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ABSTRACT

A discussion of various theoretical and experimental techniques for the
calculation of long range interaction between two atomic systems at moderate
separation is presented. Some applications of these techniques for obtaining
gaseous properties are described. The forces between neutral molecules and
metallic surfaces have also been discussed and numerical values of heats of

adsorption for a number of systems have been calculated.

INTRODUCTION

Calculations of long range interaction between a pair of atoms or
between a pair of molecules are needed in several fields, such as, molecular
scattering, transport calculations in gases, atomic spectra and optics. The
exact calculation of interaction energy requires a knowledge of the atomic
wave functions describing the unperturbed systems in their ground states and
the excited states. Except for simple systems like hydrogen and helium atoms, such
exact calculations cannot be made at present. Reasonably accurate estimates
of the interaction Hamiltonian can, however, be made by making certain
simplifying assumptions about the perturbing potential and the interacting
systems (see ref. 1). A number of approximate formulae for the leading term
in the interaction energy have been developed during the last 30 years. These
formulae usually express the interaction energy in terms of such measurable
quantities as the refractive index, Lamb shift, stopping power for fast
charged particles and Rayleigh scattering cross section. It is the purpose
of this report to discuss various techniques for calculating long range
interaction between several systems. During these discussions, new techniques
for obtaining information of the gaseous properties will be indicated. The
subject of physically adsorbed gases on metallic surfaces will also be
discussed and heats of adsorption calculated for several commonly used systems.

THEORY

Attractive forces can occur between two nonpolar neutral atomic and
I " (*) " "molecular systems. ( n thls report, we w111 be malnly concerned wlth the

atom-atom long range attractive forces.) These forces are very weak and

extend out to distances of the order of a few angstroms. A brief discussion
of the theory of these interatomlc forces is given below. (A more detailed

discussion may be found in references lb and lc.)

(*)For a brief description of the atom-molecule and molecule-molecule long
range forces, see the appendix 1.



(A) Classical Theory of InteraCtion

Consider two weakly interacting spherical, atomic systems A and B with
nuclear charges ZA and ZB. Suppose that the systems are neutral and the
separation R is sufficiently large (_ l0 angstroms) to minimize charge
overlap but not too large to bring in retardation effects resulting from the
finite time for photon exchange. Let PA(r) be the charge element at a dis-
tance r from the center of the atomic system A.

R

ZA'A ZB,B

The series expansion of the interaction potential, VA(R) , at B due to the

system A, in terms of its charge distribution function, PA(r), may be
written as follows:

_fPA(r) dT

VA(R)-J IR- rJ

VAZ(R), if the charge distribution occupies a
a limited region of space.

i fp (r) r_ P (cos e)
V^Z(R) = _ + 1 j A

where dT
R

= _ #pt" (r) dT for spherically symmetrical distribution.
R j A '

In this equation, _ signifies the order of symmetry of the charge dis-

tribution function PA(r) and e is the angle between vectors r and R,

Thus the electrostatic potential to the second order, at B due to A
can be written as follows:



fPA(r) dT f%(r) r cos 6 dT
2 _(R) = +

VA(R)=ZOvA R R2

+fPA (r) r2 P2 (cos 0) dT
J 2R 3

zA MA.R R .h.R0 0 0- + + (2)
R R2 2R3

Where MA = /PA(r) r dv

R = unit vector in the direction of R and
o

R • DA " Ro o
is the tensor form of the quadrupole term.

2R 3

The interaction Hamiltonian between systems A and B, VAB(R) , can now be
written as follows:

ZAZB (ZBMA-ZAMB)"Ro MA"_B-3(MA"Ro)(MB"Ro)
VAB(R) = --7- + R2 + R3

+ Ro(ZA DB + ZB DA) • Ro + higher terms (3)

2R3

In the first approximation, each term in equation (3) is zero. In the second

approximation, the first non-zero term is the dipole-dipole interaction term,
i.e.

MA MB-3(MA.Ro)(MB • Ro)
R3

The interaction energy in the second order approximation, which is proportional
to the square of the interaction Hamiltonian, can now be written as follows:



CI CII CII I

: 7 +7 +7 + 141

where CI, CII, and CII I are constants.

Since the dipole-dipole term decreases least rapidly with,, R, this will

be the dominant term in _U^B(R)" We can thus approximate, t*_ _U^B(R)
as

follows:

CI C6 CAB

(5)

(A negative sign has been chosen, since the correction in the second
approximation to the lowest eigenvalue is always negative.)

From equation (5), it is obvious that for two neutral systems in S
states, the binding energy in the second approximation varies as R-6. This
binding is called Van der Waal's force and constitutes the dominant term in

the long range forces between neutral systems. The force constant, CAB,
depends upon the state of the two systems and their mutual orientation. A
classical calculation of CAB is not feasible because of lack of precise
knowledge of the dipole terms in equation (3). A quantum mechanical treatment
of the interaction will now be described.

(B) Quantum Mechanical Theory of Interaction

Attention in the following discussion will be confined to the leading
term in the interaction energy. The first quantum mechanical treatment of
the dipole-dipole interactions in terms of the wavefunction describing the
interacting systems was given by London (ref. 2a). His method was essentially
a form of ordinary perturbation theory which will now be applied to calculate

the interaction constant, CAB.

According to the widely used perturbation theory (ref. 3), the perturbed

Hamiltonian of an atomic system is written as (Ho + H') whereas the eigenvalues
and eigenfunctions of the perturbed system may be written as follows:

,)

E = _ En; _ = _ _ (6)n
n=0 n=0

(*)It must, however, be pointed out that in cases involving one negative ion
and one neutral atom (such as H- - H), R-8 term may be of considerable

importance in low energy scattering.

4
i



The Schroedinger equation describing the system for non-zero
perturbation is:

(H° +!' - E) _ = 0 (T)

For any two atoms in nondegenerate spherically symmetrical ground states, the

CAB

second order change in energy, which is equivalent to R-_' can be written asfollows:

cAB IH'12on (8)
R6 =S' EEO n

where summation S' extends over all states other than the ground state.

For an (H - H) system;

CAB 2 51_6

R---_-= - 6_499 e ao/n (9)

For (He-He) system;

CAB
= - Z.47 e2a_/IR6_ (i0)

R--_-
0

The variational technique gives the following values for the long range
interaction.

(H - H) system (ref. 4);

__CAB 25 6
- 6.499026 e ao/R (ii)

R6 =

(He-He) system (ref. 4a);
t,

CAB

. _ = - 1.459 e2aS/R6o (12)

• CAB

The most widely accepted values for -_- for the two systems are as follows:

(H H) system: -6.499 e2a5/R 6 1
- o ref. 4b

256
(He-He) system: 1.473 e ao/R
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Both the perturbation theory and the variational principle require a
knowledge of the atomic wavefunctions. However, this is possible only in the case
of simple one-electron and two-electron systems. Consequently, a number of
alternative techniques of experimentally measuring the interaction Constant
have been developed over the years. Some of the prominent techniques are
described below:

I. Methods based on oscillator strength determinations

II. Methods based on multipole polarizability measurements

III. Empirical methods

I. Oscillator Stren6th Methods

Dalgarno (ref. 5) has expressed van der Waals' interaction in terms of

experimentally measurable oscillator strengths. His expression is as follows:

• fA fB

_ m n (13)

CABR6 2R63 _m n_0 (_o - _m ) (EoB- EB) (_o - EA + EB - EB)m o n

where _ and fB strengths (*) defined asm n are electric dipole oscillator
follows:

2
A

fAm= 2/3 (E_- _o)I+oA, _i rA Cml

2

fB =2/3n (EB-n EBo I_o' _J rj _BI

J
where r_ and rB are the position vectors of the interacting electrons.

(*)In the central field model, the oscillator strength for a single electron
transition between (n, _) and (n' _ + l) states is defined as follows:' i

f_i_ -- t2_ + 1/ (E'n,, _ _ 1 - En,£) "_,£ -- I (14)

where _max = _ for _ . _ - i
= _ + i for _ . £ + i

iMn', + 1and
n,Z -- ! = bound-bound matrix element for the transition

The oscillator strengths can be extended,to include transitions into the

continuum where the matrix element takes the following form:

± iI= bound-free matrix element

where E = binding energy of the (n, _) electron.
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E, _, and _ are the appropriate eigenvalues and eigenfunctions. One
feature of Van der Waals forces is at once apparent from equation (13).

Suppose R_o and E_ are the normal states of atoms A and B. Both f-values
CAB

are then positive, EA _ EA and EB _ EB. Clearly
m o n o R--_- is then negative.

Hence the general theorem regarding dispersion forces: Atoms (molecules)
in their normal states attract each other.

A theoretical calculation of oscillator strengths will require a
knowledge of the appropriate wavefunctions and has been possible only in
the simple hydrogen-like systems. However, oscillator strengths are related
to a number of experimentally measurable parameters (see below) which can
be used to calculate them. Furthermore, the existing experimental values
in conjunction with oscillator strength Sum Rules (ref. 6) can be used to
obtain additional oscillator strength values.

An alternative, and more convenient, method of evaluating sums like
equation (13) has been proposed by Bell (ref. 5a). This method does not
require a detailed knowledge of individual f_ values, but enables one to
compute equation (13) directly from selected oscillator strength sums.
(Some of these sums may be deduced directly from refractive index and
Verdet constant measurements.)

Some of the experimental techniques for measuring electric dipole
oscillator strengths are described below.

(a) Lamb Shift

The energy separation between the 2 S_ and 2 P_ states in hydrogen and2 2

helium atoms is related to the relevant oscillator strengths. According to
Bethe (ref. 7), the Lamb shift is related to dipole oscillator strength in
the following manner.

_n fn (Eo - E )2Zn (E° - E )n n
k = (15)
o En fn(Eo - En)2

where ko is the appropriate Lamb shift and Other terms have been defined
above.

Thus a determination of ko, should enable one to calculate fn" A direct
measurement of Lamb shift for an atom also permits a calculation of the mean
atomic excitation potential as indicated in (b) below.

(b) Stopping Power for Char6ed Particles

The penetration of a beam of charged particles into matter is charac-
terized by two mean excitation energies, I and I', associated with the
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stopping power and straggling, respectively. According to Fano (ref. 8),
these quantities are related to the electric dipole oscillator strengths, f,
in the following manner.

S' f £n (En -E )
£n I = n ns, f ,o (16)n n

S'nfn (En - Eo) £n (En - Eo)

£n I' = S' f (En - E ) (17)n n o

where the summation, SI, includes integration over the continum but
excludes n = 0 term. _hus an experimental determination of I and I'
should provide information on fn and vice versa.

(c) Refractive Index of a Gas

According to optical dispersion theory (ref. 9), the frequency-
dependent refractive index, n, of an isotropic dielectric medium can be
written as follows:

2 )2 Ne2_-]j( f" )
n = (no + i8 = i +- 2 2 '] (18)

m _j - _ - i yj

where yj is the damping constant associated with frequency _j and

N = number of electrons!cc

_. = resonant frequency of the bound electrons.
J

Thus an experimental measurement of the refractive index of a gas at
a number of frequencies gives information about its appropriate atomic
oscillator strengths and hence the long range interaction constant, CAB.
Bell (ref. 5a) has discussed calculation of Van der Waals force Constants
for several pairs of atoms from their oscillator strength sums, each of
which can be derived from experimentally determined refractive index values.

II. Multipole Polarizability Methods

Another important measurable quantity that is often used in calculating
CAB is the polarizability of the atom. The dynamic polarizability _(9)



(*)
of a physical system, having instantaneous dipole moment M, due to

electrical waves of frequency _ and electric veclor along X is given by

(_) = 2e2 _ l(nlxlo)l2[E(n)-E(o)] (19)
x n [E(n) - E(o)]2 - (hg)2

where (nlXlo) is the matrix element of the transition n . 0 and E(n)
and E(o) are the energies of states n and o, respectively.

The fact that polarizabilities are difficult to calculate need not
disturb us for the values of _ may be taken from the experiment or may be
expressed in some other computationally convenient way (see below). London
(ref. 26) established the following relationship between the force constant,

CAB, and the polarizability, _, of the interacting systems.

3 IA IB

CAB - 2 IA + IB mA eB (21)

where l's are the ionization potentials _**jf_and m's are the electric

dipole polarizabilities of the interacting atoms.

Approximate estimates of _(_) can be made using Pade approximants

(ref. 12) and variational techniques (ref. 13). As an alternative to purely

theoretical calculations, one can obtain these values from optical dispersion

data and oscillator strength Sum _11es. Two important techniques of experi-
mentally measuring polarizability are indicated below.

(a) Refractive Index of Gases

The refractive index n of a gas of number density N can be obtained
from the Lorentz-Lorenz formula as follows:

2

3 n - i _ 4 wN _(_)2
n + i

(*)The static polarizability, according to (19) takes the form:

ex(0) = 2e2 _n II(nIXl°)2/E(n)- E(o)1 (20)
(**)Identificationof I with the ionizationpotentialoften leads to poor
results (ref.I0 and ref. ii).



For a case (gases) when n _ i, we can modify (22) as follows:

3 (n + i) (n - i) = 4 wN m(_)3

or (n - i) = 2 wN m(9) (23)

Thus a measurement of n will enable a determination of _(_). (Also a

measurement of n and an independent determination of _(9) is expected
to give information on the number density and hence the pressure of the gas.)

(b) Raylgigh Scatterin_ Cross Section

The scattering cross section of a gas for incident natural light is
related to the refractive index and hence polarizability of the atom/
molecule of the gas in the following manner (ref. 14).

2

_(_) = 8w3 (n2 - I )3 N (24)

where N = Loschmidt number.

Thus a measurement of _(1) will permit a determination of n, which can
be used to calculate _ (9) using equations (22) and (23).

IIl. Empirical Methods

(a) Thermal Molecular Beam Scattering.- As has been shown by Landau
andLifshitz (ref. 14a), the total elastic scattering cross section of low

C is given by:

energy atoms/molecules from a potential of the form R__6

ivy__ )_el. sc _v (25a)

where v is the relative velocity of the colliding atoms/molecules. Thus

a measurement of Cel.sc at several energies can be used to calculate CAB(,)
for selected atom-molecule systems. Several such measurements have been

(*)Since the experimental scattering cross section is obtained from the meas-

ured incident and scattered beam intensities, a measurement of _el sc also
enables a computation of the number density of the scattering gas. "(This

information, coupled with the temperature of the scattering gas, should enable
calculation of the scattering gas pressure. )

i0



reported for atom-atom and atom-molecule systems. The latest measured

and the calculated values of CAB are in excellent agreement (ref. 14b).
The CAB values may also be calculated from measurements of diffrential
scattering cross section at small angles.

(*)
(b) Lennard-Jones Potential.- An important empirical expression

widely used in the case of nonpolar atoms/molecules is the Lennard-Jones
potential given below.

where _ is an adjustable parameter.

The € -_! term gives an approximation to the short range repulsion

interaction whereas the -4 _ is the familiar dispersion interaction.

This expression will not be discussed any further in this report.

Summary of Experimental Parameters Used for
Calculating Long Range Forces

Using the above techniques, the values of dipole polarizabilities,

electrical dipole oscillator strength and CAB have been calculated by a

number of workers. Some representative results are summarized in tables I,
II, and III and IV below.

(*)See "Molecular Theory of Gases and Liquids" by Herschfelder, Curtiss,
and Bird (published by John Wiley and Sons, 1954).
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Table I.- Dipole Polarizabilities of Various Atoms and Ions _

Atom (or ion) _, Dipole Polarizability in Units (*)

of (ao)3
.. , ..... , . ,

He 1.38 _

+

Li 0.19 Ref. 13

H- 174.20

H 4.20 _ T
LRC

H2 5.9 -

Li 165

Na 166

K 281 _ Ref. 5

Rb 296

Cs 363 J

(*) a = 0.53 x 10-8 cm.
o

3 IA IB

(t) Calculated from London's formula, CAB = 2 IA+IB _A _B

In the case of hydrogen molecule, the ionization potential has been
assumed to be same as for a hydrogen atom. If we assume the

ionization potential of the H2 molecule to be 15.6 eV, the dipole

polarizability for the H2 molecule is calculated to be 5.49 (ao)3.
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Table II,- Oscillator Strengths for Resonance Transitions in Various
Alkali Metals

Alkali Metal f, Oscillator Strengths (Experimental)

Li 0.75 Ref. 15

Na 0.98

K 0.99 1 Ref. 16

Rb 1.00

Cs 0.98 Ref. 17

Dalgarno (ref. 5) used these values of oscillator strengths to
calculate the polarizability by using the following relation:

f f
m=_,_ n =S' n

n (E - E )2 n (E - E )2o n o n

The values thus calculated have been summarized in table I.

13



Table Ill(a).- Values of CAB for Hydrogen and Inert Gases
(refs. 18 and 19)

A__ CAB (in atomic units) (*)H H2 He Ne A

H 6.50 9.24 2.82 5.67 20.15

H2 9.24 13.30 4.21 8.56 29.60

He 2.82 4.21 1.46 3.07 9.88

Ne 5.67 8.56 3.07 6.63 20.63

A 20.15 29.60 9.88 20.63 68.08

(*)Oneatomicunit _ e2 4 = 9.63 x 10-61 erg-cm6 = 6.02 x 10-49electronvolt-cm.

Table III(b).- Values of CAA for Alkali Metals (refs. 5, 15a)

Met al s Li Na K Rb Cs

CAA, in atomic

units 1.4 x 103 1.6 x 103 3.5 x 103 3.8 x 103 5.2 x 103
(theoretical) 5

CAA, in atomic

units 0.92 x 103 1.59 x 103 1.67 x 103 3.46 x 103
(experimental )15a

14



Table Ill(c).- Values of CAB for Alkali Metals and Inert Gases
ref. 5)

CAB in Atomic Units

A_ He Ne A Kr XeExp Theory Exp Theory Exp Theory Theory Theory

Li 15 22 20 48 200 200 300 480

Na 19 25 42 52 200 210 330 530

K 33 33 53 68 370 280 420 680

Rb 27 34 51 69 260 280 430 700

Cs 31 38 59 77 250 320 480 780

(390)*

*)This value has been derived from the measurements of Easterman et al.

ref. 20).

Table III(d).- Values of CAB Calculated by Using the Combination Rule

CAB = (CAACBB)½ (also shown are directly calculated values).

CAB (Calculated) CAB (from Table Ill(c))
System in atomic units in atomic units

He - Li 45.2 22

He - Na 48.3 25

He - K 71.5 33

He - Rb 74.5 34

_ He - Cs 87.1 38

This table clearly indicates that the approximation CAB = (CAACBB)½
overestimates the van de Waals' force constant for inert gas-

alkali metal system by about a factor of 2.
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Table IV.- Values of CAB for H2 Molecule and Alkali Metals

System CAB in atomic units (ref. 19)

H2-Li 87.6

H2-Na 96.3

H2-K 128.0

H2-Rb 132.0

H2-Cs 148.0

Gaseous Adsorption on Metallic Surfaces

Another important area where long range forces play an important role is
gaseous adsorption on metallic surfaces. When neutral gaseous molecules are

adsorbed on metallic surfaces, there are two distinctly different types of

forces in play: The unsaturated valence forces leading to chemisorption and

the dispersion forces leading to physical adsorption. The chemisorption sets

in strongly at higher temperatures while physical adsorption (van der Waal's
adsorption) is predominant at low temperatures. We Will confine our remarks
only to physical adsorption.

When a visitor atom is adsorbed on a metal surface, the following forces

will come into play: (1) The dispersional force arising from the interaction

between the instantaneous dipole of the adsorbed atom (adatom) and the metallic

atoms; (2) the exchange force resulting from the exchange of electrons in the

atom and the metal conduction band electrons (this is a repulsive force);
(3) the ionic interaction(*) resulting from the eiectron transfer to the metal.

Thus the total energy of interaction, E, between the adatom/molecule and the
metal atoms can be written as follows:

E = E (dispersiOn) + E' (26)

(*)Most of the earlier treatments of the ionic interaction ignore the
electronic structure of the metal (refs. 21 and 22). Recently Wojciechowski
(ref. 23), however, has included the atomic structure of the metal surface
in the calculation of the adatom-metal ionic interaction.

16



where E' = E (exchange) + E (ionic) (26a)

E (exchange) (26b)

This is Justifiable since the percentage of ionization of the adsorbing

gases considered in the present calculations (He and H2) is not expected to

be very high at the temperatures where physical adsorption phenomenon

occurs. If, however, the charge transfer from an adsorbed species to the
metallic substrate does occur (as would be the case for alkali adatoms on

metallic surfaces, for instance), the ionic effects can be quite large.
Bennett and Falicov (ref. 24a), being most concerned with such charge

transfer and Pauli exclusion principle, developed a self-consistent field

method for evaluating the energy of adsorption and the amount of charge

transferred using a i electron model of the metal. They neglected all

dispersional effects and assumed the action of an image force for the
charge transfer problem. Good agreement with experimental results was

obtained for K, Rb, and Cs adsorption on tungsten substrate despite the

omission of dispersional effects. This indicates that if ionic forces do

exist, they usually dominate intermolecular effects. This, however, is not

expected to be the case with helium gas or H2 gas. The former is a closed

shell atom, whereas in the latter case, a molecule of H2 may become adsorbed
on the metal surface and then dissociate into two adsorbed H-atoms. These

adsorbed atoms may subsequently diffuse into the metal lattice forming a

solid solution (metal hydride). The dissociation energy (24b) of H2

molecule is (36104 _ 105)cm -I, thus making it a very unlikely process at
low temperatures where physical adsorption occurs.

Thus we have,

E _ E (dispersion) + E (exchange) (27)

Pollard (ref. 24) has treated the exchange part of the mutual energy of
an adsorbed neutral atom/molecule on a metal surface. Following a similar

technique, we have calculated E (exchange) for hydrogen and helium gases

adsorbed on several metallic surfaces (see appendix 2). The results are

summarized in table V. During these calculations, it became apparent that

the metals with larger characteristic radius, defined as the radius of a

sphere containing one atom of the metal, have lower values of heat of

adsorption, mainly due to increased equilibrium inter-atomic separation.

CONCLUSIONS

Various theoretical and experimental techniques for measuring the long

range force constant between neutral atomic systems have been reviewed.

Typical results for some commonly occurring gas-metal combinations have been
summarized. During the course of discussion of various calculational tech-

niques, new methods of measuring several gaseous properties have been
indicated. For instance, an accurate measurement of Lamb shift in an atom

should provide information on the stopping power of the gas atoms for charged

particles. The measurement of refractive index of a gas can be used to

17



obtain the pressure of the gas and similarly, the total elastic scattering
cross section in atomic beam measurements is expected to provide an accurate
measure of the number density of the scattering gas. In the case of
physical adsorption, the important role of exchange forces between the
adatom electrons and the conduction band electrons has been demonstrated.
It has been found that the heat of physical adsorption is small for metals
with large values of characteristic radii.

18



Table V.- Values of E(binding) = E(dispersion) + E(exchange) for Hydrogen
and Helium Adsorbed on Several Alkali Surfaces

E(dispersion) at E(disp) at E(disP)mi n E(exchange) E(binding) over
lO-8 cm for single l0 -8 cm corresponding entire surface of

No. System atom (molecule)- integrated integrated
over entire to E(disP)mi n metal

atom from Table over entire
metal surface integrated overIII(c) and IV metal

(see note 2) entire metal

i He + (-) 13.15 ev (-) 0.255 ev (-) 0.0137 ev (+) 0.0044 ev (-) 0.0093 ev
Lithium

2 He + (-) 15.93 ev (-) 0.220 ev (-) 0.0071 ev (+) 0.0022 3v (-) 0.0049 ev
Sodium

3 He + (-) 18.04 ev (-) 0.1800 ev (-) 0.0033 ev (+) 0.0007 ev (-) 0.0026 ev
Potassium

4 He + (-) 20.25 ev (-) 0.165 ev (-) 0.0024 ev (+) 0.0002 ev (-) 0.0022 ev
Rubidium

5 He + (-) 22.64 ev (-) 0.150 ev (-) 0.0018 ev (+) 0.0002 ev (-) 0.0016 ev
Cesium

6 H2 + (-) 51.47 ev (-) 0.870 ev (-) 0.0340 ev (+) 0.0120 ev (-) 0.0220 ev
Lithium

kO
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Table V (Cont.)

E(d_spersion) at E(d_sp) at E(disP)mi n E(exchange) E(binding) over
l0-_ cm for single lO-8 cm corresponding entire surface of

No. System atom (molecule)- integrated integarted
atom from Table over entire over entire to E(disP)mi n metal

metal Surface integrated overIII(c) and IV metal

(see note 2) entire metal

7 H2 + (-) 57.80 ev (-) 0.770 ev (-) 0.0190 ev (+) 0.0055 ev (-) 0.0135 ev

Sodium

8 H2 + (-) 76.77 ev (-) 0.675 ev (-) 0.0100 ev (+) 0.0020 ev (-) 0.0080 ev

Potasium

9 H2 + (-) 79.20 ev (-) 0.630 ev (-) 0.0078 (+) 0.0016 ev (-) 0.0062 ev

Rubidium

lO H2 + (-) 88.80 ev (-) 0.580 (-) 0.0058 ev (+) O.O010 ev (-) 0.0048 ev

Cesium

Notes: (I) The binding energies are expressed in terms of electron volts. In order to obtain the

Heats of Adsorption in units of calories/mole, use the following conversion factor:

0.17 ev/molecule = 4000 cals!mole

(2) The values listed in the fourth column have been calculated using the formalism developed by
Margenan and Kestner in their recent book entitled "Theory of Intermolecular Forces"

(published by Pergamon Press, New York, 1971).
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APPENDIX I

i. Atom-Molecule Lon$ Range Forces

The calculation of dispersion forces in this case is slightly more

complicated than for an atom-atom case, mainly, because of the anisotrophy
of the molecular polarizability. The dipole-dipole interaction potential

can be written (ref. 20) in the following form:

c( cos20UAB(R)=-7 1. 2

UAB(R) = - R_ Ii + Adisp P2 (cos e)1 (A-I)

where P2 (cos 6) is the Legendre polynomial of the second order and e is
the angle between R and the plane of molecular rotation and A(disp) is
defined below.

A(disp) = anisotropy factor for the dispersion potentia!

!l I

ii ic_ + 2c_

where all and _± stand for the polarizability of the molecule parallel and

perpendicular to the molecular axis, respectively.

Quadrupole-dipole induction effects may further complicate the atom-

molecule long range interaction calculations.

2. Molecule-Molecule Long R,an_e Forces

In this case, in addition to the angular dependence of polarizability and

the induction effects, one must also include electrostatic interactions

between the two molecules. Thus the interaction energy becomes:

UAB(R) = U(dispersion) + U(induction) + U(electrostatic)

The induction effect has been calculated by Margenau (ref. 26). The

electrostatic term may be written ref. 27) as follows:
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UAB(electrostatic) = MI M2 IMI Q2 M2 QI 1R--Y-B(I,2)+ t_ B(l,2)+ 7--B(2,1)

+ higher terms (A-2)

where M, Q, and 0 have their usual significance and B(A,B) are the
angular functions of the two molecules.
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APPENDIX II

CALCULATION OF HEATS OF PHYSICAL ADSORPTION BETWEEN

NEUTRAL GASEOUS MOLECULES AND A METAL SURFACE

At short distances, the interaction energy between visitor atoms/

molecules and the metal atoms is comprised of two parts: (i) Attractive

van der Waals interaction and (2) short range exchange forces arising from

the overlap of electron clouds. In order to obtain the total potential

energy of the system, the potential of the attractive forces must be added(*)
to the exchange term. On adding the exchange potential with the van der

Waals potential, one obtains potential functions possessing characteristic
minima. The depth of these minima determine the binding energy of the

adatom and their position gives the equilibrium separation of the adatom

from the metal surface. The values of these parameters for H2 and He gas
in contact with several metals have been calculated by Pollard (ref. 24).

Using similar techniques, we have calculated equilibrium separation distances

and the corresponding binding energies for H2 and He gas and several alkali
metals. According to these techniques, the visiting atom is represented by

a core of charge +e above the surface at a point rA and an electron with

the position coordinate ra. The solid is represented by atomic cores of

charge Zje at points rj together with electrons at points rj. The
wavefunction for the whole solid-atom system is taken to be:

= C+ _l + C_ _2 (A-3)

where C+ and C depend on the spin function of the electron in the
visiting atom. The total energy of the system is given by:

(*)The addition of first order exchange forces to the second order dispersion

terms may not cause great error if the exchange forces are small at the

equilibrium distance between the adatom and the metal surface. This, indeed,
is the situation in the cases considered here.
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where

2

_ _2 V2 h2 i Zj ZL e e2
H = 2m a - 2-ram_ V2 + _' + _

j J• J,L rjL L rAL

2 2

Zj e Zj e 2 2- Z -Z _e e
J,k rjk J rja k rAk rAa

2 2

i _' e + _ e (A-5)

+ _ jk rj_ j raj

The exchange terms refer only to those electrons in the solid having the same

spin as that of the electron in the visiting atom. The exchange interaction,

A(Ps,Dm) , is given by:

e2 Jp(ps)G(Dm)+ q(Ps ) IP(Ps)- i I F(Dm) 1

A(Ps,D m) = ii _ p(ps ) F(Dm)I (A-6)

where

2D
m

l(F(D m) = _ i + e a

2 D
m

°IOmla

P(Ps ) = 3 I(_) Cosh (_)- Sinh /_)]/(_)3
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V
= -- containing one metal electron of a

Ps radius of sphere of volume n

given spin

21"3/ where r is the characteristic radius of the metal.
= rs' s

r = characteristic radius of the metal
s

1/3

= (Av. No. ) (Density of metal)

D = equilibrium distance of the adatom from the metal surface. Its
m

numerical value is obtained from (Dm/Ps v__Srs)values tabulated by

Pollard (ref. 24).

a(He) = 0.62a
O

a(i2) : 0.95a°

The total exchange interaction of both electrons in He and H2 will be twice
that for one of them when the metalcontains equal numbers of both spin
varieties and when the distance from the metal is large enough to make double

exchange integral negligible as is the case for VDW forces.

The various results are summarized in Tables VI to VIII.
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Table VI.- Summary of Equilibrium Separation Distances Between Adatom
or Admolecule and Metal Surfaces

Meta_l MolAdSorbedGas _ "

Atom or

ecule H2 He

Li 2.94 x 10-8 cm 2.65 x 10.8 cm

Na 3.44 x 10-8 cm 3.24 x 10-8 cm

K 4.08 x 10-8 cm 3.80 x 10-8 cm

Rb 4.32 x 10-8 cm 4.08 x 10 -8 cm

Cs 4.64 x 10 -8 cm 4.40 x 10-8 cm

Table VII.- Summary of Exchange Interaction Energies Between the
Adatom or Admolecule and the Metal Surface

Metal gas .....

atom or

!ecule H2 He

_i (+)0.0120ev (+)o.oo44ev

Na (+) 0.0020 ev (+) 0.0022 ev

K (+) 0.0020 ev (+) 0.0007 ev

Rb (+) 0.0016 ev (+) 0.0002 ev

Cs (+) 0.0010 ev (+) 0.0002 ev
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Table VII.- Summary of the Binding Energies Corresponding to the

Equilibrium Separation Distances Between the Adatom or
Admolecule and the Metal Surfaces

Adsorbed Gas

_Atom or

"_lecule H2 He
Metal

Li (-)o.o22oev (-)O.OO93ev

Na (-) 0.0135 ev (-) 0.0049 ev

K (-) 0.0080 ev (-) 0.0026 ev

Rb (-) 0.0062 ev (-) 0.0022 ev

cs (-)o.oo48ev (-)o.oo16ev
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