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I. Summary

The object of this research is to assess the applicability of the photon
catalysis technique for effecting composition analysis of Silicon samples. In
particular, our technique is to be evaluated as a detector for the impurities Al, Cr,
Fe, Mn, Ti, V, Mo and Zr. [wring the first reporting period we have detected Al,
Cr, Fe and Mn with the photon catalysis method. We have established the best
fluorescence lines to monitor and determined initial Sensitivities to each of these
elements by atomic absorption calibration. In the course of these tests vapor
pressure curves for these four pure substances have also been mapped.

II. Background

Work commenced during the fPek of September I 1 with the assembly of our
Analytical Photon Catalysis (MTES) device into a configuration suitable for the
study of Silicon impurities. The resulting instrument and its function can best be
explained with reference to Figure 1. It consists of a vertical section of quartz
tubing 9 cin in diameter. An electrically heated metal vapor furnace is attached to
the bottom of the quartz tube, and a 60-1/sec pump, attached at the top of the
quartz tube, provides the means to evacuate the system. Argon or Nitrogen
injected through the bottom of the furnace assembly entrains the flow of metal
atoms from the furnace and carries it into the quartz observation section. In this
section, the concentration of Argon is much greater than the metal concentration.
A thermocouple plar_'ed in contact with the metal in the furnace allows direct
measurement of the metal atorn source temperature, or an optical pyrometer may
be employed by observing the heated metal down through the observation window.

A ring-shaped quaff tz gas injector is inserted into the apparatus at the
junction of the furnace assembly and quartz flow tube. Through this injector,
active Nitrogen is introduced into the ArS inetal atorn stream. The active Nitrogen,
consisting primarily of N atoms, N22(A E `), and ground-slate N 2 , was prepared
upstream of the in by passing N 2 gas through a 70-W microwave discharge.
The region of the quartz flow tube approximately 5 cm above the active Nitrogen
injector is monitored photoelectrically with an uncooled RCA 1P28 phototube
attached to a one meter rnonochrornator. Apart from neutral density filters, which
are used at higher metal concentrations to avoid high photomultiplier tube current,
no other optics are used. Hollow-cathode lamps can be placed on the opposite side
of the flow tube and at tr.e same height as the monor_hromator entrance slits. They
are used as a line source for the atomic absorption measurements to calibrate the
fluorescence intensity measurements with respect to metal vapor concentration.

The Ar and ;N 2 flows are adjusted to give a total pressure of 2-4 Torr. With
the microwave generator set to deliver 70 W to the N 2 flow, a pale straw-colored
glow is observable downstream of the injector. The furnace is then set to a given
temperature, and the resulting atornic line emission intensities are measured.
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The most intense and spectroscopically isolated lines are chosen (in ac-
cordance with Task IA of Ow statement of work) to be the best fluorescence lines
to nt.vnitor for the purposes of analysts. The intensity !s a direct measure of the
concentration of the etmoing species and can be calibrated as specified in Task 113
at high source tentperat jc:: by the atomic absorption technique. If one plots the
log I vs 10 /T(K) a vapor pressure curve results as per Task 1C. These three tasks
applied to Al, Cr, Fe and Mn have occupied us for the first quarter.

Progress (luring Reporting Period

When Aluminum is placed in the crucible and heated to 1000° Centigrade the
fluorescence spectrum shown in Figure 2 is obtained. All four of the prominent
Ines are due to the presence of At vapor in the active Nitrogen stream. The two
strongest lines at 309 rim and 396 rim were selected as the best for analysis and
their intensities were measured as a function of the source temperature. The
results for 309 nm are shown in Figure 3.

The results from two different runs are compared with Hultgren's 2 recom-
mended vapor pressure curve. The slopes of both our curves are about 20% larger
in magnitude than his, but the precision of our measurements is excellent. The
,nost re•isonable explanation for this discrepancy is a systematic error in our
results due to the use of the pyroineter to measure temperature. Ae plan to install
a digital thermocouple as soon as it is delivered.

The important result is that we have easily measured the Aluminum vapor
concentration over more than four orders of magnitude. An attempt to calibrate
our signal in order to obtain the absolute concentration of vapor in the observation
zone was postponed because of the failure of our aluminum hollow cathode lamp.

In Figures 4 and 5 the MITES spectrum and the vapor pressure curves for
Chromium are shown. Cr, like Aluminum, yields a simple line spectrum. The most
intense emission lines have wavelengths of 359.4, 357.9 and 425.4 rim. Three
additional lines at 360.5, 427.5 and 428.9 rim are also available for monitoring it
spectroscopic interferences affect our first choices.

Figure 5 summarizes our temperature dependent measurements at two
different wavelengths, 359.4 and 357.9 nin. The slope of the line through our2data
w, d o terinineq by least squares fitting agrees within 5% with both Hultgren and
Nesrneyanov. Atornic absorption calibration using the 357.9 nm resonance line
allows us to put the Cr concentration on an absolute scale as shown on the right
side of Figure 5. Using t4iis scale we see3 that the lowest concentration of Cr
detected to date is 1.6 x 10 items per cm. However, these absolute calibrations
cannot be determined with any great confidence, since the experimentally
deterinined oscillator strengths upon which these determinations depend are not
known to any great degree of certainty.

As expected when Fe is excited by active Nitrogen a rich atomic emission
spectrum results. See Figure 6. The best lines in turns of intensity occur at 344.1,

TP
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358.1 and 372.0 rim. Our temperature dependent studies give the vapor pressure
curve shown in Figure 7. Our slope is significantly different from Huligren's
recommended curve. Significantly our slope would yield a lower heat oI vaporiza-
tion. If our sample were oxidized a higher value would be expected.

Our results for Mi iganese arc • summarized in Figures 8 and 9.	 The
Manganese MTES spectrum is intermediate between Al and Fe in complexity.
I-ortunately, however, tiK: intensity is concentrated in the triplet features near 280
and 403 nri. Either of these features could be monitored in its entirety with a wide
bandpass tetector. Maximum sensitivity could probably be achieved in this
manner. However, with our nionochrorviator only one line from each triplet could
be monitored at a time. Figure 9 shows our system response to the lines at 279.5
nm and 403.1 run as a function of the reciprocal of the source ternperatur-. These
two features are the most intense of their respective groups. both set of data
give vapor pressure curves whose slopes come within 10% of Hultgren's recom-
mended value when fit with the least squares method to a straight line. The
dynamic range of our detector extends over four orders of magnitude.

The data points on Figure 9 that are indicated with a circle were obtained
with the atomic absorption technique. This data pegs our MTES measurements on
the absolute sc5ale %ven on the right side of Figure 9 and establishes a sensitivity
of less than 10 cm for Mn.

1V.	 Conclusions

Aluminum and Chromium are both sensitively detected by the MTES
technique. Their excitation spectra are simple line spectra with most of the
fluorescence ernanating from a few lines. Both elements give well defined vapor
pressure curves with slopes comparable to the published values. This is direct
evidence that the intensity of their fluorescence lines is a linear measure of the
concentration of these rnati-rials in the vapor. The system sensitivity to Aluminum
was not direc4ly calibrated, bt t it can be estimated from rite of vaporization data
to be 3 x 10 atoms per cm. 5 The sensitivity to Chromium was determined by
atonic absorption to be 2 x 10 atoms per cm.

Iron and Manganese give more complex spectra when excited by contact
with active Nitrogen. Each of these elements can be determined analytically by
rnoratoring the most intense spectral features. The sensitivi;y to Fe can he
estimated from rate of vaporization data (Appendix 1) to be 10 atoms per cm .
The atomic absorption method failed for Iron due to a lack of sensitivity of this
technique. With Manganese most of the emission intensity is concentrated in six
lines and the sensitivity is so-,:ewhat higher. As jetermined by itornic absorption
calibration we have detected approximately 5 x 10 atoms per cm of this element.
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The results for Tasks IABC are summarized in the following table.

element	 Al	 Cr	 Fe	 Mn

best MTES lines (nrn) 309.2, 396.1 359.4 344.1	 279.5

ancillary	 lines(nrn) 308.2, 394.4 347.9, 425.4 358.1, 372.0	 403.1

sensitivity (rm -3 ) 3 x 10 5 2 x 10 5 107	 5 x 104

ppb 30 20 1000	 5

At this point we can speculate about how our quoted sensitivities for these
elements will translate into detectivities for impurities in a Silicon matrix. For
this purpose one needs to understand that the sensitivities quoted in the table are
our detection limits for the elemental vapor in a gas stream. We have also
determined that our system saturates fpen the total rn^tal vapor concentration in
the active nitrogen stream reaches 10 atoms per cm'. If we evaporate Silicon
from a sample into our active Nitrogen stream and the evaporation process is
congruent, then the composition of the vapor will be f5presentative of 3the sample
composition. If Silicon saturates our system at 10 atoms per crn , th-,:n the
mini1r^ m det§ctable level of impurity in a solid Silicon matrix by our technique is
(S/ 10 ) x 10 ppb, where S is our quoted sensitivity. Applying this formula to the
third row of the above table gives the fourth row. Thus, we can currently expect
to ultimately measure from 5 ppb Mn to 1000 ppb Fe in silicon with our lec`:r;yue.
However, we expect to improve on this with a combination of improved light
collecting efficiency and increased threshold for saturation.

A comparison with our observed MTES lines with the so called persistent
Imes of the elements is also instructive. One might e;.pect little commonality
between the two sets of lines due to the different modes of excitation, since the
persistent lines refer to spark or arc excitation and MTES lines are excited by
molecular energy transfer from a triplet species(A 3 F +). Howe-er, comparison
of the above table with tabulated persistent lines yields the following results:

element	 111	 Cr	 Fe	 Mn

MTES lines (nm)	 309.2, 396.1	 359.4, 357.9 344.1, 358.1	 279.5, 403.1

persistent iines (nrn) 	 309.2, 396.1	 428.9. 425.4 302.1, 358.1 	 257.6, 403.1

One sees no discernable pattern. The Al MTES lines and persistent lines are
identical. The Cr lines show no commonality. Fe and .Mn are intermediate cases.
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V.	 Future Activity

As per the program plans given in Appendix 2 the next quarter will be spent
in completion of Tasks IABC for the elements Ti, V, and Si. Establishment of the
Silicon vapor pressure curve is especially important for two reasons. First, the
vapor pressure curves for the unpurities will be the same! as the one for Silicon if
the vaporization process is congruent. Thus, they will not be the same as the vapor
pressure curve measured for the pure element. For :xarnple, the vapor pressure
curve measured for Alurinum over the pure metal will differ from that measured
when the source is Silicon doped with Aluminum. This comparison is a major
milestone and will require good baseline data. Secondly, the impurity level in a
sample will be determined by the comparison of the inten:, ► ty of an impurity MTES
line to a Silicon MTES line. Therefore, normal behavior of the Silicon must be
confirmed by measurements at closely spaced intervals of the t.ource temperature.
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VII.	 Appendix I

Estimation of Concentrations and Required Temperatures

From our experience with Bi and Pb we can estimate the concentrations of
metal vapors produced in our ap paratus at a given source temperature or
conversely we can estimate the source temperature required to produce a given
concentration of metal vapor. Both of these abilities are useful experimentally to
bracket working temperatures, and they serve as consistency checks for the
calibration data. This technique is best illustrated by the examples that follow.

Table 10.1 (S. Dushrnan, "Scientific Foundations of Vacuum Technique,"
Wi!ey 1966) shows rate of vaporization data for many metals. Selected data for Bi
from this table is summarized in the first two columns below. The values in the
fourth column are computed from the temperatures in the first column and used to
determine the metal concentration from the MTES curve for Bismuth (taken from
Applied Physics Letters 30, 407 (1977) ) shown in Figure 10.

Rate of 2Evaporation Metal Concentration 4
T(C)	 gr/cm -sec DetermTed by MTES 10	 /T(K)

cm

Bismuth 578	 3 x 10 5
-6508 3 x 10

109
108

11.75

450	 3 x 10-7 107
12.8
13.83

3 x 10-8:-9 106
105

14.8
3 x 10 15.8

If we assume that the concentrations of two different materials will be the
same in the observation zone if their vaporization rates are the same, we can
calcul"te the temperature required to produce a given concentration. For
example, in Figure 10 the round data points were taken wit4 the atomic absorption
technique. 9 This technique3 is limited to approximately 10 atoms per c.n . For
Bismuth 10 atorns per cm is produced in our apparatus at a source tenipedature
of 850(K) or 580(C); we determine this from Fig^re 10 by 3 observing that 10 /T(K)
equals 11.75 when the Bi concentration equals 10 per c5rn Fr2rn the table given
previously we see that a raie of vaporization of 3 x 10 gr/cm -sec is responsible
for this concentration. 4.lsing our assumption we can now estimate the temperature
required to produce 10 atoms per cm of any metal. Since atomic absorption is
insensitive to concentrations much lower than this, our estimated temperature will
have to be maintained in order to calibrate our apparatus by the AA method. Using
table 10.1 we extract the following information on the metals of interest to our
project.

*values obtained by extrapolation from table 10.1

4
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Metal	 T(C) requtjed for rate of 3vaporizat , on (3 x 10' 5 gr/cm 2 -sec) to
sustain 10 atoms per ern

Al 1080
Cr 1300
Fe 1400
Mn 900
• Mo 2500

S1 1400
• Ti 1600
• V 178C
" Zr 2250

Since our apparatus is capable of sustaining a maximum temperature of
16,90C, the materials marked with an asterisk cannot be calibrated with AA
methods. Ti is a borderline case. In addition V, Zr and Mo have sueh low rates of
vaporization at 16000 that more sophisticated sources will be required if we ai to
study the pure vapors of these i.iaterials.

We can also use our rate of vaporization technique to estimate concentra-
tions at variou.; temperatures. This was done for Aluminum in the progress report
for October and serves as arkexample here. Our lowest detectable MTES signal for
Al (See Figure 3) was at 10 /T(K) equal to 9.4 or T(C) equal to 790. From table
10.4 the extrapolated Aluminum rate of vaporization at 790C is approximately 9 x
10 gr/cm -sec. If we assume that Al and Bismuth are detected with equivalent
sensitivity by MTES, then we can the fiisrnuth 3table given above to estimate
our Aluminum detectiv ► ty at 5 x 10 Morns per cm .3 When applied to Chromium
this method gives a sensitivity 3 	 10 worns per cm . The method of calibration
by AA gives approximately 2 x 10 	 This technique was also used to estimate the
sensitivity to Iron.
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N+ 4 1034	 +110 f: 1142 1247 1337 1497 1667 1877 1452 5 2839

W: 119	 10' 115	 10' 111 . 10' 106	 10' 101	 10' 096	 10'
Ru SD* 1: 1913 2058 2210 2411 1066 2946 2427 9.8 ...

IV: 1.I6	 10' 122 . 10' 1	 18 . 10' 1	 13 . 10' 1.010'8 41.010' d
Rh 4 ... 1: 1587 1707 1857 2027 2247 1527 1966 S 5 (3727)

W: 117	 10' 1.33	 10' 1 28	 10' 123 . 10' 1.18	 10' 1 1210'
I'd 4 .. 1: 1157 1262 1187 1547 1727 1967 1550 11 3127	 m

1V: 1.59 . 10' 1.5410 • 14810' 141 . 10' 1.35 . 10' 1.2710'
0s SD _. r: 2101 2264 2451 1667 2920 3221 2697 7510Ut

I41 : 1.65	 10	 ' 1.60 10 ' 1 54	 10 ' 148- 10 ' 1.42 10 ' 1.36	 10
Ir 4 1: 1797 1947 2107 2307 2527 1827 2454 50 (4127)

W: 1.78 . 10' 1.72	 10' 166 . 10' 1.6010' 1.53 . 10' 146.10'
1't 4 V 1602 1742 1907 2077 2117 2581 1770 1.7	 10	 ' 1827

W: 1.88 . 10' 1.8210 . 1.75 . 10' 1.68 • !0 • 1.60 . 10' 1.52.10'

• SD u Dutilunan, Ist edition of this book.
t Handhook of Chemistry rind Physirr, 39th edition. a,
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