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ABSTRACT

The primary objective of this contract is to develop equipment and

methods for the economic production of single crystali ingot material by the

continuous Czochralski (CZ) process. Continuous CZ is defined for the purpose

of this work as the growth of at least 100 kilograms of ingot from only one

melt container.

The approach to the project is to utilize a Hamco production CG2000 crystal

grower suitably modified to grow large crystals and to permit periodic replenish-

ment of the liquid. Key modifications were a vacuum tight isolation valve to

separate the furnace chamber from the pull chamber for recharging, an automatic

recharge mechanism, and an enlarged pull chamber to hold a supply of poly material. 	 s

Other suitable modifications to permit the growth of crystals up to about 35 kilo-

grams each included an optical diameter control system to allow crystals up to

12.5 cm to be grown, and a pull mechanism capable of supporting the large crystal

to be grown. Furnace hot zone modifications were designed and built to accommodate

14-inch diameter crucibles having a melt capacity of about 40 kilograms.

During the reporting period (October, 1977 - September, 1978), the modified

grower was made fully functional and several recharge runs were performed. The

largest run lasted 44 hours and over 42 kg of ingot was produced.
h

Samples from two recharge runs were sent to JPL for solar cell fabrication

' and analysis Little, if any, degradation in efficiency was observed as a result

of pulling multiple crystals from one crucible. Solar efficiencies observed were

between 9.3 and 10.4% AMO (13.0 and 14.6% AMI) compared to 10.5% (14.7% AMI) for

optimum CZ material control samples.

The two primary reasons for the termination of recharge runs were (1) the

throughput of high quality single crystal material being produced became so low

ii



'0v`	
"7""'

i

i

thatcontinued running was deemed to be unfruitful in terms of learning more

process,	 (	 pabout the	 rocess	 and	 2) unexpected shut downs occurred due to operator

error, equipment failure, or utility interruption.

The reason for the reduction in crystalline quality of produced material`'
x

x
with time is not fully understood, although foreign particles entering the

Y

melt are considered the most probable reason. Silicon monoxide particles from

furnace interior walls, quartz particles from the crucible, or silicon carbide

particles precipitating from the melt are being investigated. More study is

needed to solve this problem. r"

Using the SAMICS/IPEG format, economic analysis of continuous CZ suggests
s

that 1986 DoE cost goals can only be met by the growth of large diameter, large

mass crystals.

;;mphasis will be placed in the future ondetermining the causes of structure

loss and on the production of larger crystals in order to achieve the project

.	
goals.

r
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1.0	 INTRODUCTION

The production of several crystals (up to 100 kg total) from one

container by the Czochrals,ki (CZ) method requires equipment and process

modifications not commonly used in the semiconductor device industry. In

general, these modifications are required for the purpose of permitting

some method of silicon replenishment without cooling the residual melt

and container or contaminating the silicon.

Although a number of methods of accomplishing continuous.CZ growth

can be devised, it is very important that the chosen method be suitable

for a production environment and that it is attractive in terms of safety,

reliability and cost. In a production-type process, variables should be

well-controlled and equipment should not require operators with great

}	 skill or technical ability.

It is the purpose of this project to develop equipment and process

to achieve low-cost continuous CZ production of silicon single crystal

ingot by repeated refilling (recharging) of the vitreous silica crucible

and subsequent crystal growth cycles.

F

	

	 The equipment used in this work was -a Hamco model CG-2000 Czochralski

crystal growing furnace, extensively modified for the purpose of growing

several crystals from the same crucible.

Evaluation of the equipment designs, verification of the economic model

(or revision) and study of the process parameters were carved out by performing

- a number of recharge, runs.

l
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2.0	 PROGRESS

2.1.0 GROWTH FACILITY DESIGN, CONSTRUCTION, AND MODIFICATION 	 }

Since the vitreous silica crucible is always destroyed by fracture

during the cooling-off cycle due to the thermal expansion difference

between silicon and silica, it was necessary to provide a means to refill

the crucible while maintaining it at high temperature. Furthermore, it was

necessary to continuously maintain an inert atmosphere surrounding the

molten silicon and the graphite furnace parts, to prevent oxidation. A

pressure range of about 25 mbar minimizes the deposits of silicon monoxide

which tend to collect on the cooler surfaces of the furnace. The monoxide,

formed by the reaction between the molten silicon and the silica crucible,

sometimes falls from surfaces to land in the melt causing loss of zero-dislo-

cation crystal structure, twinning, or polycrystalline growth. Therefore,

the following criteria were established for the design of the furnace modi-

fications:

1. The recharge operation must permit the crucible to remain at or above	
=

the melting point of silicon.

2. The hot zone must be always protected by vacuum or low argon pressure.

3. Polysilicon insertion and crystal removal must be performed in a safe,

reliable way without contamination of the silicon or the hot zone

environment.

During the reporting period, a new CG-2000 production crystal grower

was completed with special modifv.c:ations to the chambers to make it suitable

for recharging. The pull chamber is enlarged to permit polysilicon to be

stored within the furnace in a ready condition for recharging. (The initial

2



effort utilized polysilicon rods for recharging. A subsequent design will be

suitable for powdered or nugget silicon).

Other initial modifications to the chambers included a vacuum-tight

isolation valve, larger viewports, a larger pull length capacity and a larger

growth chamber suitable for 14-inch diameter crucibles. Subsequently, adds-

tional modifications to the crystal growth facility were made, including a

recharge mechanism, a larger capacity cable-pull mechanism, an automatic

diameter r- trol optical system suitable for 12.5 cm diameter crystals, and a

dopan , '	 .fishing fixture.

heral equipment to accommodate recharging included a crystal-poly

transfer device for loading raw material and retrieving grown crystals, and a

special vacuum pumping manifold to control furnace pressure during the crystal

retrieval process.

Recently, an etching facility was designed and built to clean poly feed

stock rods or ingots for recycling.

Figure 1 is a photograph of the JPL continuous CZ facility after instal-

lation in the room specially prepared and designated for the project.

Figures 2 and 3 are schematic illustrations of the growth chambers with

modifications showing both the crystal growth and the recharge modes of

operation.

Polysilicon (semiconductor grade) is readily available in rod form, and

the initial recharge procedure which was used on the program was to slowly'

r
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lower the poly rod feed stock into the hot crucible, melting it off until the

desired amount of liquid was obtained in the crucible.

Poly rod feed stock can be stored in the rear of the pull chamber. When K

a crystal is complete, the valve is closed and the pull chamber is brought up

to atmospheric pressure by introducing argon. After removal of the crystal,

the pull chamber is closed and returnedl, to low argon pressure by pumping down

and purging. After the valve is opened,'the poly rod is moved forward, lowered

k	 into the hot zone and the crucible is filled. (At this time the seed is positioned

above the recharge mechanism). After recharging ,, the remaining poly is retracted

f
and the seed is lowered into the furnace to start a new crystal.

After the second crystal is grown and removed from the furnace, a new poly

rod can be placed on the recharge cable, if required.

This concept of recharging has been demonstrated to be feasible by a

number of successful multiple recharge runs. The basic furnace chamber has per-

formed adequately with the exception of vacuum ,leak problems around the larger

viewports, primarily related to stress cracking at welds. The design has been

modified now to eliminate this problem.

Following, is a summary of the design criteria for the modifications which

were added to the JPL continuous CZ facility.

2.1.1 ISOLATION VALVE

A "flapper"-type isolation valve was designed for simplicity, reliability,

and ease of cleaning. It is water cooled, relying on an 0 ring seal. A manually

operated external lever actuates the valve. Initial tests of the valve were

satisfactory and the performance of the valve over many runs has been excellent.;

The water-cooled 0 ring has not been degraded at all by pulling hot crystals

through the valve.

7
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2.1.2 AUTOMATIC DIAMETER CONTROL OPTICAL SYSTEM (Figure k)

The design of this unit was made eimilar in principle to a standard CG-2000;

however, because of the vacuum isolation valve throat, certain modifications
Y

had to be made. First, a larger focal length lens was required. The image of

the growth interface was obtained having exactly a 2:1 reduction for convenience

in determining crystal diameter. A larger viewport in the chamber door was added

for visual confirmation that crystals clear the valve before closure of the

valve and removal of the crystal. i

2.1.3 POLY WEIGHT/RECHARGE SYSTEM

The design work on this device constituted a major portion of the effort.

After consideration of a number of alternatives, the concept of a torque sensing

transducer fixed to the end of a horizontal shaft (Figure 5) was the preferred
ty

route. The shaft rotates for raising or lowering the poly and translates hori-

zontally to move the poly over the crucible. A commercially available torque

sensing strain-gauge transducer was purchased, and included in the design.

The POLY WEIGHT /RECHARGE DEVICE is a removable, independent unit positioned

between the pull chamber and the pull mechanism support. This minimized rework

cost to the pull chamber, increased the recharge capacity of the furnace and

simplified the modification procedure.

The control circuitry for the Poly Weight/Recharge Device provides for

(1) continuous weighing of the poly so that accurate measure of the amount re-

maining (and therefore the amount melted off) is always available, and (2) auto-

matic shut-down of the lowering motor when the desired amount of silicon has

been melted. A tachometer feedback DC-PM motor raises and lowers the poly while

the lateral movement is produced by a hydraulic cylinder operating off of the

main hydraulic pump.

8
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Considerable difficulty was experienced in fabrication and testing of

1

the recharge device. The major problems related to achieving a leak-tight

system. Additionally, the weight sensing circuitry failed and had to be re-

turned to the vendor for repair.

A poly attachment device (Figure 6) fabricated of molybdenum was found to

perform adequately for recharging with poly rods up to 5 inches :in diameter.

-	 Two notches are required to be cut in the rod to accept the teeth of the clamp.

Poly can be melted off to a point where only _about one kilogram remains unmelted.

2.1.4	 DOPANT FIXTURE

When predoped poly material is not used, provision must be made to add

dopant with each recharge. The dopant fixture (Figure 7) consists of two vacuum
rr^

valves with an air-lock chamber between which can be evacuated using the secon- a

da	 pumping system. Withry p	 p	 g	 y	 th the lower. valve closed, dopant 	 be added

through the upper valve. After the upper valve is closed and the air -lock

evacuated, the lower valve is opened, allowing the pellets to drop into the

crucible.

This fixture performed well on all runs.

`	 2.1.5	 CRYSTAL/POLY TRANSFER DEVICE

A convenient and safe method of removing hot crystals and inserting poly
{

rods was required. The transfer device was built ( Figures 8 & 9) for this purpose.

The device is mounte& on a standard commercially available manual lift truck.

The crystal/poly can be rotated to a horizontal position for placing on the

cooling or storage rack (Figure 10). The rack design is shown, in Figure 11.

11
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FIGURE 10 PLACING HOT CRYSTAL ON COOLING RACK
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2.2.0 GROWTH FACILITY PERFORMANCE

The JPL growth facility has been -demonstrated to perform as expected in

terms of crystal growth, recharging, doping, etc,. Considerable difficulty and

delay was experienced in solving problems with vacuum leaks in both the

recharge mechanism and the large viewports. These have been solved and now

18



3.0 PROCESS DEVELOPMENT

The equipment being used in this project has a design capacity of	 fi

16 kilograms pulled from a 20 kilogram melt, utilizing a 12-inch diameter

by 9-inch high vitreous silica crucible._ Since the goal of the project is to

pull 100 k from one crucible this would mean 6.25p	 g	 crystals would be required

to achieve the goal.

The economic analysis indicated that cost reduction would result by
`

	

	 I
pulling large crystals; therefore, the effort was directed at larger melts

(24-25 kg) in a 12-inch crucible and subsequently 35-40 kg melts in a 14-inch

crucible. The goal for the work was subsequently defined to be five 20 kg

crystals from a 12-inch crucible and three 33 kg crystals from the 14-inch

crucible.

Since neither the 12-inch or-14-inch crucible will hold that amount of

silicon in unmelted chunk form (chunk poly has a packing density of only about

50% of theoretical silicon density), it was proposed that the first melt size

be increased by "topping up" or hot-filling prior to starting the first crystal

growth cycle. This would be performed by adding silicon by the same method

proposed for recharging.

i
f

i
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2.3.1 HOT FILL EXPERIMENTS

The first task was to establish the feasibility of hot filling using

I	 a polycrystalline silicon rod as feed material.

Five-inch diameter by 24-inch long rods were obtained (approximately

20 kg each). They were notched on one end to accept the poly attachment clamp.

`

	

	 The crucible was loaded with 18 kg of chunk poly and melted. When

melting was complete, the poly rod was lowered into the crucible until it

'	 established contact with the melt.

Seven kg of silicon were melted from the rod to achieve a total melt

size of 25 kg. From this melt, a 22 kg high quality crystal was grown

(Figure 12). Anticipated problems in achieving zero dislocation structure

with such a full crucible did not occur.

The hot filling experiment showed that this method of filling a crucible

to a high level is feasible and that 100 kg could be achieved with five

i
20 kg crystals.

Power consumption was monitored throughout this run (see Figure 13), and

the data showed that the assumptions used in the economic model were valid.

The melt-off rate for the poly rod was 14 kg/hr, i.e. the seven kilograms

required 30 minutes to melt, once the rod had achieved melt-back temperature.

i

k
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2.3.2 RECHARGE RUNS

i
Eight recharge runs were attempted during the reporting period. Most

of these runs were not intended to be long runs and consisted of one or two
t

recharges. on later runs, preparations were made to run as long as possible.

Table 1 lists several significant runs in the program. Run No. 5 was

the hot-fill run previously described. Run No. 9 was a two-melt run producing

27 kg of single crystal ingot.

To date the longest run (#11) lasted 44 'hours and resulted in 42.5 kilograms
I

of ingot, most of which (88%) was high quality, zero dislocation material. This

run was terminated because of excessive build-up of silicon monoxide on one

viewport of the grower, causing structure loss problems, as silicon monoxide

fell into the melt. The cause of the build-up of monoxide was determined later

to be a pin-hole leak in a weld which allowed water vapor to enter the chamber.

The less successful runs were terminated for the following reasons: -_

1. The graphite upper crucible support failed in two instances, allowing

the crucible to bulge. The runs were terminated because it was feared

that the crucible wall would fail.

2. A polysilicon rod fractured and fell into the melt. This is believed

to have been caused by a too rapid heat-up of the rod during recharging.

3. The ability to maintain zero dislocation crystal structure was Jost.

This has been the most frequent reason forterminating a run. At this

'	 point, the causes of structure loss are not known for certain, although

foreign particles in the melt are the most probable cause. This is

discussed later.in this report.

4. A plant compressed air failure caused the vacuum system valves to close.

The argon pressure in the furnace increased to atmosphere and excessive
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monoxide developed. This mode of failure has been eliminated with a

compressed air back-up system.

There have been no crucible failures in the program, although devitri-

fication has been moderate to severe in some cases. This is discussed below.

Initially, all recharging was done with poly rods. Figures 14 and 15

illustrate a typical rod before and after recharging. Later, as it was neces-

sary to recycle the silicon, we recharged with ingots from previous runs.

k

t

E

j

f
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CONTINUOUS CZ GROWTH SUMMARY

N
Qn

TOTAL TOTAL AVG. RUN THROUGH- PULLED ZERO
RUN MELTED PULLED

NO. DIAM.
PULL SPEED TIME PUT YIELD OISLOC,

N0. (kg) (kg) CRYSTALS ^m> (cmihr) (hr) (kg/hr)

5 25.0 22.0 1 11.0 9.1 18 0.82 88 100

9 31.2 27.1 3 11.2 8.7 39 0.70 87 85

11 48.7 42.5 4 10,7 9.1 44 0.97 87 88

Table 1
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Polysilicon rod ready for recharging

FIGURE 14
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Polysilicon rod after recharging

FIGURE 15
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2.3.3 CRYSTAL QUALITY

' It is considered highly desirable to pull single crystal ingots having

a zero dislocation (0-D) characteristic. With a clean system, 0-D crystals

are relatively easy to grow. "Clean" means we use a high purity crucible free
c

of defects on the inner surface, high purity polysilicon, high purity graphite

parts in the hot zone, high purity argon, and that there are no leaks in the

furnace chambers or seals.

It is well established that a foreign particle in _the_.silicon melt will

cause at least loss of O-D'structure and most likely will cause twinning or

polycrystalline growth. Silicon monoxide and quartz particles have been

observed to cause loss of structure, the effect being easily observed by the

operator. Silicon carbide particles behave in a similar way in EFG growth. 'r

The possibility exists, in CZ growth, that SiOx, S102 , or SiC could enter the

;. melt. Thus, all are possible causes of structure loss and should be investi-

gated. it

F _(a) Silicon Monoxide - , This material is-formed by vaporization from the

melt and subsequent condensation as a submicron powder on cold sur-

faces in the furnace., The oxygen that is required for its formation

comes from the crucible or from other sources such as air or water

' leaks, or impure argon. Although considerably more care must be taken

on recharge runs to have "a leak-tight system, it is believed that

normal SiO deposition as a'result of reaction between liquid silicon

f
s and the crucible can be tolerated. Gas turbulence in the furnace

must be minimized to prevent dislodging particles from the inner

F	
i
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walls and, to some extent, gas flow can be controlled in the furnace,
Y

directing the deposits to areas that are away from the growth region.
TAI

(b) Quartz (Si0 2) - Occasionally, quartz particles are seen floating on

the melt. These arerobab^ 	 due to chips from the crucible producedP	 Y	 P	 P- s

during the loading or melt-down. Quartz is distinguishable from

.'	 monoxide because it does not evaporate, and the operator waits until
m	 ,

the particle lodges against the wall of the crucible before starting

a crystal.

Assuming proper- care is 'exercised in loading the crucible ini-

tially and that the crucibles are high quality, then visible quartz

particles appearing on the melt initially should be very rare.

During long runs, however, microscopic particles of quartz may

be .released from the crucible, which could float to the surface and

destroy the crystal structure. Defects in the inner wall of the

crucible such as unfused areas, pinholes, blisters or gas bubbles y^i

near the surface are potentially sources of quartz particles.

(c) Silicon Carbide (SiC) - Little is known about silicon carbide in CZ

melts. Carbon contamination in CZ furnaces occurs, but the mechanism

of its production is not clear, and the level of contamination is below

saturation in semiconductor grade wafers.

If there is a CO or CO 2 phase present in the furnace atmosphere

due to oxygen from leaks or from the 'crucible, then gaseous transport

to the melt would appear to be feasible. In long recharge runs, satura-

tion could occur, leading to precipitation of SiC particles at the

growth interface.

The desired crystal quality for this program has been largely
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2.3.4 CRUCIBLE PERFORMANCE

The role of, the crucible in structure loss is not well understood. In

a typical non-recharge run of 12 to 18 hours duration (Figure 16), the inner

surface of the crucible usually shows a slight amount of devitrification in

the form of small circular spots about 1 mm in diameter randomly distributed.

The surface, however, is generally smooth and free of pits or open bubbles.

Severe devitrification (Figure 17)- has been observed occasionally after

long periods in contact with the melt. The circular devitrif ied areas grow and

become more numerous. Bubbles originally beneath the surface are exposed. The
i

illustration is not typical, however, of all long recharge runs. In this case,

the condition of the crucible was far worse than usually_ observed.

The visual appearance of crucibles from various commercial vendors varies

considerably. Differences in the degree of fusion, the inside surface quality,

and the bubble structure are apparent. Chemical purity of all crucibles is good,

yet some differences are apparent. The analyses in Table 2 were supplied by
t

4	 the vendors.

p	
,,
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Crucible devitrification after 18 hours
(Inside surface, actual size) 	 K A 1 cm

FIGURE 16

=r
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Unusually severe crucible devitrification

FIGURE 17
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CRUCIBLE IMPURITIES

Impurity Amersil
Quartz
Products

General
Electric Corning

Al 12 20 28 5

B <1 NR <1 05

Ca 4 3 3 1

Ca < 1
NR <1 0.05

Fe 3 1 4 5

U 1 1 0.5 NR

1 1 1 0.1

K 2 3 3 0.1

Na .3 1 3 2

Ti <1 2 2 10

Cr NR NR 3 NR

Zn NR NR 2 NR

Mn NR NR 2 NR

NR: Not Reported

Maximum impurities in Fused Quartz (vitreous 5102) crucibles provided
by vendors. Expressed as parts per million by weight.

i

w	
1

I

Table 2

II
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x;	 2.3.5 SOLAR CELL EVALUATION

Recharge runs No. 9 and 11 were selected for solar cell measurements.

Samples were taken from the top and bottom of all crystals and were sent to

JPL for evaluation. The cell fabrication and testing was performed at OCLI.

Table 3 presents the resulting data from these runs. Each value repre-

sents the average value of four cells prepared from four quadrants of one

wafer cut from the ingot. All data were taken under AMO illumination. (AH1

values are calculated from AMO values.)

Resistivities were measured by the four point probe method.

The control sample was optimum high quality CZ material provided by OCLI

and had an average efficiency of:14.6% AMI. Efficiencies forrun No. 9 varied

from 14.1 down to 12.6, whereas run No. 11 had a range of 14.6 to 13.0.
r

There is a generally small trend downward in efficiency throughout the

run; however, in both runs, the sample of lowest efficiency was not from the

last material grown. This is surprising for the last material grown in both

runs was dislocated.	 {

f. In general, the efficiency measurements are so close that the spread of

E,
data could account for the unexplained values'. For example, the control sample

average was 14:7 whereas the eight samples which made up the average ranged

from 14.0 to 15.1% ANI.

ii

r
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SOLAR CELL LIGHT CURRENT-VOLTAGE CHARACTERISTICS
DATA TAKEN AT__ AMU (135.3mw at 2 8 ° C)

Run No. Ingot No. Sample Description Resistivity Ise Voc FF Amax navg navg
ohm-cm (mr) (mv) (mw) ANO AM

Control - High Quality -- 134.8 567.2 .74 56.9 10.5 14.7
Optimum CZ

9 2 Top of ingot, OD 5.75 137.5 542.4 .74 54.9 10.1 14.1

9 2 Middle--of ingot, OD 6.00 133.3 536.6 .71 51.0 9.5 13.3

9 " 2 Bottom of ingot, OD 5.6 135.0 543.8 .73 53.3 9.9 13.9

9 2 Bottom, dislocated 5.6 135.2 543.2 .73 53.7 9.9 13.9

9 3 Top of ingot, OD 5.2 134.0 537.6 .67 48.4 9.0 12.6

9 3 Top of ingot, 5.2 132.5 537.4 .69 49.2 9.1 12.7
dislocated

9 3 Bottom'- 4.4 132.5 540.7 .71 50.9 9.4 13.2
polycrystalline

11 1 Top of ingot, OD 2.99 134.3 564.4 .74 56.3 10.4 14.6

11 2 Top of ingot, OD 2.74 133.9 546.8 .72 52.5 9.7 13.6

11 2 Bottom of ingot, OD 2.57 135.8 558.3 .72 54.4 10.1 -14.1

11 3 Top of ingot, OD 3.69 137.2 552.3 .72 54.9 10.2 14.3

11 4 Top of Ingot, OD 3.52 135.2 549.7 .71 52.9 9.3 13.0

11 4 Bottom of ingot, OD 3.62 132.4 546.6 .70 50.6 9.3 13.0

11 4 Bottom - dislocated 3.62 131.4 550.7 .72 52.0 9.6 13.4

Table 3

w
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2.4.0	 ECONOMIC ANALYSIS
e ,

The SAMICS format was used to calculate the add-on cost of continuous CZ

growth for the two modes of operation to be studied during this contract.

The following is a comparison of the CZ No. 1 method (12-inch diameter

crucible, five 20 kg crystals) with the lower cost method, CZ No. 2, which

assumes four 33 kg crystals to be grown from one 14-inch diameter crucible.

Table 4 gives the assumed conditions for CZ No. l and CZ No. 2. 	 Table 5

contains; time cycles for the two methods:

The criterion for choosing the conditions for CZ Nos. 1 and 2 was to keep

the total run time approximately constant for both methods, i.e., approximately

75 hours. CZ No. 2 produces considerably more crystal in the same run time

because the crystal diameter is larger while the growth -rate remains the same

at 10 cm/hr. The resulting significant.-increase in throughput is the largest

j
E	 ;

single factor in reducing the CZ add-on cost.

r Input data for the SAMICS/IPEG cost calculation are detailed in Table 6.

The add-on cost for CZ No. 1 is $19.40/kg and for CZ No. 2 is $15.07/kg. All

costs are expressed in 1975 dollars. The calculations illustrate the economy

of increasing the throughput by an increase in crystal diameter.

The cost per me-ter2 indicated assumes that one kg; of ingot will produce, one

j

w

square meter of silicon sheet.

i

r
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CZ GROWTH METHODS

CONDITIONS CONTINUOUS NO. 1 CONTINUOUS NO. 2

CRUCIBLE SIZE (in.) 12 x 9 h 14 x 11-1/2 h

CRYSTAL DIAMETER (cm) 10 12.5 }

GROWTH ;RATE (cm/hr) 10 10

w	 TOTAL POLY MELTED (kg) 105 143.3 {co ¢

TOTAL CRYSTAL PULLED (kg) 100 134

PULLED YIELD 95 94

USABLE AFTER GRINDING (kg) 87.5 117

GROUND CRYSTAL YIELD (%) 83 81.5

NO. CRYSTALS /CRUCIBLE 5 4

TABLE 4



PROCESS CYCLE TIME

OPERATION CZ NO. 1 (MIN.) CZ NO. - 2 (MIN.)

1. Preparation 180 240	 m
Load Poly 45 45
Close Furnace 5 5
Pump Down 10 10
Melt 120 180

2. Hot (Fill/Growth _Cycle 765 895
Position Poly 5 5
Lower Poly 5 5
Melt Poly 60 120
Retract Poly* 5* 5*
Lower Seed* 15* 15*
Stabilize Temperature 40 40
Seed Growth 30 30
Crown Growth 60 60
Straight Growth 525 575_
Taper End 40 60

3. Recharge/Growth Cycles 3460 (4 cycles) 3210 (3
Cool Crystal 30 45 cycles)
Remove Crystal 10 10
Position Poly 5 5
Lower Poly 5 5
Melt Poly 120 220
Retract Poly* 5* 5*
Lower Seed* 15* 15*
Stabilize Temperature 40 60
Seed Growth 30 ' 30
Crown Growth 60 60
Straight Growth 525 575
Taper End 40 60

4. Shut Down Cycle 120 160
Cool Furnace 60 80
Remove Crystal** 10** 10**
Clean, Set Up 60 80

Total Time (Min.) 4525 4505
(Hr.) 75.4 75.1

*Completed during stabilization of melt temperature.
**Completed during furnace cooling time.-

TABLE S

}
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SAMICS/IPEG INPUT DATA AND COST CALCULATION
FOR CZ NO. 1 AND CZ NO. 2

Conditions:	 (Per Cycle)	 CONTINUOUS CZ NO. 1 CONTINUOUS CZ NO. 2 a.

s	 Total Si Melted (kg) 105
r.

143.3
Crystal Weight (kg) 20 33.4	 s
No. of Crystals/Crucible 5 4
Diameter of Crystal (cm) 10 _ 12.5
Growth Rate (cm/hr) 10 10
Cycle Time (hrs) 75.4 75.1

.	 Crucible Size 12" x 9" high 14" x 11-1/2" high
Yield (%) '83 81.5

In ut Datap	 (1975 $)

Capital Equipment Cost (EQPT) $124,700 $124,700 j
Manufacturing Floor Space (S FT)g	 P	 Q 100 100 
Annual Direct Labor Salaries
Prod. Operator (1.33 prsn/yrs) $ 11,,572 $ 11,5!72
Elect.	 Tech. (1.33 prsn/yrs) $ 1,018 $ 1,018
Inspector (.1 prsn/yrs) $ 763 $ 763

Total (DLAB) $ 13,353 $ 13,353	 a

E	 Direct Used Material and Supplies
fE	

85% Usage per year
Cycles/yr; hrs/cycle 98.7;	 75.4 99.1;	 75.1
Poly - kg/yr (charged) 10,363 kg 14,201 kg

j	 Seed ($4.16/cycle) $ 410 $ 412
Dopant (not costed) --- ---
Argon (lpo. ft3/cycle - hr @ $0.014/ft3) $ 9,563 $ 9,563
Crucibles - $166/12"; $208/14" $ 16,384 $ 20,613
Miscellaneous (including graphite $ 16,753 $ 18,615

$2.25/cycle-hr (12") ; $2.50/cycle-hr (14") )
Material Total (MATS) $ 43,110 $ 49,203

t	
_ 7

Utilities (Process)

Electricity (C1032B) ', $ - 8,932 $ 8,932
(50 kw)($.025/kw)	 (cycle time-3 hr)(#cycles)

i	 Cooling Water (C11280) $ 1.912 $ 1,912
F	 (50 kw) ($.00528/kw) (cycle time-2 hr)(#cycles)

Utilities Total (UTIL) $ 10,844 $ 10,844

E	 TABLE 6
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CONTINUOUS CZ NO. 1 CONTINUOUS CZ NO. 2

IPEG PRICE

CZ *EQPT = $0.489/yr-dollar *EQPT $ 60,978 $ 60,978
C'2 	= $96.9/yr-ft	 *SQFT 9,690 9,690
C3 *DLAB = $2.133/yr-dollar *DLAB 28,482 28,482	 {

C4	MATS	 $1.255/yr-dollar	 MATS 54,103 61,750
'	 C5 *UTIL	 $1.255/yr-dollar *UTIL 13,609 13,609

TOTAL $166,862 $174,509

QUAN'(total charge x % yield)(kg) 8,602 kg 11,574 kg
f	 Throughput 1.12 kg/hr 1.56 kg/hr

ADD-ON COST ($/kg or $/m2) $19.40 $15.07
(assume 1 kg	 1 m2)

a

t

I

-, i

TABLE 6
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3.0	 PLANS

Continued efforts toward increasing the throughput of recharge runs

consistent with the production of high quality ingots will be the main

thrust of the work.

investigation of the causes of structure loss by analysis of residual
s	 _

silicon, grown ingots and crucibles will be performed.

A lump silicon recharge device will be designed. See Program Plan,
r

Figure 18.

	

4.0	 COSTS AND LABOR SCHEDULE

The following costs and man-hours have been expended on the first year

of the project.

Man-hours	 5833

Cost	 $23.9,719

4. Figures 19 and 20 compare projected with actual costs and man-hours.

x

a

42



KAYEX CORPORATION
JPL CONTRACT 954888
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PROGRAM PLAN — CONSTRUCTION OF CZ GROWTH FACILITY

MILESTONES
1977	 1978 1979

O N D	 J	 F M A! M	 J J A S O N D J F M

1 DESIGN SPECIFICATION, JPL APPROVAL

2 ADC OPTICAL SYSTEM

3 POLY WEIGHT/RECHARGE SYSTEM

I

i

4 POLY ATTACHMENT DEVICE

5 MOD. BEAD CHAIN/CABLE MECHANISM
I

b DO P ANT FIXTURE

7 CRYSTAL/POLY TRANSFER DEVICE

8 MELT LEVEL CONTROL VIA WEIGHT

9 14" HOT ZONE

10 RECHARGE DEVICE - POWDER OR LUMP

i
I

a;
t:

Figure 18a
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PROGRAM PLAN - CRYSTAL GROWTH DEVELOPMENT

MILESTONES

1977 1978 1979

O N D J F 	 M I A M	 J I J I A S 0 N D J F M

1 DEVELOP HOT FILL METHOD

2 1 RECHARGE, 12" CRUCIBLE

3 2 RECHARGES, 12"

f
I

4 3 RECHARGES, 12"

5 4 RECHARGES, 12"

6 1 RECHARGE, 14" CRUCIBLE

7 2 RECHARGES, 14"

8 3 RECHARGES, 14"

9 MATERIAL EVALUATION/SOLAR CELLS

10 DEVELOP ECONOMIC MODEL & UPDATE

11 DRAFT FINAL REPORT

Figure 18b
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