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DEVELOPMENT OF BOOLEAN CALCULUS
AND
ITS APPLICATIONS

MOIEZ A, TAPIA

1. INTRODUCTION

The research reported here aims at developing Boolean
calculus and finding its applications in digital design, fault
location and detection. Most of the results obtained since the
last Semi-Annual report (#2) are described in the papers in
Appendices I & II. Results obtained in the area of noncombinational

Boolean calculus are given in Section 4 of this report.

2. BOOLEAN CALCULUS

The mathematical system of Boolean Calculus was formally
defined, described and submitted in the form of a paper entitled
"Boolean Calculus for Digital Systems" given in Appendix I. The
new results are decomposition of a Boolean function with respect

.; a new interpretive definition of

to one of its arguments, Xy

Boolean differential; the exact number of compatible integrals

of a Boolean differential, if-it-is compatibly integrable; etc.



3. SYNTHESIS OF SEQUENTIAL

SYSTEM USING BOOLEAN CALCULUS

The results obtained in the last few months in the area
of synthesis of asynchronous sequential systems using edge-
sensitive flipflops were put together "filling the gaps" and
written in the form of a paper entitled "Synthesis of
asynchronous Sequential Systems Using Edge~Sensitive Flipflops".
The latter is given in Appendix II and will be submitted
shortly to IEEE Computer Transactions. Of most significance
is the synthesis procedure outlined in it, which is a consider-
able improvement and refinement over the procedure given in
Semi-Annual Report #l. Of course, this is a consequence of
better understanding of the properties of DM table that we have

achieved.

4 . NONCOMBINATIONAL BOOLEAN CALCULUS

In Boolean calculus studied so far it was assumed that
a function being studied is the output of a combinational
system whose inputs are the arguments of the function. Also,
while integrability of a differential expression was studied,
it was tacitly assumed that an integral, if it exists would

be realized with a combinational system.
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An attempt was made to generalize the Beolean calculus that

was developed with the limitations shown above; Such calculus,
to‘be referred to, henceforth, as noncombinational Bovlean
calculus, will help us describe the output, after an Input
change, of a noncombinational system in terms of changes in

the inputs fo the system. Also, if the output, after an input
change, is specified in terms of changes in inputs, realizability
of such a specification using a noncombinational system will be
studied. Some results obtained in this direction will be described

in what follows. It will be assumed that only one variable can

change at a time.

Definition 3.1: Zﬁx., 1€ ign, denotes a change in x, from
z -y sy 1

0 to 1.

1l when X, changes from 0 to 1
(D3.1.1) Ax, =

0 otherwise

fafxi, 1€ign, denotes a change in x, from 1 to 0.

¥



l, when x: changes from 1 to 0
(D3.1.2) f;?xi =

0, otherwise

Definition 3.2: The terms dexi, Eydxi, x;GQi and

§g$7xi will be defined as follows:

(D3.2.1) x Dx, =Ax,
(D3.2.2) % Ax, = 0
(D3.2.3) x.Vx, =0
(D3.2.4) ¥, Ve, Vi,

Consider a D-flipflop shown below:

x3____"___%>'D _______;>C2

Since the relaticonship between Q and Xir Xg and x, is not

3
combinational, we cannot express Q in terms of a Boolean
function of wvariables X1 Xy and Xqe However we could express

the value of Q immediately following any transition of the clock.
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5.
Observe that

(3.1.1) c

1%z
so that
(3.1.2) dc

xldxz + xzdxl .
Since only the positive transitions of clock are of interest,

we may describe the positive transitions of clock in terms

of changes in Xq and X
(3.1.3) Ac = xlez + X2Axl

Let Q(T+) denote the value of Q immediately following any

transition of clock. Then by definition

(3.1.4) Q(T+) = b .Ac

oxr
(3.1.5) Q(r+) = px,Ax; + Dxlﬁlxz
If we let
(3.1.6) D = X4 then

(3.1.7) Q(T+) = x2x3dlxl + xlx3£3x2

Eguation (3.1.7) points out that Q is 1 after the following

transitions:

(1) Xy = Xq 1 and xq changes from 0 to 1.
(2) Xy = ¥3 = 1 and X, changes from 0 to 1.
Observe that if Xy = 0 and Xy = 1l while Xq changes from 0 to 1,
then a transition 40€$ occur making Q to remain at or go to 0.
This is not to be seen from equation (3.1.7) if the function D

(z,e, %, in this case) is not kept separat= from the transition

terms. Hence a more desirable form for Q(T+) than that shown in



equation (3.1.7) would be

(3.1.8) o(+) = Delx,Ax; + x;dx,1.

Definition 3.3: The function Q(T+) as shown in equation

(D3.3.1) below will be called next-value function.

n
(D3.3.1) Q(T+) = D.[%' (diij. + ﬂi‘?xig where D is a
1=1 -

function of x and y.

Obviously the function D outside the square bracket
refers to the value that Q would assume if and when one of
the transition terms inside the square brackets assumes

value of 1.

Addressing ourselves to the reverse problem of synthesizing
a network that would realize a next-value function Q(T+) of

the form

1
(3.1.9) Q(T+) = D.fél(a{idxi + Bi_in)j,
where K, and B, are assumed to be independent of x4, for all i,
without loss of generality (in view of Definition 3.2), all
that we need to do is to find the exact integral, if it exists,

of the differential expression

(3.1.10) dg = ;Z;l (O(idxi +Bidxi).

Of course, 1f the differential expression is not exactly
integrable hut compatibly integrable and if

cldg is a compatible integral of the differential

expression, then



a realization of the form

D
Lla —ic

A4

will provide not only the transitions that are specified in

equation (3.1.9) but, alsc, some additional transitions.

Theorem 3.l: If the next-value function of a system is given
by

) 8
(T3.1.1) Q(T+) = D. iZ=l @, Ax,+0,Vx )

where
(T3.1.2) D =Dy « X9 X 9smcaeX, s l&kan
(T3.1.3) Fx) = ‘f (io{idx;ﬁidxi) and
E 1i=1
(T3.1.4) F(X) = %, 0+% p0meee X, FH),

then Q, (T+) described as

n
(T3.1.5) Ql(T+) = Dl . [é‘;lb{idxi+ﬁi§7xii}
realizes the same next-value function as Q(T+) in equation

(73.1.1) does.

Proof: Suppose due to a transition described by
& mp(x - %) O(T4) =1 if y=§, This implies that

D = 1 when x =bP&X =So
Hence when y = Sé and x = ,"P

1

l=D=0D, . X

1" FgameeFig
so that D= 1l for x =BP& ¥ =So
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so that Q,(T+) = 1. On the other hand if Q;{T+) =1

due to a transition m (x - x ) when y = S;, then D; = 1
and F (x) = 1 for x = b and equation (T3.1.6) implies that
Fiz) = 1=F(x) . X1 X, When x = b

which implies that (xil.m-Q.x. ) = 1 when x

ik
Hence when X =bl@:& ¥ =854, D=0Dy. (xil"""'xik)
L. (4
=1

b L]
u

Hence Q{T+) and Ql(T+) have identical values immediately after

any transition.

Q.E.D.

Theorem 3.2: Theorem 3.1 is valid if equations (T3.1.2)s (73.1.4)

are replaced by equations (T3.2.2) and (T3.2.4) respectively as
given below:

(73.2.2) D = Dl - Kyq oo Xipemse. X
(T73,2.4) F(x) = xil'xiz""'xikF(ﬁ)'

The next-value functions for different types of flipflops
{other than D-type) are currently under study. The results

will be reported when the study is completed.
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5. CONCLUSION

Procedure for synthesis of an asynchronous sequential
system using clock-triggered £lipflops and Boolean calculus

has been revised to reflect the newly obtained results.

New results in the area of Boolean calculus are reported

in Appendix I.

The concept of noncombinational Boolean calculus has been
introduced. The next-value functions for flipflops are defined
in terms of changes in the inputs. The reverse problem of

synthesis is also considered.

Establisment of conditions for exact integrability,
composition of differential functions, multi-variable-change
calculus, methods of augmenting non-realizable DM tables so
as to make them realizable, application to fault location and
detection, etc. are among the many problems that remain to be

solved.

g
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APPENDIX T

BooLean CALcuLus FOR DIGITAL SYSTEMS

ABSTRACT

A Boolean calculus is proposed for analysis and synthesis
of d .. ital systems, which describes how a Boolean function changes
when one of its arguments changes. When the changes in a desired
function are specified in terms of changes in its arguments, then
ways of "integrating" (i.e. :.allzing) such a function, if it
exists, are developed. Properties of various newly defined
differential and integral operators are studied. Boolee . calculus
has applications in design of logic circuits and in fault analysis.
In the former case, it leads to circuits which utilize less

flipflops and logic gates than conventional methods do.

INDEX TERMS: Boolean algebra, Boolean calculus, Boolean transitions,
direct and partial derivatives, Boolean differential decompositisn of
function, Boolean set, base of a Boolean function, function based on a
éet, differential expression, Boolean integration, compatible integral,
exact integral, integration by parts, integral of zeroth order,

integral of first order, edge-sensitive flipflops, fault analysis.



I, INTRODUCTION '

The traditional methods of the analysis and the design of
logic circuits are based on Boolean algebra, in which the
functional relationships between the output values (or levels) and
input values are of direct interest rather than changes in the
cutput function in terms of changes in the input arguments. While
designing an asynchronous sequential circuit, if Boolean calculus
is employed and edge sansitive flipflops are used, thenin many cases
it leads to a simpler circuit utilizing fewer components than a
circuit arrived at by using conventional techniques [5, 34, 35]-
Throughout the paper, unless stated otherwise, a Boolean
function F(Xl, Xz' —_ Xn) of n Boolean variables xl, xz,—~-,xn

will be assumed. Also, it will be assumed that only one variable

X; 1<2i<n, can change at a time.

9. REVIEW OF THE LITERATURE

This work is not the first to recognize the feasibility and
desirability of establishing a mathematical system for Boolean
functions analogous to ordinary calculus [1 - 5]. Based on
earlier work by Reed [6], Akers [7] in 1959 obtained the
mathematical properties of the Boolean difference. In 1962
Calingaert [8] made limited use of the Boolean difference.
Hartman [9] employing the Boolean difference, developad a Booi.an
differential calculus, introducing in it a number of new concepts.
Amar and Condulmari [10], and Sellers, Hsiao, and Bearnson [11]
applied the Boolean difference to the problem of fault diagnosis.

In recent years considerable work [12-21] has been done using the
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Boolean difference for fault detection and diagnosis; moreover,
Thayse, Davio, Deschamps, and Bioul [22-27] have shown that the
Boolean difference is applicable to a number of areas other than
fault diagnosis.

Talantsev {28] in Russia introduced special logical operators.
One of Talantsev's operators, the d operator, has an important
advantage over the Boolean differen ::. It not only gives the
conditions under which a function will change due to changes in its
arguments, but alsc describes the manner in which the function
itself will change. BHis algoritha for integration, for a function
of n wvariables, involves soiving nx2” simultaneous Boolean
equations. Obviously this is a tedious process. Lazarev and Piil
have used Talantsev's operator for sequential circuit synthesis
[{29-311, and in one short paper [32] they present a method of
integration., Even though theré are situations where their method
of integration 1s easier than Talantsev's, in general, it too, is
guite awkward. 1In the area of differentiation there is only modest
overlap between the work reported here and that of Brown and Young
[33}. Furthermore, the type of integration considered by Brown and
Young requires considerably more information about the function
than just knowing its differential. The Boolean integration
developed here can be used to determine the function from its
differential alone, and the ease with which this can be done makes

Boolean integration applicable to practical design problems.

3,  BoOLEAN DIFFERENTIATION

In order to study the effect of change in a wvariable



Xi’ on a function F(x) = F(xl, Eor === xn) we will decompose it

with respect to X5 1<i<n as sum of 3 functions as
F=PX + QX +R, (3.01)
such that Pi’ Qi and Ri are independent of Xi and

PiQi = PiRi = QiRi =0 (3.02)

Definition 3.1: A function F that is decomposed as stated above,

is said to be the decomposition of F with respect to Xi’ ;5@§n.

Definition 3.2: Two minterms ma(g) and mb(i), a b are said

to be B = adjacent to each other if every wvariable xj, j#i is
in the same (true or complemented) form in both the minterms.

In order to decompose F(x) with respect to xi, we expand
F(x) as canonical sum of minterms and construct R, by taking sum
of all possible pairs of minterms in ¥F(x) which are Xi- adjacent
to each other. Then delete these minterms from F(x) so that it
now becomes (F(x) . ﬁi). The sum of zll the minterms in
F(x) . ﬁi that have X, in them in true form constitutes Pixi
and the sum of remaining minterms gives Qiii' This construction

procedure brings out an interesting and useful property of the

decompogition stated in Theorem 3.1.

Theorem 3.1l: The decomposition of a function Fi(x) with respect to

Xi, l<i<n, is unique.

Definition 3.3: The set of 2" binary vectors or points

(Xl, X ——— Xn) where Xi =0 orl ;iiin such that Xi and

2.’

Xj may or may not be equal if i#j, will be called Boclean set of

variables Xl' Xz, — Xn’ denoted by B(n). The Boolean set of

=8
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(n~1l) variables Rys Rogr ===p Xy 90 Xyoq0 === X denoted by

E/Xi, will be denoted by B{(n/i).

Definition 3.4: The set SP, of points (bl, bor === b _5.

bi+l' —— bn) denoted by ;yﬂbi where bj's are Boolean constants

is the set of all possible points such that for every point in this
set the value of Boolean function Pi in eguation (3.0.1)} is 1.

Sets SQi and SRi are defined similarly.

Definition 3.5: In relation to decomposition of F(x) with respect

to X, a function Ti’ 1<i<n, will be defined as a Boolean

function thusly:

T, = P, T Q; + R, (D3.5.1)°

Ti is independent of Xs since Pi, Qi and Ri ara independent of

% - STi is defined as a set of points corresponding to function

T, in a way similar to Definition 3.4 for SPi.

It can be seen that

- s - S . = D305n2
- - . s - 0 D3-5-3
- )lf i D3-5.4

for all i, 1<i<n,

Definition 3.6: Given a set S,(#C_:S < B (n), a function F(x)

is said to be based on the set S if

F (x) =1 (D3.6.1)
-

if and only if DbjE€S. (D3.6.2)

On the other hand, if a function F(x) 1s given, then set

S = {b| b¢ B(n) and F(b) = 1} (D3.6.3)



is called the base of the function F(x).

Observe that by Definition 3.6 the functions Pi, Qi' Ri and
Ti are based on sets SPi, SQi SRi and STi regpectively. Also
the sets SPi, SQi’ SRi and STi are bases for the functions

Pi' Qi' Ri and T; respectively.

Theorem 3.2: Given a Boolean function F(x) and any i, 1<iz<n,

the Boolean set B(n/i) c¢an be uniguely partitioned into sets

SPi' S8Q., SR. and 8T, such that
i i i . 9,
X with -/4<ﬁ

(1) for any point K\ = E/biESPi, F(x) = Xy (T3.2.1)

so that on the set SPi’ F takes on the same value as X; 0
X with X/%i
(2) for any pointfi'= E/big;SQi, F(x) = Ei (T3.2.2)

so that on SQi' F +takes on the value which is complement of the

value of xi;

X With X/x;

Sa—

{3) for any pointA E/bié SR,, F is a constant,

in particular F = 1; (T3.2.3)
X with X/
(4) for any poiniz\_ = Q/bie §T;, F is a constant,
in particular F = 0. {(r3.2.4)

Proof: The proof follows from Theorem 23,l.

Definition 3.7: The direct {(or inverse) partial derivative of

. . aF oF .
F(x) with respect to Xso 1%i<n, denoted by HEI (or ?Ei) is

defined as a function of (n-1) wvariables Xyr Xgr ===r Xi g4 xiﬁl’“

X ~ such that whenever for a point x = b/b, the value of

)
I (or sag)

e = is 1, then at that point F changes its value the
i i

-
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same (or opposite) way as X does. Observe that 5xi (ox 5?} )

is independent of X, 1<i<n.

Theorem 3.3: The direct and inverse partial derivatives of a function

F(x) with respect to X 1<i<n are given by the following

equations:

3

EEE =P, = (F(§)| ) . (F(§)I ) (T3.3.1)
i X, = 1 X;= 0

= = (F(x) | ) - @ ) (T3.3.2)
i Xy = 0 Xy = 1

Also, §§§ . 3§§ =0 (T3.3.3)

1 h

Proof: From Definition 3.5 and Theorems 3.1 and 3.2, we have

F _

'.a—:z-;-— Pi (713.3.4)
L

BEF = Q, (T3.3.5)
i l

From eguation (3.0.1) we have

lei=l = P, + Ry {T3.3.6)

and lei =9 = Qi + Ri (T3.3.7)
so that

(lei=l) ' T?T;;:ET

= (Pi + Ri) . (Qi + Ri) (T73.3.8)

9



In view of the fact that Pi, Qi’ Ri and Ti

on sets

]

sp, Uso,1) sr, Ust,

Hence from egquations

(F|

v}
xiul

(Pi + Ri)

il

Pi + Ri Ti

Similarly (lei=0)

B(n/i), we have

T, + P,
i i

(r'3.3.6) and T3.3.7)

(F | xir_—[})

{
‘Pi + Ti)

© Fg=) T T

AlSO r 'é'%z . a——a-g"
i i
= Pl * Ql

0 (from e

gquation (3.0.2)

‘8'

are functions based

SPi' SQi SRi and STi which are mutually disjoint and

(T73.3.9)

(T3.3.10)

(T 3.3.11)

(T3.3.12)



Example 3.1

Consider the function

F = S ) + Xy X + X, Xgy (E3.1L.1) .

Expanding F as sum of minterms
+ x

F=X1XX

2% 3 1¥o%3 -+ XX Xy + X ¥o%q + XqXyXq (E3.1.2)

The decomposition of F with respect to x; is

F o= (O)Xl + (x2x3) Xq + (x2x3 o+ x2x3)

= (0)x, + (iéxB) El + (x,) (E3.1.3)
. 9 -
. §§§ = 0 (E3.1.4)
IF _ —
and = T x2x3 (E3.1.5)
1

The decomposition of F with respect to X is

F = lex3 + RyX3 + xlx3) x2+ (0)K2 + (xlx3)
= (xl + x3) Xy + (O)x2 + (xlx3) (E3.1.6)
. oF —
= . ‘3’};5':}{1 -+ X3 (E3-1-7)
and  3n o g (E3.1.8)
0%,
2
The decomposition of F with respect to Xy is
F = (xlxz) Xq + (0)x3 + (xlx2 + xlxz)
_ - - - ¢
= (xlxz) X -+ (0)x3 + \xz) (E3.1.9)

-3;— —1 5{-1‘}_{2 (EB-lnlO)
3
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and @F =0 (E3.1.11)
CE
Lemma 3.1: The decomposition of ¥ with respect to X;, 1<i<a,

is given by

F = Q;, x; + P, §i + T, (L3.1.1)
=0 x; +P; X, +P, O R, (L3.1.2)
Prooi: Frea Definition 3.1, we have
F = Pixi + Qi Ei + Ri (L.3.1.3)
so that
F = (Byx + Q Ei + R,)

k3

I

(P, + Ry) x,; + (Q; + R;) X + Py +0; +Ry

(Ti + Qi) X, + (Ti + Pi) X + 'J:'i

Q@st step follows from equations (D3.5.1) - (D3.5.4$.

li

Q; X, + P, R, + Ty (x5 + E;) 4T,

=Q; x, + P, %. + P. 0. R, (L.3.1.4)

Q.E.D.

Lemma 3.1 and Theorem 3.4 lead to the following theorem:
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Theorem 3.4: PFor a function F(x),

———S — —i Q. = e (T3-401)
Bxi i Bxi
oF _ 9F

We will now establish some properties of the derivatives of a

Boolean function which will be needed later.

Theorem 3.5: Let G be a Boolean function that is independent of

X.y for some i, 1<i<n. Then

3

1 =0 (T3.5.1)
3

(2) FiG" =0 (73.5.2)
kR

(3) g%— (CGF) = G . g-fg- (T3.5.3)
iR 3.

(4) go- (GF) = G . g (T3.5.4)
1 S
5 = aF

(5) 53—'{3—_ (G+F) = G . -a—}-{—i- (T3.5.5)

(6) 5?}&— (G+F) = G . 5%—52 (T3.5.6)
i i

Proof: Since G is not a function of x., the decomposition of

G with respect to X, will be given by

G

|t

- 2 4
PiXi + Qixi + Ri

|

(0%, + (OF; + RS (T3.5.7)

Hence by Theorem 3.4,
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3G _ o | '
= = Pi = 0 (T3.5.1)
i
3G _ A
and = QL = 0 (r3.5.2)
i

Next, let the decowmposition of ¥ with respect to Xy be given by

F = Pixi + QiXi + Ri (T3.5.8)

Since G is independent of X, the decomposition of (GF) with

respect to Xi is
GPF = (GPi) X, + (GQi) X+ (GRi] (T3.5.9)

Hence by Theorem 3.4,

3 (GF') oF

5 = GP, =G T (T3.5.3)
3. i
and 3(GF) _ - oF
-Ta——sc_; = G Qi =G , E.;— (T3.5.4)

now Eg- (G+F)
i

3 (GFF
LS

X,
1

(by de Morgan's law)

= Eé2§§ {(by Theorem 2.4)

- & . AF
.'5=Xi

(éince ¢ is independent of X relation {(T3.5.4) can be useé)

= G. Ei_f C by kel tiom T3v4--a) (T3.5.5)

Similarly we can prove that
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121!

(T3.5.6)

Q2

M
e

%)
'_I

0.E.D.

4, BooLEAN DIFFERENTIAL

Analogous to calculus of real variables in which we express an

incremental change in a function in terms of incremental changes in

its arguments, we will define Boolean differential of a function.

Definition 4.1: JdF will denote a change in the valvue of F (from

"Oo" to "1" or "i" to YOu). dxi {or dii) is defined likewise.
When we write dF=dxi, then we mean that a "positive (or "negative")
change in x; causes a "positive" (or "negative") change in F.
In order to relate A4r, dxi and the function ¥ we will need to
define dF and dxi as among entities in Boolean algebraic system
i.e. as Boolean variables. When "dF" (or "dxi" or "dﬁi") is
treated as such, dF has Boolean values as defined below:
1, implies change in value of F
ar = (D.4.1.1)

0, implies no change occurring in
value of F .

Consider dF, the change in F, in terms of Xq0 X and dx3, the

2
change in X5 as given below:

daF = X{Xg dx3 (p4.1.2)
When X =X, = 1, (D4.1.3)
then dP = (le1) de = dx (D4.1.4)

3

Equation (D4.l1.4) by Definition 4,1 can be interpreted to mean that

a change in F 1is the same as the change in Xy when XX, = 1.

E
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On the other hand, when

KRy = 0 (b4.1.5)

then dF = O.dx3

=0 (D4.1.6)

meaning thereby that there is no change in F when X = 0 and

1%2
Xg changes.

Definition 4.%: The Boolean differential of F with respect to ¥

1<i<n, denoted by diF is defined as

_ aF BF  .—
diF_‘a—X—i dxl + B——}E: dXi (D4.2.1)

Definition 4.3: The Boolean differential of F with respect to all

variables X;sX,, ===, X, or simply Boolean differential of ¥,

denoted by d4dF, is defined as

n

ar =.5. a.F = L. ( LE ax. + 2F &z (D4.3.1)
T i=l i i=1 axi i BE} i b
Example 4.1
Given F = Xy + X, (F4.1.1)
= T ¥ )]
X ¥, + xlx2 + xlxzj (B4.1.2)
find the Boolean differential of F.
Observe that ¥ can be written as
= Ple + Qle + Rl (E4.1.3)
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so that
8F  _
Frni Xz (B4.L1.4)
1
and —EE
aﬁi = 0 (B4.1.5)
Rewriting F as
F = (D)x2 + (xl)xz + X, (E4.1.6)
one sees that
. _OF _
P2 = 5§; =0 (B4.1.7)
- OF _ =
and Q2 3;; Xy (E4.1.8)
Hence
dr = xzdxl + {O)dxl + (B)dx2 + xldxz
= xzdxl -+ xldxz (E4.1.9)

In view of the fact that we are allowing only one variable to change

at a time, both dx, and dié cannot be "1" at the same time. It

1
is clear from equation (E4.1.9) that when

L]

1, dF = dx (E4.1.10)

)

and dF = dx (E4.1.11)

i
=
.

when El

Definition 4.4: A differentisl expression, denoted by dg, is a

Boolean expression of the form

n
= L 5
dzg o {mi dxi + Bi dxi) (DA.4.1)
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where in general ©¢; and B, are functions of the (n-1) variables

Xy eXgr ===y Ki_q+ Xgoqr —m=p X and @, and Bi are independent of

Xy for all i, 1<i<n. Observe that since by Definition 3.5,

§%E and E%P are independent of Xi0 l<i¢n, Boolean different-
i i -

ial of a function F(x) as given in equation (DP4.3.l) is a
differential expression; however the converse is not true. For a
differential expression to be a differential, there must exist a
function such that its differential is the same as the given
differential expression. For the expression dr in equation

{(D4.4.1) to be a differential, there must exist a function z(x)

such that
= 28k
0y = 50 (D&.4.2)
1
and Bi = 3%5 (D4.4.3)
i

for all i, ;iiin.
The following definition pertaining to relationship between two
differential expressions will be needed in the latter part of the

paper.

Definition 4.5: Given two differential expressions dcl and d;z

where
(o Oy + Byydx,) (D4.5.1)

n -

(a) d¢Z and d4¢tg are said to be equal, that is

2

dgy, = dz, (D4.5.3)
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t

if oy =0, (D4.5.4)
and- Sli = BZi {p4.5.5)
for all i, 1<i<n;
(b) 4%, is said to include or cover dz,, denoted by
ds, = éz, (D4.5.6)
if eu,=0a,, ‘ (D4.5.7)
and By 2 Byt (D4.5.8)

for all i, 1<i<n;

(g)dg r the Boolean product of dcl and dgzL denoted by

dEl . dﬁav is given by di = dél . d;z

n
{c dxi +BliBZidXi)' {D4.5.9)

= ;& (g5 o5y

and

(d) df, the Boolean sum of dzl and dEgL denoted by

dc. + 6;2, is given by

1
dg = dcl + dCz

kel
=

. + azi) dxi + (Bli +321) ax. . (D4.5.10)

(ali i

1

5. BoOLEAN INTEGRATION

In the preceding sections we saw that given a Boolean function

F(x) and a variable Xy l1<i<n we can identify the points in



.18.

B(n/i) where (a) F changes the same way as Zy

or (b} F changes the way opposite to the way

Xy changes,

or {¢) F is insensitive to changes in X, and F is
constant at 1,

or {d) F 4is constant at 0 and insensitive to
changes in ;.

The differential expression thus describes changes in F that
may occur due to change in any one of the variables xlf Kor =1 ZEs
only one of them changing at a time. This is, indeed, useful in
analysis. In synthesis, it is of interest to address ourselves to
the gquestion: "Is it possible to find a function F such that

changes in F in terms of changes in its arguments are as prescribed?”

Mathematically, if a differential expression

dr =

nrsB

(¢ dx, + Bidii) (5.0.1)

i=1

is given, can we f£ind a functiocn, F (say) such that

oF
- e = 0. (5-002)
Bxi i
and OF = Pi (5.0.3)
ox.
X

for all i, 1<i<n?
We will need the following definition to pursuve the answers

to the guestion just raised.

Definition 5.1: F is said to be the exact integral of dr, denoted

by [ dg and dg is said to be exactly integrable if
BE
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Qs
|

*éx—_i'“—“ N {D5.1.1)
-%.5—: By © (D5.1.2)
i
for all i, 1<i<n
n ok
and dig = ‘E (aidxi + Bi dxi) (D5.1.3)
i=1l
Definition 5.2: Given a differential expression
n =
dg = iél (aidxi + Bidxi) {(b5.2.1)
if there exists a function F such that
Q.F
)a_.}.{_i.:g o (D5.2.2)
L F o B
and v % = i {(D5.2.3)

[0

for all i, 1<i<n,

then F is said to be a compatible integral of dr and is denoted

by édz; and dr is said to be compatibly integrable.

Example 5.1

Consider dig = xzdxl + xldxz (E5.1.1)
t+hen S dz = 3 + X,
B
= F (say). (E5.1.2)
since dF = xzdxl + xldx2
= 4t {E5.1.3)

which satisfies eguations (D5.1.1) and (D5.1.2), Consider next
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(E5.1.4)

(E5.1.5)

(E5.1.6)

(E5.1.7)

(E5.1.8)

(E5.1.9)

(E5.1.10)

so that. dF; = x,dx, + X dx, + x,dx, + Eid§é
Hence X, =:§% _'a 6&1 = x,
EN =§-i—i— =268 = o0
, Xq =i%§§';2.u2 = 0
and X, =1%2 2 = ¥
Therefore by Definition 5.2, a compatible integral of dg is
fc dg = F; = x;x, + Eiiz

In what follows we will obtain ways of finding all possible

compatible integrals of dg , if

accomplish this we need the following integral operators:

dg is compatibly integrable. To

Definition 5.3: The zeroth order integral of di, denoted by
fde, is defined as
n —
Jodr = I (%x, + Sixi) (D5.3.1)
i=1
n L
where ac = izl (aidxi + Bidxi) (D5.3.2)

Also, the first order integral of dL, denoted by fldﬁ,

defined as

x.)

(Q.X. + Bl i

Definition 5.4:

——

of a funcition F(x) if

(D5.3.3)

A binary point.ﬁbe B{n) is said to be a "one"



F(bo) = 1. (D5.4.1)

It is said to be a "zero" of F({x) if

oy (bc) = { (D5.4.2)
Lemma 5.1: If the differential
n an—
dg = I (Gidxi + B.dx.) {L5,1.1)

is compatibly integrable and F is a compatible integral of dg ,

1
then every ocne of Ildc' ig, also, a one of Fl'
Proof: Since Fl is a compatible integral, by Definition 5.2,
ar
L o,
i
and F) — B3 (L5.1.3)
Bxi
n oF oF;  _
also dFl = ¥ (-5-}-2-—' dxi -+ -_— dxi) (L5.1.4)
i=1 1 3xq
s0 that the ones of
BFl 3F,
= x, (or —— X.)}, 1l<i<n, are,

also, the ones of Fl.

From egquation (L5.1.2){or (L5.l.39 the ones of a;x, (or By Ei),

1<i<n, are the ones of 1 x; (or %y %) for all
Bxi 3“1

1<i<n.

X, . X. <i<
Hence the ones of (ulxl + Bl xl), 1<i<n,

21.
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i ma. gems

.

are, also, the ones of Fl. Hence the ones of fldE are the ones

of Fl.

Q.E.D.

On arguing on a similar basis, we can establish the following lemma.

Lemma 5.2: If the differential expression
n

dg = I (a.dx, + B.4AX,) (L5.2.1)
121 i™7i i

is compatibly integrable and Fl(g) is a compatible integral of dg ,

then the ones of IDdc are zeroes of Fl'

Theorem 5.1: A necessary condition for compatible integrability

of the differential expression

n
ar = iEJ.(aidXi + Bidx;) (T5.1.1) :
is that
(fodg) . (fyd8) = O (T5.1.2)
for all x & B(n).
Proof: Suppose dz is compatibly integrable so that there exists
Fl(g) such that
F, = fc dzc. (T5.1.3)

Also, suppose that there exists b, such that

———

O

(8D . (;80)1) = (T5.1.4)

P

1
nc)

which impliés that
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Il
l—l

(%dm (?5.1.5)

%

1

o’
0

and (f,88)

I~

(T5.1.6)

[E

b,

From Lemma 5.1 and equation (T5.1.6) b, is a one of Fq. (P5.1.7)

o)
From Lemma 5.2 and equation (T5.1.5) b, is a zero of Fl‘ (T5.1.8)

Statements (T5.1l.7) and (T5.1.8) contradict each other. Hence

A

there exists no EgaaB(n) that satisfies egquation (T5.1.4). Hence

equations (T5.l.2) is a necessary condition for dr +to be compatibly

integrable.
Q.E.D.
Lemma 5.3: If the differential expression
dr = E(ai dxi + Bidxi) (L5.3.1)
and (fodC) . ({ldg) = 0 (L5.3.2)
for x &B(n),
then (a) aifidg = Xy {L5.3.3)
(b) oy dr = ogX; (L5.3.4)
and {c) oy (fodC) = agXy (I.5.3.5)

Proof: From Definition 5.3 and equation (1.5.3.2) we have

o
|

-+ B.a.X.X (L503h6)

1 iy Tivy Rl T Ry

[
[ne]
K,
2
[}
5
5



*
‘o

Hence for all 4i,3j, lgi<n,

so that 0.0.X.X. = R.O.X.X.

Now

uifldc

l1<j<n
By XX, + Biujxixj + aiBj XXy + Biﬁjxixj =
1%5%1%5 T Bi0gFEy T oyBXyXy = BiBy¥;¥y = O
n —
= 0. L Og-X. + B.X.
i (I 0% * By¥y)
n —
37

n

L

n

-+

3=1
J#i

z (aiajxixj . G

a;X; T oogBiXs

o = o B e
i jxixj + i jxixj

+ cxiB 'E'E')

J 173

In equation (L5.3.8), setting i=j yields

for all

i,

1< i< n.

Hence using equations (L5.3.8) - (L5.3.10), we get

11

n
= z . X.) }=a.
aifldr; o X, + oy, (j=.l_ (ajxj + BJLJ)) o X

By interchanging i and j

Now

0 JodT = oy Xy

a, (fodc)

1l

o, (L @S _az)

o @ aifodé

j#l
in equation (L5.3.9), we get

s

i

0

24.

(L5.3.7)

{£5.3.8)

(L5.3.9)

(1.5.3.10)

(L5.3.3)

(L5.3.4)



= a; & miii (frcm equation (L5.3.49

Theorem 5.2: If the differential expression

and

for all

is a compatible integral of dg,

of x.

Proof:

By Theorem 3.5, since o, is independent of x.,

dc (0 @x; + B a%;)

r 1

It
[

i=1
@) . (fan =0

X &€B (n), then F given by

F = Ildg + ¢ (S dzc)

25.

(1L.5.3.5)

o-EoDc

(T5.2.1)

(T5.2.2)

(T5.2.3)

where ¢ is an arbitrary function

ANDing both the sides of egquation (T5.2.3) by Gy WE have

OLiF

a;fydg + yx, (f )

Il

05Xy + e (from Lemma 5.3)

Il
=

¥4 (L +¢)

It

i
o B3F _ 8 (%F)
iEi §xi

(T5.2.4)

= 3(%i¥1) (ﬁrom equation (TS.E.BD

X,
i
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- o 8%
i Bxi
= 0 {(T5.2.5)
. 2 F
LY Eg O',i. (T5.2.6)
Similaxly oF
ng ;2 By (P5.2.6)

Hence by Definition 5.2, F is a compatible integral of dt.

Q.E.D.
Theorem 5.3: A differential expression
n _ :
dg = 151 (aidxi + Bidxi) ’ (75.3.1)

is compatibly integrable if and only if

I
]

(fodl;) . (/48 (T5.3.2)

for all x €B(n).

Proof: The proof follows from Theorems 5.1 and 5.2.

A word regarding the arbitrary function y(x) in eguation
(T.5.2.2) is in order. If sets D_ and Dy, 0CD; CB(n), i=0 and 1,
are bases (Definition 3.6) of functions J’Od?; and fldg, then
every distinct ¢ would give rise to a distinct compatible integral
if V¥ is based on a subset (not necessarily proper) of D=§‘DOUD1§.
In fact if ¥ is based on a subset of D, then the factor (deC)

that is ANDed with ¥ in equation (T5.2.2) may be dropped since
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E; :Dé?gjni% = D. Hence we can medify Theorem 5.2 as shown in the

next theorem.

Theorem 5.4: If the differential expression

n
. dag =-'i§1 (@,dx; + B,dx.) (F5.4,.1)
and (fodz) . (fl dz) =0 (T5.4.2)
for all x&B(n),
then F given by
F=[dg+ 0(x) {(T5.4.3)

is a compatible integral of di, where ©(x) is based on a subset of

D, where
D =§DOU_D]S. (T5.4.4)
D, and leeing the bases of fodc and fldc, respectively. Moreover

if the number of points in D is m, then there are 2™ distinct

compatible integrals of di.

Proof: The essence of the proof is outlined in the discussion
preceding the theorem. A formal proof can be given using Tapia-
Tucker method [36,37] for obtaining complete solution for Boolean

wgquations.

Example 5.2

A clock function C(Xl'XZ’XB) is to be realized which goes
through, at least, the transitions specified in the differential

expression
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dC = (x2x3 + x2x3) dxl + (xlxa) d X

+ (xle) a X, + (xlxz)dx3 + (xlxz) dﬁéa (r5.2.1)

Find ¢, 4if it exists.

We have
o de = (§ix2§3 + §i§2x3) + XIEEEE
+ X KgKg F Xl§2§3 + XXX 4 (B5.2.2)
= K X, %q + xlEQXB + xl§2§3 TRy X Ky
and - hdc = xlx2§3 + X XX, + xlxzié + xl§2x3 + xliéxB + xlx2§3
= xlx2§3 + xlﬁéxs‘ (E5.2.3)
Obviously
(deC) . (fldC) = 0 (E5.2.4)

Hence by Theorem 5.3, a compatible integral does exist.
Also, D referred to in equation (T5.4.4) is

D =§DOUD1§

= {(0,0,l)p (Dlll‘o)f (lroro)r (lrorl))

(1,1,0), (i,1,1)}
= {0,0,0), (0,1,1)} (E5.2.5)

Hence ©(x) has 4 possible values,

Ol(g) = 0 (E5.2.6)
02 (2‘{-) = XJ_XZXB (ES.?--?)
05(X) = X %Xy - (E5.2.8)
94(5) = X XoXqy + X XX (E5.2.9)

Hence there are four solutions by Theorem 5.4.
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C; = L dC+ 8 = mEE, + xxx (E5.2.10)
c, = xlxzié + xl§2x3 + §i§é§3 (85.2.11)
cy = xlx2§3 + xl§zx3 + Eix2x3 (E5.2.12)
and
c, = xlxzié + Xl§2x3 + Eiizié + §ix2x3_ (E5.2.13)
Observe that
dcy = (x, @ x5) dx; + (x;%;) dx, + (x;%,) &%,
+ (xlﬁz) dx, + (xyx,) d§3 (E5.2.14)
= dc (E5.2.15)

Hence C, realizes those transitions which are specified in d4C
and no transitions which are not specified in dC. In fact by
Definition 5.1, C, is also the exact integral of dC in equation

(E5.2.1). Let us now examine c2.

dC2

(x2<3:x3) dxy + (xyx3) dxg + (x4%,) dx,

+ (x1x3 + xlx3) dx2 + (xlxz) dx3

= (x1x2 + 5;‘1322) dx 4 (E5.2.16)

—————

Observe that C2 realizes the transitions represented by
differential terms x2x3dxl, xlx3dx2 & xlxzde vhich are not
specified in dC in eguation (E5.2.1). However it does realize

all the transitions specified in d4cC.

¥
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As shown above, a differential expression that is exactly

integrable is, also, compatibly integrable.

condition that

(7,8 )

for all xz €B(n)

. (fld y =0

n

for dg = .Z

1=

to be compatibly integrable is also necessary for

exactly integrable,

l(aidxi + Eidxi)

Hence the necessary

dt +to be

However, unlike in the case of compatible

integrability, the condition is not sufficient as can be seen

from the example that follows:

Consider the

aAr =
We hawve

[ dr =

Obviously

fo

(fan . (440

Example 5,3

differential expression

X dx2

1

xR By Xy o+ ook, + Box,

0+ 0+ x.%X

1¥2 + 0

ulxl 3 lel + a2x2 =+ Bzxz

0 + 0 + xlxz + 0

i
o

r all X €:B(n).

(E5.3,1)

(E5.3.2)

(E5.3.3)

(E5.3.4)

And the expression is integrable -~ at least in the compatible
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sense - by Theorem 5.3.
Also, Do’ D1 and D referred to in equation (T5.4.4) are

given by

D = .};-D: oiin'l‘,g
{(1,0), (1,1)}
{(6,0), (0,1)} (E5.3.5)

1

Hence by Theorem 5.4 we have 4 compatible integrals of

dg given by Fo' Fqr Fz and F3 as given below:
Fo = fldg + GO

= xlx2 + xlxz (E5.3.7)
F2 = Jid; + E&

= XX, + X %,

= Xg (E5.3.8)
F3 = fld A 93

= XX, + X %, + X%,

= Xq + Xy {(E5.3.9)

Observe that

dFo = xzdxl + xldx2

# 4t (E5.3.10)
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dFl = xzdxl + dexl + xldxz + x dx2

#£ dg (E5.3.11)
sz = dx2

# dtr (£5.3.12)
dF, = X,dx; + xdx,

# dtg (E5.3.13)

Hence none of the compatible integrals For Fir Fy and Faq is
exact by Definition 5.1, and no more compatible integral exists
which is distinct from these four integrals by Thecorem 5.3 that
follows. Hence dg is not exactly integrable. Thus the
condition that (f,dZ) . ({,df) be 0 £for all zxeBn) is
necessary but not sufficient for dc=i§1 (uidxi + Bszi) to be
exactly integrable.

Theorem 5.5: Let D_, DolﬁfB(n), and D Dlgp(n), be Boolean

l!
sets, which are bases of functions fDdC and Ildc ; respectively,

dt being the differential expression given by

ag = _g (e,ax, + B dx,). (T5.5.1)
i=1
Let D be another Boolean set such that
D :ﬁF;IYEEET (T5.5.2)
and m = number of distinct points in D. {T5.5.3)

Also, let ei(i)‘s be functions based on distinct subsets

of D, (T5.5.4)

1<i<2™
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If F 1is a compatible integral of dg, then ¥ must belong to

the class of 2™ distinct functions defined by
Fi(x) = fldE + Gi(ﬁ) (T5.5.5)

1<i<a™

Proof: Since 4% is compatibly integrable by hypothesis, there

exist, by Theorem 5.4, 2™

distinct ingetral Fi‘s given by
equation (T5.5.5). We want to establish that these are all the
compatible integrals of df that could exist.

First observe that Fitg), lﬁiizm in equation (T5.5.5) is

based on set { DlUE. { where
. ig
E; & D (T5.5.6)

From equations (T5.5.2) and (T5.5.6), Dy and Ei are non-

intersecting so that every distinct set E, defines a distinct

set
G, = DlU By (P5.5.7)
and G, C D, (T5.5.8)
1<i<2™

Hence F,(x) is based on G,, where

p, &6, <D, | (T5.5.9)

1

all i, 1<i<n.

Now we will show that given a function ¥(x) based on a set H,

H £ B(n), which is a compatible integral of dr in equatlon
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(05.5.1), ® must satisfy the bounds

D, €E& D, (T5.5.10)

1

so that F(x) = Fi(g) for some i. By Lemmas 5.1 and 5.2 F(x)
must be based on a superset of D1 and rmust not be based on a

subset of D, so that H does satisfy eguation (15.5.10).

Q.E.D.

Preliminary results pertaining to necessary and sufficient
conditions for a differential expression to be exactly integrable
are given in a recent publication [3]. These results in detailed
analysis along with the method of finding exact integral of a
given function, if it exists, and other useful and interesting
properties of integrals of higher order (not defined in this paper)
will be published in the near future.

Given a differential expression

I

dt = izl (aidxi +Bidxi)

if (Io ac y . (fl ac) £ 0 for someé;& B{n), +then the express-—
ion cannot be integrated exactly nor compatibly. However it could
be decomposed as sum of several differential expressions, each one

of which may be integrable separately as defined below.

Definition 5.5: A differential expression is said to be

integrable by parts if df can be written as

m
at = I ay,  m>l (D5.5.1)
k=1

where dﬁk ; is compatibly integrable for all k, 1%k<m. Any
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compatible integral of dgk ; l<k<m will be called a partial
integral of dgk. A complete set of partial integrals of

differential expression is a set of functions, {Fl’ F2, _— Fm}

where for each dgk in eguation (D5.5.1), there is a function

iy in the set such that

k
arF, =2 dg, (D5.5.2)}
it will now be shown that any differential expression is

integrable by parts.

Theorem 5.6: Any differential expression

n
ac = I (aidxi + B.dx.) (T5.6.1)

is integrable by parts.

Proof: Observe that for any i, 1l<i<n,
(igidxi) - gpfgidxi)

= (@,%:) . (aiii)

= 0 {(T'5.6.2)
and (leidﬁi) . (IOBidﬁi) (T5.6.2)
= 0 (-TS(‘G{B}

so that by Theorem 5.3 differential terms e,dx; and Bidﬁi are
compatibly integrable. Hence each and every term on the right
hand side of eguation (T5.6,1) is compatibly integrable. Hence by

Definition 5.5, df is integrable by parts.
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Example 5.4

Consider the differential expression
dr = Xdel + x3dx2 4 xzde (E5.2.1)

For this expression

fp dp = §éxl tOXgE, f X Xg (E5.2.2)
and  f dr = Esii + E3§2 X Eg
= XX, + E,%g (E5.4.3)
<. (ﬁ.dﬁ .(ajdi)
=X EEy T EjEpXg
# 0 (E5.2.4)

Hence by Theorem 5.4 d¢ is not compatibly integrable. Let

us, therefore, decompose diL as

at = dzl + dCz + d§3 (E5.4.5)
where

dCl = x3dxl (BE5.2.,6)

dCz = x3dx2 (B5.4.7)
and

ac3 = xzde {(E5.4.8)

— —

Hence {xlx3, XoXqs x2x3} is a complete set of partial
integrals of drg.

Also, dr can be separated as

dg = (333dxl) + (§3dx2 + i':'zdx3) (E5.4.9)
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which leads to

%leB, X, + xii as another complete set of partial

integrals of 4t .

b6, CoNcLUSION

Boolean calculus as proposed here is a powerful tool for
analysis as well as synthesis of logic circuits. The use of
Boolean integration in synthesis of asynchronous circuits using
clock-triggered flipflops has led to circuits which regquire less
flipflops and logic gates than circuits synthesized using
conventional methos [5], thus reducing complexity, cost and size
and improving reliability.

All the differential operators used in the references can be
expressed in terms of partial derivatives defined in the paper.

Earlier methods to realize a function from the 'specified
changes in its value in terms of changes in its arguments do not
possess the simplicity and ease that the method presented here
does.

The concept of the exact integral was introduced for this
purpese. In virtue of the fact that in real-life situations we
do have don't~care conditions and/or transitions, the concept of
a compatible integral was introduoced in oxder to generalize the
concept of the exact integral. Moreover, if the exact integral
did not exist for a specified differential but a compatible
integral did, then the undesired transitions (changes) in the
integral may be inhibited using a simple logic circuit.

Integration by parts is further generalization of compatible

37.
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integration, which has possible applications in logic circuits.

7.  ACKNOWLEDGEMENTS

The authors are pleased to acknowledge gratefully the helpful
suggestions offered by Professor F.G. Gray and Mr. R.D. Hofler for
the research reported here. Special mention must be made of
Dr. W.G. Batte, who suggested the possibility of developing the
calculus of Boolean variables analogous to the calculus of real

variables,



bs ]

{1)

(2)

(3)

(4}

(5)

(6)

(7

(8)

(2

(10)

(11)

(12)

(1.3}

(14)

(15)

REFERENCES

J.H. Tucker, YA Transition Calculus for Boolean Functions,” Ph.D. Dissert-
ation, Dept. of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburgh, Virginia, May, 1974.

J.H. Tucker and A.W. Bennett, "A Transition Caleculus for Boolean Functions,”
Proceedings of IEEE Southeast-Con., Orlande Florida, 2pril 29-May 1,1974.

J.H. Tucker, M.A. Tapia, and A.W. Bennett, "Boolean Integration,”
Proceedings of IEEE Southeast-Conference, Clemson, 5.C., April 5-7, 1976

J.H. Tucker, M.A. Tapia and A.W. Bennett, "Boolean Differentiation of
Integration Using Karnaugh Maps," Proceedings of IEEE Southeast-Conference
Williamsburg, Va., April 1977

M.A. Tapia, "Development of Boolean Calculus and Its Applications," NASA
Langley Basic Research Review, Hampton Va., April 1978.

I.8. Reed, A Class of Multiple-Error-Correcting Codes and the Decoding
Scheme,” Trans. Inst. Radio Engrs., IP-4, 1954, pp.38~49,

5.B. Bkers, "On a Theory of Boolean Functions," J. Soc. Ind. Appl. Math.,
Vol, 7, Dec. 1959, pp. 487-493.

P. Calingaert, "Switching Function Canonical Forms Based on Commutative
and Associative Binary Operations," ALEE Trans. Communication and
Blectronies, Vol. 79, January 1961, pp. 808-814.

F.B. Hartman, "Boolean Differential Calculus," IBM TR 22.526, Dec.20, 1967.

V. 2mar and N. Condulmari, “Diagnosis of Large Combinational Networks,"
IEEE Trans. Electronic Computers {Correspondence), Vol. EC~16, October
1967, pp 675-680.

?.F. Sellers, M.¥. Hsiao, and L.W. Bearnson, “Analyzing Errors With The
Roolean Difference,” First Annual IEEE Computer Conf., September 6-8,
1967, Chicago, Ill.

F.F. Sellers, M.Y. Hsiao, and L.W. Bearnscn, "Analyzing Errors With the
Boolean Difference," IEEE Trans. Computers, Vol. C-17, July 1968,
pp. 676-683.

¥.F. Sellers, M.¥. Hsiao, and L.W. Bearnsecn, "Error Detecting Logic for
Digital Computers, New York: McGraw-Hill, 196B.

M. Davio and P. Piret, "Les Derivees Booleennes et Leur Application au
Diagnostic," Rev. MBLE, Vol. 12, July 1969, pp. 63-76.

P.M. Marinos, "Boolean Differences as a Means for Deriving Complete Sets
of Input Test Sequences for Fault Diagnosis in Switching Systems,”
Bell Telephone Laboratories, Greensboro, N.C. Tech. Memo MM-69-6313-1,
ABugust 1©69.



bt

{18)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25}

(28)

(27)

(28)

(29}

{30)

(31)

P.N. Marinos, "A Method of Deriving Minimal Complete Sets of Test Input
Seguences Using Boolean Difference," IEEE Computer Group Repository,
R-70-22.

P.N., Marinos, "A Method of Deriving Minimal Complete Sets of Test Input
Sequences Using Boolean Difference,” IEEE Computer Group Repository,
R=70-22.

G.E. Whitney, "Algebraic Fault Analysis for Constrained Combinational
Networks, "IEEE Trans. Computers, Vol. C-20, Peb. 1971, pp. 141~148.

L.W. Bearnson and C.C. Carroll, "On the Design of Minimal Length Fault
Test for Combinational Circuits," IEEE Trans. Computers, Vel. C-20,
Nov. 1971, pp. 1353-1356.

M.¥. Hsizo, D.K. Chia, "Boolean Difference for Fault-Detection in
Asynchronous Sequential Machineg,” IEEE Trans. Computers, 'Wol. C~20,
Nov. 1971, pp. 1356-1361.

A.D. Friedman and P.R. Menon, "Fault Detection in Digital Circuits,™
Prentice~Hall, New Jersey, 1971,

A. Thayse, "Transient Analvsis of Logical Networks Applied to Hazard
Detection,” Phillips Res. Rep., Vol. 25, Octobzr 1970, pp. 261-336.

A. Thayse, "Boolean Differential Calculus," Phillips Res. Rep., Vol.26
June 1971, pp. 229-246.

G. Bioul and M. Davio, "Taylor Expansions of Boolean Functions and of
Their Derivatiwves," Phillips Res. Rep,, Vol. 27, Feb. 1972, pp. 1-7.

A. Thayse, "Testing of Asynchronous Sequential Switching Circuits,”
Phillips Res. Rep., Vol. 27, Feb. 1972, pp. 99-107.

A. Thayse, "On Scme Iteration Properties of Boolean Functions," Philips
Res. Rep., Vol. 28, Jan. 1973, pp. 107-119.

A. Thayse and M. Davio, "Boolean Differential Calculus and Its
Application to Switching Theory," IEEE Trans. Computers, Vo. C-22,
April 1973, pp. 409-420.

A.D, Talantsev, "On the Analysis and Synthesis of Certain Electrical
Circuits by Means of Special Logical Operators," Avt. 1 Telem.,
Vvol.20, No. 7, pp. 989-907.

V.G. Lazarev and E.X. Piil, "Synthesis Method for Finite Automata,"
avt., 1 Telem., Vol, 22, No. 9, September 1961, pp. 1194-120}1.

V.G. Lazarev and E.I. Piil, "A Method for Synthesizing Finite Automata
with Voltage-Pulse Feedback Elements," Awvt, 1 Telem., Vol. 23, No. 8,
August 1962, pp. 1037-1043.

V.G, Lazarev and E,I, Piil, “The Simplification of Pulse-~Potentiagl
Forms," Avt., 1 Telem,, Vol. 24, No, 2, February 1963, pp. 271-276



LA

(32)

(33}

(34)

(35)

(38)

{37)

4

V.G, Lazarev and E.I. Piil, "On the Integration of Potential~Pulse Forms,"
Dokl. AN SSSR, Vol. 139, July 1961, pp. 556-553.

A. Brown and H. Young, "Toward an Algebraic Theory of the Analysis and
Testing of Digital Networks,"” AAS & ORS Annual Meeting, Denver,
Colorado, June 17-20, 1969, ARS Paper 69-236.

J.R. Smith, Jr. and C.H. Roth, Jr., "Differential Mode Analysis and
Synthesis of Seguential Switching Networks," Elec. Res. Cen., Univ.
of Tex., Austin, Tech. Rep. 63, 1969,

J.R. Smith, Jr. and C.H. Roth, Jr., "Analysis and Synthesis of
Asynchronous Sequential Networks Using Edge~Sensitive Flip-Flops,"
IEFE Trans, Computers, Vol, C~20, Aug. 1971, pp. 847-855.

M.2. Tapia, "Solution of Boolean Equations and Their Applications,”
Proc. €th Annual Southeasiern Symposium on System Theory, Baton Rouge,
La., Feb, 21-22, 1974.

M.A. Tapia and Jerry H. Tucker, "Complete Solution of Boolean Equations,®
revised and resubmitted to IEEE Transactions on Computers, October 1978.

oy



_APPENDIX 1T
SYNTHESIS OF ASYNCHRONOUS SEQUENTIAL

SYSTEMS USING EDGE-SENSITIVE FLIPFLOPS

ABSTRACT

Conventional methods for synthesizing gsynchronous
sequential systems do not use clock-trigogered flipflops. It has
been shown [5,6,7] that synthesis technicues for such systems which
utilize edge-sensitive (clock-triggered) flipflops lead to networks
which require less flipflops and logic gates and which are less
expensive and more reliable. The proposed paper aims at developing
formal procedures for synthesis of asynchronous secuential systems

using commercially available edge-sensitive flipflops.

INDEX TERMS: Asynchronous sequential systems, clock-triggered
flipflops, commercial flipflops, edge-sensitive flipflops, Boolean
differential, Boolean differential expression, Boolean integration,
compatible and exact integrals, fandamental mode asynchronous system,

differential mode system, realizability criteria.



I. INTRODUCTION

In conventional asynchroﬁous sequential system design,
direct emphasis is placed on relationship between outputs and
inputs in terms of their levels only, and the possibility of using
edge sensitiveness property of logic elements is not utilized.
Ssmith and Roth have shown [6,7] that if edge-sensitive flipflops
are used in the design of an asynchronous system and the edge-
sensitiveness property is judiciously taken advantage of, then in
many cases it leads to a realization that reguires less flipflops
and logic gates than conventional method does for a given systen.
Smith and Roth technigque {6,71 utilizes a "general model of
edge~sensitive £lipflop"” in their approach. Thé method. proposed
this paper is applicable to any commercially available clock-~
triggered Fflipflop that respond: to a cloek transition

(positive or negative).
2. DIFFERENTIAL MODE MODEL

Definition 2.1: A Fundamental Mode Asynchroncus system

(D2.1.1) FMas A (1,8,0,f,g) where

‘D2.1.2) I A set of p distinct input conditions = {Ij} |
(D2.1.3) § A set of g states of the system = {Sj}

(D2.1.4) 0 A set of outputs = {Oj} |

{D2.1.5) £ A output function A f(Sk,Ij)ﬂfG & k and

{p2.1.6) g A next state function A g(Sk,Ij),Vj & k

will be assumed [10,12,13]. It will further be assumed that only
one state variable and only one input variable is allowed to

change at a time.



In order to make it convenient to express the next state
and output in terms of the change in the input and the present
state, we will transform the FMA system to a Differential Mode
model defined below. This is comparable to the DM Machine of
Smith and Roth [6,7] but really different than that.

Definition 2.2: Given a fundamental mode asynchronous system FMAS,

a Differenial Mode System, DMS will be defined as a 6-tuple as

given below:

(b2 .2 .1) DMS = (I',I*', 8',0',f',g') where

(D2 .2.2) I'=I,

(D2 .2:3) I*'g{(lj,lk) I’V‘j:k}

(D2.2. & §'=8

(D2.2.5) £' A output function of DMS

(D2 2 :6) g' A next state function of DM§

The function g' is related to the function g of the FMA system as

shown below:

- i, if 9(8,,I;) = 8y, 9(S,,I,) =8,
and g(si'Ik) = 5;
S;r if 9(Sy,I;) = S, and there exist 8;;,8,,, =—=,8;, & §

such that g(Sh,Ik) = Sil'

g(silflk) = S-.iz T g(sin'Ik_) =5

=

and 9(S;,I,) = S;.
——r iF g(sh,Ij) =8, & 9(S,,I,) = —
—— 1if g(Sh,Ij) = S, .and there exist
Sil’siz'““"sin such that
9(SpeTi) = 8par 988550 Ty = 8y
T(S59:Ty) = Sy3r="=r9(8;,,T)) =

——r £ 9(8s,19) #5p

i



The funct.on f'(Sh,Ij,Ik) is related to the function f(Sk,Ij)
of the FMA system as shown below:

D2.2.1 '{S I I

(D2 0) Pl B’ jr k)

i
—_—, 1if g‘(shf Ij, Ik) is unspecified

f(si, 1), if g' (S, , Ij, I)=s

Before we develop procedure for svnthesizing the asynchronous
sequential system described by the equaﬁions (D2.2,1) through
(D2,2,10), we will assume that the FMA system (and hence DM system)
is amenable to single variable — change state assignment. Let us
further assume that the system has n input variables Xl,X2~-—,Xn
m state variables Yir Yoy Ym and hence m c¢lock-triggered
flipflops that respond to positive transitions. We will, therefore,
need to realize m clock functions, say Cj's such that whenever
an input change occurs then one {and only one) of the clock
functions goes through a positive transition providing a proper
state transition. Towards this end, we will define differential
operators and differential expression to describe changes in a
given function F(Xl,X2,~*—,Xn) In terms of changes in its gggumentsly,z,

3,4,11],

Definition 2.3:

(D2.3.1) dx, Ajl, when X, , 1. £ ign,changes from J te I dr fromlto §-
09 when Xi does not change at all
dF will be defined similarly
(D2 .3.2) d¥ = dzi by definiéion implies that when 3i
changes from 0 to 1 (or 1 to 0), so does F change from 0 to 1

{(or 1 to Q).



In order to relate changes in F due to changes in x& under
different conditions we will treat d¥ and dx s, 1<i<n as
entities in Boolean algebra having wvalues of 0 or 1 as
defined in egquation (D2.3.1).

Consider the equation

(D2.3.3) aF = (XyeXg)dx) + (X X,)dX

When X, = X; = 1 and X, is changing, then dX,=0 and dF=dx,

so that F changes the same way as Xl changes. Similarly when

X1=X2=l and X, changes, then dF=dX. and F changes the same

3
way as 23 changes.

3

Differential expression, denoted by df, will be defined as

n -
(D2.3.4) dE =% dx .+ B .dX,
F=3 A A N S
wheredii and B,, 1 <1 <n are functions of
v Xgem==s &, qv Xi+1,—~~, X, (and independent of X;) and only

one of the variables Xl,Xz,-——,Xn is allowed to change at a time.

Differential expression as given in (D2.3.4) will be used
to describe changes in clock functions in terms of changes

in input and state variables.

The following definitions, relationships and theorems have

been reported earlier [1,2,3,4,11] and will be presented here

briefly for the sake of completehess and convenience of reference.



Definition 2.4: For a Boolean function F(Xl X2 ——-,Xn), of
T 4

n variables Xl X, - X Boolean differential of F, denoted
I r

by 4F is defined as

0
(D2 .4.1) ar = Z (BF dxX., + 3F di_)
- 3X.. - T
'-.r':l Z BX-i. .

The summation in Equation (D2.4.l) is with respect to the

inclusive OR, -and the partial derivatives are defined by

/
(D2.4-2) F = <%(x) ) . {F(x) _ ) and
3%, - lxi=1 ¢ lxi-o
(D2-4-3) IF = (E‘ (®) e _ ) ( _
. T}—{-_ lXi—O . \F (E) ]Xi_l)

With the interpretation given in Definition D2.3, eguation
(D2.4.1) completely describes changes in F due to change in

variable Xi' 1gign.

Definition 2.5: The integral of zero#h order, written as

¢5;d5, of the Boolean expression

(p2.5.1) dE= (D(.idxl.—l-Bid}-;i )

is

is given by



L

o
(D2.5.2) j'odi =.Zl(°{'i§" + B,X,)
i= - ’

and the invtegral of first order, written as jldﬁ, of the

expression af in equation (D2-5-1) is given by

- Re} —
(D2.5 .-3) ﬁd&_‘, =Z{a£.ixi + B,%,),

i=1

Definition 2.6: A given differential expression df given in

(D2.5.1) is said to be compatibly integrable if there exists

a funetion ¥ such that

(D2:6.1) OF 3o, and JF DB,
9% . * % ¢
i Xi

for all i, L<i<n. If F satisfying equation \D2.6.1) does exist

then F is called a compatible integral of dE. The differential

expression is said to be exactly integrable if there exists

function F such that

(D2.6.2) dF = dg
If P satisfying the above equation does exist, then F is called

the exact integral of df,




Theorem 2.l; The necessary and sufficient condition for |

compatible integrability of a given differential expression

n
(72.1.,1) = X (e’dx +Bd}{)1st1“at
i=]

(T2.1.2) (f dJ (f e} =0 |

Theorem 2.2: If a given differential expression df is

integrable, then a compatible integrable of df is given by

(T2.2.1) sf;dg =‘f;d§ + K where
(T2.2.2) 4;5‘K Q(Ld{-; + j;de;

3. A DIFFERENTIAL MODE SYSTEM
EXAMPLE 3 .1

Consider the FMA system described by the reduced flow table

below:

12 00 01 11 10

l—l

(2,B) o (@0} 3,-]2,-

(c,F) 2 Oif1,-|4,-|01

(D,G) 3 2,- &L B1}2,-

(E,H) 4 1,-| 1,-{®o0|@o0
Fig. 3.1

Since the minimal sytem shown in the table has 4 states,

2 flipflops will be required to realize the system if conventional

technigques are used.
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On transforming the systemin Figure 3.1 to DM system, we

get DM table given in Figure 3.2.

%1%2
00 00 01 0l 11 11 10 10
10 0L 11 00 0l 10 00 11
v |21 | 10 [z 10 - N B
2 2,1 1,0 - —~ - - 2,1 4,0
3 - - 3rl 2’1 3’1 2(1 - -
N - = - 120 {40} 1,0 2,0

Figure 3.2

Using the conventional metheds to reduce flow tables for
FMA systems, the DM table can reduced as shown in Figure 3.3
Observe that (1,4) and (2,3) are compatible pairs.
%%,

0aQ ao 01 0l 11 11 10 10
10 01 11 0a oL 10 00 11

(1,4) A B,1 A,0 B,1 A,0 A,0 A,Q A,0 A,0

(2,3) B ] B,1 42,0 B,1l B,1 B,1 B,1}{ B,1 A,0

Figure 3.3

The reduced DM system has only two states. Let y=0 and

y=1l be the assigmments for states A and B respectively.

Observe that if y=0, the flipflop must chahge its stater
when (1) X, = 0 and X; changes from 0 to 1

or (2) X, = 1 and X1 changes from 0 to 1.

n

If y =1, the flipflop must change when (1) X 0 and X2

1
changes from 0 to 1 or (2) Xl 1 and X,

I

changes from 0 to 1.
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This tells us when the clock should go through a positive
transition. The desired changes in clock function in terms

of changes in Xl and X, can be described by the differential

2
expression (E3.1l:1) below:

{(E3.1.1) de = y(ﬁzdxl + Xz&xﬂ + y(dexz + dexz)
=y(dxl) + y(d}.:2)

Observe that

(£3.1.2) (ijédc : _gﬂc = (§§1+ yiz) ‘ (§Xl + yxz) =0

so that by Theorem 2.1, dc is compatibly integrable and by

Theorem 2.2 a compatible integral of dc is

(E3.1.3) _i;ic = yX; + ¥%,

Let us,then,try

(E3.1.4) c, = §xl + yx, as the input to the clock pin of

a flipflop to be used. We will examine whether a toggle flipflop
can be used so that the least ampunt of combinational logic will

be required.

Observe that



(E3.1.5) de; = §dxl + ydx, + ilxzdy + xl§2d§

so that transitions (Elxzdy) and (xl§2d§) which are not
specified by equation (E3:1-1l) may be present. However a

close examination at Figure 3.3 reveals the fact that when

y=0 and input changes to XXy = 01, then ¥y does not change to

1 so that (§1x2dy) is a transition that cannot occur.

Similarly (xl§2d§) cannot occur either. Hence the clock function
Cq will provide exactly those transitions which are specified

by equation (E3.l1.l). Hence the following realization.

i Toggle .

X ‘“"':: flipflop Y=2
E >______,Cl

Xl’__—‘_”t: ¥

(a possible hazard can be eliminated by
adding X;X, to the right hand side of

equation (E3.114))

11.



4, PROPERTIES OF DIFFERENTIAL MODE SYSTEM

Given a DMS table obtained by transforming an FMA table,
that has the same number of states as the latter and whose
state transition graph [10,12,13] admits of a single-~variable —
change state assignment, it will be shown later that it is
realizable using clock-ﬁriggered flipflops. However realizability
of a DMS table that is further reduced, if reducible, after
transformation depends on several characteristics of the table,

that are described in what follows:

Definition 4.1.: A DM system table is said to be level-wise

output—~unambiguous, if there exist no input conditions Ii’ Ij
Ik and states §, and Sy Ii and I, being adjacent, Ij i Tor

Sa and Sb not necessarily distinct, such that g'(sa, Ij'Ii)’

g'(Sb,Ik,Ii), f'(Sa Ij’Ii) and f'(Sb,Ik,Ii) are defined and

(b4 1.1 g'(sa,Ij,Ii) = g‘(Sb,;k'Ij) = Sc - (say)
D4 .1 .2 ! ‘ = .= £
(D4 .1 .2) £ (sa,Ij,Ii) o_jc # Oy, = £ (Sb,Ik,Ii),
I, T, I, I,
I, I I I
_‘J-L_ L £ e
5
(OraSb) Sc 'Ojc Sc'okc Sa Sc'ojc
Sy S 'Okc

A DM system table which is not level-wise output-

unambiguous will be called level-wise output-ambiguous.

12
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Definition 4.2: A DM system table is said to be level-wise

next-state-ambigucus, if there exist inputs Ii’ I and Ik
J

and states Sa’ S, and Sc such that

b

(D4.2.1) S. # 8

b” Ye
T =
(D4.2-.2) g (Sa,Ij,Ii) Sb and
. 4 1 '=
(D4:.2.3) g (Sa Ik_,Ii) 8.
I Tx
Il xi
Sa Sb’ Qai Ser Oai

A DM table which is not level-wise next-state ambiguous is

said to be level-wise next-state-unambiguous.

Defindition 4.3: If a change in the value of state variable {f
resulting from a change in input causes another state variable

‘Yi’

for some I # J, to change its value, then a secondary
transition or ripple is said to occur in the £flipflop that is
assocliated with the state variable ¥Y;. If in a DM system a

ripple cannot occur, the system is called ripple-free.

In the following definitions, we will assume that the DM system
has n input variables Xyr Egreeea X, m state variables

Yy r¥oreneer Yo g(=2") distinct states Sgre--+8q., Kk output variables
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01'02”""0k & p{=27) distinct input conditions.

Definition 4.4: Ik represents the binary vector (bl, bz,...,bn)

such that bi‘s are 0's or 1's and % is the numerical wvalue of
(bl, bz,...,bn), when the latter is interpreted as a binary
number.

Observe that mk(g) =1 , wherE'mk(g)is the

§=Ik kth mintexrm of RyrXgreverX »
rr =
Definition 4.5: Sk represents the binary wvector (bl, b, ...,bm)

such that bj's are 0's or 1l's and x is the numerical value of
(bl, b2, ""bm)' when the latter is ilnterpreted as a binary number.

Observe that m (y) : whgre mk(g) is the kIR

:é rr
= Tk
minterm of y

Definition 4.6: Sil and Si2 are said to be yj—adjacent to each

other, if their representations as defined in Definition 4.5

agree in every bit except the 532 one.

Definition 4.7: mj(§ - xi) denotes the product term obtained by
deleting the variable X, from the jth minterm of variables

x]-[Xz; «wn ,_Kn.
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Definition 4.8: amj(§ - xi) denotes transitions as defined

below: ;

(D4.8.1) 3(my (x-x))

mj(ﬁ-ﬁ&) dxi, if %, in minterm mj(gg is in true form

>

m (Z-x) dx,, if x, in m, (%) is in complemented

form.

Theorem 4.1: Consider a DM system table whose realization exists.

Then corresponding to every row (or state) S, _ .4 input change

£from Ijl, to Tj4, 0£il4g~1,0<jl<p-1, 02j2<p-1, Ijl and Ij2 being
gj—adjacent, if the next state function g'(Sil,Ijl,Ijz) is
defined and

(T4.1.1) g (Sil,Ijl,Ijz) = Si2 where
(T4 .1.2) Sil and Si2 are yk—adjacent, then
(T4. 1. 3) dckgamilgg). B(T§2(§ - xi)), 1l <k<m

Proof: Equations (T4-1-1) and (T4- 1-2) imply

that Yy must change its value when the system is in state Sil

and input variable X, (say) changes its value so that the final

input condition is Ijz' Hence at the time of this change Cp
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must go through a positive transition described by

mite) -3 (‘_"jzﬁ’-‘-} - Xi))

Hence

(T4.1.4) dac2m. 4 (g} . D (mjz(}_g_ - xi))
Q.E.D.

Theorem 4.1 presents a way of construciing differential
expression dck, for'Vk, by using each row {i.e. 'present’'
state) an each column (i.e. input change) such that the (next
state) entry corresponding to them is defined and is different
than the present state corresponding to tpg:rquin which- it lies.
Construction of a differential expression has already been shown
in Example 3.1l.
Lemma 4.1: Consider states S, and Sy, s Sa 7 Sb and a change of
input from Ii to Ij in a DM system whose table is specified.

Let S, and Sb be gk—adjacent and

b
Then ma(i) ’mi(EJ and{g(i)mjtﬁ) and the clock function C? satisfy

= b .
(L4.l-lo) S g (SaIIi'Ij)I

the following relations i1f the system is realizable.
(L4.1.2) Cpm (y) - m,;(x) and
(L4.1.3) C. ma(_ri) .mJ.(:_{).
Proof: When the system is in state S, and input changes
from Ii to Ij, the system goes- to state Sb' requiring thdt the
state of flipflop k change.This necessitates that the clock function
Ck go throuch positive transition. This implies that the
value of Ck is 0 when the system is in state Sa and the input

is Ik. Hence

S



Kl

(L4.1.2) Cppomy (g) “uy ().

When the input changes to Ik, the wvalue of ck must become 1

so that

(L4.1.3) C,Dm (y) "m(x).

Hence the Lemma. Q.E.D.

Theorem 4.2: Differential expression corresponding to

every clock function for a specified DM system is integrable
if and only if there exist no input conditions I,» I, and

Ij2 (Ijl and I not necessarily distinct) and no states S,

i2
and Sb r Sa # Sb such that

Il

(T4.2.4) Sb g' (s I

a’ ~it jl}

4 = '
(T4.2.5) Sh g {Sa, Ijz, Ii)
Proof: Let Sa and Sb be gk—adjacent. Assume that I,
Ijl' Ij2' Sa and Sb exist that satisfy both the egquacions

{(T4..2,4) and (T4,2,5). Hence from Lemma 4.1 and these

equations, we have simultaneously

{T4-.2-6) CkDma(_g_) : m, (%) and

(T4.2.7) ck;bma'(_y_) m(x)

17.
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L

Obviously no function can satisfy relationships (T4.2.6)
and (T4.2.7)simultaneously. Hence the differential expres-—
sion for the clogk‘ck is not integrable.

If no Ry and Sh exist which satisfy

Ijl’ Ij2' Sa
equations (T4.2:.4) and(T4*2-5), then m,(y) “m,(x) is either

"zero" or "one", but not both, of Ck for*ﬁé,i!and k. Hence

the terms in ~Edck and_gdck are non-intersecting

C Jl' _
.. Jac, tJac, =0, for¥k
Hence differential expression dC, is integrable farAfL.
Q.E.D.

Theorem 4.3: A necessary condition for a given DM system

table to be realizable is that there exist no input condi-

is.

tions I, Ijl' and Ij2 (Ijl and Ij2 may or may not be distinct)

ol
anéd no states Sa and Sb’ Sa # Sb’ such that

Il

(T4,3.1) Sb :‘(Sa,Ii,Ijl) and

(T4.3.2)

[97]
|

b g'(SarIjeri)

Proof: The proof #£ollows from Theorem 4.2.



-~

19.

Lemma 4.2: Given a DMS table derived from an FMA system
that has the same number of states as the former, the
differential expressions for clock functions for the DM
system are integrable if a state assignment exists such
that exactly one variable changes during any state

transition.
Proof: Suppose at least one of the differential
expressions is not integrable. Then by Theorem 4.2 there

exist inputs Ii' Ijl and Ij2 and states Sa' Sb' such that

(L4.2-1) S

.
03]

(L4.2.2) Sb g’(Sa, I,

it Ijl) and

(L4.2-3) S

I

b g'(sal Ijzl Ii).

From equation (L4.2.3) and FMAS-to-DMS transfer equations in

-

Definition 2.2 we have

(.4.2,4) g(Sa, Ijz) = Sa

Also from equation (L4 2.2) and FMAS~to-DMS transfer equations
in Definition 2.2 we have
(.4.2.5) g(Sa, Ii) = Sa
Equations (L4.2.4) and (L4.2.5) clearly show that we must have
in the DM system

(r.4.2.6) g'(Sa, Ij2’ Ii) = Sa

(29
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From equations (L4.2.6) and (L4.2.3) we have

(n4.2.7) S, = 5,

which contradicts our assumption (L4.2.1).

Hence the Lemma

Lemma 4.3: Given a DMS table which is directly derived from an
FMA system which has the same number of states as the former,

the DMS table is level-wise output-unambiguous.

Proof: Suppose the DMS table is output-ambiguous. Then
by Definition 4.1 there exist inputs Ii’ Ij and I, and

states Sa and Sb such that

(L4 .3.1) g’ (s, L I) =g'(8y, I, I,) = sc' (say)

(L4 .3 .2) £ (8, T 1) = 00 (say)

(L.4. 3. 3) £' (8 I,y I,) =0, (say) and
(L4. 3. 4) 0, #0

jec ke

E
JOTIVA
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From Definition 2,2, of DMS table and eguation (L4-3-1)

I

A . - ]
(.4 .3.5) £ (Sar ij Ii} f(g'(sar Ijr Ii)' Ii)

It

f(sc, Ii) and

23 . ' = t
(L4 -3 -6) £ (Sa’ I Ii) £flg (Sa, I.r Ii}, Ii)
= f(Sc, Ii)
Hence
(L4'3'7) ft (Say Ijr Ii) =fb(sa; Ik;Ii)
o
(L.4-3-8) Ofc = okc

w

which contradicts relation (L.4.3.4)
Hence the Lemma.

Q.E.D.

Lemma 4.4: If a DMS table derived from an FMA system has the
gsame number of states as the latter, then the table is level-

wise next-staté-unambiguous.

Proof: Suppose the table is level-wise-next-state-ambiguous.
Then by Definition 4.2 there exists inputs Ii’ Ij and Ik and

states Sa’ Sb and 5c such that
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- - - ¢
(L4 .4 .1) Sb g (Sa, Ij’ Ii)
{L4.4.2) Sc = g‘(sa, Ik' Ii) and
{(L4-4.3) Sb # Sc'

From Definition 2.2 and equation (L4.4.1) we get

(L4« 4-4) g(Sar Ij) = 8,

(L4.4.5-1) g(Sa, Ii) = Si # Sb {say)
1

(?4.4.5"":“-’-) g(Sizt Ii)= Sil

l ! 4

! . :

(L4.4.5-n) g(Sin, T,)= 8., n>l

(L4.4.6) g(Sb, Ii) = Sb

Also from equation (L4.4.2) and Defindition 2.2,

(L4.4.7) g(Sa, Ik)= Sa

Hence using relations (L4.4.5-1) through (L4.4.5-n}.
(L4.4.6) and Definition 2.2., we get

(L4.4.8) g'(S,, I, I) =8

x’ b
From eguations (1.4.4.8) and (L4.4.2) we get
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P

(L.4.4.9) Sb = 54

which contradicts equation (L4.4.3). On the othexr hand if
(L4.4.210) Sil = Sb in equation (I.4.4.5), then alzo we get
' 1 - — o .
(T.4.4.8) g (Sa, Ik, Li) = Sb and a contradiction.
Hence the Lemma.

Q.E.D.

Lemma 4.5: A DMS table derived from an FMA system has the
same number of states as the latter. If a state Sa’ 0<a<(g-1)

Ii) is specified

in the DM system is such that g’(Sa, I,g0
with |
(1.4.5.1) g’(sa, Iil’ Ii)éésb (sav),
then
(L4.5.2) o' (Sy, T, I,) ={°p
Unspecified

for any I, adijacent to I,-

k

Proof: From Definition 2.2 and equation (L4.5.1l) for the

FMA system we get

(L4.5.3) g(Sb, Ii) = Sb.
Also, from Definition 2.2, g' (S I,

specified entry) only if

(L4.5.4) g(Sb, Ik) = 5y

If equation (L4.5.4) is satisfied, then equatipn (L4.5.3) and

Definition 2.2 imply that

Ii) is defined (i.e., a

23.
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(L4.5.5) g'(Sb, Ik’ Ii) = Sb

1f g(Sbr Ik) 7 Sb or g(Sb, Iil) is not defined (i.e., not
specified), then by Definition 2.2, g'(Sbr Ik’ Ii) is
unspecified). In any case, the relation (L4.5.2) is

satisfied. 0.E.D.

Theorem 4.4: If a DM system table has the same number of

states as the FMA system from which it is derived and a state
assignment exists for the system such that only one state
variable changes during any state transition, then the DM
system table can be realized using clock~triggered flipflops

and logic gates.

Proof: For the sake of simplicity we will consider realization

using D—flipflops:ethe'iggflipflop having "level" input Di' clock

input C* and output g,, 1<Li&m. Also, it will be assumed that these
pA 1 -

flipflops respond to. positive transitions in their clocks. As

. F

indicated in proof of Theorem.4.1l, differential expression dC
> i

1<i<m: can be written corresponding to each clock function C,.
- 1
By hypotehsis and Lemma 4.2 these differential expressions.

are integrable (at least in the compatible integrability sense),

and hence all the clock functions can be realized.

By Lemma 4.4 and the hypothesis, the next-state in the DM
system table is uniquely specified (if specified) in terms of

any input (at the end of any transition) and any precent
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state. Hence the next-state variable functions Di's can be
realized using logic gates.

By Lemma 4.3 and the hypothesis, the output in the DM
table is unigquely specified (if specified} in terms of any

input and any state. Hence the output functions can be

realized using logic gates.

It may be noted that the clock functions may include

clock transitions which are not specified in the corresponding

25,

differential expressions. However these "undesired" transitions,

even if positive, will cause no problem, since the next state

that the system must enter into due to any one of these

transitions is either uniquely specified or not specified at all.

The only thing now we have to consider is the effect of
change in a state variable on the clock functions. If such a
change causes a positive transition in one or more of the
clock functions, there may be undesired state transition(s)
causing malfunction. We will now show that no such malfunction
can occur. Consider a transition from state Sa to state Sb’

Sa # Sb’ due to a change in inputfrmnlil to I,. Assume Sa and
Sb are yj~adjacent. ) o .

When the input changes from I,,%0 I, while the DM
system is in state S_, the system will go to state Sy and
the value of vy will change. Suppose there exists CP, for
some p, l<p<m such that when the input is Ii and yj changes
as indicated above, the change in CP causes a positive

transition in CP' This is possible only if

fmA A 14 Vo B VY S ¥ N ETA T
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However by hypothesis we have

1

(L4.4.2) Sy 9”(Sa,r Iir Ii) with
(L4.4.23) 8, # Sy so that

‘these relations with Lemma 4.5 yield

S

h
(T4.4.3) g'(S T I.}) =40F
bf Tk" T4 undefined
for Jq;/[Ik.

In eguation (T4.4.3) since there is no change in state Sb’

by Theorem 4.1 we have no term of the form mb(gﬁami(g - %) in

C _, 4

a) . This implies that
g0 Vo an ¥, p

< -
(T4.4.4) ¢ pm(w) - my(x) for Vo, Lg

Relations (T4.4.1) and (T4.4.4) contradict each other.
Hence our assumption that a change in state variable could
cause a further change in the state of itself or any other

flipflop is incorrect. Hence the system realization is

ripple-£free.

Hence the DM system table can be realized using clock-

- triggered flipflops and logic gates.
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Theorem 4.5: Any finite-state asynchronous sequential

system can be realized using clock-triggered flipflops and

logic gates.

Proof: Any finite-state asynchronous sequential system

can be described as an FMA system [10,12,13]. Also the FMA

system table could be augmented so that the augmented table
admits of a siﬁgle;state—variable~change assignment [10,12,13].
This table can, then, be transformed to a DM system with the
same number of states by Definition 2.2, which can be realized
using clock-triggered flipflops and logic gates by Theorem

4.4,

Hence every finite-state asynchronous sequential system
can be realized using clock-triggered flipflops and logic
gates.

Q.E.D.

Theorem 4.6: The complexity of a network realization of

a finite-state asynchronous sequential system, consisting

of clock-triggered flipflops and logic gates obtained as shown
in Theorem 4.4 method is comparable to that of a network
realization of the same system, consisting of S-R f£lipflops
(without clock inputs) and logic gates obtained by

conventional method for synthesis of an FMA system.
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Proof: The method in Theorem 4.4 requires the same
number of state variables and hence flipflops for a given
finite-state asynchronous sequential system as the conven-
tional method does for the same system. Hence (in the worst

case) realizations obtained by the- two distinct approaches

‘have comparabhle complexity.

Q0.E.D.

5. SYNTHESIS PROCEDURE

Realizability of a finite-~state asynchronous sequential
system using clock-triggered flipflops and logic gates has

been established in Theorem 4.5. In this section we will

28,

outline a procedure for synthesizing a finite-state asynchronous

sequential system using clock-triggered flipflops and logic
gates. We will assume that an FMA model table for the given
system is already obtained and that the table is already
augmented, if necessary, so that it admits of a singles

variable-change state assignment.

As shown in Example 3.1, even if the FMA system table
is reduced, the DMS table derived £from it by transformation

equations in Definition 2.2 may be further reducible. If we

do reduce it further, if possible, then realizability of the

reduced DMS takle is not guaranteed, since the reduced DMS
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table system may fai; to satisfy one or more of the
following conditions necessary for its realizability:
(1) level-wise output-—-unambignity

(2) level-wise next-state-unambiguity

(3) the table admitting of a single-variable-change state

assignment.

If the three conditions are satisfied we would
have to lock for a ripple~free (Definition 4.3) realization
which may or may not exist. Quite often even if the possibility of
ripples exists, the conditions under which they could occur
may be don't care conditions thus making the sytem virtually

ripple-free,

If DMS table is further reducible after transformation,
the number of f£lipflops reguired is less than that if the
gystem were realized directly f£rom the FMA system table
using conventional table and hence the complexity of the

realization in the former case would be less than that in the

latter case.

In the worst :ase if the reduced DMS table is not
realizable, we can go back to the unreduced DMS table obtained
from the FMAS table, which is'guaranteed to be realizable with
complexity comparable to that of a realization obtained by

conventional method.
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The next Theorem describes the conditions undexr which
ripples can occur in the realization of a DMS table thet is

obtained by reducing the DMS table obtained from an FMA system.

Theorem 5.1: Consider a DMS table that is obtained by reducing
the DMS table obtained from an FMA system. A ripple may occur

in the k+Z Flipflop, 1< x<m, if and only if

(75.1.1) 'aCk _Lack #o
)

for some Y s SAY Yiqs 1£71&m, il #k,

where yj is the state variable associated with flipflopkj.

Proof: Assume'ackj mjz(_z_c_) . mj3(_g_ -gjl) .

~
BY;y
Then if the system could get into . {(total) state such that
Mja(x) o M3(yg-¥5) =1 and in such a state if y;, changes

from 0 to 1, then the clock will go through a positive

transition and change the state of the flipflop , thus
rs S

__k# 0, we could show in a
GER

similar way that a ripple may occl¥.

causing a ripple to occur.

On the other hand, if

(T5.1.2) 5(: Qc
% kK — 0

DYi1 +agjl - ¥

Ck is insensitive to changes in gjl’ 1$;jlééM, and no ripples



could occur in £lipflop k.

Procedure for synthesis of an asynchronous seguential

system will, now, be described in Procedure 5.1.

5.1 PROCEDURE
(1) Transform the given FMAS table to DMS table using
Definition 2.2.
(2) Employ conventional technigues of reducing an in-~
completely specified seqguential system table [10,12,13] and
reduce the DMS table obtained in step (1), if it is reducible.
If the table did get reduced, go to step (3). If not, go to
step (12).
(3) Determine if the reduced table is level-wise next-state
unambiguous and output~unambiguous. If it is not so, go to
step (4). If it is so, go to step (5).
(4) Obtain another reduced table, if it exists, of the DMS
table obtained in step {1}, that has not been tried yet.
If no such table exists, go to step (12). If it does exist,
go to step (3).
(5) Find a state assignment for the reduced DMS +table being
examined such that exactly one state variable changes during
any state transition and go to step (6). If no such assignment
exists, go to step (4).
(6) Employ Theorem 4.2 to determine if the differential
expressions for the inputs to the clock pins of the flipflops

are integrable. If the necessary and sufficient conditions for

31.



integrabkility are not satisfied, go to step (12). If they
are satisfied, go to (next) step (7).

(7) Consider every (next-state) entry in every row that
ig different than the (present) state that it represents.

If the (presen*) state and the next state are Yy adjacent,

then as shown in Theorem 4.1 a differential term is added

to de, the differential expression for clock input to
flipflop k, 1§4&m. This is repeated for every next-state
entry in the reduced DMS table that is adjacent to the state

corresponding to the row in which it lies. When all the

differential expressions, dck‘s are obtained go to step (7A).

(7A) Find a set of compatihle integrals of differential
expressions de, 1£k<m.
(8) Compute ZC, and ch . for Jv‘:., i £k
dYy 7Y
Idign andby, 1<kdmm
(9) If there exists at least one I , say Il’ one yj, saysﬁi‘

and one %, say.kl such that

(P5.1.1) — | (__y_l 3Ck1 )i 0, ki Js

and not all of the differential terms on the left side of
the relation (P5.1.l) are don't-care transitions, then go
to the next step. Otherwise go to step (1l).

(10) Find another distinct set of compatible integrals of
differential expressions obtained in step (6;, that has not
been tried yet and go step (8).. If no such set exists go to

step (4).

32.
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(11) Minimize the set of compatible integrals of differential
expressions de, 1€k€m and obtain a combinational network

for each compatible integral in the set. From the DMS table,
find minimal Boolean expressions for the J-K- or S-R- or
D-inputs (depending upon the type of flipflops used) for each
'flipflop and realize them using logic gates. Similarly
realize output functions in terms of state wvariables and
input variables that determine them. This completes the
synthesis procedure.

(12) Take the (unreduced) DMS tahle in step (1) and‘obtain
differential expression for clock input to flipflop k,

rlékgm as indicated in Theorem 4.1.

(13) Find a set of compatible integrals of differential

expressions dC,, l€kSm. Go to step (11).
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6 . CONCLUSION

Design of asymchronous sequential systems usimg clocked
flipflops has been known for a long time. However, such

design using simpler circuits has been essentially limited

to those cases whexre the logic designer possesses sufficient

experience and inspiration to intuitively obtain such an
implementation. Smith and Roth [6,7] presented a formal
approach to realize asynchronous seguential system using
"general model of edge-sensitive flipflop"” [6,7]. The formal
synthesis procedure proposed herg is applicable to synthesis
of such systems using any commercially available clock-

triggered £lipflops.

We have shown that any asynchronous sequential system
could be realized using the proposed approach. In many cases
this approach leads to designs which are less complex, less
costly, more reliable and smaller in size than those obtained
using conventional design techniques [10,12,13]. In the worst
case the complexity of the design obtained by the proposed
approach are comparable to that obtained by conventional

techniques.
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