 -10 0 Vertical 17, 31

77-2584 +10 0 Vertical 18, 32

77-2585 0 -10 Vertical 19, 33

78-0011 0 +20 Vertical 20, 34

78-0012 0 +30 Vertical 21, 35

78-0013 0 +40 Vertical 22, 36

78-0014 0 +50 Vertical 23, 37

78-0015 0 +60 Horizontal 24, 38

78-0016 0 +70 Horizontal 25, 39

78-0018 0 +80 Horizontal 26, 40

78-0017 0 +90 Horizontal 27, 41

*Polarization is measured with respect to the anechoic
chamber floor.
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Table 2. Median Radar Cross Section of
Space Shuttle Orbiter Model

N

Median Radar Cross Section (dBsm)
Tilt Angle Roll Angle Aspect Angle (Degrees)
(Degrees) (Degrees) 0 45 90 135 180 225 270 315

0 0 9.3 17.2 30.2 22.9 28.2 20.3 44.0 17.2

-5 0 6.4 14.3 20.6 18.9 30.3 20.3 22.6 13.1

+5 0 9.1 15.1 36.1 21.3 30.7 21.4 35.8 15.0

-10 0 5.1 11.6 20.3 18.3 27.4 18.4 20.3 11.7

+10 0 12.3 17.1 36.0 21.5 31.0 21.3 36.0 17.0

0 10 11.2 15.3 35.6 19.1 29.5 21.2 21.4 12.6

0 20 5.9 11.2 30.0 19.7 31.7 17.8 15.3 10.3

0 30 10.1 11.7 26.3 19.4 32.8 18.1 15.3 10.2

0 40 11.8 12.9 27.5 19.7 27.3 16.6 22.1 14.1

0 50 6.8 13.5 31.1 20.5 25.7 15.6 15.8 8.5

0 60 13.4 14.7 30.3 18.7 28.1 18.1 15.2 13.4

0 70 12.5 15.0 30.8 19.6 28.1 19.4 19.5 14.6

0 80 11.0 15.1 34.6 19.4 29.4 19.0 27.9 14.3

0 90 10.2 14.7 32.8 19.5 25.5 21.4 35.7 15.2
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PATTERN	 71-2318 FREQUENCY	 1.25	 GHt TILT ANGLE	 0'
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Figure 11. 10th, 50th, and 90th Percentiles ' Superimposed on Radar Cross Section Pattern.
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Figure 12. Polar Plot of Fourth Root of
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Figure 13. Measured and Predicted Radar Cross Section Data for
the Space Shuttle Orbiter in the Yaw Plane.
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PATTERN	 77-2579	 0 FREQUENCY	 6.27	 GHi TILT ANGLE	 0.
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Figure 14. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
Space Shuttle Orbiter, 0 Degrees Tilt Angle, 0 Degrees Roll Angle.
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Figure 15. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of

Space Shuttle Orbiter, -5 Degrees Tilt Angle.
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PATTERN	 77-2582	 0 FREQUENCY	 6.27	 6Ht TILT ANGLE	 •	 5•
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Figure 16. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of

Space Shuttle Orbiter, +5 Degrees Tilt Angle.
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PACIFIC MISSILE TEST CENTER
hial Yryr. CoMe'ail

PATTERN	 77-2583	 0 FREQUENCY	 6.27	 GHt TILT ANGLE	 -	 10•

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 0•

TARGET	 ORBITER ENGINEERS	 WY,BG.YK PITCH ANGLE	 0•

DATE	 14DC77 BISTATIC ANGLE	 0'
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Figure 17. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
ASPECT ANGLE (degrees)

Space Shuttle Orbiter, -10 Degrees Tilt Angle.
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PATTERN	 77-2581	 0 FREOUENCY	 6.27	 GHt TILT ANGLE	 •	 10'

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROIL ANGLE	 0'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 0'

DATE	 14DC77 IBISTATIC ANGLE
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Figure 18. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of

Space Shuttle Orbiter, +10 Degrees Tilt Angle.
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PATTERN	 77-2585	 0 FREQUENCY	 5.27	 GHr TILT ANGLE	 0'
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Figure 19. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
Space Shuttle Orbiter, -10 Degrees Roll Angle.
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PATTERN	 78-0011	 0 FREQUENCY	 6.27	 GHt TILT ANGLE	 0•
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Figure 20. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
Space Shuttle Orbiter, +20 Degrees Roll Angle.
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Figure 21. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of

Space Shuttle Orbiter, +30 Degrees Roll Angle.
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Figure 22. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
Space Shuttle Orbiter, +40 Degrees Roll Angle.
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Figure 23. 10th, 50th, and s90tli Wreen't'Nes grid Mean of Radar Cross Section of
Space Shuttle Orbiter, +50 Degrees Roll Angle.
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PROJECT	 SPACESHUTTLE POLARIZATION	 HH ROLL ANGLE	 /	 60'

TARGET	 ORBITER ENGINEERS	 WY,RG.YK PITCH ANGLE	 0•

DATE	 06JA78 BISTATIC ANGLE	 0'

40

w
°^	

E 20
Nm.0

ZO
t-'1
1--U
WN
NN
O

v 0
4
a

1-11

j
" L^4

a 1-d

^ h
HY
CID

TOP	 BOTTOM

180	 90	 0	 -90	 -180

ASPECTT l^NCE 1deg^^es1
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point Wtv. Cltfluefe

PATTERN	 78-0016	 0 FREQUENCY	 6.27	 GHz TILT ANGLE	 0.

PROJECT	 SPACESHUTTLE POLARIZATION	 HH ROLL ANGLE	 70•
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Figure 25. 10th, 50th, and 90th Percentiles and bean of Radar Cross Section of

Space Shuttle Orbiter, +70 Degrees Roll Angle.
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Figure 26. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
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Space Shuttle Orbiter, +80 Degrees Roll Angle.
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Figure 27. 10th, 50th, and 90th Percentiles and Mean of Radar Cross Section of
Space Shuttle Orbiter, +90 Degrees Roll Angle.
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Figure 28. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, 0 Degrees Tilt Angle, 0 Degrees Roll Angle.

t

PACIFIC MISSILE TEST CENTER
INe1 Ug l y. CNiltsail

PATTERN	 77-2579	 00 FREQUENCY	 6.27	 GHz TILT ANGLE	 0'

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 0'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 0'

GATE	 130077 IBISTATIC ANGLE	 01

40



. Pik GE IS
1T f

PACIFIC MISSILE TEST CENTER
r•i.l w#.. t.11l.r.1.

PATTERN	 77-2581	 00 FREQUENCY	 6.27	 GH: TILT ANGLE	 -	 S.

PROJECT	 SPACESHUTTIE POLARIZATION	 vv ROIL ANGLE	 0'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 01

DATE	 110077 BI STATIC ANGLE	 0•

NOSE

0

90 STARBOARD

180
TAIL

Figure 29. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, -5 Degrees Tilt Angle.
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Figure 30. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +5 Degrees Tilt Angle.
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PORT 770 `90 STARBOARD

PACIFIC MISSILE TEST CENTER
total move. aiij...i.

PATTERN	 77-2583	 00 FREOUENCY	 6.27	 GHt TILT ANGLE	 -	 10'

PROJECT	 SP ACESH'JTTLE POLARIZATION	 VV ROLL ANGLE	 0'

TARGET	 ORBITER ENGINEERS	 WY;RG.YK PITCH ANGLE	 01

DATE	 110077 BISTATIC ANGLE	 0'

NOSE

0

180
TAIL

Figure 31. Fourth Root of Median Radar Gross Section of
Space Shuttle Orbiter s -10 Degrees Tilt Angle.
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PACIFIC MISSILE TEST CENTER
P9601 move. calif...:.

PATTERN	 77-2584	 00 FREQUENCY	 6.27	 GHr TILT ANGLE	 •	 10,

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 0'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 0'

DATE	 14DC77 BISTATIC ANGLE	 0•

NOSE

0

180
TAIL

Figure 32. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +10 Degrees Tilt Angle.
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PORT/ 2.70
BOTTOM

JARD/

PAGE IS

PACIFIC MISSILE TEST CENTER
Friar Mq$. CNilrrsis

PATTERN	 77-2685	 00 FREOUENCY	 6.27	 GHr TILT ANGLE	 0•

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 -	 10'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 0•

GATE	 IADC77 SISTATIC ANGLE	 0•

NOSE

0

180
TAIL

Figure 33. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, -10 Degrees Roll Angle.
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PORT/ 270

BOTTOM

30 STARBOARD/
TOP

PACIFIC MISSILE TEST CENTER

► N61 Nq.. calil•ni•

PATTERN	 78-0011	 00 FREOUENCY	 6.27	 GHr TILT ANGLE	 0'

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 • 20'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 0'

DATE	 0SJA76 9ISTATIC ANGLE	 0'

NOSE

0

180
TAIL

Figure 34. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +20 Degrees Roll Angle.
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PACIFIC MISSILE TEST CENTER
Foist Wpr. CH ilersis

PATTERN	 78-0012	 00 FREQUENCY	 6.27	 GHt TILT ANGLE	 0'

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 • 30'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 (r

DATE	 OSJA78 BISTATIC ANGLE	 0'

NOSE

0

STARBOARD/
TOP

180
TAIL

Figure 35. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +30 Degrees Roll Angle.
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PORT/ 
270

BOTTOM

`90 STARBOARD/
TOP

PACIFIC MISSILE TEST CENTER
Faial Yata,	 Calilarai•

PATTERN	 78-0013	 00 FREQUENCY	 6.27	 GHz TILT ANGLE	 W

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 • 10'

TARGET	 ORBITER ENGINEERS	 WY,RG,YK PITCH ANGLE	 0'

GATE	 OSJA78 BISTATIC ANGLE	 0•

NOSE

0

t

180
TAIL

Figure 36. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +40 Degrees Roll Angle.
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PACIFIC MISSILE TEST CENTER
P•c.l Mots. COM40614

PATTERN	 78-0014	 00 FREQUENCY	 6.27	 GHt TILT ANGLE	 0•

PROJECT	 SPACESHUTTLE POLARIZATION	 VV ROLL ANGLE	 • 50'

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 01

GATE	 06JA78	 tj BISTATIC ANGLE	 01

NOSE

0

180
TAIL

Figure 37. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +50 Degrees Roll Angle.
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Figure 38. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +60 Degrees Roll Angle.
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PACIFIC MISSILE TEST CENTER
Foist Mqe, Caliiorsis

PATTERN	 78-0015	 00 FREQUENCY	 6.27	 GHt TILT ANGLE	 0r

PROJECT	 SPACESHUTTLE POLARIZATION	 HH ROIL ANGLE	 • 60•

TARGET	 ORBITER ENGINEERS	 WY.RG,YK PITCH ANGLE	 0'

DATE	 06JA78 BISTATIC ANGLE	 0•

PORT/ 270
BOTTOM

90 STARBOARD/
TOP
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PACIFIC MISSILE TEST CENTER

/9161 Map. Calilareia

PATTERN	 78-0016	 00 FREOUENCY	 6.27	 GH1	 . TILT ANGLE	 0'

PROJECT	 SPACESNUTTLE POLARIZATION	 NH ROLL ANGLE	 70•

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 01

DATE	 06JA78 BISTATIC ANGLE	 0.

NOSE
0

180
TAIL
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Figure 39. Fourth Root of Median Radar Cross Section of
r
	

Space Shuttle Orbiter,+70 Degrees Roll Angle.
Ir,
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PACIFIC MISSILE TEST CENTER
fsiol Mqr, Ciliiernis

PATTERN	 78-0018	 00 FREQUENCY	 6.27	 GHt TILT ANGLE	 0'

PROJECT	 SPACESHUTTLE POLARIZATION	 HH ROLL ANGLE	 80'

TARGET	 ORBITER ENGINEERS	 WY.RG,YK PITCH ANGLE	 LN..

DATE	 06JA78 BISTATIC ANGLE	 0"

PORT/ 270
BOTTOM

9 0 STARBOARD /
TOP

NOSE
0

180
TAIL

Figure 40. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +80 Degrees Roll Angle.
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PACIFIC MISSILE TEST CENTER
Niel Moo g . Coiiienis

PATTERN	 78-0017	 00 ;REOUENCY	 6.27	 GHt TILT ANGLE	 0•

PROJECT	 SPACESHUTTLE POLARIZATION	 NH ROLL ANGLE	 90•

TARGET	 ORBITER ENGINEERS	 WY.RG.YK PITCH ANGLE	 w

GATE	 06JA78 BISTATIC ANGLE	 0•

NOSE
0

90 STARBOARD/
TOP

180
TAIL

Figure 41. Fourth Root of Median Radar Cross Section of
Space Shuttle Orbiter, +010 Degrees Roll Angle.
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