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Abstract

The accurate measurement of low energy (< 100 eV) particle
properties in the magnetosphere has been difficult, partly
because of the low density of such particles, but more par-
ticularly because of spacecraft interference effects. Space-
craft-em.tted photoelectrons and secondary electrons are
generally present in the vicinity of the spacecraft and can
be a source of confusion in the interpretation of measured
electron fluxes., Spacecraft charging in the magnetosphere
can cause large apparent shifts in the energy of the ambient
plasma particles so that repelled particles are not counted,
whereas attracted particles are detected with relatively
large kinetic energies, Differential charging of spacecraft
surfaces affects particle ctvajectories, distorting particle

velocity distributions and creating additional potential
barriers.

Some early examples of how these phenomena have affuited
particle measurements on an OGO spacecraft are presented.
Data obtained with the UCSD particle detectors on ATS-6 are
then presented showing how some of these difficulties have
been partially overcome, Future measurements of low energy
particles in the magnetosphere can be improved by:

(1 wproving the low energy resolution of detectors;

(2, vuilding electrostatically clean spacecraft; (2) control-
ling spacecraft potential; and (4) using auxiliary measur
ments, particularly wave data.
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THE PROBLEM OF LOW ENERGY PARTICLE MEASUREMENTS
IN THE MAGNETOSPHERE
Elden C. Whipple, Jr.

University of California, San Diego
La Jolla, California 92093

1. INTRODUCTION

Low energy particle collection techniques such as ion mass spectrc..-
eters, ion traps and Langmuir probes have been used successfully for years
in the ionosphere. However, it has been very difficult to obtain accurate
measurements with these techniques of such important quantities as low
energy ion and electron concentrations and temperatures in the magneto-
sphere., We use the term "low energy particles" for particles with energies
below about 100 eV, with emphasis on the thermal particles at a 1.w eV,

The distinction between low and higher energy particles is more due to
measurement techniques than it is to the physics of the magnetosphere.

In this paper we describe the reasons for these measurement difficulties
and give examples of some of the earlier attempts at making such measure-
ments. Then we discuss how some of these difficulties have been partially
overcome in the analysis and interpretation of ATS-6 data. Finally, we
suggest how the measurement of low energy particle properties can be im-
proved in the future.

The most significant feature of the magnetosphere that makes low energy

particle measurements difficult is the low concentration of the particles.



At the plasmapause,which is generally taken to be the inner boundary of
the magnetosphere, the charged particle density drops steeply from a few
hundred (or perhaps a few thousand) particles per cm3 to densities that
may range from a few per cm® to perhaps as low as 1072 per cn® in the
magnetosphere proper. Since most particle detectors measure the current
or flux that is collected, a very high sensitivity is required - typical
currents are in the range from 10-10 to 10.1“ amp or smaller for ions,
This is well within the state of the art of even spacecraft instrumentation
and is not a serious problem, The real problem is to distinguish these
small currents from currents due to sources other than the magnetospheric
plasma and to interpret the currents correctly in terms of the plasma
properties.

Another effect of the low concentration of the particles, particularly
when combined with the relatively high temperatures in the magnetosphere,
is that the Debyve length in the plasma is large - on the orde: of tens of
meters, This is illustrated in Figure 1 where the Debye length is shown
as a function of plasma density and temperature. The significance of this
is that plasma perturbations caused by electric fields originating from a
spacecraft will reach out relatively far into the plasma. Hence the cur-
rents collected by instruments will be affected significantly by such things
as spacecraft charge or potentials on exposed spacecraft surfaces.

The predominant feature of the magnetosphere is the presence of
energetic particles. There are relatively large fluxes at times of

of both energetic electrons and protons. These energetic particles

can have a serious effect on the low energy particle measurements in two



ways, First, they constitute a source of low energy electrons by secondary
emission from the spacecraft surfaces whenever a high energy particle

strikes the spacecratt, Flpures 2 and } show typical sccondary emission yvields
for electron and proton impact., Second, collection of the high energy
particles by the spacecraft is a source of spacecraft charge. 1f this is

a dominant charging mechanism of the spacecraft, the spacecraft potential

may rise to a value comparable to the energy of the particles. Even at

much lower potentials, spacecraft char e is probably the most significant
factor that makes low energy particle measurements difficult to interpret,

Another factor that contributes to both secondary electron currents
and spacecraft charge is photoemission due to the shorter wavelengths of
the solar radiation. Typical photoemission current densities are on the
order of 3 x 10-9 amp/cmz. In most of the magnetosphere this photoemission
current density is larger than either the plasma ion or electron random
current density.

Finally, as its name implies, the magnetosphere is characterized by
the presence of the earth's magnetic field. The large scale motions of the
plasma are controlled by the magnetic field. However, the magnitude of
the field is small, On the scale of spacecraft dimensions,which is what
is important as far as particle collection is concerned, the gyro-radii
of both electrons and ions are large enough that the effect of the magnetic
field is small, as is illustrated in Figure 4. On the other hand, the
presence of the magnetic field together with the absence of particle

collisions means that the properties of the plasma cannot be assumed to



be isotropic, The energetic particles have pitch angle distributions
which may extend to the lower energy particles as well, If the velocity
distributions are such that they can be characterized by temperatures,
there may well be different temperatures for directions parallel to and
transverse to the magnetic field, 1In addition, the bulk motion of the
plasma may be distinguishable in the velocity distributions of the thermal
particles, Any drift motion of the plasma will be closely related to the
magnetic field direction as well as to the magnitude and direction of any

electric fields that may be present.

2. EXAMPLES OF HOW MAGNETOSPHERIC PHENOMENA CAN AFFECT MEASUREMENTS

In this section some examples of early data obtained in the magneto-
sphere will be presented which illustrate some of the effects that have
been mentioned, Figure 5 contains a series of low energy ion currents
obtained within one hour by an ion trap on the 0GO 1 satellite as it went
out through the plasmapause, The saturation ion current dropped by more
than three orders of magnitude during this time, until at 1920 UT it was
approximately equal to the background current in the instrument caused by
energetic particle fluxes. At higher altitudes, the thermal ion current
could not be distinguished from these background currents,

Figures 6 and 7 illustrate the effects of solar radiation on measure-
ments. In Figure 6 the satellite OGO 1 is in the earth's shadow so that
there are no effects from the solar radiation. The ion current to the ion
trap decreases as the retarding potential increases until only the background

current due to energetic electrons remains, Five minutes later the satellite
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has come out of the earth's shadow into sunlight. The magnitude of the
ion current in Figure 7 is about the same as in Figure 6, but now the ion
current cuts off at a much higher retarding potential, at about 14 volts
rather than at 2 volts, indicating that the spacecraft potential has shifted
by about 12 volts in a negative direction, In addition, in Figure 7 there
is present a large peak in the current on the right-hand-side of the plot,
The peak occurs during that part of the satellite spin period when the
instrument is looking at the sun, and is a result of photoemission from
both the collector and the grids of the instrument, The positive current
at the center of the peak is due to those residual photoelectrons from the
collector which were not suppressed by the suppressor grid, The negative
currents in the wings of the peak are due to photoelectrons from the grids
of the instrument which reach the collector to be registered as a negative
current contribution,

The shift of the satellite potential by 12 volts in the negative
direction as the spacecraft emerges from the earth's shadow into sunlight
is in this instance not due to photoemission, but to the action of the
large solar cell arrays. The arrays were connected to the positive
terminals of the spacecraft batteries through a circuit which by-passed the
batteries if the cells were not being charged (i.e., in darkness) so that
the arrays were essentially at the spacecraft "ground" potential. 1In the
sunlight the arrays were at the battery potential of about +28 volts with
the result that the arrays acted as large attractive probes for collecting
electrons from the surrounding thermal plasma, driving the spacecraft
potential much more negative than it would have been otherwise,

The background current in Figure 6 due to energetic electrons illustrates

the anisotropy in the particle velocity distributions that is frequently



present in the magnetosphere. 1In this case, the electrons have a pitch
angle distribution such that the peak current is collected when the instru-
ment axis is perpendicular to the local magnetic field, This occurs
twice during one rotation of the spacecraft with the result that the back-
ground current modulation has a period twice that of the spacecraft spin.
Figures 8 and 9 illustrate the fact that secondary emission of electrons
caused by energetic particle impact can be significant, During the time
that the data in Figure 8 was obtained, the ion trap on OGO 1 was in a mode
of operation designed for looking at thermal ions, One of the grids in
the instrument was at =30 volts to keep thermal electrons with energies
less than 30 eV from being collected., The background current due to
energetic particles is 6 x 10'12 amp, In Figure 9 during an electron mode
of operation designed for looking at the thermal electrons there is present
a grid biased at +20 volts to keep out the thermal ions. Consequently,
during the times that the data in the right-hand portion of Figure 8 and
the data in the left-hand portion of Figure 9 were obtained, the instru-
ment of the collector is equally accessible to energetic particles. Yet in
Figure 9 the background current has a different magnituce and even a dif-
ferent polarity from that in Figure 8. The difference in the background
currents in the two figures, =ince the thermal particles of both polarities
with energies less than 30 eV are being kept from the collector, must be
caused by secondary electrons produced in the sensor. By comparing the
magnitude and polarity of the two background currents and using the known
geometry of the grids and collector in the instrument it is possible to
infer approximate values for the flux of energetic particles and the

secondary emission yield (Whipple et al, 1968). For the data in Figures 8



and 9 the background currents are caused by a flux of approximately
3 x 10° protonn/cwz-nec-otcr with a yield on the order of two electrons
emitted for every incident ion.

The change in the ion current cut-off potential between Figures 6
and 7 was taken as a measure of the change in satellite potential as the
spacecraft went from darkness into sunlight. In Figure 10 the ion cut=-
off potential is plotted as a function of spacecraft position as the
satellite goes to higher L-values in the magnetosphere, The spacecraft
is in sunlight during this perioc¢ so that at lower L-values where the
thermal plasma density is relatively high,the solar arrays draw in a
large number of electrons and drive the spacecraft to a relatively high
negative potential. As the th:rmal plasma density decreases at larger
L-values, fewer electrons are collected by the arivays and photoemission
becomes a more important charging mechanism, As a result, the spacecraft
potential becomes progressively less negative at the higher altitudes,
and the ion cut-off potential occurs at lower potentials,

1f it were not for the effect of the solar arrays, one would expect
spacecraft potentials to become positive in the magnetosphere because of
the dominant charging mechanism of photoemission. 1In contrast, expected
spacecraft potentials in the ionosphere are on the order of a few tenths
of a volt negative, corresponding to the equivalent electron temperature.
These expectations are illustrated in Table 1 where a number of measured
satellite potentials are given., Most of the satellites in near-earth
orbit acquired potentials of a few tenths of a volt negative, with the ex-
ception of those satellites that had either long antennas or surfaces

where electric fields were exposed to the plasma. All of the positive



potentials in Table 1 were obtained on satellites with orbits that took
them well into the magnetosphere or into interplanetary space.

Charging currents due to fluxes of energetic particles are generally
smaller than photoemission currents and would not affect spacecraft
potentials appreciably if the spacecraft were in sunlight. However, mag-
netic storms can increase the fluxes of energetic particles and affect
satellite potentials. DeForest (1972) measured a potential as large as
10& volts negative on ATS-5 during simultaneous magnetic storm and eclipse
conditions, Figure 11 which is taken from DeForest's paper shows the change
in the energy spectrum of both the energetic ions and electrons as the
spacecraft goes from sunlight into eclipse., The energy of the protpns
increases while the energy of the electrons decreases, both by an equal
amount of about 4,2 keV, His explanation is that the spacecraft has
charged to a potential of -4.2 keV in the earth's shadow as a result of
the increase in energetic particle fluxes and decrease in the thermal
plasma density occasioned by a simultaneous magnetic sub-storm in the
magnetosphere. If energetic particle fluxes are the dominant charging
mechanism one would expect spacecraft potentials to be on the order of
the particle energy. Frauk (1972) has reported fluctuations of several
hundred volts in particle energies measured with an instrument on IMP-6
which he attributes to spacecraft potential fluctuations. The fluctuations
are most severe in low density regions of the magnetosphere such as the
high-latitude magnetotail, and appear to be caused by an interaction
between some of the spacecraft instrumentation and the plasma., Scarf (1972)
has suggested that there is evidence from some satellites in the maguetosphere

that differential charging has occurred on different insulated portions of



the spacecraft such that elecrric field: as large as kilovolts/meter

occur between different portions of the spacecraft,

It is clear from the preceding discussion that there are a number of
significant effects that wist be taken into account in the interpretation
of low energy particle data in the magnetosphere, On the orher hand,
these effects are for the most part well-understood theoretically and in
addition can often be distinguished experimentally in the data. The real
difficulty is to take them into account computationally with sufficient
accuracy that the properties of the low energy plasma can be extracted
reliably from the data, For example, spacccraft potential can usually
be measured by instruments on the spacecraft and can be explained quite
well in terms of the important charging mechanisms., The difficulty ior
low energy particle data comes in attempting to compute the effect of the
spacecraft potential on the collected particles, since this requires a
model of the spacecraft sheath and its effect on the particle orbits. The
physical mechanisms of photoemission and secondary emission by energetic
particle impact are well-understood theoretically (with some uncertainty
for the yields) and the phenomena can usually be recognized experimentally
in the data, The difficulty in taking them iato account in data interpre-
tation is again the computational problem of knowing how many secondary
electrons reach the instrument so that the data can be cor.ected,

There have been few attempts at a self-consistent interpretation of

both ion and electron data simultaneously obtained from particle instruments
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on the same spacecraft in the magnetosphere, Such an analysis should
yield equal ion and electron concentrations and hence constitute a test
of the validity of the measurement and of the data analysis. One success-
ful attempt used an assumed spherically symmetric Deb,e¢ potential to
assess the effect of spacecraft potential on the measured particle cur-
rents (Whipple et al, 1974), 1lon and electron concentrations were both
determined to be in the range from 1 to 3 per cms.

It has also been possible to obtain a consistent interpretation of ion
and electron data in the solar wind (Whipple and Parker, 1969). The
task is admittedly earier in this region of space because of the relatively
high energy of the ions in the solar wind. However, in the interpretation
of the electron currents to the retarding potenticl analyzer on IMP 2
it was necessary to distinguish the plasma electron contributions from
photoelectrons and secondary electrons, both of which yielded larger cur-
rents than the plasma electrons as shown in Figure 12, It was also
necessary to take into account the effect of the satellite potential of
+10 volts in enhancing the plasma electron current. Although the ion
and electron measurements were not simultaneous, the agreement in the con-
centrations was excellent. A value of 4 n:m-3 was obtained for the ion
concentration and four hours later a value of 4.8 cm.3 was obtained for

the electron concentration,

3., THE EFFECT OF ATS-6 CHARGING ON LOW ENERGY PARTICLE MEASUREMENTS

The ATS-6 satellite was launched on May 29, 1974 into a synchronous

orbit where it was stationed at 94° W longitude, with an orbital inclination
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of 1,8°, The spacecraft is fixed in orientation with respect to the earth
and the large 10 m diameter parabolic reflector always points downward
toward the earth (Figure 13), The UCSD experiment consists of five particle
detectors mounted on the environmental measurement experiment module, a

1 m cube behind the center of the reflector (away from the earth),

The first four UCSD detectors consist of two pairs which rotate in
direct.on, The fifth is a fixed detector of ions, Each pair consists of
one detector for ions and one for electrons which rotate together through
220° in about 2.6 min, the first pair in a plane displaced 13° from the
north-south plane, and the second pair in a plane displaced similarly
from the east-west plane., Each detector is differential in both energy
and angle: there are 64 energy steps spaced logarithmically from about
1 eV to 81 keV, and the energy resolution AE/E at each step is approxi-
mately 20%. The experiment has been described in more detail elsewhere
(Mauk and McIlwain, 1975).

Detectors like the UCSD instrument which are differential in angle
and energy have a distinct advantage over collection experiments of the
kind described earlier, Collection experiments like Langmuir probes or
retarding potential analyzers integrate over a large range of energy and
angle of incidence for the incoming particles. Consequently, a great
deal of the interpretation effort goes into determining the range of
integration in velocity space, so that the plasma properties can be
inferred accurately. The limits of integration are strongly dependent
on the spacecraft potential but they can only be inferred indirectly from
the data obtained with collection-type instruments. On the other hand,

the data from differential instruments is directly related to the
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particle velocity distribution function, Moreover, the allowed regions
in velocity space over which particles from the plasma can reach the
detector are usually apparent from the data itself, Consequently, it is
more straightforward in general to infer the ambient plasma properties
from the measurements. However, there are still problems in the interpre-
tation of data from differential measurements, Ia this section we will
describe some of these problems, as seen in daca from the ATS-6 spacecraft,

Figure 14 displays a spectrogram which illustrates many of the
typical effects of spacecraft charging on particle measurements, The
spectrogram format has energy on the vertical scale and time along the
horizontal axi-. The vount rate of the detectors as a function of energy
and time i: .nuicated by the gray scale, with white indicating a high
¢ovnt rate, and dark a smaller or zero count rate., The response of the
north-south electron detector is given in the top half of the spectrogram,
and the response of the north-south ion detector in the bottom half, Note
that the energy scale, which is logarithmic, increases toward the bottom
for ions.

At approximately 20:57 the spacecraft entered the earth's shadow,
and the potential of the spacecraft which had been slightly positive in
sunlight became slightly negative due to the disappearance of photoemission,
As a result, low energy ions which had been kept away from the spacecraft
by the repulsive positive potential, were now able to reach the space-
craft as shown by the bright band at low positive ion energies. Simul-
taneously, the bright band of low energy electrons disappears. As is dis-

cussed later, this band of electrons appears to be photoelectrons,



13

At about 21:22 there is a sudden "injection" of hot plasma into this
region of the magnetosphere, and as a result the spacecraft charges to a
negative potential of several kilovolts., This is indicated by the absence
of ions below an energy threshold equivalent to the spacecraft potential,
At this threshold energy, the count rate for the ions jumps abruptly to a
very high value. Th.s is caused by the acceleration of ambient low energy
ions to a kinetic energy approximately equivalent to the potential of the
spacecrafr, As a result, most of the low energy ambient ions which reach
the parti:le detector are collected in the first energy channel available
'bove the spacecraft potential. (The thin dark band along this transition
level is c.ised by the overflow of the spectrogram gray scale to the next
level.)

This acceleration of low energy ions by the attractive potential on
the spacecraft makes it difficult to infer accurately the density and
temperature of these ions. Whenever the magnitude of the spacecraft
potential is large compared to the thermal energy of the ions, most of the
ions fall into a single energy channel of the detectur because of the fact
that the width of each channel increases proportionately to the energy
itself (AE =* 0,2 E). The amplitude of this "charging spike'" in the ion
count rate depends sensitively on the exact spacecraft potential and on
the shape of the collection efficiency curve of the detector within an
energy channel.

At about 22:02 the spacecraft leaves eclipse conditions, and the
potential of the spacecraft returns to about 50 volts negative, The thresh-
hold energy for the ions drops to this value. Also, there is an abrupt
change at this time in the counting rate for the electrons., This is
caused by the decreased repulsion of the spracecraft to the ambient electrons.
Electrons with ambient energies below 3000 eV in eclipse could not reach

the spacecraft, but now electrons with energics above about 50 eV are able
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to penetrate to the spacecraft, The distribution functions and hence the
count rates for these lower energy electrons are much higher than for the
more energetic electrons, and consequently the spectrogram appears much
brighter after eclipse.

The charging effects described so far are caused by the net charge
on the spacecraft and the attraction or repulsion of this charge on the
ambient plasma particles. Another important phenomenon which affects
particle measurements is differential charging of the spacecraft where
different portions of the spacecraft external surfaces may be charged to
different potentials, This can occur on dielectric surfaces such as the
glass cover slides of solar cells or on thermal blankets which are gener-
ally made of insulating material. Or conducting portions of the space-
cvaft surfaces may be electrically isolated from each other by insulation
so that each such portion may come to a different equilibrium potential,

The presence of differential charging can have several consequences.
First, there will be large electric fields present between the differentially
charged regions. As a result, there can be electrical discharges between
the regions or across intervening material with consequent material damage.
Such discharges are thought to be responsibie for many spacecraft anomalies
(McPherson et al, 1976). Second, differential charging can result in the
presence of a potential barrier around the spacecraft. This effect is
illustrated in Figure 15, taken from some work by Mandell et al (1978).
They have calculated the potential distribution about a dielectric "sphere"
(actually an octagon) where one side is illuminated by the sun, and the
other side is shadowed. The shaded side is at a potential of about - 150 V
whereas the sunlit side is at about -15 V. The equipotentials from the
more negative shaded side curve around on the sunlit side to {orm a potential
barrier at approximately -25 V. Photoelectrons from the sunlit side of

the spacecraft cannot escape to the ambient plasma unless their kinetic



15

energy is sufficiently large to overcome the barrier height -- a differential
of about 10 V, in spite of the fact that the spacecraft is negative with
respect to the ambient plasma., The potential barrier also serves to keep

ambient plasma electron with energies less than the barrier height of

25 eV from reaching the sunlit side of the spacecraft., This figure is for
a non-equilibrium state during the charging process, 22.5 sec after the
charging event started, The final equilibrium potential configuration had
a barrier potential about five volts more negative th~on the sunlit side

of the spacecraft.

A third effect of differential charging is that portions of the

spacecraft surface which are more negative than the rest of the spacecraft
can emit photoelectrons or secondary electrons which are then accelerated
by the differential potential to oth:r parts of the spacecraft. When these
electrons enter a particle detector they are observed as sharp spikes in
electron count rate at particular erergies and for particular directions.
These spikes can be considered to be "precursors" to discharges,

The presence of a potential barrier in the vicinity of the ATS-6 space-
craft has been previously inferred from the low energy electron data
(Whipple, 1976). There is almost always a peak in the electron counting
rate at an energy from 4 to 10 eV, 1t was shown from the inferred electron
densities corresponding to this peak, as well as from the corresponding
distribution functions and the behavior of the counting rate versus angle.
that these electrons must be photoelectrons or secondary electrons
originating at the spacecraft., Since these electrons were observed coming
in at angles directly normal to the spacecraft surface, there must be a
potential barrier in the sheath about the spacecraft which reflects the

electrons and keeps them from escaping. It was inferred that differential
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charging was the most likely candidate responsible for the presence of the
potential barrier,

Figure 16 displays a spectrogram which illustrates some of these
differential charging effects. The spacecraft "ground" is charged to a
potential of about =100 V, as can be seen from the absence of ions at
energies below about 100 eV, The bright band of electrons at low encrgics
up to a few tens of eV is the photoelectron peak caused by spacecraft-
emitted electrons returned to the detector by a potential barrier. The
barrier height may be inferred from the transition energy between the
photoelectrons and the ambient electrons, This transicion energy can be
inferred from the minimum in the count rate at about 100 eV as shown in
the line plot of Figure 17. The distinct peaks above and below 100 eV
indicate that the lower energy electrons come from one source (from the
spacecraft), whercas the higher energy electrons come from a differvent
source (the ambient plasma).

The very bright triangular streaks in the spectrogram in Figure 16
which occur at roughly this transition energy are electrons emitted and
accelerated from differentially charged portions of the spacecraft. 1In
Figure 17 these electrons appear as the very snarp spikes at ~ 100 eV. The
triangular appearance of these streaks in the spectrogram is due to the
rotation of the detector. The portion of the spacecraft which is charged
differentially is emitting electrons over a range of kinetic energies.

As the electrons leave this surface they are further accelerated by the
local electric fields. Electrons with higher kinetic energies tend to
travel in more-or-less straight lines, while electrons with lower initial

kinetic energies will have their trajectories curved to a greater degree
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by the electr!c fields., To detect the electrons with higher energies,

the particle detector must be looking approximately in the direction of

the differentially charged spot, while the lower energy electrons appear
from a direction corresponding to the position of the barrier. Figure
illustrates this configuration and shows the types of trajectories that

can occur., This picture is in agreement with the electron streaks in the
spectrogram which have been re-plotted against detector angle in Figure 19,
The higher energy portion of the triangular streak occurs at a detector
rotation angle when the detector is looking parallel to the spacecraft
surface (The dark line in the ion data at this position in the spectrogram
of Figure 16 is due to the presence of an obstruction on the solar array
arm which blocks direct entrance of energetic ambient ions into the particle
detector,) The low energy portion of the streak occurs when the detector
is looking away from the spacecraft.

Tt is difficult in general to pin down exactly that portion of the

spacecraft which is differentially charged. However, we have been able

to identify th2 source of some of the electron spikes. One of the other
experiments in the ATS-6 EME module is the University of Minnesota electron-
proton spectrometer (Walker et al, 1975). One of the detector assemblies
is a roughly 5 cm rotating cube finished with white paint. During

several differential charging events, the sharp electron spikes as
observed by the UCSD detector only appeared when both the UCSD detector
and the Minnesota detector were each at unique rotation positions. The
two detector rotation raLes were not synchronous, so that the spikes
appeared at what was essentially the beat frequency between the two
rotation frequencies, or at the Minnesota frequency when the UCSD detector

was fixed in position. We infer that the emitted photoelectrons or
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secondary electrons from the painted external surface of the Minresota
detector could only enter our detector when both detectors werc oricnted
in a certain unique way, presumably because of a favorable electric [ield

configuration at that time, (Johnson and Whipple, 1978)

4, WAYS OF IMPROVING LOW ENERGY PARTICLE MEASUREMLNTGS

In this section we make some suggestions as to how the measurements
of low energy particle properties might be improved. We have four basic
suggestions: (1) Improve the low energy resolution of particle detectors;
(2) Design and build electrostatically clean spacecraft so as to reduce
differential charging e¢ffects; (3) Control the spacecraft potential;

(4) Make use of auxiliary measurements, particularly wave data.

(1) Better Low Energy Resolution.

The energy resolution of the ATS-6 instrument (AE/E) was approximately
20%, which should be adequate for most studies. However, at low energiecs,
below about 10 eV, both the energy level E and the width of the channe!
AE were affected by noise on the high voltage power supply. This noise
resulted in modulation of the potential difference between the analyzer
plates, so that in effect the energy levels and the width of the channels
at low energies were also being modulated. 1In order to obtain quantitative
results for the low energy particle measurements, it has been necessary Lo
correct for this effect, which involves a demodulation of the data. This
correction at best is somewhat uncertain, and this effect is probably the
largest source of error in the low energy measurements on ATS-6.

A beneficial feature of the ATS-6 instrument which has helped in
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getting at the low energy data is a transient response occurring in transi-
tions from high to low energy steps. During such a transition, an offset
is provided because of an unbalanced leakage current at the input to the
analyzer supply. This offset decays away with a 1/(t+c) response. In the
appropriate instrument mode, the slewing response slowly sweeps through
energies that were not originally intended. The energy selection is there-
fore extended to around 1 eV. Comparison of the slewing effect in dif-
ferent instrument modes (i.e., different SCAN/DWELL modes) enables us to

get a better estimate of the energy levels and widths at low energies.
Unfortunately, the slewing effect is quite temperature dependent which
makes its systematic use difficult.

On the SCATHA spacecraft, the UCSD instrument will have the high
voltage power supply removed from three of the detectors. Consequently,
we expect to get much better energy definition at low energies, down to
about 0,1 eV,

An important aspect of low energy particle measurements is the
laboratory calibration of the instrument, It is not safe to rely on the
calculated performance parameters without checking them experimentally.
For example, we have found that the electroutatié configuration of the
post-analysis focusing lens and secondary electron suppressor has a marked
effect on the electron detector characteristics. This effect is still not
completely understood, but the behavior of the SCATHA instrument is well-
documenced in the laboratory calibrations, and we expect to be able to

pin this problem down. ORIGIVAT PAGE 18

(2) Elimination of Differential Charging. OF POOR QUALL

Some effects of differential charging of the ATS-6 spacecraft on

particle data have been described in the previous section. The main effect
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on low energy particle data is the exclusion of low energy plasma electrons
by the potential barrier produced by differential charging, and the return
of photoelectrons and secondary electrons to the spacecraft and to the
particle detectors at low energies, also by the action of the barrier, The
presence of the photoelectrons and secondary electrons can be confusing
since it is easy to misinterpret their origin and assume that they are

from the environmental plasma. We believe that this kind of erroneous
interpretation has occurred on previous spacecraft (Grard, DeForest and
Whipple, 1977).

Differential charging can be reduced or eliminated by either active
experiments involving the deliberate emission of charged particles by the
spacecraft in order to neutralize charged surfaces, or by a spacecraft
design and construction program aimed at providing uniformly conducting
surfaces. The latter approach has been taken on the GEOS and ISEE space-
craft, and appears to have been very successful in eliminating the
phenomena of differential charging. The former approach of experimentally
neutralizing charged dielectric surfaces has been observed during some
ATS=6 active experiments involving the emission of ions by the experimental
ion thruster and neutralizer on board (Olsen and Whipple, 1978). Figure 20
is a spectrogram during day 292 of 1976 when the ion thruster on ATS-6 was
operated., Differential charging can be recognized by the bright band at
low energies (up to about 100 eV) in the electron data. The top of this
band is indicative of the magnitude of the differencial potentials on the
spacecraft, At 7:40 the ion thruster neutralizer is ignited, and the dif-
ferential potentials are reduced but not eliminated. This is shown by the
drop in energy of the top of the photoelectron band. At 8:05 the main

thruster ignites, and the bright band disappears, indicating that the
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differential chacging has been eliminated. Our interpretation is that

the neutralizer only emits enough ioas to reduce the differential charging,
not eliminate it, whereas the main thruster provides a large source of low
energy charge exchange cesium ions which are drawn to the negatively
charged surfaces in sufficient quantity to eliminate the differential
charging.

(3) Control of Spacecraft Potential,

The aci..ve experiments on the ATS-5 and ATS-6 spacecraft have also
been used to modify the spacecraft potential, The presence of even a
moderate spacecraft potential of a few tens of volts has a serious effect
on low energy particle data, since the spacecraft will repel all the
particles with the same electric charge as the spacecraft so that any with
energies below the spacecraft potential cannot be observed. The data
describing the attracted species is also degraded since the particles are
accelerated to higher energies where the energy bondwidth is broader.

During the fall of 1974 the ATS-6 ion engine was operated for a
period of ©2 hours. The engine was ignited in the latter stages of a
magnetospheric substorm when the spacecraft was charged to about -50 volts.
(The spectrogram of Figure 20 is during the initial period of this operation.)
The ignition of the neutralizer at 7:40 brought the spacecraft potential
to within a few volts of the ambient plasma potential. After the main
thruster was fired, the potential of the spacecraft stabilized at about
-4 or =5 volts. This potential was maintained throughout the 9Z-hour
operation in spite of the fact that several magnetospheric substorms (recog-
nized by particle injections) occurred during this time, During similar
storms outside this time period, the spacecraft charged to several hundred

volts negative and experienced severe differential charging effects. The
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improvement in the low energy ion data during this operation can be seen
from the appearance of ions counts at low energies after 7:40 in Figure 20,
Before that time the low energy ions were accelerated to about 50 eV by
the attractive spacecraft potential,

A number of other experiments with the thrusters and neutralizers
on the ATS-5 and ATS-6 spacecraft have demonstrated the possibility and
usefulness of modifying the spacecraft potentials by particle emission,
Current balance calculations show that an emission current on the order of
a few microamperes is sufficient in most cases to discharge the spacecraft,
It is not necessary to completely discharge the spacecraft to zero volts
in ocsder to get reasonably good low energy particle data. A ftew volts
positive or negative seems to be sufficient; better yet would be a slow
(few minute) modulation or sweep of the spacecraft potential between a
few volts positive and negative. This would enahble data to be obtained
for both ions and electrons under conditions of both an attractive and
repulsive spacecraft, and would permi - a useful comparison and mutual
calibration.

(4) Use of Auxiliary Data.

Our final suggestion is to make use of as much auxiliary information
as possible from other experiments. Detection of plasma waves is a
particularly valuable source of information since this can provide an
independent check of particle parameters such as density, temperature,
and in some cases, ion species. The characteristics of plasma waves
are in general determined by the plasma properties over a fairly large
volume compared to the dimensions of the spacecraft. Consequently, such
measurements are usually unaffected by the presence of the spacecraft

and associated plasma perturbations in its vicinity,
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In his thesis, Mauk (1978) hae used wave data obtained simultaneously
from the UCSD particle detectors and the UCLA magnetometer on ATS-6 to
infer the low energy ion density. The waves were propagating, electro-
magnetic Alfven/ion cyclotron waves with frequencies in the range of a
few Hz., These waves were detected by the particle instruments as a modu-
lation in the count rates of the ions at particular energies, and by the
magnetometer as a modulation in the magnetic field in both magnitude and
direction, The dispersion relation for the waves combined with Maxwell's
curl E equation provide a relation between the measured energy and magnetic
field modu.ations which depends or. the ion density. Thus it was possible
to infer the density with about a factor of two uncertainty. In this
particular instance the mass dependence drops out of the calculation, so
that the density determination is to first order independent of the kind
of ion, However, Mauk was able to plac2 upper limits on the amount of
heavy ions from the properties of the ion wave propagation,

Other kinds of plasma waves, and in particular observations of plasma
resonances, can provide information on the plasma density and temperature,
Observations of plasma resonances from the ISIS satellites have been
especially fruitful in yielding electron densities and scale heights at the
satellite location, as well as remote densities through the sounder
capabilities (Crawford et al, 1967). McAfee (1968) has shown how the structure
of the plasma resonan~e observed as a result of stimulation on the space-
craft can provide both the local electron density and temperature, This
kind of observation is being obtained on both the GEOS and ISEE spacecraft
and is turning out to be an extremely valuable complement to the more con-

ventional particle data (e.g. Curnett et al, 1978: Christiansen et al, 1978),.
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TABLES AND FIGURES

Table 1 - Some Measurements of Satellite Potential

Figures

1. Electron density versus temperature for various Debye lengths,

2., Secondary electron yields for electron impact,

3. Secondary electron yields for proton impact,

4, Magnetic field versus temperature for various gyro-radii.

5. Experimental ion currents as OGO 1 traverses the plasmapause,

6, Ion current from OGO 1 in the earth's shadow,

7. Ion current from OGO 1 in sunlight illustrating photoemission,

8, Ion current from 050 1 illustrating secondary emission effects,

9. Electron current from OGO 1 illustrating secondary emission effects,

10, Change in 0G0 1 ion current cut-off potentiil through plasmapause.

11, Phase space density of electrons and protons before and during eclipse,

12, Experimental electron current from IMP 2 in the solar wind,

13. The ATS-6 spacecraft,

14, Spectrogram showing ATS-6 eclipse data on October 2, 1975.

15, Potential contours around a partially illuminated 'octagonal sphere"
showing saddle point at approxima ely =25 volts.

16. Spectrogram of ATS-6 data on September 5, 1974, showing differential
charging effects. The change in intensity of the the electron data
at Step 16 (100 eV) is due to a calibration effect.

17. A line plot of ion and electron count rates versus time and energy
(dotted line) on September 5, 1974, showing spikes of electrons coming
from differentially charged areas on the spacecraft,

18. Schematic illustration of how electrons from differentially charged
arcas tollow different trajectories to the UCSD detector.

19. Plot of the distribution functions of electrons from differentially
charged areas versus detector rotation angle illustrating the energy/
angle correlation,

20. Spectrogram showing the effects of ion thruster and neutralizer opera-

tions on ATS-6 potential and differential chavging.
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