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DEVELOPMENT OF BOOLEAN CALCULUS

AND

M APPLICATIONS

MOIEZ A, TAPIA

1. INTRODUCTION

The research reported here aims at developing Boolean 	
i

calculus and finding its applications in digital design, fault

location and detection. Most of the results obtained since the

last Semi-Annual report (#2) are described in the papers in

Appendices I & 11. Results obtained in the area of noncombinational 	 i

Boolean calculus are given in Section 4 of this report.

2. BOOLEAN CALCULUS

The mathematical system of Boolean Calculus was formally

defined, described and submitted in the form of a paper entitled

"Boolean Calculus for Digital Systems" given in Appendix 1. The

new results are decomposition of a Boolean function with respect

to one of its arguments x i ; a new interpretive definition of

Boolean differential.; the exact number of compatible integrals

of a Boolean differential, if-it-is compatibly integrable; etc.

t : _.
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3. SYNTHESIS OF SEQUENTIAL

SYSTEM USING BOOLEAN CALCULUS

The results obtained in the last few months in the area

of synthesis of asynchronous sequential systems using edge--

sensitive f lipflops were put together "filling the gaps" and

written in the form of a paper entitled "Synthesis of

Asynchronous Sequential Systems Using Edge--Sensitive Flipflops".

The latter is given in Appendix TI and will be submitted

shortly to IEEE Computer Transactions. Of most significance

is the synthesis procedure outlined in it, which is a consider-

able improvement and refinement over the procedure given in

Semi-Annual Report #1. Of course, this is a consequence of

better understanding of the properties of DM table that we have

achieved.

4 . NONCOMBINATTONAL BOOLEAN CALCULUS

In Boolean calculus studied so far it was assumed that

a Dinetion being studied is the output of a combinational

system whose inputs are the arguments of the function. Also,

while integrability of a differential expression was studied,

it was tacit^y assumed that an integral, if it exists would

be realized with a combinational system.

}I



An. attempt was shade to generalize the Boolean calculus that

was developed with the limitations shown above. Such calculus,

to be referred to, henceforth, as noncombinational Boolean

calculus, will help us describe the output, after an input

change, of a noncombinational system in terms of changes in

the inputs to the system. Also, if the output, after an input

change, is specified in terms of changes in inputs, realizability

of such a specification using a noncombinational system will be

studied. Some results obtained in this direction will be described

in what follows. It will be assumed that only one variable can

change at a time.

Definition 3.1: ^ x z , Xi-<n, denotes a change in x. from

0 to 1.

1 when x z changes from 0 to 1
(D3.1.1)	 X.

0 otherwise

x,	 1<.i<n, denotes a change in x. from 1 to 0.
i	 .M- .	 a
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1, when xi changes from to 0
{D3. 1. 2) ^xy

0, otherwise

Definition 3.2:	 The terms xxi , 3Fxi , xxx and

Xi7xi will be defined as follows:

x Ax. =Ax.S	 z	 S

(D3.2. 2)	 x.Ax .	 0
S	 S

(D3.2. 3)	 x.17x . = 0
t

z	 z

(D3.2. 4)	 x Vx Qx

Consider a D-flipflop shown below:

x3	 D	 Q

xI
x	 C

2

Since the relationship between Q and xi , x2 and x3 is not

combinational, we cannot express Q in terms of a Boolean

function of variables x l , x2 and x3 . However we could express

the value of Q immediately following any transition of the clock.

I	 '



Observe that

(3.1.1)	 C = x 1 x 2

^

^.i

^	 r

a

i

.	 •vr^

so that

(3.1.2)	 dC = xIdx2 + x2dx1

Since only the positive transitions of clock are of interest,

we may describe the positive transitions of clock in terms

of changes in x 1 and x2

(3.1.3) 4 c = x14 x2 + x246 x1

Let Q(T+) denote the value of Q immediately following any

transition of clock. Then by definition

(3.1.4)	 Q (T+) = D .,6C

or

(3.1.5)	 Q (T+) = Dx 2A x1 + Dx 16 x2

If we let

(3.1.6)	 D = x 3 1	 then

(3.1.7)	 Q(T+) = x 2x 3dx1 + x1x3'8x2

Equation (3.1.7) points out that Q is 1 after the following

transitions:

(1) x2 = x 3 = 1 and x  changes from 0 to 1.

(2) xl = 93 = 1 and x 2 changes from 0 to 1.

Observe that if x 3 = 0 and x 1 = 1 while x 2 changes from 0 to 1,

then a transition does occur making Q to remain at or go to 0.

This is not to be seen from equation (3.1.7) if the function D

(i,e, x 3 in this case) is not kept separat'e from the transition

terms. Hence a more desirable form for Q(T+) than that shown in
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equation (3.1.7) would be

(3 .1.8)	 Q(T+) = D • [x2Ax 1  + xlid x2 1 •

Definition 3.3: The function Q (T+) as shown in equation

(D3.3.1) below will be called next-value function.

(D3.3.1)	 Q(T+) = D.	 otAx ; + gyxi) where D is a

function of x and fir.

Obviously the function D outside the square bracket

refers to the value that Q would assume if and when one of

the transition terms inside the square brackets assumes

value of 1.

Addressing ourselves to the reverse problem of synthesizing

a network that would realize a next-value function Q(T+) of

the form

(3.1.9)	 Q(T+) = D 	 1 4x^ + R.

where of and ^i are assumed to be independent of x,, for all it

without loss of generality (in view of Definition 3.21, all

that we need to do is to find the exact integral, if it exists,

of the differential. expression

(3.1.10)	 dC	 (0^2dxi +R2d3Fi)

Of course, if the differential expression is not exactly

integrable but compatibly integrable and if

Sci d^ is a compatible integral of the differential

expression, then
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D^^	 ^Q

C --- C1
will provide not only the transitions that are specified in

equation (3.1.9) but, also, some additional transitions.

Theorem 3.1: If the next -value function of a system is given

by
n

(T3.1.1)	 Q(T+) = D. i=1
where

(T3.1.2)	 D = D1 . xil xi2.---. xik, 14k4n

(T3.1.3)	 F (x)_	 pidxi+^idx,) and, t
, = c
	 . JJJ

(T3.1.4)	 F(x) = xil . xi2 	 xik.F(x) ,

then Q I (T+) described as
n

(T3.1.5)	 Q1(T+) = D 1	 (Oci4xi+ ivxi )
i=1

realizes the same next- -value function as Q(T+) in equation

(T3.1.1) does.

Proof: Suppose due to a transition described by

49 MP (x -- x,. ) , Q (T+) = 1 if y=.So. This implies that

D = 1 when x=	 ^ Y = 0
Hence when y =	 and x =±

1 = D - D1 	x i1 .... xik

so that D1= 1 for x =^0& Y = S`'a



i	 •. t-I^i

n
	 8.

so that Ql (T+) = 1. On the other hand if Q l (T+) = 1

due to a transition mU (x - xv) when Y = Sl , then D1 = 1

and F (x) = 1 for x W b  and equation (T3.1.6) implies that

F(X) = 1 = F (x) . xil 	 xlk when x = b  .^
which implies that (xil .-"dw. xik ) = 1 when x = bU.

Hence when x =bu& y = Sl , D = Dl . (xil .^_ " .x k}

Hence Q(T+) and Q 1 (T+) have identical values immediately after

any transition.

Q.E.D.

Theorem 3.2: Theorem 3.1 is valid if equations (T3.1.2)& (T3.1.4)

are replaced by equations (T3.2.2) and (T3.2.4) respectively as

given below:

(T3.2.2)	 D = Dl x 1 . x 2 ...-- Xik

(T3.2.4)	 F(x) = x l.x i2'--"* x  kF(x) .

The next-value functions for different types of flipflops

(other than D-type) are currently under study. The results

will be reported when the study is completed.
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5 . CONCLUSION

Procedure for synthesis of an asynchronous sequential

system using clock-triggered flipflops and Boolean calculus

has been revised to reflect the newly obtained results.

New results in the area of Boolean calculus are reported

in Appendix 1.

The concept of noncombinational Boolean calculus has been

introduced. The next-value functions for flipf lops are defined

in terms of changes in the inputs. The reverse problem of

synthesis is also considered.

Establisment of conditions for exact integrability,

composition of differential functions, multi-variable-change

calculus, methods of augmenting non-realizable DM tables so

as to make them realizable, application to fault location and

detection, etc. are among the many problems that remain to be

solved.

9.
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APPENDIX I

BOOLEAN CALCULUS FOR DIGITAL SYSTEMS

ABSTRACT

A Boolean calculus is proposed for analysis and synthesis

of d . v ital systems, which describes how a Boolean function changes

when one of its arguments changes. When the changes in a desired

function are specified in terms of changes in its arguments, then

ways of "integrating" (i.e,	 +lining) such a function, if it

exists, are developed. Properties of various newly defined

differential anO integral operators are studied. Boolea, calculus

has applications in design of logic circuits and in fault analysis.

In the former case, it leads to circuits which utilize less

flipflops and logic gates than conventional methods do.

INDEX TERMS:	 Boolean algebra, Boolean calculus, Boolean transitions,

direct and partial derivatives, Boolean differential decompositi.zi-a of

function, Boolean set, base of a Boolean function, function based on a

set, differential expression, Boolean integration, compatible integral,

exact integral, integration by parts, integral of zeroth order,

integral of first order, edge-sensitive flipflops, fault analysis.
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I s	 INTRODUCTION

The traditional methods of the analysis and the design of

logic circuits are based on Boolean algebra, in which the

functional relationships between the output values (or levels) and

input values are of direct interest rather than changes in the

output function in terms of changes in the input arguments. While

designing an asynchronous sequential circuit, if Boolean calculus

is employed and edge sensitive flipf lops are used, then in many cases

it leads to a simpler circuit utilizing fewer components 	 than a

circuit arrived at by using conventional techniques 15, 34, 35 1•

Throughout the paper, unless stated otherwise, a Boolean

function F(X 1 , X2 , ---, Xn) of n Boolean variables Xl , X2, --- ,Xn

will be assumed. Also, it will be assumed that only one variable

Xi 1 <i <n, can change at a time.

2, RF-VIFM OF TFIE LITERATURE

This work is not the first to recognize the feasibility and

desirability of establishing a mathematical system for Boolean

functions analogous to ordinary calculus [1 - 51. Based on

earlier work by Reed [61, Akers [7] in 1959 obtained the

mathematical properties of the Boolean difference. In 1962

Calingaert [81 made limited use of the Boolean difference.

Hartman [91 employing the Boolean difference, developed a Boolean

differential calculus, introducing in it a number of new concepts.

Amar and Condulmari [101, and Sellers, Hsiao, and Bearnson [111

applied the Boolean difference to the problem of fault diagnosis.

In recent years considerable work [12-211 has been done using the

k ^
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Boolean difference for fault detection and diagnosis; moreover,

Thayse, Davio, Deschamps, and Bioul [22-27] have shown that the

Boolean difference is applicable to a number of areas other than

fault diagnosis.

Talantsev [28] in Russia introduced special logical operators.

One of Talantsev's operators, the d operator, has an important

advantage over the Boolean differe.n• 	 It not only gives the

conditions under which a function will change due to changes in its

arguments, but also describes the manner in which the function

itself will change. His algorit-h-AL for integration, for a function

of n variables, involves solving nx2n simultaneous Boolean,

equations. Obviously this is a tedious process. Lazarev and Fiil

have used Talantsev's operator for sequential circuit synthesis

[29-313, and in one short paper [321 they present a method of

integration. Even though there are situations where their method

of integration is easier than Talantsev's, in general, it too, is

quite awkward. In the area of differentiation there is only modest

overlap between the work reported here and that of Brown and Young

[33]. Furthermore, the type of integration considered by Brown and

Young requires considerably more information about the function

than just knowing its differential. The Boolean integration

developed here can be used to determine the function from its

differential alone, and the ease with which this can be done makes

Boolean integration applicable to practical design problems.

3, BOOLEAN DIFFERENTIATION

, .

In order to study the effect of change in a variable

- - -	 —
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Xi , on a function F(x) = F(xl , x2 , ---, xn) we will decompose it

with respect to x i , 1<i<n as sum of 3 functions as

F = PiXi + Q i X i + Ri
	

(3.01)

such that P i , Qi and Ri

PiQi = P i R i = QiRi = 0

are independent of Xi and

(3.02)

Definition 3.1: A function F that is decomposed as stated above,

is said to be the decomposition of F with respect to X i , l<i<n.

Definition 3.2: Two mirterms ma (x) and mb (x), a -^ b are said

to be x. - - adjacent to each other if every variable x j , jai is-z
in the same (true or complemented) fora in both the minterms.

in order to decompose F(x) with respect to x i , we expand

F(x) as canonical sum of minterms and construct Ri by taking sum

of all possible pairs of minterms in F(x) which are X i- adjacent

to each other. Then delete these minterms from F(x) so that it

now becomes (F(x) . Ri). The sum of all the minterms in

F(x) . Ri that have xi in them in true fora constitutes Pixi

and the sum of remaining minterms  gives Q i^i , This construction

procedure brings out an interesting and useful property of the

decomposition stated in Theorem 3.1.

Theorem 3.1: The decomposition of a function Ftx) with respect to

Xi . 1<i<n, is unique.

Definition 3.3: The set of 2n binary vectors or points

( X1 , X2 . ----, Xn ) where Xi = 0 or 1 1< i<n such that Xi and

X
i 

may or may not be equal if i^j, will be called Boclean set of

variables X l , X2 .	 Xn, denoted by B(n).	 The Boolean set of
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(n-1) variables x1 1 x2' 
---_r x

i-1' xi+l'	 ' xnr denoted by

2^/xi , will be &tnoted by BB (n/i)/i)

Definition 3.4: The set SP  of points (b l , b2 , ---, bi-1,

bi+1' ---r bn) denoted by h/ bi where b j 's are Boolean constants

is the set of all possible points such that for every point in this

set the value of Boolean function P i in equation (3.0.1) is 1.

Sets SQi and SRi are defined similarly.

Definition 3.5: In relation to decomposition of P(x) with respect

to xi, a function Ti , 1<i<n, will be defined as a Boolean

function thusly:
Ti - P i + Qi + Ri	 (D3.5.1).

Ti is independent of x i , since P i , Q  and R  are independent of

xi . ST  is defined as a set of points corresponding to function

Ti in a way similar to Definition 3.4 for SPi.

It can be seen

SPi(sQi

SP jASRi =

SP VSQis:

for all i, 1<i<n.

that

SPin SRi = SP inSTi = 0	 (D3.5. 2)

SQi(I ST  = SRjOST i = 0	 (D3.5.3)

R.USTi = B M/i)	 (D3.5.4)

Definition 3.6: Given a set S, C S C B (n), a function P(x)
is said to be based on the set S if

F(X)	 1	 (D3.6.1)
I x-b

if and only if bo E S.	 (D3.6.2)

on the other hand, if a function P(x) is given, then set

S = {b( bE B(n) and F(b) = 11
	

(D3.6.3)

1

.al
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is called the base of the function F(x).

Observe that by Definition 3.6 the functions Pi, Q i , R  and

Ti are based on sets SP i , SQi SRi and STi respectively. Also

the sets SP i , SQi , SR  and ST  are bases for the functions

Pi , Qi , R  and Ti respectively.

Theorem 3.2: Given a Boolean function 	 F(x) and any	 i, 1<i<n,

the Boolean set	 B(n/i)	 can be uniquely partitioned into sets

SPi , SQi , SR  and	 ST 	 such that
44)	 -?^/x

(1)	 for any point	 - h/biEsP i ,	 F(x) = xi (T3.2.1)

so that on the set	 SP i ,	 F	 takes on the same value as

X	 LQ;+ir^	
X /C.

xi,

(2)	 for any point 	 — b/b i C- SQi , F(x) = xi (T3.2.2)

so that on SQi , F takes on the value which is complement of the

value of x.;
z^	 X/xi

(3) for any point A. = b/b i ^ 5Ri , F is a constant,

in particular F = 1; 	 (ŝ3.2.3)

(4) for any point = b/b i ( ST i , F is a constant,

in -particular F = a.	 (T3.2.4)

Proof: The proof follows from Theorem 3.1.

Definition 3.7: The direct (or inverse) partial derivative of

F(x) with respect to x i , 1<i<n, denoted by axaF (or = x ) is
z

defined as a function of (n-1) variables x1, x2, ---, xi-1`

xn such that whenever for a point x = b/b i the value of

	

aF	 a F
	ax	 (or aD ) is 1, then at that point F changes its value the

	

z	 ^



BF	 aF
same (or opposite) way as x.3. does. Observe that x (or ^ )
is independent of x i , l<i<n.

Theorem 3.3: The direct and inverse partial derivatives of a function

F(x) with respect to x i , lei <n are given by the following

equations:

aF	
P = (F (x) l	 Y )	 M (x) j	 )	 (T3.3.1)

2xi 	i	 xi 1	 xi= 0

= Q = 
(F W ! — 0	 i

	

)	 (F (x) , x — 1)	
(T3.3.2)93q 	 x. 

aF .	 aF = 0	 (T3.3.3)Also,	
axi	 a

Proof: From Definitions 3.5 and Theorems 3.1 and 3.2, we have

aF = P.	 (T3.3.4)ax 

aBF = Qi	
(T3.3.5)

i

From equation (3.0.1) we have

F Ix. = 1 = Pi + R 	 (T3.3.6)

and F Jx. = 0 -- Q  + R 	 (T3.3.7)
a

so that

(F Ix i =1 )  . 	 (F Ix 
i 

=0 )

(P i + Ri )	 (Qi + Ri )
	

(T3.3.8)
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in view of the fact that 
Pi, 

Q i , Ri and Ti are functions based

on sets SP i , SQi SR  and ST  which are mutually disjoint and

SP iU SQiL) SRi U ST  = S (n/i) , we have

Qi + R  = T i + Pi 	(T3.3.9)

Hence from equations (T3.3.6) and T3.3.7)

vw
(Fixi=l)	 (FIXi=O)

{Pi + Ri ) {pi + Ti}

P. + R. T.

'	 Pi	 ax	
(T3.3.10)

a s

Similarly (Ffx^-O) . (F^ x ^=1 ) = Qi T 
aDF

aF	 aFAlso,	 ax 	 ' a3ri

Pi , Qi

= 0 (from equation (3.0,2)

(T 3.3.11)

(T3.3.12)

Q.E.D.
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Example 3.1

Consider the function

F = x I x 2 + x1 x3 + x2 x 3 (E3.1.1).

Expanding	 F	 as sum, of minterms

F = x 1 x 2 x 3 + x1X2X.3 + x I x 2 x 3 + x1X.2X3 + XIx2x3 (E3.1.2)

The decomposition of	 F with respect to	 x1 is

F =	 (0) x1 + (32x3) 1 + (32x3 + 32x3 )

= (0)x1 + (32x3 ) X1 +	 (x2 ) (E3.1.3)

OF	 =., (E3.1.4)

and ^ = 32X3 	(E3.1.5)

The decomposition of F	 with .respect to	 x2 	is

F = '( 31x3 + x133 + 3 ix3 ) x 2+	 (0) x2 +	 ('1x3 )

( x1 + x3 ) x2 +	 (0) x2 +	 (3F
 1 X 3 ) (E3.1.5)

.	
xF = x1 + x

3 (E3.1.7 }

and	 aF = 0 (E3.1. $)
T3-r2

The decomposition of F	 with respect to	 x3 is

F =	 ( 31x2 ) x3 + (0)X 3 + ( x132 + 31x2)

= (x152 ) x3 + (o)x3 + (x2 ) (E3.1.9)

..	 aF — X
lX2

(E3.1.10)

1.

a
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and a F = 0
^r x3

10-

(E3.1.11)

Lemma 3.1:	 The decomposition of	 F with respect to	 xi , 1<i<n,

is given by

F - Q 	 xi + Pi Ri + Ti (L3.1.1)

= Qi xi + pi xi + Pi Qz Ri (L3.1.2)

Proof:	 From Definition 3.1, we have

!	 F - P.x. + Q	 R	 + R. (L3.1.3)

so that

F= (Pi .	 xi +Ri)

-	 (P	 + R.)	 x	 +(Qi	 i + R ) + P	 + Q	 + R

= ( Ti + Qi ) xi + ( Ti + P i ) xi + Ti

ast step follows from equations (D3.5.1)	 -	 (D3.5.4).

= Qi xi + Pi R 	 + Ti (xi + Xi ) + Ti

+Pi xi + Ti

Qi xi + Pi xi + Pi Qi Ri (L3.1.4)

Q.E.D.

Lemma 3.1 and Theorem 3.4 lead to the following theorem:
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Theorem 3.4 : For a function F (x)

'd
	 Qi = -- DF 	 (T3.4.1)

BY _ P	 BF	 (T3.4.2)i ax.

We will now establish some properties of the derivatives of a

Boolean function which will be needed later.

Theorem 3.5: Let G be a Boolean function that is independent of

xi^, for some i, 1<i<n. Then

(1} G = o (T3.5.1)

(z) ^ = o (T3.5.2)
1

(3) -- (GF)	 = G	
D
 (T3.5.3)

1 1

(4)- (GF) = G r (T3.5.4)
3 1

(5) (G+F) = G	
xF
(T3.5.5)Bx. B i

(6)
2

(G+F) = G	 a- IF

Proo f: 	 Since G	 is not a function of	 xi , the decomposition of

G	 with respect to	 xi will be given by

G=PAX +Q:xi+Rz

(o)Xi +	 (o)xi + R! (T3.5.7)

Hence by Theorem 3.4,



Next, let the decomposition of F with respect to x i be given by

F = P i X i + QiXi + R 
	 (T3.5.8)

Since G is independent of Xi , the decomposition of (GF) with

respect to Xi is

GF = (GP i ) Xi + (GQi ) Xi + (GRi )
	

(T3.5.9)

Hence by Theorem 3.4,

O(GF) = G P. = G d9F	 (T3.5.3)

and a (GF) = G Qi = G	 92i
 9F	

(T3.5.4)

now a (G+F)

a(^^ ) (by de Morgan's law)
z

a(G F) (by Theorem 3.4)
i

G a^

(Since G is independent of x i , relation (T3.5.4) can be used)

G	 aF 	 `Y? "^', • ^'Z^	 (T3.5.5)

Similarly we can prove that

s^



Q.E.D.

r^

1

4. BOOLEAN D IFFERENTIAL

Analogous to calculus of real variables in which we express an

incremental change in a function in terms of incremental changes in

its arguments, we will define Boolean differential of a function.

Definition 4.1: dF will denote a change in the value of F (from

11 0" to 111" or "1" to "0`r). 	 dxi (or dpi) is defined likewise.

When we write dF=dx i , then we mean that a "positive .(or "negative")

change in xi causes a "positive" (or "negative") change in F.

In order to relate dF, dxi and the function F we will need to

define dF and dxi as among entities in Boolean algebraic system

i.e. as Boolean variables. When "dF" (or 11 dxi" or "dxi") is

treated as such, dF has Boolean values as defined below:

to,

implies change in value of F
dF =	 (D.4.1.1)

 implies no change occurring in
value of F .

Consider dF, the change in F, in terms of x1 , x 2 and dxi , the

change in x3 as given below:

dF

When	 x1

then	 dF

Equation (D4.1.4)

a change in F i

= xlx2 dx3 	(D4.1.2)

x2 = 1,	 (D4.1.3)

(1 l) dx i = dx 3 	(D4.1.4)

by Definition 4,1 can be interpreted to mean that

s the same as the change in x 3 when x 1 x 2 = 1.

F
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On the other hand, when

x I x 2 = 0 (D4.1.5)

then	 dF O.dx3

= 0 (D4.1.6)

meaning thereby that there is no change in	 F when	 x 1 x 2	 0	 and

x3	changes.

Definition 4.^w: The Boolean differential of F	 with resAect to 7.

1. i<n,	 denoted by	 diF	 is defined as

diF = ^xj	 dxi 	 + a F	 dx1 (D4.2.1)
y

Definition 4.3: The Boolean differential of F with respect to all

variables Xl rx2 , ---, xn or sianply Boolean differential of F,

denoted by dF, is defined as

n	 n ( aF dx. + _IFdF `	 dx.)	 (D4.3.1)1 1 d1F - 1E 1 a x 	 i

ExaTple 4.1

Given	 F = x1 + x2	 (E4.1.1)

x1x2 + x I x 2 + x1x2
	 (E4.1.2)

find the Boolean differential of F.

Observe that F can be written as

F = ( x2 ) x1 + (0)x1 + (x2)

= F1X1 + Q1x1 + R1	 (E4.1.3)
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so that

aF
axl y X2

and	 -If
DR1 = 0

Rewriting F as

F = (0)x2 + (x1 ) x2 + x1

one sees that

aF
P2 = ax2 _ 0

and	 Q2 - axF
2 r X1

Hence

(E4.1.4)

(E4.1.5)

(E4.1.. 6)

(E4.1.7)

(E4.1.8)

dF = x2dx	 + (0) dx1 + (0) dx 2 + xldx2

= x2dx1 + x1dx2 (E4.1.9)

In view of the fact that we are allowing only one variable to change

at a time, both	 dx1 and	 dx2 cannot be °1 11 at the same tune.	 It

is clear from equation (E4.1.9)	 that when

x2 = 1,	 dF = dx1 (E4.1.10)

and	 dF = d5F2 (E4.1.11)

when	 x1 = 1.

Definition 4.4: A differential expression, denoted by d^, is a

Boolean expression of the form

n
dC =	 (ai dxi + ^i dxi )	 (D4.4.1)

i=1

I
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where in general ai and R, are functions of the (n-1) variables

xl ,x2 , ---, xi-1, xi+l, ---, x n and ai and 0i are independent of

xi for all i, 1 <i<n. Observe that since by Definition 3.5,

2xF and E are independent of xi , 1<i<n, Boolean different-x	 i

ial of a function F(x) as given in equation (D4.3.1) is a

differential expression; however the converse is not true. For a

differential expression to be a differential, there must exist a

function such that its differential is the same as the given

differential expression. For the expression dC in equation

(D4.4.1) to be a differential, there must exist a function ^(x)

such that

ai =a

	

	 (D4.4.2)
i

and	 ^i = a
	

(D4.4.3)

for all i, 1<i<n.

The following definition pertaining to relationship between two

differential expressions will be neede0 in the latter part of the

paper.

Definition 4.5:
	 given two differential expressions dC1 and d^2

where
n

d t1 = E 
( alidX 

+ Rldxi )	 (D4.5.1)

n
and	 d C2 =iEl (a2 idxi f a21dxi)	 (D 4.5.2 )

(a) d^1 and d^2 are said to be equal, that is

d^1 = dC 2	(D4.5.3)
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if	 ali =a2i	 (D4.5.4)

andAli = ^2i	 (D4.5.5)

for all i, 1<i<n;

(b) del is said to include or cover dr.2 , denoted by

d^l -:R d^ 2 	(D4.5.6)

	

if	 alit all	 (D4.5.7)
R

	

and	 Ali :;;^ 62i	 (D4.5.8)

for all i, 1<i<n;

(o)8^ r the Boolean product of dC l and dC 2 , denoted by

del d ;̂ 1 is given by d^ = dCl d;2

n
ill (ali a2i dxi	 li2idxi ), (D4.5.9)

and

(d) d^, the

de l + do 2 , is given

d^ = del

n
= E

i=1

3oolean sum of del and d^ 2: denoted by

by

+ d^2

(a ii+ a2i ) dxi + ($li +^2i) dxi	(D4.5.10)

5,	 BOOLEAN INTEGRATION

In the preceding sections we saw that given a Boolean function

F(x) and a variable xi , 1<i<n we can identify the points in
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B(n/i) where (a) F changes the same way as xi,

or (b) F changes the way opposite to the way
xi changes,

or (c) F is insensitive to changes in x i and F is

constant at 1,

or (d) F is constant at 0 and insensitive to

changes in xi.

The differential expression thus describes changes in F that

may occur due to change in any one of the variables x 1 x2` ---, xn'

only one of them changing at a time. This is, indeed, useful in

analysis. In synthesis, it iF.; of interest to address ourselves to

the question: "Ts it possible to find a function F such that

changes in F in terms of changes in its arguments are as prescribed?"

Mathematically, if a differential expression

n	 _
dC _	 (aidxi + a idxi )	 (5.0.1)

i=1

is given, can we find a function, F (say) such that

a x@F - a
i	 (5.0.2)

and	 aF = s i	 (5.0.3)
aR.a

for all if 1<i<n?

We will need the following definition to pursue the answers

to the question just raised.

Definition 5.1: F is said to be the exact integral of d^, denoted

by P dC and d^ is said to be exactly integrable if
E
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(D5.1.1)aF
DR.. - ai

7

B F

z

for all i, 1<i<n

n
and d^ _	 (aidxi + Si dxi )

i=1

Definition 5.2:	 Given a differential expression

(D5.1.2)

(D5.1.3)

n
dC 

= ill (,idxi	 + Oidxi ) (D5.2.1)

if there exists a function	 F such that

F	 a (D5.2.2)

and- (D5.2.3)

for all i,	 l<i<n,

then	 F is said to be a compatible integral of d^	 and is denoted

by	 dt and	 d^	 is said to be compatibly integrable.

Exam-Ole 5.l

Consider d^ = x2dx1 + xldx2	(E5.1.1)

then ! dC = x1 + x2
E

= F (say ),	 (E5.1.2)

since	 dF = x2dx1 + 3'ldx2

= dC	 (E5.1.3)

which satisfies equations (D5.1.1) and (D5.1.2). Consider next
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Fl = x 1 x 2 + x I x 2	 (E5.1.4)

so that.	 dFl x2dxi + x22dxi + x1dx2 + 31(x2	(E5.1.5)

Hence	 _:F	 1	 x

	

21	 2
	 (E5.1.6)

F
X	 0	 (E5.1.7)2:;^

F
xl = ,xl	 a2	 0	 (E5 . . 8 )

i	 2

F
andxl =	 l ` ^2	 -	 xl	 (E5.1.9)x

2

Therefore by Definition 5.2, a compatible integral of d is

f d^ = Fl - x1 x2 + x1 x2(E5.1.10)
C

In what follows we will obtain ways of finding all possible

compatible integrals of dC , if dC is compatibly integrable. To

accomplish this we need the following integral operators:

Definition 5.3: The zeroth order integral of d^, denoted by

IodC, is defined as

n
to d^ - E ( aixi + ixi )	 (D5.3.1)

i=l

n
where	 d^ = E (aidxi + idxi )	 (D5.3.2)

i=l

Also, the first order integral of d^, denoted by I ld^, is

defined as

n
J 1d	 E	 (aixi + ^ ixi )	 (D5.3.3)

i=l

Definition 5.4:	 A binary point , C- B(n) is said to be a "one"0
of a function P(x) if
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F (bo )	 = 1. (D5.4.1)

It is said to be a "zero" of 	 F(x) if

F (bo)	 =	 0 (D5.4.2)

Lemma 5.1.:	 If the differential

n
d^	 -	 E	 (aidxi	 + did . (L5.1.1)

i=1

is compatibly integrable and 	 F l	 is a compatible integral of d^

then every one of	 f d^,	is,	 also, a one of	 Fl.

Proof:	 Since	 Fl	 is a compatible integral, by Definition 5.2,
i

aFl	 ai
s

ax . (L5.1.2)

and	 aF1 i (L5.1.3)

OR 

na^	 aF
also	 dF1 = E	 ( axl	 axi	 +	 dxi) (L5.1.4)

i^l	 1	 axl

so that the ones of

aFl 	 3F^	
—or	 _	 x1 } ,	 1<i<n,	 are,ax	 xi1	 axl

also, the ones of 	 Fl.

From equation (L5.1.2) (or 	 (L5.1.3))) the ones of 	 aixi	 (or

1<i<n,	 are the ones of	
w1	

x.	 (or	
aFl 

x.) for all— --	 ax	 a1

1 <= <n.

Hence the ones of (aixi	 + ^i xi),	 1<i<n,
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are, also, the ones of F l . Hence the ones of f ld^ are the ones

of Fl.

Q.E.D.

On arguing on a similar basis, we can establish the following lemma..

Lemma 5.2: If the differential expression

n
d^ = Z	 (aidxi + idxi }	 (L5.2.1)

i=l

is compatibly integrable and F 1 (x) is a compatible integral of d^ r

then the ones of f od^ are zeroes of Fl.

Theorem 5.1: A necessary condition for compatible integrability

of the differential expression

n	 _
d^ - i Z (a idxi + S T dxi )	 (T5.1.1)

is that

(fodC) . (f1 do = o
	

(T5.1.2)

for all x e B (n) .

Proof: Suppose d^ is compatibly integrable so that there exists

Fl (x) such that

Fl = fc d ^ .	 (T5. 1. 3)

Also, suppose that there exists bb such that

Wod ^) . (f ld^) ]

	

	 l	 (T5.1.4)
x=bo

which implies that
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d = 1	 1
O

x -- b 

and	 ( f
I d C) = 1	 (T5.1.6)

x = bo

From Lemma 5.1 and equation (T5.1.6) bo is a one of F l . (T5.1.7)

From Lemma 5.2 and equation (T5.1.5) bo is a zero of F l . (T5.1.8)

Statements (T5.1.7) and (T5.1.8) contradict each other. Hence

there exists no bo G B(n) that satisf ies equation (T5.1.4). Hence

equations (T5.1.2) is a necessary condition for dy to be compatibly

integrable.

Q.E.D.

Lemma 5.3: If the differential expression

\ 1

4 :

d^

and	 (fo

then	 (a)

(b)

and	 (C)

Z(ai dx i +

dO • (. ld^) = 0

for x ^B (n) r

aifjd^ = aixir

ai. fod ^ - aixi

ai ( fod^) W

aidxi )	 (L5.3.1)

(L5.3.2)

(L5.3.3)

(L5.3.4)

mix 	 (L5.3.5)

Proof:	 From Definition 5.3 and equation (L5.3.2) we have

0 = (Eaj x^ + j xj ) . (Eai x i + ^ ix.i)

n	 n
E	 E ( a ia j x i x i + O i(lj xixj + a i s ixiIt I (L5.3.6)

i=l	 j=l

+ ^i^ j xixj)
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Hence for all i,j, 1<i<n, 1sj<n

aiaj xixj + Oiajxixj + ai $i xixj + oi s j xixj = 0	 (L5.3.7)

so that aiajxixj	 iajxixj= ai ^ jxixj = 00 jxixj = 0	 (L5.3.8)

n
Now	 aifld = ai ( 3 E la jxj + sjxj)

n
= a i x i + aiai.xi + jE1	 (a ia j x j {(,i$jxj)

Vi

= a ixi + ai¢igi

n

+ 3E1 
(a ia jxixj + aia]x^x3 

+ai jxixj
j ^^-

+ a is j xix7 )	 (L5.3.9)

In equation (L5.3.8), setting i=j yields

aixi = 0
	 (L5.3.10)

:i

i
for all i, 1< i< n.

I

Hence using equations (L5.3.8) - (L5.3.10), we get i

i
n

ai fld^ = aixi +aixij 1 (a j xj + s jxj ) -aix i	
(L5.3.3)

	j7^l	 I

By interchanging i and j in equation (L5.3.9), we get

	

a fod -- ai xi	 (L5.3.4)	 I
ii

Now	 ai (fod)

a  (1	 fodC)

= ai [j+ a fodr^
I
i
Ii
I
i

^I



= ai [+ aixi from equation (L5.3.4

aixi	 (L5.3.5)

Q.E.D.

Theorem 5.2: If the differential expression

n
d^ = E (a idxi + Ridxi )	 (T5.2.1)

i=l

and	 (f odd)	 ( fid 0 = 0	 (T5.2.2)

for all x e B (n), then F given by

F = fidC + *(f 0 d^) 	 (T5.2. 3)

is a compatible integral of d^, where * is an arbitrary function

of X.

Proof: ANDing both the sides of equation (T5.2.3) by a i , we have

aiF W aif ld^ + ^xi (fod^)

= a ixi + 'Pa ixi (from Lemma 5.3)

a i x i {l + )

aixi 	(T5.2.4)

By Theorem 3.5, since a i is independent of xi,

2 (a ixi) (from equation (T5.2.3
__	 i



a	 (T5.2.5)i

^xE	 ai.	 (T5.2.6)

S imilarly 
8 
aF	

i	 (T5.2.6 )
i

Hence by Definition 5.2, F is a compatible integral of d^.

Q.E.D.

Theorem 5.3: A differential expression

n
d^ _ Z (a idxi + idxi )	 (T5.3.1)

i=1

is compatibly integrable if and only if

(Jodi)	 (fldC) = 0	 (T5.3.2)

for all x B (n) .

Proof: The proof follows from Theorems 5.1 and 5.2.

A word regarding the arbitrary function *(x) in equation

(T.5.2.2) is in order. If sets Do and Dl , 0 CD- CB (n) , i-0 and 1,

are bases (Definition 3.6 ) of functions,fod ^ and .fld	 then

every distinct ^ would give rise to a distinct compatible integral

if	 is based on a subset (not necessarily proper) of D=tD CUDIJ .

in fact if V is based on a subset of D, then the factor (.f0d^)

than is ANDed with * in equation (T5.2.2) may be dropped since
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Do -- 
°
VID-j^ = D. Hence we can modify Theorem 5.2 as shown in the

next theorem.

Theorem 5.4: If the differential expression

n
d^ = E1 (aidxi + $idxi )	 (T5.4.1)

and	 (fod^) . (f l d ^ ) = 0	 (T5.4.2)

for all x C B (n) ,

then F given by

F = f ld ^ + 0 W .	(T5.4.3)

is a compatible integral of d^, where O(x) is based on a subset of

D T where

D = DOU D,,	 (T5.4.4)

Do and DIbeing the bases of f odC and f ld^, respectively. Moreover

if the number of points in D is m, then there are 2 m distinct

compatible integrals of dr..

Proof: The essence of the proof is outlined in the discussion

preceding the theorem. A formal proof can be given using Tapia--

Tucker method 136,37] for obtaining complete solution for Boolean

equations.

Example 5.2

A clock function C(xl ,x2 ,x3 ) is to be realized which goes

through, at least, the transitions specified in the differential

expression
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dC = (x2x3 + x 
2 
x 3 ) dx1 + (x1x3 ) d x2

+ (x1x3 ) d x2 + (x1x2 ) dx3 + (x1X2 ) dr3 a	 (E5.2 . l )

Find C, if it exists.

he have

jodc = (x1x2x3 + x1x2x3 ) + x1x2x1Z

+ x 
1 
x 

2 
x 3 + xix2x 3 + x 

1 
x 

2 
x 3	 (E5.2.2)

= x1x2x3 + xix2x3 + x1x2x3 + xlx2x3

and	 11dC = xix2x3 + x 
1 
x 

2 
x 3 + x1x 2x3 + xixZx3 + xlx2x3 + xIx2x3

= xix2x3 + x1x2x3.	 (E5.2.3)

Obviously

U0dC) .	 U1dC) = C (E5.2.4)

Hence by Theorem 5.3, a compatible integral does exist.

Also,	 D	 referred to in equation (T5.4.4)	 is

D =	 UD12

_	 { (0,0,1) ,	 (0,1,0) r	 ( 1 ,0, 0) r	 (1, 0, 1)

_ {(D,O,0) ,	 (0,^ ,3 ) (E5.2.5)

Hence O(x)	 has	 4 possible values,

0 1 (x) = 0 (E5.2.611

02 (x) = x 
1 
x 

2 
x 3

(E5.2.7)

0 3 (x} = x 
1 
x 

2 
x 3	 - (E5.2.8)

04 (x) = x 
1 
x 

2 
x 
3
	 +	 x1x2x3 (E5.2.9)

Hence there are four solutions by Theorem 5.4.

k-
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C1 = tl do + r x1x 3 + x1-
	

(E5.2.10)

C2 - x1x2x3 + x1x2x3 + x1x2x3	 (E5.2.11)

C3 = x1x2x3 + xIx2x3 + xIx2x3	 (E5.2.12)

and

C4 -- x1x2x3 + x13 2x3 + x1x2x3 + x1x2x3.	 (E5.2.13)

i

Observe that

dCl = ( x2 Q x3 ) dxl + {xlx3 ) 2 + (xl^'3)2

+ (X 1x2)dx3	 + (x1x2 ) d7x3 (E5.2.14)

dC (E5.2.15)
3

Hence	 C l	realizes those transitions which are specified in dC

and no transitions which are not specified in dC. in fact by

Definition 5.1, C^	 is also the exact integral of dC	 in equation

(E5.2.1) .	 Let us now examine C2.

dC 2 = (x2 (D x 3 ) dx1 +	 (x 2x3 )	 dxl +	 (x 1x3 ) dx2

+ (xIx 3 + x1x3 ) d 2 + (x1x2)	 dx3

= (xlx2 + x
1x2 } dx3 (E5.2.15)

Observe that C 2 realizes the transitions represented by

differential terms x2x3dx1 , xlx3dx2 & xlx2dx3 which are not

specified in dC in equation (E5.2.1). However it does realize

all the transitions specified in dC.
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As shorn above, a differential expression that is exactly

integrable is, also, compatibly integrable. Hence the necessary

condition that

(!cd )	 (fld ) = 0

for all x 4^B(n)

n
for	 d^ _ E (aidxi + $idxi)

i=1

to be compatibly integrable is also necessary for d^ to be

exactly integrable. However, unlike in the case of compatible

integrability, the condition is not sufficient as can be seen

from the example that follows:

Example 5.3

Consider the differential expression

d; = x ldx2 	 (E5.3,1)

We have

lodC = a1xl+^1xl + a2x2 + 2x2

= 0 + 0 + x lx2 + 0	 (E5.3.2)

and	 lld^= alx1 + S1x1 + a 2 x 2 + 2x2

	0 + 0 + x1x2 + 0	 (E5.3.3)

Obviously	 ( IodQ . (J'id^) = 0	 (E5.3.4)

for all X C -'B (n) .

And the expression is integrable -- at least in the compatible
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sense - by Theorem 5.3.

Also, Do , D1 and D referred to in equation (T5.4.4) are

given by

D =D7 .D 1

(l 10)1 (111) 1
{ (0,0) , (0,l) }	 (E5.3.5)

Hence by Theorem 5.4 we have 4 compatible integrals of

dt given by Fo , Fl , F2 and F3 as given below:

Fo - f 
1d C + Qo

= x 1 x2 + 0	 (E5.3.6)

F1 = I ld C + 01

= x17-2 + 7-1x2	
(E5.3.7)

F2 = I1d ^ + 02

x I x 2 + x 1 x 2

7-2	
(E5.3.8)

F 3 
= fl d z; + 93

x 1 x 2 + x1 7-2 +
 3Elx2

= t2 + x1	 (E5.3.9)

Observe that

dFo - x2dx1 + x1dx2

d^	 (E5.3.10)
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j	 ► :

dFl	 x2dx1 + x2dxl + xldx2 + x1dx2

d^

dF2 = dx2

d^

dF3 = x2dx1 + xldx2

d^

(E5.3.11.)

(E5.3.12)

(E5.3.13)

Hence none of the compatible integrals Fo , F l , F 2 and F 3 is

exact by Definition 5.1, and no more compatible integral exists

which is distinct from these four integrals by Theorem 5.5 that

follows. Hence 4 is not exactly integrable. Thus the

condition that ( f 0d^)  . (11d^ ) be D for all x E B(n) is
n

necessary but not sufficient for d^- 1E 1 (aidxi + 02dxi) to be

exactly integrable.

Theorem 5.5: Let Do , De C- B(n), and Dl , D1GB(n), be Boolean

sets, which are bases of functions lodC and .fld^ 	 respectively,

d^ being the differential expression given by

n
d^ = E ( aidxi + aidxi ) .	 (T5.5.1)

iW1

Let D be another Boolean set such that

D =ID.0 Dlj	 (T5.5.2)

and m = number of distinct points in D. 	 (T5.5.3)

Also, let i (x) l s be functions based on distinct subsets

of D,	 1<i<2m	 (T5.5.4)



if F is a compatible integral of dC, then F must belong to

the class of 2m distinct Functions defined by

Fi (x) = Ild	 + ei (x)	 (T5.5.5)

l<i<2m

Proof; Since d^ is compatibly integrable by hypothesis, there

exist, by Theorem 5.4, 2m distinct ingetral F i I s given by

equation (T5.5.5). We want to establish that these are all the

compatible integrals of d^ that could exist.

First observe that Fi (x), 3<i<2m in equation (T5.5.5) is

based on set D i Ei 7where

E  C D	 (T5.5.6)

From equations (T5.5.2) and (T5.5.6), Dl and E i are non-

intersecting so that every distinct set E  defines a distinct

set

Gi = Dl U Ei 	(T5.5.7)

	

and	 Gi 	Do ,	 (T5.5.8)

1<i<2m

Hence Fi (x) is based on Gi , where

Dl ^Gi G Do ,	 (T5.5.9)

all i, 1<i<n.

Now we will show that given a function F(x) based on a set H,

	

H C. B (.n)	 which is a compa,t-thle, ntegr?l o^ d^ ^:n. egngtt'oa

33.
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(T5.5.1), H mast satisfy the bounds

D 1	HCDo	 (T5.5.10)

so that F(x) = F i (x) for some i. By Lemmas 5.1 and 5.2 F(x)

must be based on a superset of D 1 and must not be based on a

subset of Do so that H does satisfy equation (T5.5.10).

Q.E.D.

Preliminary results pertaining to necessary and sufficient

conditions for a differential expression to be exactly integrable

are given in a recent publication [3]. These results in detailed

analysis along with the method of finding exact integral of a

given function, if it exists, and other useful and interesting

properties of integrals of'h igher order (not defined in this paper)

will be published in the near future.

Given a differential expression

n
d^ = E (aidxi +Oidxi)

i=l

if (fo dC ) . (f1 d^) 54 0 for some S B (n) , then the express-

ion cannot be integrated exactly nor compatibly. However it could

be decomposed as sum of several differential expressions, each one

of which may be integrable separately as defined below.

Definition 5.5: A differential expression is said to be

integrable by parts if d^ can be written as

m
dC = E	 d^k	 m> 1	 (D5.5.1)

k=1

where d^, , is compatibly integrable for all k, 1<k<m. Any

.d
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compatible integral of d^k , 1<k<m will be called a partial

integral of d;k. A complete set of partial integrals of

differential expression is a set of functions, {F1 , F21 ---, Fm}

where for each d^k in equation (D5.5.1), there is a function

F  in the set such that

dFk '-=' dC k 	(D5.5.2)

it will now be shown that any differential expression is

integrable by parts.

Theorem 5.6: Any differential expression

n
d^ - E	 (a idxi + O idxi )	 (T5.6.1)

i=1

is integrable by parts.

Proof:	 Observe that for any i, 1<i<n,

(i idxi ) - (fa.-x. dx.

(cixi)	 ( 1xi)

0	 (T5.6.2)

and	 V is idxi )	 (J' oa idxi )	 (T5. 6.2 )

0	 CT5t6t3)

so that by Theorem 5.3 differential terms a d- i and Sidxi are

compatibly integrable. Hence each and every term on the right

hand side of equation CT5.6.1) is compatibly integrable, Fence by

Definition 5.5, dC is integrable by parts.

Q.E.D.
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Example 5. 4

Consider the differential expression

d^ = x3dx1 + 3E3dx2 + x2dx3

For this expression

fl d ^ = 33x1 + 33x2 + 32x3

and	 3o d^ = 3E33El + 33x2 + x23E3

x1x3 + x 2 x 3

(fl dC)	 (10d^}

^XX2x3 + x1x2X3

(ES.4.1)

(E5.4.2)

(E5.4.3)

7^ D	 (E5.4.4)

Hence by Theorem 5.4 d^ is not compatibly integrable. Let

us, therefore, decompose d^ as

d^ = del + d^2 + d^3 	(E5.4.5)

where

d C1 _ x3dx1
	 (E5.4.6)

d^ 2  = x3dx2	 (E5.4.7)

and

d^ 3 = 52dx3 	(E5.4.8)8)

Hence	 {X 1x3 , x2x3 , x2x3 1 is a complete set of partial

integrals of d; .

Also, d^ can be separated as

d 	 = (3F3dx1 ) + (x3dx2 + x2dx3 )	 (E5.4.9)
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which leads to

^x 1x3 , x2 + x
	

as another complete set of partial

integrals of a

CONCLUSION

Boolean calculus as proposed here is a powerful tool for

analysis as well as synthesis of logic circuits. The use of

Boolean integration in synthesis of asynchronous circuits using

clock-triggered flipflops has led to circuits which require less

flipflops and logic gates than circuits synthesized using

conventional methos [5], thus reducing complexity, cost and size

and improving reliability.

All the differential operators used in the references can be

expressed in terms of partial derivatives defined in the paper.

Earlier methods to realize a function from the'specified

changes in its value in terms of changes in its arguments do not

possess the simplicity and ease that the method presented here

does.

The concept of the exact integral was introduced for this

purpose. in virtue of the fact that in real-life situations we

do have don't-care conditions and/or transitions, the concept of

a compatible integral was introduced in order to generalize the

concept of the exact integral. Moreover, if the exact integral

did not exist for a specified differential but a compatible

integral did, then the undesired transitions (changes) in the

integral may be inhibited using a simple logic circuit.

Integration by parts is further generalization of compatible

6
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integration, which has possible app3 7yations in logic circuits.
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APPMIX II

SYNTHESIS OF ASYNCHRONOUS SEQUENTIAL

SYSTEMS USING EDGE-SENSITIVE FLIPFLOPS

A$STRACT

Conventional methods for synthesizing Asynchronous

sequential systems do not use clock-triggered flipflops. it has

been shown [5,6,7] that synthesis tech nictues for such systems wb ich

utilize edge-sensitive (clock-triggered) flipflops lead to networks

which require.less flipflops and logic gates and which are less

expensive and more reliable. The proposed paper aims at developing

formal procedures for synthesis of asynchronous se quential systems

using commercially available edge-sensitive flipflops.

INDEX TERMS:	 Asynchronous sequential systems, clock-triggered

flipflops, commercial flipflops, edge-sensitive flipflops, Boolean

differential, Boolean differential expression, Boolean integration,

compatible and exact integrals, r.indamental mode asynchronous system,

differential mode system, realizability criteria.
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I.	 INTRODUCTION

in conventional, asynchronous se quential system design,

direct emphasis is placed on relationship between outputs and

inputs in terms of their levels only, and the possf-bility of using

edge sensitiveness property of Logic elements is not utilized.

Smith and Roth have shown [6,7] that if edge--sensitive fl.ipfl.ops

are used in the design of an asynchronous system and the edge--

sensitiveness property is judiciously taken advantage of, then in

many cases it leads to a realization that requires less fl.ipflops

and logic gates than conventional method does for a given system.

Smith and Roth technique [6,7] utilizes a "general model of

edge-sensitive flipflop" in their approach. The'method,proposed

this paper is applicable.to any commercially available clock-

triggered flipflop that responds to a cloak transition

(positive or negative).

2. DIFFERENTIAL MODE MODEL

Definition 2.1: A Fundamental Mode Asynchronous system

(D2.1..1)	 FMAS A (S,S,O, f,,q) where

ID2.1.2) I	 A set of p distinct input conditions = {IJ}

(D2.1:3) S	 A set of q states of the system = {S^}

(D2.1.4) 0 A set of outputs = i0^}

(D2.1.5) f	 A output function A f(S.kl l j	,	 j & k and

(D2..1.6) g	 A next state function A g(S k ,I
i

) ' VJ & k

will be assumed 110,12,131. It will further be assumed that only

one state variable and only one input variable is allowed to

change at a time.



.;

•	 3.

in order to make it convenient to express the next state
and output in terms of the change in the input and the present
state, we will transform the FMA system to a Differential Mode
model defined below. This is comparable to the DM Machine of
Smith and Roth [6,71 but really different than that.

Definition 2.2: Given a fundamental mode asynchronous system FMAS,

a Differenial Mode System, LAMS will be defined as a 6--tuple as

given below:

	

(D2 .2 .l)	 DMS = (I t , I*' , S' , O' , f' , g') where

	

(D2 .2 .2)	 V=I r

	(D2 .2 :3)	 T*' d i (I j ,I k) IVJ , k}

S'=S

	(D2.2-5)	 f' Q output function of DMS

	

(D2 2-6)	 91	 next state function of DMS

The function g' is related to the function g of the'FM_A system as

shown below:

	

(D2-. 2 . 9)	 9' (Sh rllrlk)

	

-	 Si, if g (S h` Ii ) = Sh r g CSh , Ik ) = Sz

and g (Si r Tk ) = Si

Si-' if g ( Sh r Ij ) = Sh and there exist S it , S 12' ----, Sin & Si

such that g (Sh r Ik ) - Si 1

Y (S1I'T-k) = Si2 ,---, g (Sin' Ik ) - Si

0	 and 9'(S i ,zk ) = Si,'

if g(Sh' IJ ) = Sh & g ( S h , Ik ) = _..__

-, if g (Sh , I j ) = Sh , and there exist

S i1' S i2' - 'Sin such that

g (Sh, Ik ) r S I-V g (Sil' Ik) J Sit

g (Si2 rIkk = S i3 r---rJ(S in" 	 -

if g(Sh,,Ij) TSh
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The funct-'on f' (S h,l i rI k) is related to the function f(Skrlj)

of the FMA system as shown below:

(D2.2.10)	 f'(Shr IJ r Ik)

f (Si r Ik ) r if 9 ^ (S h , I^ , I k ) -SI

if y'(Sh , I, Ik ) is unspecified

Before we develop procedure for synthesizing the asynchronous

sequential system described by the e quations (D2.2.1) through

(D2.2.10), we will assume that the FMA system (and hence DM system)

is amenable to single variable - change state assignment. Let us

further assume that the system has n input variables Xl,X2-----,X
n

m state variables Y l , Y 2--"-, Y and hence III clock--triggered
zn

f lipflops that respond to positive transitions. we will, therefore,

need to realize m clock functions, say Cj's such that whenever

an input change occurs then one (and only one) of the clock

functions goes through a positive transition providing a proper

state transition. Towards this end, we will define differential

operators and differential expression to describe changes in a

given function F(X1rX2),----,X.n} :,^,n teX)t}s- Q9 cbang'es tn, tts ^, gu lei s l^ .,

(D2 .3 .l)	 dxi D 1, when X , 1_ j,^n,,chanrrea frmmt, a to I car from: 1. to

0^ when X does not change at all

dF will be defined similarly

(D2.3-2)	 dF = dX by definition implies that when X

changes from 0 to 1 (or 1 to 0), so does F change from 0 to 1

(or 1 to 0).

i
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In order to relate changes in F due to changes in Xi under

different conditions we will treat dF and dX i , 1<i <n as

entities in Boolean algebra having values of 0 or 1 as

defined in equation (D2.3.1).

Consider the equation

(D2.3 -3) 	 dF = (X2 ex 3 ).dx1 + ( Xl ' X2 ) dX3

When X2 = X3 = 1 and X1 is changing, then dX 3=0 and dF=dx1

so that F changes the same way as X 1 changes. Similarly when

X1=X2=1 and X3 changes, then dF=dX 3 and F changes the same

way as X3 changes.

Differential expression, denoted by dE, will be defined as
T2

(D2.3-4)	 dE 
aE1 

dX + 0 dX ,^}z z	 i i

where 0(i and ^ i ,	 r i< n	 are functions of

1 p 2	 ,2-1	 i+l,-----, Xn (and independent of Xz ) and only

one of the variables X1,X2, --- ,Xn is allowed to change at a time.

Differential expression as given in (D2.3.4) will be used

to describe changes in clock functions in terms of changes

in input and state variables.

The following definitions, relationships and theorems have

been reported earlier [1,2,3,4,11]' and will be presented here

briefly for the sake of completeness and convenience of reference.
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Definition 2.4: For a Boolean function F (X l XZ ----- r X n) , of
r	 r

n variables X11 X2r ---, Xn Boolean differential of F, denoted

by dF is defined as

A
(D2 .4 -1)	 dF =	 _IF dX.i. + DF dX,

z=1 DX i 	 D .z'

The summation in Equation (D2 ,4 .l) is with respect to the

inclusive OR,-and the partial derivatives are defined by

(D2.4-2)	 DF - F tx ) I X	 )
	 F(X) IX  =0 

and
2X=1z

(D2 -4 -3)	
aX ^ F (X) Ix-0 )	 (F (x) I 

Xx=1'^

With the interpretation given in Definition D2.3, equation

(D2.4.1) completely describes changes in F due to change in

variable X.r I:! !:< n.

Definition 2.5: The integral of zeroth order, written as

S. d^, of the Boolean expression

(D2.5,I)	 d^= ^(r s dxz+^ I dx. )

is given by
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n
(D2.5.2)	 d^	 (CL.	 +	 X )

SO
	

z=1 
Z i	 i, z

and the integral of first order, written as SCIE , of the

expression a.g in equation (D2-5-1) is given by

n

(D2.5 :)	 1d(a Xi +

Definition 2.6: A given differential expression dg given in

(D2.5,1) is said to be compatibly integrable if there exists

a function F such that

(D2 A. 1)

for all i,

then F is

expression

function F

aF	 i and
ax.

1<z<n. If F

galled a compa

is said to be

such that

aF^s^.

axe

satisfying equation ;D2.6.1) does exist

tible integral of dg. The differential

exactly integrable if there exists

(D2.6.2)	 dF = d9

If F satisfying the above equation does exist, then F is called

the exact integral of dE.
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Theorem 2.1; The necessary and sufficient condition for

compatible integrability of a given differential expression

n	 _
(T2 ,1. 1) 	 dE = E	 (^•- dX . + $ .dRX .) is t1-at

=1	 1 -L	 z i

(T2.1.2)	 o d) . ^l d^	 = 0

Theorem 2.2: If a given differential expression dE is

integrable, then a compatible integrable of d^ is given by

(T2:2.1)	 fc dg = l̂dg + K where

(T2.2.2)	 ¢ SK C JodE + fl d

3. A DIFFERENTIAL MODE SYSTEM

EXAM13LE 3 .1

Consider the FMA system described by the reduced flow table

below:

X1X2 00
	 01	 11	 10

(A, B) 1

(C,F) 2

(D, G) 3

(E,H) 4

QO QO 3,- 2,-

01 l,- 4,-- l

2,- Ql G),1 2,-

l,-- I	 l,- 00 0

Fig. ' 3.1

Since the minimal sytem shown in the table has 4 states,

2 flipflops will be required to realize the system if conventional

techniques are used
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On transforming the system in Figure 3.1 to DM system, we

get DM table given in Figure 3.2.
i

X1X2

00	 00	 01	 01	 11	 11	 10	 10
in	 n1	 11	 nn	 01_	 1_n	 on	 11

1

2

3

4

2,1 1,0 3,1 1,0 -- - - -

2,1 1,0 - -- - -- 2,1 4,0

- -- 3,1 2,1 3,1 2,1 - -

- - -- - 1,0 4,0 1,0 4,0

Figure 3.2

Using the conventional methods to reduce flow tables for

FMA systems, the DM table can reduced as shown in Figure 3.3

Observe that (1,4). and (2r3) are compatible pairs.

X1X2

00	 00	 01	 01	 11	 11	 10	 10
10	 01	 11	 00	 01	 10	 00	 11

(1,4) A

(2,3) B

B,1 A,0 B,1 A,0 A,0	 A,0 A,0 A,0

B,1 A,0 B,1 B,1 B ' 1 - 1	B,1 13,l A,4

Figure 3.3

The reduced DM system has only two states. Let y=0 and

y=1 be the assignments for states A and B respectively.

Observe that if y!

when (1) X 2 = 0 and Xl

or (2) X2 = 1 and Xl

If y = 1, the flipflop

changes from 0 to 1 or

changes from 0 to 1.

-0, the flipflop must change its state•

changes from 0 to 1

changes from 0 to 1.

must change when (1) X 1 = 0 and X2

(2) X1 = 1 and X2
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This tells us when the clock should go through a positive

transition. The desired changes in clock function in terms

of changes in X1 and X2 can be described by the differential

expression (E3.1:1) below:

(E3.1.1)	 do = y X2dxl + X2dxl) + y Xldx2 + Xldx2)

= y(dxl^ + y(dx2

Observe that

(E3.1.2)	
(50dc
	 do = ^yxl+ YX2) - (YX 1 + yx2) - 0

so that by Theorem 2.1, do is compatibly integrable and by

Theorem 2.2 a compatible integral of do is

(E3.1.3)	 jcCdC = yX1 -+ yx2

Let us,then,try

(E3.1.4)	 CZ = yX1 + yx2 as the input to the clock pin of

a flipflop to be used. We will examine whether a toggle flipflop

can be used so that the least amount of combinational logic will

be required.

Observe that

10.

a ^^



X

X1

=7-

11.

(E3.1.5)	 dc1 = ydxl + ydx2 + xlx2dy + xlx2dy

so that transitions (Rlx2dy) and (xlx2dy) which are not

specified by equation (E3 . 1 . 1) may be present. However a

close examination at Figure 3.3 reveals the fact that when

y=0 and input changes to x 1 x 2 = 01, then y does not change to

1 so that (x lx2dy) is a transition that cannot occur.

Similarly (xlx2dy) cannot occur either. Hence the clock function

C 1 will provide exactly those transitions which are specified

by equation (E3.1.1). Hence the following realization:

(A possible hazard can be eliminated by

adding X1X2 to the Night hand side of

equation (E3. 1. 4)
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4, PROPERTIES OF DIFFERENTIAL MODE SYSTEM

Given a DNS table obtained by transforming an FMA table,

that has the same number of states as the latter and whose

state transition graph [10,12,131 admitS of a single-variable -

change state assignment, it will be shown later that it is

realizable using clock-triggered flipflops. However realizability

of a DNS table that is further reduced, if reducible, after

transformation depends on several characteristics of the table,

that are described in what follows:

Definition 4.1.: A DM system table is said to be level-wise

output--unambiguous, if there exist no input conditions I i , I^

I k and states S  and Sb , I i and I k being adjacent, 1	 I k,

S  and S  not necessarily distinct, such that g'(Sa , zi,ii),

g ( S b , I k' I i) , f' (Sa I i , i i) and -.e' (S b/ I k": i ) are defined and

(D4 .1 ,1)	 g' ( S a , I J i) 	 (S b ,Ik ,':!	 Sc	 (say)

(D4:1: 2 )	 V (S a ,I J ,1i ) = Ojc 0 0. kc
 ^ f' (Sb'Ik'Ii).

I	 Tk
J

(ora5)	 Sc ' O ,jc	 Sc'O.	
S

kc	
a

S 

Z	
Ik

Sc,OJc

Sc'Okc

A DM system table which is not level--wise output-

unambiguous will be called level.-wise output-ambiguous.
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Definition 4.2: A DM system table is said to be level-wise

next-state--ambiguous, if there exist inputs I _,,	 and I.
 j 	k

and states S a , S  and S c such that

(D4.2.1)	 Sbi Sc

(D4.2-:2)	 g' ( S a , I J , T i ) = S 	 and

(D462.3)	 91 (S a 'Zk' li) = Sc

Ik

l i	 li

S 	 I Sb'	 Dai	 Sc'	 Dai

A DM table which is not level-wise next-state ambiguous is

said to be level.-wise next-state-unambiguous.

Definition 4.3: If a change in the value of state variable Yj

resulting from a change in input causes another state variable

{ Yi , for some i 7 .7, to change its value, then a secondary

transition or ripple is said to occur in the flipflop that is

associated with the state variable Yi . If in a DM system a

ripple cannot occur, the system is called ripple-free.

in the following definitions, we will assume that the DM system

has n input variables x l , x2 ...... xn , 'm state variables
M

Yl , YZ , " , Ym , q(=2 ) distinct states S Q , .... S q-1 k of tput variables
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01,02, .... ,O k & p( =2 n) distinct input conditions.

Definition 4.4: 1 k represents the binary vector (bl, b21"" b )n
such that b .'s are O's or 1's and k is the numerical value ofs

(b l , b2,...,bn), when the latter is interpreted as a binary

number.

	

Observe that mk (x) =1	 , where •mk (x.) is  the

x-1k	 kth mintexin of xl ,x2 , ... ,x.n.
r ►

Definition 4.5: S.k represents the binary vector (b l , b 2 , .. . rbm)

such thot b i 's are O's or 1's and k is the numerical value of

(bl , b2 , ...,b.m), when the latter is interpreted as a binary number.

	

Observe that mk (q) =1	 , nhere mk (q) is the kth

	

Y=S	
r r

atminterm of y

Definition 4.6: S il and sit are said to be y
j_adjacent to each

other, if their representations as defined in Definition 4.5

agree in every bit except the jtll One.

Definition 4.7: mj (x -- xi ) denotes the product term obtained by

deleting the variable xz from the jth minterm of variables

xl,x2,...,xn.
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Definition 4.8: @m (x -- xi ) denotes transitions as defined

below:
i

(D4.8.1)	 a (m j (x--x. ))

mj (x -x.) dxz , if xz in minterm mj (x) is in true form

mj (x-xi ) dxi , if xi in mj (x) is in complemented

E	 form.

Theorem 4.1: Consider a DM system table whose realization exists.

Then corresponding to every row (or state) S it and input change

from I j1 , to ' j21 OGq-1,Oej1<p-1^. O<j2^Sp-1F 
Ij1 

and I)2 being

xj -adjacent, if the next state function g'(Si1'Iil,Ij2) is

defined and

(T4 .1.1)	 g' (S il , I j1' I j2) = S i2 where

(T4 .1-2)	 5 z1 and S i2 are y k -adjacent, then

(T4. 1. 3)	 dCkZ mil (y) - 3 Cm 2 (x -- xi )) , 1 < k < m

Proof: Equations (T4- 1. 1) and (T4. 1. 2) imply

that y  must change its value when the system is in state Sit

and input variable x i (
 
say) changes its value so that the final

input cond ition is Ij2. Hence at the time of this change C 
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must go through a positive transition described by

mil ( y ) - (Mj 2 (x) - xz^

Hence	 `\

(T4.1.4)	 dCpmi 1 f y )	 (m]2 { ^ xi))
Q.E.D.

Theorem 4.1 presents a way of constructing differential

expression dCk , for 'Vk, by using each row (i.e. 'present'

state) an each column (i.e. input change) such that the (next

state) entry corresponding to them is defined and is different

than the present state corresponding tp thy,rocs:in which it lies.

Construction of a differential expression has already been shown

in Example 3.1.

Lemma. 4.1: Consider states Sa and Sb , Sa T Sb and a change of

input from 1= to 1. in a DM system whose table is specified.

Let S  and S  be y k-adjacent and

(L4.1.1.)	 S  = g ti (Sa . T i , lj ) .

Then ma (y) 'In.2(x) and a (y) mj (x) and the clack function C ^ satisfy

the following relations if the system is realizable.

(L4.1.2)	 Ck -^ma (y)	 m, (x) and

(L4.1.3)	 Cka ma (Y) • m^ W.

Proof: When the system is in state S  and input changes

from 1.a 	lj , the system goes-to state Sb . requiring that the

state of flipflop k change.This necessitates that the clock function

C  go through positive transition. This implies that the

value of C  is 0 when the system is in state S  and the input

is Ik . Hence
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(Ld • •2 )	 ckma(y) 'iat i (x) .

When the input changes to Ik , the value of Ck must become 1

so that

(L4.1-3)	 Ck-:"-'ma(y) ' m J W

Hence the Lemma.	 Q.E.D.

Theorem. 402:	 Differential expression corresponding to

every clock function for a specified DM system is integrable

if and only if there exist no input conditions I i , Ijl and

IJ2 ( Iji and IJ2 not necessarily distinct) and no states S 

and S  ► S a 79 S  such that

(T4.2.4)	 S  = g' (Sal IV IJ1)

(T4.2.5)	 S  = g'(Sa , I j2 , Ii)

Proof: Let S  and S  be yk--adjacent. Assume that Si,

IJI , I j2 , Sa and Sb exist that satisfy both the equations

(T4.-2..4) and (T4 ., 2, 5) . Hence from Lemma 4.1 and these

equations, we have simultaneously

(T4 =2 -6)	 CkDma (y) ' m i (x)	 and

(T4.2,7)	 Ck:^M(Y)mi(2) i

S
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obviously no function car. satisfy relationships (T4.2.6)

and (T4,2, 74)simultaneously. Hance the differential expres-

sion for the clopk C  is not integrable.

If no I i , I; l, 1j2' S  and S  exist which satisfy

equations (T4 . 2-4) and (T 4 - ,•2 . 5) , then ma (Y) . ms (x) is either

"zero" or "one", but not both, of C  for 'V&, X and k. Hence

the terms in „,dCk and dCk are non--intersecting

rdCk  , dCk = 0, for -Yk

Hence differential expression dC k is integrable for Vk.

Q.E.D.

Theorem 4.3: A necessary condition for a given DM system

table to be realizable is that there exist no input condi-

tions I s , IJl , and Ij2 ( I il and Ij2 may or may not be distinct)

and no states S  and S b , S  ^ Sb r such that

(T4..3.1.)	 S  = t (Sal 1i"j I ) and

(T4.3.2)	 S  = g' (Sarlj2rIi)

Proof: The proof follows from Theorem 4.2.
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Lemma 4.2: Given a DMS table derived from an FMA system

that has the same number of states as the former, the

differential expressions for clock functions for the DM

system are integrable if a state assignment exists such

that exactly one variable changes during any state

transition.

Proof: Suppose at least one of the differential

expressions is not integrable. Then by Theorem 4.2 there

exist inputs Ii, 131 and 232 and states S a , Sb , such that

(L4.2 -1)	 Sa ; Sb

(L4 . 2 . 2)	 S  = g'(Sa , I i , 1 31 ) and

(L4 . 2 . 3)	 Sb = g = (S a , 1 32 , Ii).

From equation (L4.2.3) and FMAS-to--DMS transfer equations in

Definition 2.2 we have

(L4.2.4)	 g (Sa, 13 2
)	 S 

Also from equation (L4 2.2) and FMAS-to--DMS transfer equations

in Definition 2.2 we have

(L4.2.5)	 g(Sa, I i ) = S 

Equations (L4.2.4) and (L4.2.5) clearly show that we must have

in the DM system

(L4.2.6)	 9'I (S a , 1 32 , I i ) = S 
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From equations (L4.2.6) and (L4.2.3) we have

(L4.2.7)	 Sa = S 

which contradicts our assumption (L4.2.1).

Hence the Lemma

Q.E.D.

Lemma 4.3: Given a DMS table which is directly derived from an

FMA system which has the same number of states as the former,

the DMS table is level-wise output-unambiguous.

Proof: Suppose the DMS table is output-ambiguous. Then

by Definition 4.1 there exist inputs r 1 , I i and I  and

states Sa and S  such that

(L4.3-1)	 9'(S a Ij , I i ) = g' (Sb, Ik' 2 i )	 Sc	 (say)

(L4 .3 .2)	 f' (Sa , 1j" Iz)	 0 j	 (say)

(L4.3-3)	 f' (Sb , Ik r xa) _ 0 k	 (say)	 and

(L4.3.4)	 Gic 7 0kc
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From	 Definition 2„2, of DM9 table and equation (L4.3.1)

(L4 . 3 -5) f I (Sa ,	 Ti IF	 I i ) = f ( g r (S a r	 I i j,	 I i ) r	 1i)

= f(Sc , I i )	 and

(L4-3-6) f' (Sa,	 Ikr	 Is) = f(g" (Sa ,	 Ik,	 1i),	 Ii)

f (Sc ► Ii)

Hence

(L4-3 . 7) f' (Sa ,	 I3 r	 I i ) =f" (Sa , Ik" Ii)

or

(L4-•3-•8) 0. 0kc

which contradicts relation (L4.3.4)

Hence the Lemma.

Q.E.D.

Lemma 4.4: If a DMS table derived from an FMA system has the

same number of states as the latter, then the table is level-

wise next--state-unambiguous.

Proof: Suppose the table is level-wise-,next-state-ambiguous-

Then by Definition 4.2 there exists inputs Iz, I -7 and 
Ik and

states S a , S  and Sc such that



(L4 .4 -1) Sb - gr (Sa,

(L4.4 .2) Sc = g = ( Sa ,	 Tk , T i )	 and

(L4 . 4 . 3) Sb	 Sc

a.

From Definition 2.2 and equation	 L4.4-J	 wequ	 (	 )	 et?

(L4 ,. 4•. 4) g(Sa, i^)	 = S a

(L4.4.5--1) g(Sa,	 T^)	 = S
i

S 	 (sav)
l 1

L4.4.5--2(	 ) Y	 =5	 S^{	 y2 r 	 a)	 3 1}
1	 ! I

t

(L4.4.5^-n) 9 (S' z ,	 T l ) = S b r n>l
n

(L4.4.6) g ( Sb .	 Ii)	 = Sb

Also from equation (L4.4.2) and Definition 2.2,

(L4.4 . 7) g ( Sa , Ik ) = S 

Hence using relations 	 (L4..4.5 --1)	 through	 (L4.4.5--n) ,

(L4.4.6)	 and Definition 2.2., we get

(L4.4.8) 9I(Sa,	 I k ,	 I 3 } S 

From equations (L4.4.8)	 and_ (L4.4.2)	 we get	 4

I

i
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(L4.4.9)	 S  = Sc

which contradicts equation (L4.4.3). On the other hand if

(L4.4.10)	 Sil :-- S  in equation (L4.4.5), then also we get

(L4.4.'8)	 g'(Sa, Ik, I z ) = S  and a contradiction.

Hence the Lemma.

Q.E.D.

Lemma 4.5: A DMS table derived from an FMA system has the

same number of states as the latter. If a state S a , flCa:^(q-l)

in the DM system is such that g r ( Sa , I il , I y ) is specified

with

(L4.5.1)	 91 (s 
a , Iil , Ii )ASb	(sav)

then

(L4.5.2)	 g' ( Sb , Ik , I i ) = S  or
Unspecified

for any I  adjacent to 17..

Proof: From Definition 2.2 and equation (L4.5.1) for the

FMA system we get

(L4.5.3)	 g(Sb, ':i	 Sb-

Also, from Definition 2.2, g l (SW l k , T = ) is defined (i.e., a

specified entry) only if

(L4.5.4)	 g (Sb , Ik) = S 

if equation (L4.5.4) is satisfied, then equation (L4.5.3) and

Definition 2.2 imply that
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(L4.5.5)	 g' (Sb r Ik , 1i ) = S 

if g(Sb r I k ) ^4 S  or g(Sbr 'fl) is not defined (i.e.,not

specified) , then by Definition 2.2, g' (Sb r IV T i ) is

unspecified) . In any case, the relation (L4.5.2) is

satisfied.	 Q.E.D.

Theorem 4.4: if a DM system table has the same number of

states as the FMA system from which it is derived and a state

assignment exists for the system such that only one state

variable changes during any state transition, then the DM

system table can be realized using clock-triggered flipflops

and logic gates.

Proof: For the sake of simplicity we will consider realization

using D-flipflops,-th e z^^fli.pflop having "level" input D . , clock

input'C and output g i , 1Ci	 Also, it_will be assumed that these

flipflops respond to.positive transitions in . their clocks. As

indicated in proof of Theorem-4.1, differential expression dC ,
i

1Gy{m:can be written corresponding to each clock function C .
i

By hypotehsis and Lemma 4.2 these differential expressions•

are integrable (at least in the compatible integrability sense),

and hence all the clock functions can be realized.

By Lemma 4.4 and the hypothesis, the next-state in the DM

system table is uniquely specified (if specified) in terms of

any input (at the end of any transition) and any preLent
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state. Hence the next--state variable functions D.'s can be
z

realized using logic gates.

By Lemma 4.3 and the hypothesis, the output in the DM

table is uniquely specified (if specified) in terms of any

input and any state_ Hence the output functions can be

realized using logic gates.

It may be noted that the clock functions may include

clock transitions which are not specified in the corresponding

differential expressions. However these "undesired" transitions,

even if positive, will cause no problem, since the next state

that the system must enter into due to any one of these

transitions is either uniquely specified or not specified at all.

The only thing now we have to consider is the effect of

change in a state variable on the clock functions. If such a

change causes a positive transition in one or more of the

clock functions, there may be undesired state transition(s)

causing malfunction. We will now show that no such malfunction

can occur. Consider a transition from state S to state Sa	 b,

Sa 3^ Sb , due to a change in input from I 	 I i . Assume S . and

S  are yj--adjacent.

When the input changes from I llto I i while the DM

system is in state S a , the system will go to state S  and

the value of yj will change. Suppose there exists C p , for

some p, 1-:-1p:::^n such that when the input is I s and yj changes

as indicated above, the change in Cp causes a positive

transition in Cp . 
This is possible only if

(T4.4.1)	 Cp^Mb (Y)	 M i (x) .



i

t 	

3

g	

"

S

}

}

However by hypothesis we have	 !
5
1

(L4.4.2)	 Sb = g = {S a , Iil r l z ) with
i
i

(L4.4.2A)	 Sa	 Sb	 so that

these relations with Lemma 4.5 yield

S
(T4.4.3)	 g'(Sb, I k , Xz)	 obr

undefined

for V,k .

In equation (T4.4.3) since there is no change in state Sb,

by Theorem 4.1 we have no term of the form m b (g Oml (x - xk ) in

Cq ,- g and 	 This implies that

(T4.4.4)	 C^7mb()	 m (x) for 	 I.Lgm.

Relations (T4.4.1) and (T4.4.4) contradict each other.

Hence our assumption that a change in state variable could

cause a further change in the state of itself or any other

flipflop is incorrect. Hence the system realization is

ripple-free.

Hence the DM system table can be realized using clock-

_	 triggered flipflops and logic gates.

O.E.D.



Theorem 4.5: Any finite--state asynchronous sequential

System can be realized using clock-triggered flipflops and

logic gates_

Proof: Any finite-state asynchronous sequential system

can be described as an FMA system [10,12,13]. Also the FMA

system table could be augmented so that the augmented table

admits of a single-state-variable--change assignment [10,12,13].

This table can, then, be transformed to a DM system with the

same number of states by Definition 2.2, which can be realized

using clock-triggered flipflops and logic gates by Theorem

4.4.

Hence every finite-state asynchronous sequential system

can be realized using clock--triggered flipflops and logic

gates.

Q.E.D.

Theorem 4.6: The complexity of a network realization of

a finite-state asynchronous sequential system, consisting

of clock-triggered flipflops and logic gates obtained as shown

in Theorem 4.4 method is comuarable to that of a network

realization of the same system, consisting of s-R flipflops

(without clock inputs) and logic gates obtained by

conventional method for synthesis of an FM.A system.

27,

i
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Proof: The method in Theorem 4.4 requires the same

number of state variables and hence flipflops for a given

finite-state asynchronous sequential system as the conven-

tional method does for the same system. Hence (in the worst

case) realizations obtained by the-two distinct approaches

have	 comparable complexity.

Q.E.D.

5. SYNTHESIS PROCEDURE

Realizability of a finite--state asynchronous sequential

system using clock-triggered flipflops and logic gates has

been established in Theorem 4.5. In this section we will

outline a procedure for synthesizing a finite-state asynchronous

sequential system using clock--triggered flipflops and logic

gates. We will assume that an FMA model table for the given

system is already obtained and that the table is already

augmented, if necessary, so that it admits of a single -

variable-change state assignment.

As shown in Example 3.1, even if the FICA system table

is reduced, the DMS table derived from it by transformation

equations in Definition 2.2 may be further reducible. If we

do reduce it further, if possible, then realizabi.lity of the

reduced DMS table is not guaranteed, since the reduced DMS

As
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table system may fail to satisfy	 one or more of the

following conditions necessary for its realizability:

(1) level-wise output-unambigiaity

(2) Level--wise next-state-unambiguity

(3) the table admitting of a single-variable-change state

assignment-

If the three conditions are satisfied we would

have to look for a ripple--free (Definition 4.3) realization

which may or may not exist. quite often even if the possibility of

ripples exists, the conditions under which they could occur

may be don't care conditions thus making the sytem virtually

ripple-free.

If DMS table is further reducible after transformation,

the number of flipflops required is less than that if the

system were realized directly iron the FM.A system table

using conventional table and hence the complexity of the

realization in the former case would be less than that in the

latter case:.

In the worst .ase if the reduced DMS table is not

realizable, we can go back to the unreduced DMS table obtained

from the F1AS table, which is guaranteed to be realizable with

complexity comparable to that of a realization obtained by

conventional method.



The next Theorem describes the conditions under which

ripples can occur in the realization of a DMS table the.t in

obtained by reducing the DMS table Obtained from an FMA system.

Theorem 5.1: Consider a DMS table that is obtained by reducing

the DMS table obtained from an FMA system. A ripple may occur

in the k^;h flipflop, l< k<,m, if and only if

(T5.1.1)	 C 	 a Ck To

Z yj I	 yjl

for some y3 , say y j1 , 1[j1<,M, it Tk,

where y j is the state variable associated with flipflop j-

Proof: Assume , ck	 'j2 (X)	 j3(y - yjl ) .

^ yJ ^-

Then if the system could get into	 (total) state such that

j2 (x)	 i 3 ( 9 - yjl) - 1 and in such a state if y j 1 changes

from 0 to 1, then the clock will go through a positive

transition and change the state of the flipflop , thus

causing a ripple to occur. if ^ ̂ kl 1 0, we could show in a
CZ 9.il

similar way that a ripple may occur.

On the other hand, if

(T5.1.2)	 C 	 3 Ck

2 yi1 ^a yj 1"- Y

C k is insensitive to changes in y Jl , 1{]1^ m , and no ripples
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could occur in flipf lop k.

Q.E.D.

Procedure for synthesis of an asynchronous sequential

system will, now, be described in Procedure 5.1.

5.1 PROCEDURE

(1)Transform the given FMAS table to DMS table using

Definition 2.2.

(2)Employ conventional techniques of reducing an in-

completely specified sequential s., stein table [ 1.0,12,13 ] and

reduce the DMS table obtained in step (1), if it is reducible.

If the table did get reduced, go to step (3). If not, go to

step (12).

(3)Determine if the reduced table is level--wise next-state

unambiguous and output--unambiguous. If it is not so, go to

step (4) . If it is so, go to step (5) .

(4)obtain another reduced table, if it exists, of the DMS

table obtained in step (1), that has not been tried yet.

If no such table exists, go to step (12). if it does exist,

go to step (3).

(5) Find a state assignment for the reduced DMS table being

examined such that exactly one state variable changes during

any state transition and go to step (6). If no such assignment

exists, go to step (4).

(6) Employ Theorem 4.2 to determine if the differential

expressions for the inputs to the clock pins of the flipflops

are integrable. If the necessary and sufficient conditions for
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integrability are not satisfied, go to step (12). If they

are satisfied^go to (next) step (7).

(7)Consider every (next--state) entry in every row that

is different than the (present) state that it represents.

if the (presen ce) state and the next state are y  adjacent,

then as shown in Theorem 4.1 a differential term is added

to dCk , the differential expression for clock input to

flipflop k, L,4k-<_ m. This is repeated for every next--state

entry inthe reduced DMS table that is adjacent to the state

corresponding to the rocs in which it lies. When all the

differential expressions, dCk 's are obtained go to step (717Q.

(7A) Find a set of compatible integrals of differential

expressions dC k , 1,k<m.

(8) Compute OC and DCk , for Vi, iTk
a yi

1G.iCn and.^'k, 1Sk :

(9) If there exists at least one I , say 11, one y7 , say ya J_

and one k , say k 1 such that

(P5.1.1)	 f _ aCkl IĈk^I _ T 0	 r^^.

and not all of the differential terms on the left side of

the relation (P5.1.1) are don't-care transitions, then go.

to the next step. Otherwise go to step (11).

(10) Find another distinct set of compatible integrals of

differential expressions obtained in step (6, that has not

been tried yet and go step (S).. If no such set exists go to

step ( 4 ) .
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(11) Minimize the set of compatible integrals of differential

expressions dCk , 1!!^-k<Cm and obtain a combinational network

for each compatible integral in the set. From the DMS table,

find minimal Boolean expressions for the J-K- or S-R- or

D-inputs (depending upon the type of flipflops used) for each

flipflop and realize them using logic gates. Similarly

realize output functions in terms of state variables and

input variables that determine them. This completes the

synthesis procedure.

(12)Take the (unreduced) DMS table in step (1) and obtain

differential expression for clock input to flipflop k,

1=k.^gm as indicated in Theorem 4.1.

(13)Find a set of compatible integrals of differential

expressions dCk , 1<_ kSm. Go to step (11).



Design of asynchronous sequen-tial systems using clocked

flipflops has been known for a long time. However, such

design using simpler circuits has been essentially limited

to those cases where the logic designer possesses sufficient

experience and inspiration to intuitively obtain such an

implementation. Smith and Roth [6,71 presented a formal

approach to realize asynchronous sequential system using

"general model of edge--sensitive flipflop" [6,71. The formal

synthesis procedure proposed heioo is applicable to synthesis

of such systems using any commercially available clock-

'	 triggered flipflops.

We have shown that any asynchronous sequential system

could be realized using the proposed approach. In many cases

this approach i.eads to designs which are less complex, less

costly, more reliable and smaller in size than those obtained

using conventional design techniques 110,12,131. in the worst

case the complexity of the design obtained by the-proposed

approach are comparable to that obtained by conventional

techniques.
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