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Abstract

The angles of propogation of the wave fronts
nggociated with duct modes are derived far a cylin-
drfcal duct with soft walls (acoustic suppressors)
and a uniform steady flow. The angle of propaga-
ticn with respect to the radlal coordinate (angle
of ineidence on the wall) is shown to be a better
correlating parameter for the optimum wall imped-
ance of spinning nodes than the proviously used
mode eutoff ratin, foth the angle of incldence
upon the duct wall and the propagation nngle with
rospect to the duct axls are required to describa
the attenuation of a propagating mede. Using the
modal propagation angles, a geometric acoustics ap=
proach to suppressor acoustic performance was de-
veloped, Results from this approximate method were
comparcd to exact medal propagation cnleulations to
check the sccuracy of the approximate method. The
results arve [avorable except in the {mmedigce vicin-
ity of the modal optimum fmpedance where the approx-
imate method ylelds ebout one-half of the exact
maximum attenuation.

Introduction

The angles of propagiution for the wave [ronts
making up an acoustic mede arc derived for ducts
with soft walls (acoustle liner). These ave the
angles which the velecity vector normal te the
local wave front mekes with the three coordinate
axes, The angles associated with the group veloe-
ity vector are alsc dorived, This ceffort is an ex-
tension of the work of Ref, 1 in which both approx-
imate and exact waye propagation angles were de-
rived for o cylindricel duct with uniform steady
flow. In Ref. 1, only the hardwall results were
given and the emphasia was on the relationsghip of
the propagation angles in the duct and the far-
field radiation pottern. This paper will consider
ducts with soft walla and the relationship of the
propagstion angles to acoustic liner performance,

In Refs. 2 to 4 the optimum acoustle impedance
and the maximum pogsible attenuation for an acous-
tic mode were shown to be intimately connccted to
and correlated by the mode cut-off ratio. The mode
cut-off ratio is g somewhat abstract parameter,
particularly for aoft wall ducts, and an explana-
tion of {ts effectiveness as a correiation parame-
ter waas that it was connected to the angle of in-
cidence upon the liner wall, This paper formalizes
this connection and shows that angle of Iincidence
ig the more fundamental parameter and in fact cor-
relates the optimum impedonce vaolues becter than
does the cut-off ratie,

The maximum possible attenuation for a mode
woe also shown to be approximately correlated by
the cut-off ratio. However, the collapse of these
attenuation curves wds not as good ss desired and
gome large errors could sccur particulerly near
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mode cut-aff when using this correlation. A gim-
ple geometrie approach aimilar to that of Ref, 5
was tried. ‘This approach considers that the num-
ber of encounters that the wave has with the soft
woll is determined by the wave angle with respeet
to tha duct axis and by the duct size. The acous-
tic power remaining after cach encounter with the
wall is related to angle of incidence ond the wall
iwpedance propercties. When these two concepts are
combined in o simple model, the acoustic power at-
tenuation for the made can be ecalculated, The re-
sulting cquation 1s shown to be ¢xact for o rect-
angular duct without Mach number and for only
slipghtly gsoft walls, ‘This approximate methed is
extended to inelude cylinarical ducts and uniform
duct flow. Results from the approximate model are
compared with the exact attepuation results for
geveral conditions Including scoustic impedances up
to the optimum for both rectangular and cylindrical
ducts with flow.

The purpose of this paper is to provide the
foundation for a simpic geometric acoustics ap-
proach which may he useful for complex suppressor
geometries and multimodal noise sources for whish
exact methods are inelficient and extromely diffii-
cult,

Symbols

¢ speed of sound, or the magnitude of the
wave veloeity vector normal tn a plane
wave front, m/sec

ci components of vector e, § = %, r, %, mfsec

cR resultant veloclty vector, = ¢

D duct diameter, m

£ frequency, Ha

H rectangular duck height, m

Ip axinl acoustic intenslty leaving end of
suppresgor, N/m sec

Ir axinl pcoustic intensity entering suppressor, -

. N/m sec

Iy axfol acoustic Iutensity of reflected wave

" off sofi wall, N/m soc

Ix axial acoustie Intensity of incidence wave
on soft wall, N/m scc

L 1

Im Bessel function of the first kind of
order m

3 rectangular duct mode number

k wave number, w/c, m”

ke radial wave number, m-l

kpp combined radial-circumferential weve num-

ber (a/rq), m-1
axial wave number, m-!
clreumferential wave number, m
suppressor length, m
Mach number of uniform steady duct f£low
Mach number of uniform outside eof boundary

layer
~ninning mode lobe number
~eougtlc pressure, N/m
radlal coordinate, m
o duct radius, m

~1

é!:zzﬂéfér

H o3



R magnitude of complex cigenvalue
t time, soe
X axtal coordinate, m
&x axial distance between encounters of acous=-
tic wave with duct walls, m
y transverse rectangular coordinate normal to
duct walls, m
z tranaverse rectangular coordinote parallel
to duct walla, m
complex efgenvalue, Rel®
rezl gnrt of complex quoncity, see Eqs, (12),
13
boundary layer thickness for 1/7th power
veloelty profile, m
dimensicnless boundary layer thickness, &§/r,
Erequeney parameter, £0/e or fH/C
specific acoustic resistance
optimum specific acoustlic resistance
radial mode number
mode cut-off ratio, see Eq. (22)
attenuation or damping coefficlient, see
Eq. (7)
propagation coefficients, sce Eqs. (7), (8)
circumferentinal coordinate, radians
phase of eigenvalue «, radlans
wave front propagation angle relative to
radial conrdinate, angle of incidence on
the wall, deg
wava front propagation angle relative to
axlal coordinate, deg
wave front propagation angle measured from
y coordinate, deg
wave front propagation angle relative to
circumferential coordinote, deg
gpecific acoustic reactance
optimum specific acoustic reactance
resultant axial propagation angle in duet,
deg
L resultant propagation angle measured from
radial coordinate, des
$b resultant propsgation angle measured from
circumferentinal coordinate, deg
t eircular frequency, radians/see

o TR

Q\,-ntstnﬁa [

=3
g2 p peon

o

Gubscripts;

1 equal ko x, v, or ¢

m mode indices, m lobe p radial order
R indicates real part of complex quantity
1, evaluated at outerwall

Development of the Propagation Angles

! The initial development of the expressions for
ithe propagation angles con proceed exactly ns in
‘Ref., 1. 'The wave equation in a circular duct with
‘a steady flow can be expressed as

i
a%p _am 3%  a%p
. y2y 92 _ =M o'F . o7F
(L - u% w?  © oxat © 5.7
2 2
%a1;+1apalap (1)

2 w2 &2 pe?
|where %, r, and ¢ are the usual cylindrical
‘coordinates, t is time, M 1is Mach number, ¢ the
gpead of sound, and P is the acoustic pressure.
The sclution to Eq. (1) for the pressure is,

“nur) (Loe-hee o x-Lmd

; Py, = m( = o)

where m 1s the number of lobes for the spinning
mode (the transverse oxder), p 1is the vadial order
numbar of the mode, kx,mu 1a the oxial wave nui-
ber, & 1is the eircular frequency, r, is the outer
wall rndtus,'uﬂu is the eigenvalue of the my
mode, and J, s the DBessel [unction of tha firast
kind and order m.

Wave Numbers and the Phase Veloclty

Propagation Angles

For brevity, the m: subscripts will be de-
leted from here on, and it will be understood that
o gingle (but quite general) mode is being con-
sidered. Whon Eq, (2) is inserted into Eq. (1)
the result is,

2 ik
29
(ﬁ) * kG om k2 - oMk, 4 M2 = (k- M2 (3)

The first term in Eq. (3) is & combined radial-
tronsverae wave number squared which could be de-
noted by,

o
El *)
Ty rd

This combination of wave ‘wmbers is the cousp of
the trouble in.defining sme of the propagation
angles in cylindrical ducts,

The 1ith propagation angle can be shown (for
hardyall ducts),l to be given by,

-t L (5)
7 ky
inJh k(l-m-k-)

where i =71, ¢, or %, and @ is the angle be-
tween the normel to the wave front and the 1th
coerdinate axis, and the denominator of Egq. (5)

wag obtained from Eq. (3)., The angles @, @p

and @y cen be seen in Fig. 1. fThe vector c is
normal to the local wavefront, The other angle
set %1 ond the resultant vector cp due to addi-
tional convective effects also shown in Fig. 1 wiil
be discugsed later.

cos Py =

Before proceding further, onc must recognize
that, due to the soft wall boundary condition, the
quantities o and k, in Eq. (3) are complex num-
bers  Only the real parts of the wave number are
related to propagation wave numbers for use iIn
Eq. (5) while the imaginary parts represent damp-
ing terms. The axial wave number can be rewritten
aa,

ky = k(T = i0) (6)
and this alonz with Eq. (3) yilelds,

1M + 1‘/1 - Q- MZ)(W%I)?'

0+ i1 = M

1 -

and thus,
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. M + -{l—i [ .- Mz)(,'-%)z cos 29 + ]/1 + (1 - MZ)(%)A -2(L - riz)(%)z cos 2:9]

1 - 2

where R and § ore the omplitude and phase of
the complex eigenvalue & and the frequency poram-
eter is,

or

o, i
ﬂ'ﬂ‘c c (9)

Equation (8) is obtnined by solving for the imagi-
nary part of Eq. (7).

To ¢btain the angle of incidenee ac the liner
wall (gp) in a simple form, Lhe assumption is mnde
that the combined radiol-transverse complex wave
number can be split as follows,

oL

2 2
2 afZ 2 2 o 1l m
o (5} = +id =+ (3) (10)
Thin essumption was used in Ref, 1 for hardwall
duv;its and was found to provide adequate results
near the outer wall when compared to on exackt solu-

tion using Hankel functions. The real part of
kr(kr,n) for use in Eq, (5) can then be ebtained ns,

‘ 2 2 my
- oy m¥ |k 2 (__2)
ke R Real (ro) (r) ™ Real]/ o p
(11)

The propagation angles will be calculated only at
the outer wall {r = r,) where the approximations
uged here are reasonebly aceurate.™ Ilet,

ke R)g, ™ o (12)

thus

‘(* 1

pe= -—-;_ (Rz coB 2 - 2+ Vi - 2m2R:2 coa 2@ + m") 2
2

(13)

The circumferential wave number (at the outer wal.)
o8 seen from Eq., (10) is,

m mk
k= (14)
which {s real unlike the and k..

‘The real parts of the wave numbers can now be used
‘in Eq, {5) to ohtoin,

cos @, = I == (15)

! ‘/12 + (wn) + (ﬁ)
cos @ = B —— (16

¥ 72+ (T-FETT) + ;-r“-:i)
cos My = Ee an

(8)

Group Velocity Propegation Anpglos

Equatlona (15} to (17) deacribe the oriente-
tion of the wave front at the outer wall of the
eircular duct and can be seen to fnclude the duct
Mach number through the propagation coefficlent 7.
There £8 an additional Mach numboer effect as shown
in Flg. 1 which causes a delift in the axfal veloe-
ity and produces a resultant vector (ep) of propa-
gation which is not normal to the wavefront. ‘This
vector is assocloted with the group veloeity' and
the angles of propagation associated with cp will
be of use in a later diseussion, These angles con
be derived from the geometry shown In Fiy. 1 using
the fact that the vector c¢M alters enly the =

component of velpeity but not ¢y or cp. These
angles con be cxpressed as,
M+ cos gy
cos ¥y ® - (18}
V1 M2+ 2M con gy
cos G,
cos ¥, = (19)
V1i+ M2+ 24 cos gy
and
cos G
cos ¥, = {20)

V1 + M2 + 2M cos g

Correlation of Optimum Impedance
with Incidence Angle

The angle of ineidence on the soft wall
(Eq. (16)) wams used to correlate some of the opti-
wum impedance conlculations reported in Ref, 4.
These caleulations were made for e cylindrical
duct with a 1/7th power boundary layer and a uni-
form core flow outside of the boundary layer.
Standard modal solutions were uged within the core
flow and were coupled to the wall impedance by a
Runge-Kutta integration through the boundary layer, '
These correlations are shown in Figs. 2 and 3.
these caleulations include several lobe numbere
(m) and the entire ronge of radial modes from well
propagating to near cut-off. Comparison of Figs.2
and 3 with Figs. 12 and 13 of Ref, 4 show that the
angle of incidence ecorrelates the modal optimum
impedance somewhst better than the mode eut-off
ratio did in Ref, 4. Using cut-off ratio® the
first radial mode for m = 5 showed some deviation
from the correlation while m = 9 and 16 had quite
pronounced deviations. This deyiation does not
oppear when incidence angle is used, This improve-
ment can be most easily explained by using the
hardwall incidence angle given in Hef, 1 which was

1- M l'(&.@)z
ol G

where the cut-off ratio E 15 given by
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For higher radial modes (m »> m) or for small m
tha teym V1 - (m/a)< approaches unity, Equa-

tion (21) then shows that for copstant Mach number
M (as used Iin Figs, 2 and 3) the ongle of incidence
(Wr) 1s o function only of cut=off ratio and either
parameter is aufficlent to correlate the optimum
impedance, However, for large m and low radial
order o« =~ m, the term V1 ~ (mfa)? in Eq. €21} in-
fluences the incidonce angle and causes scavter in
the correlation ps phown Ln Ref, 4, At suffiecient-
ly high lobe numbers the spliteing of the radial
and transverse wave numbers as used in Eq. (10), a
vectangular coordinate approximation to the cylin-
drical coordinate system, will lose validity and
some geatter in the corrlestion will agoein be in-
troduced. This latter problem can probably be
overcome by extending the exoct Hankel function
solutions of Ref, 1 to soft walls.

(22)

The optimu~ impedance correlation shown in
Figa, 2 and 3 w.. e for propagation calculations
contafning a boundary layer, The angle of Lnci-
dence calculnted in each cage was valid only in the
uniform £low reglon outeide the boundary layer,

A complete geometric approoch to duct propogation
must contain the refractive effecta on the acoustic
wave as it passes through this boundary layer,

"This is emphasized by the coleulated optimun imped-

ances shown in Figs, 4 and 5 for three boundary
layer thicknesses, Note that for angles of inci-
dence (Pp) sbove 65° there is a dramatic effect of
boundary layer thickness upon optimum resistance
(Fig, 4) while the reactance (Fig., 5) 18 affected
down to about 50°. For a given set of propagation
angles outside of the boundary layer there is a
unique optimum impedance but the boundary layer
acts as on impedance transformer between the uni-
form flow region and the wall, Fortunately for
modes neare: to cut-off, the wave motion is not
directed Into the veloelty gradients {mainly radial
or circumferential) and the boundary layer has much
leas effect upon the propagation of these modes,

An alternote correlation of one set of calcu-
lacions {c =~ 0.005) in Fig, 5 is shown in Fig, 6.
Here the resultent incidence an%Le (w,) is used
rather thon @y, Reecall thaot ¥ contasins the
axial veloeity drifc effect and is amssoclated with
the group velocity, Some of the scatter ip che
polnts nearer cut-off (small incidence anglu) may
‘have been reduced by using $r and the numearical
value of ineidence angle indicates more of a normal
‘incidence than does mr(¢r < @p). The Vi seem ko
‘have more physical significance than the 4. For
example in Ref. | it was shown that ¥, — 90° at
‘mode cut-off while ¢4 does not,

From the above discussion it is thus proposed
.that the angle of incidence of the wave frunts on
‘the lined wall is a more fundomental and obviously
‘more easily visualized parameter than the mode cut-
off ratio for correlating liner optimum impedance.
However, the maode cut-off ratic is still considered
:to be an extremely useful parameter for liner de-
:gign purposes with the previous discussion serving
;to explain the remson for its effectiveness and
_pointing out its limitations,

Estimotion of Attenuation Using
Propogation Anglos

Tho previous scction deelt only with the con-
nection of optimum impedanse with wave angle of in-
cidonce., To complete the discussion some estimote
of sound power attenuation must be made. An csci-
mate of liner performance can be obtained using the
method of Ref. 3 along with the fmproved impedance
corralations of Ref. 4. Noth of these references
are based upon mode cuteoff ratio. lowever, in
this section a geometric approach similar to thosc
of Refs, 5 and 6 will be used, This ray acoustlics
approach using the propagation angles derived in
the previous section elearly Lllustrates the impor-
tant aspects of the sound propagation phenomena in
1ined ducts which nre usually obscured in the phys-
ical acoustics approach. It {s all the more ratis-
factory if usnble results Eor liner design can be
obtained, The flrst example will consider the sim-
ple two dimensionzl rectongular system without flow
to illustrate th - prineciples and provide motivation
for an expoctati.n of ugeful results. The analysis
will then be extended to ineclude uniform flow in a
rectangular duct, Using these mrinciples an acous-
tically lined cylindrical duct will then be con-
pidered,

Rectanpular Two Dimengional Duct, M = 0

Figure 7 shows a rectangular duct without flow
with a transverse mode propagating and bouncing be-
tweon the soft walls. The angle of incidence be-
tween the velocity vector normal to these waves and
the y coordinate i ¢, while the angle of the
waves with respect to the duct axis is 4. The
axlal distance between encounters between the wave
and the soft wall 1s,

H

AX = Ton n

(23)

where 1 is the duct height., The totasl number of
wall bounces in a duet of length L is then

Lok
Now s = & tan 9y (24)

The ratio of axial flux after a wall bounce com-
pared to the incident wave is given by

I; (92 + Xz)coagmy - 26 cos Gy +1 25)
Ih (02 + ¥2)cos?py + 20 cos Py + 1

where 6 and ¥ are the wall specific acoustic
resistance and reactance. Note that Eq. (25) in-
volves only the wall properties and the angle of
ineidence. Equation {25) was derived in the same
way as the absorption coefficient is conventionally
derived, A plane wave i3 assumed to he incident
upon a plane absorber and the angle of reflection
i8 equal to the angle of incidence. The absorption
cocfficient 16 1 - TR/1%.

After the N bounces in the duct the ratic of
the final to initial axial acoustic intensity is,

Ir 1\ .
T \F (26)



Since only ono mode {s considered here the attenua-
tion can be obtained from the intensity ratio as,

-

Ip 1
AdB = 10 Log " 1N Tog = (1))
I I,

Now consider the often studied problem of
nearly hard walls which is quite a good approxima-
tion to the exact physical ocoustics solutions ex-
eept in the vieinity of the optimum impedance.
With only slightliy soft walls,

1y
Sl —t (28)
Ty cos By (82 + %%)
and
Iy
-46
bt Fm 1n 10 cos @y (0% + %%) @)
£ Y

Equations (28) and (29) were derived using Eq. (25)
with the assumption that impedance is very large.
To the first order of approximation, the axial
propagation angle and the incidence ongle for the
jth transverse mode are given by

]

tan Py A —— e (30)
A Vi- am?

and
cos 9y ~ (1)

Equations (15) and (16) were used with y replac-
ing r, m= 0, and the nearly hardwall approxima-
tion was uped to evaluate the eigenvalues., When
Eqs. (24), (29), (30), and (31) are used in Eq. (27)
the result is,

-17.37 @ {L/H)
V1 - /m)? (6% + x?)

This equation for attenuation ia exactly the same
as would be obtained from the physical acoustics
‘approach to the game nearly hardwall problem. Thus
ot least for rectangular ducts without steady flow
‘and with wall impedance not in the vicinity of the
optimum impedance, the ray scoustics approach using
the angleg of propagation and the acoustic flux
.loss per wall bounce pives very preclse attenua-
‘tions.

AdD ~

(32)

‘Rectangular Duct with Uniform Flow
] .

; With a finite Mach number im the duet Eq. (27)
jremains valid but che number of encounters of the
|wave with the wail (Eq. (24)) and the ratic of the
"ineident to reflected axlal intensity (Eg. (25))
'mugt be modified. The number of bounces must now
'include the axlal propagation angle associated with
ithe group velocity (¥y). Equation (24) thus be-
;comes,

. N = i{l" tan ¥y (33)

where Eq. (18) is used for ¥,.

The ratlos of axisl intensitics were derived
as Ln the previoue section with the addition that
uniform £low must be considered in the wave equa-
tion and the continuity of displacement must ba
usod at the soft wall, The derivetion proceeds exe
actly as in Ref, 7, except that the relation be-
tween the wave numbers and the propogation angle
wag lncorrectly oxprossed Ln Ref, 7 (effect of M
on angles ignored), The axial intensity ratio (re=-
flected to ineident) is,

I

2 Tre? 4 2y con? 2
= [(9 + ¥2)cosZyy (L + M 8in 9,)
X

= 26 cos @u(1 + M sin ty) + 1]//
Bez o+ xz)cnazwycl + M sin @y)z
+ 26 cos Hy(l + M sin o) + 1] (34)

Note that Eq. {34) reduces to Eq. (25) when M = 0.

For the approximare calculations te be shown
later, Egs. {15) and (1%) were used with y re-
plocing r oand with m= 0, If a three dimension-
al rectangular duct caleulation is desired with a
transversly spinning wave considered, m could be
retained and the 2 coovdinate would just replace
the ¢ coordinate,

Cylindyical Duet with Uniform Flow

For & cylindrical duct with uniform steody
flow the results of the previous seetion can be
used directly as a flrst approximation, Of course
¢, must be used instead of 9, in Eq., (34). As
ghown in Ref, 1, the npproximn{ions leading to
Egs. (15) to (17) are valid only near the outer
wall because of curvature effects in the cylindri-
cal duckt, Equation (34) represents the physics of
refleetion and absorption which cecur at the wall
and it should thus remain valid. However, the num-
ber of encounters of the wave with the wall as ex-
pressed by Eq., (33) involves the propagation pro-
cess throughout the entire depth or radius of the
duct. For a rectangular duct $x does not change
with distance from the wall and Eq. (33) is thus
valid, For a cylindrical duct, as discussed in
Ref, 1, ¥, 4is a function of radius and is always
equal to 909 at the duct centerline., Thus using
the value of ¥, at the woll, as done here, will
underestimate the number of bounces somewhat, and
the opproximate calculation of attenuation will be
less than the exact attenuation. Some integrated
value of ¥, must be used rather than the vrlue ak
the wall, but this has not yet been accomplished,

Comparison of Approximate and
Exact Attenuations

A series of exact single mode propagation cal-
culations were performed as in Ref. 8, These cal-
culations were made for both rectangular and clr-
cular ducts., In each cage a constant damping coef-
ficient (0) was used and the propagation coeffi-
cient (1) was varied to produce a closed loop in
the wall impedance plane (see Fig. &4, Ref. 8)}.
Several points were used along this constant atten=



uation contour and the values of the variables
needed to calculate the approximate nttenuation

{6, %, 7, Ty R, ) wore recorded. 'Thus at thesa
points the exact and approximate attepuations could
be compared. The damplng value was then increased,
repeating the some procedure, until the damping
contour collopsod to a point representing the maxi-
mum possible attenuation for the mode used. The
results are presented in the following cections,

Rectapgular Duct

The ratie of the attenustion by the approxi-
mate caleulation using the geometrlical acoustics
epproach. to that of the exact phyaslcal acoustics
coleulations are shown in Fig. 8 for zero steady
flow, The absclesa vepresents the degrec of atten-
uation uged for the caleulations with the value of
unity representing the maximum possible attenuation
for this r:de, the second symmatric mode., The sym-
bols represent the average attenuation for the sev-
eral points on a given exaet damping contour whilae
the bars represent the spread of these calculations,
The averages arc not unfque, particularly vhere a
lorge spread 15 present, since they depend upen the
particular cholce of points along the damping con-
tour, Sevaral obpervations can be made from Fig. 8.
As damping is reduced (far from the optimum imped-
once) the approximate and exact attenuations are
acen to be in better agrecment with very lictle

- peatter. This agrees with the comments made per-
taining to the limiting Eq. (32) which gtates that
the approximate equation is exact far from the
optimum impedance, Up to about one-half of the
maximum attenuatlon the average atcenuation around
a contour is very good although considersble scat-
ter oceurs, As the optimum impedonce is approached
the approximate caleulstion gives only about one-
half the attenuation as the exonct ealeulaticn., At
first glonce, the 50 percent ervor possible here
both at intermediate and high damplng may oppear
unaceeptable., Howaever, the upper half of the domp-
ing range represents a very small portion of the
impedance plane which would be very hard to realize
precisely in a real application, Furthermore, in a
multimodal excitation aituation, where approximate
techniques would be most valuable, a given wall im-
pedance would be near to only a small fraction of
the modal optima and errors invelving only o few
modes (assuming near equipartion of energy) would
not seriously affect the final result. Algo the

. appatrently correct averaging where considerable
seatter occure would help the final multimodal re-
sult, The reason for the scatter observed will be-
come more clear In @ loter discussion.

In Fig. 9 results are shown for the same mode
"as in Fig., 8 except that there iz a steady inlet
i flow of M = =0,4. The repults are much the saome
"as in Fig. 8 with the low damping points showing
} agreement between approximate and exact attenua-
i tions which indicates that the Mach number effects
| Were handled properly, Several points are showm at
¢ the {ntermediate damping point where the large
, acatter occurs. Two points are seen to be about
' 50 percent high while the bulk of the points on
thia damping contour are within about 20 percent of
the exact attenuation.

To study the scattering of the approximate

- atteuation calculationa, s complete scan over all
valuzs of propagation coefficient T was made
along o constant damping coefficient contour of

0 ='0,02, The approxlmste to exact attenuation
ratio {a shown in Fig. 10 alopg with the inecidence
angle @y and the magnitude of the cigenvalue R,
This sean involves several closed loops in the im-
pedance plane and of course encomposses several
moden, In Fig, 10(a) the scatter in approximate
attenuation i scen to be a smooth oscillatory
funetion, The secatter ie scen to be smail for the
higher modes (mode number noted pear top) and
increases for the lower modes, ‘The value of domp-
ing used for this colculotion could not be attained
by the first moda, There Ls no error ot the bor-
dars of each mode and the average within a mode can
be seen to be about unity in the attenuation vatlo.
If a cross plot were shown batween Figs, L0{n) und
(c) it would be seen that the scatter is cyclic
with eigenvalue amplitudo. The scatter seems to
be lesst for the higher, nenr cut-off modes nearer
to normal incidence (smsll %,) and to increaso
with angle of incidence. The generality of these
regults have not been tested,

Cylindrical Duct

Figure 1l shows comparisons of approximate and
expet ottepuations for a eylindrical duck for the
second radial of a seven lobed spinning mode., The
sentter is seen to be extremely smoll when compared
to Figs. 8 and -9, This 18 probably due to the high
frequency (n = 20 versus 5) nu compared to the
rectcanpgular duct reasults., The same roll-off at
high damping is secen here as in the rectangular
duce, A difference occurs at low damping with the
agymptote being sbout 0.9 rather than unity as pre-
viously seen, This {8 no doubt due te the undar-
estimation of the number of encounters of the wave
with the wall duec to using the axial propagation at
the wall rather than an integratud value over the
duct. Recall that axiel propagation angle is con~
stant over a rectangular duce but increases to
90° at the center of a eylindrical duct.,

Concluding Remarks

The angle of incldence has been shown to be a
more fundamental and more illuminating parameter
than the mode cut-off ratio for correlating modal
optimum impedances, The liner performance has been
shown to involve both the angle of ineldence and
the axial angle of propagation slong with the usual
parameters of wall {wmpedance and duct geometry.

The use of these propagation angles in a ray acouar
tics propagation approach shows great promise al-
though some additional cffort is still needed to
perfect this approach. If the ray acoustics ap-
proach can be perfected it would be an extremaly
powerful tool to solve proklems in soft wall duet
configurations which can not be presently handled
except by costly numerical procedures. An example
is refraction effects in variable area ducts with
flow provided that the reflection effects are not
dominant. Another important point {s that the ex~
pression of modal propertics in terms of propaga-
tion angles L8 nearly equivalent to an expression
in terms of cut-off ratio. The some statements can
thus be made in terms of propagation angleg as were
made in Refs. 2 to 4 in terms of cut-off ratilo.
Modes with nearly equivalent propagatlion angles
will behave similarly in on acoustic liner. Agroup
of modes with similar propagation angles can thus
be treated as an entity without the need to distin-
Builsh between the individual modes. This is espe-



clally significant if a lorge number of propugating
modas are avallable and carrying significant pcoug-
tic power. If a direct meagurement of acoustic
power in the duct can be made ag a function of ine
croments in the propagation angles, then a signifi-
cant simplification will bo obtained. It is posai-
ble that propagation nngles may be casier to mea-
sure than cut-off ratios, although either one would
be sufficient, This problem is curroptly being
studied,
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Figure 3. - Correlation of optimum reactance with wave in-
cidence angle on the wali, n = 15, M, = -0.4, € = 0.05.
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Figure 4, - Effect of boundary layer thickness upon optimum
resistance-incidence angle correlation, n = 15, M, = -0.04.
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Figure 7. - Sketch of wave front and propagation angles in a rec-
tangular duct,
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Figure 8, - Comparison of approximate and
exact calculated attenuations over the
complete attenuation range, rectangular
duct, second symmetric mode, M = 0,
n=5
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Figure 9. - Comparison of approxiinate and
exact calculated attenuations over the
complete attenuation range, rectangular
duct, second symmetric mode, M = -0. 4,
n =5
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Figure 10, - Propagation calculations made
over entire range of propagation coeffi-
cient, 1, rectangular duct, M =0, o =
0.02, 0 = 5.
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Figure 11, - Comparison of approximate and
exact calculated atienuations over the com-
plete attenuation range, cylindrical duct,
seven lobed spinning mode, second radial,
M=0, n =20
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