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COMPARATIVE STUDY OF FLARE CONTROL LAWS

By

A. A. Nadkarnil

1. INTRODUCTION

The purpese of this report is to present the development of a digital
3-D automatic contrel law designed te achieve an optimal transitien of a
B-737 aircraft between various initial glide slope conditions and the
desired final touchdown conditien. The digital contrel law develeped here
is essentially a time-invariant state-estimate feedback law, and the design
procedure is capable of using the Microwave Landing System (MLS) under
development by the Federal Aviation Agency (FAA). The study of a curved
flight path leading to a steep final approach and touchdown under low
visibility cenditions is part of the Terminally Configured Vechicle (TVC)
program, spensored by NASA/lLangley Research Center. The geals of this
program include the reduction o -~ireraft noise in communities sumrounding
airperts, the reductien of fuel . :asumption, the reduction of the effects
of adverse weather conditiens on aircraft operations, and the efficient
use of airsPace in cengested terminal areas through the use of the
Microwave Landing System. Another goal is te increase the overall
efficiency of the operation in the final phase of the flight (approach
and landing) by reducing the heavy worklbad on the pilot by automating

as many routine operations as possible.

The major reason for the use of steep glide slopes is the resultant
noise reduction in comparisen with the currently used 2.5° to 3° glide
slopes with the Instrument Landing System (ILS). The steeper glide slépe
reduces the nmiée levels perceived on an identical segment of the ground
for twe reasons. First, at equal distances from the touchdeown peint, the
aircraft flying a steeper, say a 6° glidé slope, is at about twice the
altitude compared to that flying a 3° glide slope. This difference in

altitude causes a considerable reductien in the noise level perceived on

1 Research Assistant Professor, 01d Deminien Univefsity Research Foundatien,
P. 0. Box 6369, Nerfolk, Virginia 23508.




the ground even if the two sources generate identical noise levels. Second,

an aircraft flying a steeper glide slope requires a lower thrust setting,

and this causes further reduction in the neise level perceived on the ground.
The reduction in thrust setting has the added advantage of reducing the fuel
consumption during the final phase of the flight path. The ability to fly
varying glide slopes may also provide an effective method to avoid encountering
vortices generated by larger aircraft. This versatility may result in a

more efficient use of the airspace.

The use of steeper glidepaths in the final phase is not without its
attendent disadvantages. The lower thrust setting and the higher sink rates
allow considerably less reaction time for the pilots to take any corrective
actions in the évent of atmospheric disturbances, mechanical failures of
the system;, etc. In these circumstances, the role of an automatic contrel
law to relieve the pilot of the routine workload can be appreciated.to its

greatest extent.

The need for reducing touchdown dispersion in the presence of varying
flight conditions encountered alse emphasizes the desirability of an automatic
¢ontrel law during the flare portion of the landing. The feductien in the
touchdown dispersions greatly facilitates high-speed rollout, which signifi-

cantly increases the traffic handling capacity of the terminal.

In the earlier work (ref. 1), a discrete, optimal controel law te achieve
an optimal transition (from the initial glide slope to the required touch-
down cenditions) was designed with time-varying gains. As the time-varying
contrel law is difficult to implement in practice onbeard the aircraft,
development of a constant-gain contrel law was undertaken (ref. 2) and is
implemented with a slight modification in the present study. The modifica-
tion consists in defining the elevator position {6e) as one of the states
rather than one of the contrel variables as was done in previous studies
(refs. 1 to 4). The elevator rate (Sé) is now defined as a contrel variable.
This change was done mainly because of the need to study the open-loop
responses with an elevator linearly varying with time (a ramp) forced on

the system.

In section 3, the mathematical model used for describing the deviations

of the aireraft's longitudinal variables from their steady-state values is




briefly described. The effect of lags in the thrust buildup are included in
the model by assuming a linear dynamical model for the thrusters (engines).

A new method of including the effects of steady winds, wind shears and

gusts is also indicated. The model i§ expressed in state variable form,

which is suitable for application of modern control theory techniques. The
development of the model follows closely the development of the model outlined
in references 1 to 6. However, the new wind model is shown to be a more
realistic one in that it can model the shear profiles that are normally

given in practice as spatial profiles rather than temporal profiles. In
addition, it is alse shown that the new model overcomes the uncontroliability

problem posed by the previous model.

- In section 4, the design procedure to compute a digital, time-invariant,
optimal control law for a discrete regulator problem is presented. The
methed is ¢xtended to compute twe forms of control laws to evaluate the

discrete regulator acted upon by constant disturbance.

In section 5, the performance curves are presented using the above centrol

laws for the follewing cases:

(1) optimal flare in absence of winds,

(2) glide slope tracking in presence of specified wind profiles,

(3) optimal flare in presence of wind profiles, and

(4) flare to achieve transition from initial glideslope to touchdewn

conditiens with open-locp contrel law forced on the system.
Finally, in section 6, the conclusions derived from the present study,
the relative merits of various contrel schemes, and suggestions for over-
coming certain difficulties encountered are listed.

2. NOMENCLATURE

A system matrix, centinuous time case

B contrel effert matrix, continuous time case
ng transformation matrix, body te stability frame
Cys transformation matrix, inertial to stability frame

F state transition matrix, discrete time case



ox Z
eye e

XV

oX vy .2
SyS S

control effort matrix, discrete time case
constant gain matrix, discrete time case
quadratic performance index

Ricecati matrix

state weighting matrix

integral states

control weighting matrix

control-rate wzighting matrix

horizontal component of inertical velecity V;
control vector, perturbation in horizental velocity
eigen vector matrix

vertical compenent of inertial velecity Vi
constant disturbance vector

wind gust vector, body frame

steady wind vector, inertial frame

wind vector in stability frame, perturbation in

vertical velecity

frame parallel to earth-fixed (vertical) frame
body-fixed frame

stability frame

shear tate in horizontal wind veleeity, kn/100 ft
(1 kn = 0.514 m/sec; 100 ft = 30.48 m)

state variable vector

shear rate in vertical wind velecity, kn/100 ft
(1 kn = 0.514 m/sec; 100 ft = 30.48 m)

controlled variable vector

white noise process




Subscrigts

b body-fited frame

£ final, terminal

g 7 gust components

i inertial vector

o initial, nominal

s stability frame

W wind components, constant disturbance
© steady-state value

Superscripts

I components in inertial frame
$ compenents in stability frame
¢ ) normalized
(-53 augmented

3. DESCRIPTION OF THE SYSTEM MODEL

The development of the mathematical model in this study follows closely
the development of a similar model described in detail in references 1 to 6.
The complete derivation of the system equatiens is described in these
references; however, a brief outline of the derivation is'given below for

the sake of completeness.

3.1. Aitreraft Dynamics with Wind Disturbances

This study is concerned only with the final phase of flight, viz the
flare, Thus, the aircraft is approaching the runway .6n a certain initial
glidepath.  The aircraft is aligﬁed with the runway, has a zero or at moest a
very small yaw angle with respect to the runway, as well as a zero bank

(or rell) angle, except in the case of a significant ¢rosswind. Therefore,




all the lateral dynamics are neglected during the analysis and only longitudinal

dynamics are considered.

With the assumptions stated above and assuming small perturbatiens about
the nominal path, the nenlinear equations of motion of the aircraft can be
linearized using well-known methods. The complete equations of motion and
the linearization procedure are outlined in references 5 to 7. These
nenlinear equations are derived assumiug (1} a flat earth, (2) an earth-fixed
frame of reference, (3} a rigid aircraft, and (4) second-order terms are
neglected. These equations of motion are coupled. However, for a steady-state
flight condition, the equations can be decoupled into two groups, the longitu-
dinal equations and the lateral equations of motion. As indicated above, we

deal with only longitudinal equations of motion in this study,.

The decoupled, nonlinear longitudinal equations of metion are then
linearized about the nominal trajectory (i.e. the steady-state flight of -3°,
-6° glide slope, etc.) to obtain the linear perturbative eguations in the
state variable foerm. The equations are expressed in a stability axes

coordinate frame attached to the aircraft at the center of mass.

The final linearized, longitudinal equations of motion, including wind

disturbances, assume the following standard form (refs. 1 to 4):

X £ Ax + Bu + Dw (1)
wheTe
X -~ X 2 -2 _
x = (Bu'uq'm,,e — O ST §th &5 §e)°
Q9 Ro]
u = (36 85 sth & )"
5p
and
' T
- at!
w = (uw @, qw) o ) )




where the states (x's) and the contrels (u's) are

8 = perturbation in pitech angle,
u' = perturbation in velocity along X, (stability) axis,
normalized,

o = perturbation in angle of attack,

q ¢ perturbation in the pitch rate,

X - X

- = perturbation in the heorizental position of the aircraft
ol (normalized),

z -z

- = perturbation in the vertical position of the aircraft
fo! (normalized),

8T = perturbation in the thrust,

dth = perturbation in the throttle position,

8s = perturbation in stabilizer pesitien,

de = perturbaticn in the elevator pesition,

e = perturbation in the elevator rate,.

8s = perturbation in stabilizer rate,

§th = perturbation in throttle rate,

8sp = perturbation in speiler pesition.

The subscript w indicatés the perturbation in the variable due to wind
disturbances. The model differs slightly from the previous studies (refs. 1
to 4) for reasons pointed out in section 1.

3.2. Wind Model

In order to complete and simulate th@'System model given by equatidn 1,
the wind perturbatien vector w must be specified. The components of this
vector consist of als the normalized wind velecity in the + xs direction*;

a the perturbatien in the angle of attack due to the wind; and 9y the

* This is & slight change in notation frem previous reports (refs. 1, 3, and 4).




verturbation in the pitch rate of the aircraft due to wind. These wind
variati<s may be logically medeled as the sum of a gust component with zere

7 ..u value and a steady component,

The gust components are modeled using the well-known Dryden spectrum
(refs. 5, 6, 7). This me;had consists of using spectral factorizatien methods
to obtain a dynamical system which generates a random process having the
specified power spectral density when driven by white noise. Because of the
linearity of the system, the three gust compenents can be treated individuwally;
thus, only appropriaté components are included in the longitudinal equations
given in sectien 2.1, The detailed derivation of the gust compenents can be

found in references 3 te & and will net be given here.

The Dryden spectra describe the statistical behavior of the wind gust
velocities in the aircraft body-fixed coordinates, and the gust components

can be expressed in the fellewing form (refs. 3 to 7)

wgr = A wg + Bgl g1 (2)

where

Wy = (g boy A ugb)T

These four gust compenents constitute the four compenents (x;; te x;,) of the
state vector. The elements of the matrices Aww and BEl can be ebtained
frem reference 3,

The steady-state components of the wind are simpler to model since they
do not invelve spectral factorization. These components can be modeled as
the output of a first order deterministic plant, corrupted by a white noise.
This can be done in different ways. One methed, described in réferences 3
and 4, models the constant wind (eor linearly varying wind) essentially as a ‘
white noise, with the known constant wind (or shear value) supplied as the
initial condition. This methed, 21though it seems to be werking satisfacterily,
has certain drawbacks. First, the system se modeled turns out to be uncen-
trollable. Thus, the constant feedback gains matrix canhneot be computed for

the complete system in the manner usually done for the regulatet problems.




Reference 2 points out a method of computing the gains matrix in twe parts
by splitting the Ricecati equation appropriately. Tha second drawback of
this medel is that it is only an approximate model for the following reason.
Modeling the steady component of the wind merely as a white noise implies
assumption of a constant time rate of change of a linear wind profile.
Since the wind shear profiles are normally (and legically) given as
spatial, rather than temporal profiles, the above assumption provides a
linear shear with altitude only with a censtant sink rate of the aireraft,
This is not achieved either in the case when the aircraft is coming down on
the flare path to touchdown (when the sink rate changes by an order of
magnitude) or in the case when the aircraft is coming down on a glide slope
with a neminal sink rate, but the wind velocity field is changing, thus

intreducing changes in the sink rate.

Te permit moedeling of spatial shears, a new method is proposed. The
medel also makes the whole system controllable, and the feedback gain matrix
can be computed as is done in the usual manner for the regulator problems

without the need for splitting the matrix Ricecati equation in two.

Let the aircraft be coming down on a nominal glide slope in a steady
flight cenditien. Alse, for simplicity, let the aireraft be flying in a
disturbance-free atmesphere for {t = s, s < 0} (it is noted that the
methed can be trivially extended te the situation when the aircraft is
flying in a constant wind for {t = s, s < 0}). Now, at t = 0, let the
aircraft encounter a step wind, with a compeneént -Uwo in + Xq directien
and a cemponent Wwo in the + ze direction._ Alse, let the subSequept
wind field be described by a linear shear profile with a shear rate of X
kn/30.48 m (100 ft) in the horizontal wind velocity, and Z kn/30.48 m
{100 £t) in the vertical wind veleecity. I is to be neted, in the
present n~tation, that Uwo > 0 represents a tailwind, ww0 > 0 represenis
a downdraft, X » 0 represents a linear increase in tailwind (with decreasing
height), and Z » 0 represents a linear increase in downdraft (with

decreasing height) as seen by an earth-fixed observer.



If the inertial velocity of the aircraft is denoted by vy and the flight
path angle by v°, then the sink rate of the aircraft is given by (fig. 1):

+

n= -llVilIsin Y (3)

where superscript I denotes components are in inertial frame.

From this, the rate of change of wind velocity at the wing can be obtained

as:

=

R LAIE

= - 1001|V I|51n {8 +8 - (a + asi)} ' (4)

Expanding the right-hand side of the akbove equation, substituting

Yo = 8 - o (5)
[vi||sina. =W =0 + v’ (6)
1 S. 1
i
[IV?I]cos o =0 =0 +48 (7)
i s, i i, i
i o)
and simplifying yield
b o= - X 1S siny + U] cosy + 0 +«siny *u
W 100 1 ' o i o e
o] o}
- €os ¥, * w] . (8)

It is obvious that the first term in the abavé expression is the nominal
rate of change of wind velocity and is included in the constant disturbance
term Wq. Thus, the rate of change of the perturbation wind velocity in the

horizental direction (after nermalizing with Ui_) is given by
0

‘.‘.1' 2_1..

- . . . ,..-1_ o) . ;
" 156 (cos Yo * @ *s1my fu o-cesy °oa ) o 9

10

. p



Similarly, the rate of change of the normalized perturbatien wind velocity

in the vertical direction is given by

L]
w!
w

Z . ' ‘ :
<55 (ces v = & + siny - u' - cos v/ a) (10)

Note that equations (8) and (9) yield the perturbation cempenents of the

wind 2t the wing. However, due to inertia effects, the flow field over the

wing does not sense these changes until it travels about four cherd lengths.

These inertia effeects can be modeled by a first order lag term with an

appropriate time constant. Thus, the steady-state components of the pertur-

batien wind
X15
X186
X317
X18
where
X135

X1i6

velogity in a shear field can be modeled as

14

a1X15 * byxy7

ajX1s + bixyg

X cos + B + sin ! ¢os . )
100 ( Yo T ¥ SHY, 2O, 1 8

—-Z—- 3 » 11 e ' - ¢ - )
100 \90S Y, 8 + sin vy  * u ees v o _ (11)

horizontal compenent of actual perturbation wind velecity felt
by the wing, »u’wa

vertical component of actuai'perturbation wind velocity felt
by the wing, wy
a
horizontal component of perturbation wing veloeity at the
wing, w' , anhd '
w b
vertical component of perturbation wind velocity at the

ey ,
wing, w' .

The 4 steady-state wind variables can now be augmented with the 10

aireraft states [ed. (1)] and 4 gust components to yield the complete state

variable model of the aircraft motion imn the presence of atmespheric

disturbance.

11



The system medel as developed above is completely controllable in addition
to being more realistic than the previous attempts to medel the atmospheric
disturbance effects. The optimal, constant feedback gain matrix for this
system can now be computed in the usual way as for a regulator preoblem, with
the two nominal shear components acting as constant disturbances on the system.

The metheds to compute the gain matrix are described in detail in section 4.

3.3, The Basic Augmented System: Aircraft in a Wind Disturbance Field

Wiith the derivation of the wind medel for steady wind velocity compenents
now complete, it is possible to augment the wind model [eq. (11)] with the
airecraft equations of metien in presence of wind disturbances [eq. (1)] te

yield the state equations of the basic augmented system.

The final form of the wind model assumed the following form:

=
[}

=A W +B_ & 12
g " A Vgt By B2 | (12)

ws = wa X ¥ BEz Eos + Bw Wd (13)

where £&'s are white noise processes to account for the unknown disturbances

and the wind vectors are
. T
= { bR
g (ugb ccg'b ng ”gb)
and

W .(. w' u' w! )T
s WoOW W W
a a

Here the subscripts g and s refer te gust and steady components

respectively. The elements of the matrices Aww’ Bgl, and B€2 can be
obtained from references 3 and 4. The elemefits of the A, and B, can be

obtained from equation (11).

12




Defining a composite wind vector

w i oo whT (14)
g s :

the wind vector w defined in equatien (1) can be expressed as

W
T, g
w2 [cwg cws] (15)
' ws '

where [ng Cws] is an appropriate transformation matrix (ref. 3). The
steady winds, the wind shears, and the gusts can now be included in the system
equation (1).

The complete system equations, with the inclusion of the wind model, can

now be expressed in the standard state variable form as

- - - - - - - -

X A oc . pe || x B 0 o O
Wwg WS
. ' - £
wr=1o A, 0 W o] ueio fu, Bgl £,
W hwa 0 0 - wo| Lo iBw‘ _o _Bgz-:
or
§2K;+Fu+§w+§w+wd+§€€ : (16)

The equations are now in a form suitable for applying the techniques of

optimal control theory.
4, BERIVATION OF THE CONTROL LAWS

The equations of metion given by equation (1) represent the linear
vector-matrix differential equatiens in state variable form governing the
lengitudinal motien of the airecraft in the presence of atmospheric disturb-
ances. These (continuous-time) differential equations are new expressed in a

discrete form which updates the state variables from eone sampling instant to

13




the next. The discretizatien of the state equations is desirable for various

reasons. One, the system equations are integrated on & digital ceomputer and,

so, are inherently discrete in nature. Secondly, the aircraft contrel system
also utilizes a digital computer to perform the implementation of the desired

control law derived. Also, the measurement data obtained from the MLS (Micro-
wave Landing System) is provided at discrete intervals of time, rather than

in a continuous fashion. Thus, it will be easier at a later stage to cascade

the discrete centroller obtained here with a discrete estimator.

The differential equation (16) can be expressed in a discretized form
using a standard procedure [refs. 3, 4, 8] as follows:

x((k + 1)T) = F(T) X(kT) + G(T) u(kT), k = 0,1,2..., (kg - 1) o an
where

X = {":’ E(T) = AT

| T AT _
G(T) = (Of e dr)'ﬁ

with T = sample time interval.

The eptimal contrel law for the above discrete linear systei is now
developed for the following ceases:

(1) the disturbance-free system — the linear regulator problem, and

(2) the system in wind disturbance — the linear regulater with constant

disturbance (input) preblem for the:
(a) output integral feedback case, and
(b) control derivative constraint case.

The basic optimal censtant-gain, feedback contrel law for the regulater
problem is derived using a nenrecursive solutien ef the Riccati equation. The
method of selution (refs. 9 t6 11) is outlined in some detail in sectioen 4.1.
The same method is used to compute the feedback gain matrix feor the system
with the constant disturbance problem, after augmenting the original system

appropriately. - These modifications are outlined in sections 4.2. and 4.3.
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4,1. The Linear Regulator Problem

In this section, the basic, optimal, constant gain, feedback control law
is derived for a disturbance-free linear regulator problem using a nenrecursive
solution of the Riccati equation. The method is described in complete detail
in references 9, 10, and 11. The method is used here te derive the constant
gain control law to execute an optimal flare maneuver in the absence of any
atmospheric disturbances. The method yields a discrete, constant gain law te
implement the optimal, state-estimate, feedback control law. The method is

outlined briefly in this section for the sake of completeness.

The deterministic, linearized, longitudinal equatiens of metien of the
aircraft flying in a disturbance-free atmosphere can be written in the
following form

x = Ax + Bu x(e) = Xy 0<t<t (18)

f
where
T
X -x z-2z
(8 u' @ q - ST —= 6T &th ds Se)

o UD

ko]
L}

and
. L] - T
w = (Ge &8s &th Gsp)
The complete description of the aireraft states (x's) and contrels (u's)
was given in sectien 3.1. It is noted that the above equations are obtained
from equation (1) just by omitting the wind disturbance part. These equatiens
can be expressed in discrete form as

X1 = ka + Guk, x(0) = xr,-k =0, 1, 2,...kf,1 (19)

The quadratic performance index .to be minimized for the above diserete

system can be expressed as

f- ;
£ X7 20 ("kQ"k * “kR“k) (20)
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where the penalty matrices Qf, Q, and R are assumed to be constant.
Forming the Hamiltonian for the problem in the usual way, one can easily
write the adjoint vector equation for the Lagrangian multiplier X canenical

" backward difference equation form (ref. 12):

_ T
M = Qg + FOy, (21)

A, = Q (22)
Ke kaf |
From the maximum prineciple, the optimal control is given by
= -1.T ;5
v = - R G Ak+1 , (23)

Rearranging and combihing the state vector and the adjeint vector equatiens

yield the follewing canenical backward difference equation

T -1 -1 -1.T] ¢ :
= : _ - 3 = H
M e ! T+ o ler" gDy Mol RIETH

A . ' (24)
with a set of split boundary conditiens,

x(0) = x_ and lkf = QX (25)
Assuming the selution ef lk of the form

Kk = kak, Pk = Qf {26)

a recursive selﬁmioﬁ ¢ah be obtained for Pk in the usual way (ref. 12).
However, a nonrecursive solution of P can be computed in the following way,
which is very useful, especially for the infinite-time, constant gain solutien
desired in the present study. The details of the method can be obtained in
references 9, 10, and 11,
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If W is the eigenvector matrix corresponding to the eigenvalues of the

canonical system matrix Hc as defined abdve, and further if
i1 Wi f '
W= [wu sz] (27)
then the steady-state selution of P is given by
P_ = Wyt (28)
The optimal contrel law is then obtained as

-1
W = - R'IGT[p;l + GR'IGT] Fxy (29)

The clesed-loop, constant gain, state-estimate, feedback contrel law
derived above can now be implemented easily by solving the physical system

forward in time.

4.2. The Regulator Problem: Constant Disturbance Case

The basic disturbance-free system discussed in the last sectien can now
be extended to include the wind model desecribed in section 3.2. in order to

study the flight performance of the aircraft flying in atmespheric disturbances.

As pointed out in sectioen 3, the linearized, lengitudinal equations of

motion, including the wind disturbances, assume the follewing form [eq. (16)]:

X=AX+Bu+BW, + B, £ _ - (30)

These corcinuous-time, differential equations can be again put in discrete

form as

xk+1

=Fx +Gy +GW, + Gg E.

d k (1

As was pointed out in sectioen 3.2, the pair [?}G] for the above system is

controllable; hence, the constant, feedback gain matrix can be computed in the
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usual way. 'However, the presence of the constant disturbance vector Wy (the
two shear values X, 2, see section 3.2) necessitates a slight modification
of the above system equations. This modification can be done in two different
ways. One way would be to augment the above system for implementing integral
feedback of some of the variables. The second method is to constrain the
control derivatives by augmenting the control variables with the above system
equations. The methods of deriving the desired control law in both cases are
explained in detail in the following sections, which peint out their advantages
and disadvantages respectively.

4,2,1. Integral feedback case. — One methed to eliminate the effect

of constant disturbances acting on the system is application of the integral
feedback law. The details of the method can be found in reference 13. The

method is briefly outlined below.

Let the deterministic system be described by the discrete difference

equatiens

. - 32
Px, + Gu, + W_, x[Q) X, (32)

where W, is the constant disturbance acting on the plant, Let the controlled

variables by given by.
z, = ka ' (33)
Adding to the system variables the integral state define@ by

Uz = Y * %y q(0) = % (34)

and augmentiﬁg,this integral state variable with the original system, it can

be shown that a time-invariant control law of the form

u, = H“xk + leqk (35)

k

is an asymptotiecally stable control law such that the effects of the constant

disturbances en the controlled variables eventually vanish. It can alse be -
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shown that the necessary and sufficient conditions for the existence of the
above control law are that: (1) the original system be stabilizable; and

(2) the open-loop transfer matrix has no zeroes at the origin.

The above conditions impose certain restrictions on the choice of the
controlled variables, After a few trials, the following variables were
selected as the controlled variables for the integral feedback scheme

{note that the following are perturbatiens):

21 =8 - a r-.ll"“zl
Z; = u' a = z2
23=l.1 &'3:‘23
X - X .
2y = =g qy = Zy (38)
o

The integral state variables can now be augmented with the system equatiens
of motien with wind disturbance input, derived in section 3.3, and the complete

system can be expressed as

A o li’] 1
g 4 |

These equations can be discretized in the usual way. The optimal controel

Lo R

(37)

o wf
w
=

problem can then be solved by computing the constant gain matrix using the
same method described in section 4.1,

The optimal, closed-loop time respense of the aircraft flying in a given
wind disturbance can then be obtained by solving the following sets of

discrete difference equations:

X a1 =.F X * G(Hllxk + ngqk) + wad

= quk + F2; (38)

qk+1 k
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The results of the simulation of this closed-loop system are presented

in section 4.

4.2.2. Control Derivative Constraint Cuse. — A second method to

eliminate the effects of the constant disturbance acting oﬁ the system is by
application of the regulator problem with constraints imposed on the control
variable derivatives. This is achieved by penalizing the derivative of the
control variable in the performance index and augmenting the original system
by defining the control variable as additional state. The details of the
method can be found in reference 14 for the case of continuous systems. The
derivation of the control law for the discrete systems differs slightly

from that for the continuous case and is given in some detail below.

Let the original system be described by the discrete equations

S ka + Guk + wad’ x{0) = Xy (39)

where Wd is the constant disturbance acting on the system. Now, to achieve
the desired objective of driving the state x and its derivative Xx to

zero (asymptotically), the following cendition must be satisfied

Gu

" as k + = (40)

i wadk

This implies that the range space of Gw is coentained in the range

space of G. The system equations cam then be written as

Xk+1 = ka + G(Uk + W) . . (41)

where

W= (GG GGW (42)
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Defining a new contrel variable

ulk = (uk + W), uzk = alk (43)

and noting that

=
il
o

a performance index can be defined for the above problem, with the derivative

constraint on the control included, as follows

<«

J = 3 E {xk ka + (uk + W) R(u-k + W) + Uz, S uz, (44)
k=1

for the augmented system

F

x G X, 0
F " K 5
11 Frapluyl (612 ‘ (45)

k+1

u1k+1

The optimal contrel law for this system can now be computed in the same
manner as before (section 4.1) and is obtained as
Uzk % H.llxk + leulk

k

' Substituting for ugk as

o, = Yier1 -muk" AT = time interval
2k - ——""—‘_"'—'._._.AT. — .
W,p = Huxg AT + (Hyp AT + Duy + HypW AT, u(0) = 0 (47

Substituting this contrel law, the original system equations can new be

selved by simulatien on a digital cemputer as usual.
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It is easily seen that the feedback law requires a priori knowledge of
the magnitude of the constant disturbance acting on the system. In practice,
this knowledge cannot always be expected, which is a potential disadvantage
of the method. In the cases simulated in the present'stmdy, the a priori
knowledge of the magnitude of the disturbance was assumed. In these cases,
it is observed that the performance of the system was much better than with

the integral feedback case discussed in section 4.2.1.
5. RESULTS

With the development of the system model, both for the wind-disturbance-
free case and for the wind-disturbance case, outlined in sectien 3, and the
development of the various digital contrel laws for these systems derived in
section 4, it is now possible to simulate the system equations of motion with
the constant gain, closed-locp, optimal control law included to evaluate the
flight performance of the system. The general approach te study the flare
. performance is similar to the one in previous studies (refs. 1 and 2)}. Thus,
the lengitudinal equations of motien of the aircraft are expressed in
linearized form about the desired touchdown trajectery. These equatiens
are then discretized; the appropriate contrel law is incorporated inte the
system equation, and the system is expressed as a closed-leop system. The
difference between the initial glide slope and the desired touchdown conditioens
(table 1) is supplied as am initial condition, and the time response of the

closed-loep system is simulated on a digital computer.

The results obtained by formulating the flare problem in the above

manner show that, initially, the sink rate increases before being reduced
to the desired touchdewn value. This inereéase, ttough small and probably
tolerable, was noted consistently in both the cases: with time-varying
gain in previous study (ref. 1) and with the constant gain in the present

study. This was considered undesirable from the viewpeint of pilet monitering
| as well as passenger comfort. Hence, it was also decided to conduct a
preliminary study with an-open-ieop control law forced on the system. A few
simple forms of contrel law (limearly varying or ramps) were Selected to study
the performance in the absence of any disturbance. In all the cases, the

elevator and the throttle were prevented frem assuming negative values.
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Figures 2a to 2c show the time response of an optimal transition from a
-3° glidepath to the desired touchdown cerditions in the absence of any wind
disturbances. Figure 2a shows the time history of altitude h, the sink
rate ﬁ, and the normalized horizontal trackiﬁg error (x—-xO)/Uo frem the
nominal path. It is seen that at 7.1 sec, when the simulation was terminated,
the aircraft had a sink rate of 0.5452 m/sec {1.798 ft/sec) and a herizontal
error of 5.87 m (19.26 ft). The aircraft is still 0.21 m (0.6872 ft) above
ground and will have touchdown at approximately 7.5 sec. The pitch and
pitch rate histeries are shown in figure 2b. The maximum pitch rate is about
2.87°/sec, which is acceptable. Figure 2c shows the thrust and the throttle
histery. The thrust has been reduced to about 9340 N (2100 1bs) at 7.1 sec.
It is noted, however, that the throttle rate is a little too high. This
could be corrected by inecreasing the appropriate penalty term, albeit with a

resulting medification of the performance of other variables.

Figures 3a to 3¢ show the optimal transition from a -6° glide sléﬁe to
the desired touchdown condition, again in the absence of wind disturbances.
Figure 3a indicated that touchdown occurs at 5.1 sec with the sink rate at
touchdown being 0.698 m/sec (2.29 ft/sec) and the horizental tracking error
about 9.14 m (30 ft). Figure 3b shows the time history of pitch and pitch
rate. The maximum pitch rate is about 3.3°/sec, which is acceptable.
Figure 3c shows the time histories of the thrust and the throttle. The
maghitude of the thrust at touchdown is 9518.7 N (2140 1bs), which is
slightly above the idle thrust required.

Figures 4 to 9 show the flight performances of the aircraft in the
presence of wind disturbance with specified shear prefiles. Figures 4 to 8
show the performance of the aircraft when it is trying to track the -3°
glide slope in the presence of gust and wind disturbances with specified
shear profiles. Figure 9 shows the time response of optimal transitien

from a -3° glidepath to desired touchdown cenditions.

Figure 4 shows the time response of an aireraft, initially en a -3° glide-
path, trying to track the path whem it encoeunters a 10-kn headwind decreasing
at 5 kn/30.48 m (100 ft) and & 5-kn updraft decfeasiﬁg'at 1 kn/30.48 m
(160 ft). The control law used here is the one derived in section 4.2.1

(integral feedback law). It is seen frem figure 4a that the sink rate shows
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an oscillatory behavior and at 7.1 sec shows a value of 3.91 m/sec (12.86 ft
/sec), which is higher than the nominal value of 3.37 m/seec (11.07 ft/sec).
Figure 4h shows the pitch and pitch rate histery, and the maximum pitch rate
is about -2.92°/see, which is within limits, Because of the higher 1lift
available from a favorable wind field (headwind and updraft), reduced thrust
and throttle settings were required to maintain the flight path, and this

is reflected in figure 4e¢. The compenents of the wind velecity, both those
at wing (uw, ww) and those actually felt by the wing (UWa’ wwa)’ are piatted
in figure 4d. As was noted in the derivation of the wind model (section 3.2)
the actual velocities felt by the wing (which détermine the aerodynamic 1ift

and moments developed by the wing) lag the inertially changing components.

The effect of using the control law with the contrel derivative
constraint (seetion 4,2.2), for tracking the glide slope under a wind profile
identical to the abeve, is seen in figures 5a to 5¢c. It is clearly seen that
the oscillétory behavier of the sink rate has been eliminated. Also, the
sink rate at 7.1 sec is 3.52 m/sec (11.55 ft/sec), which is almest equal to
the neminal sink rate, 3.37 m/sec (11.07 ft/sec). A comparisoen of figure 5b
with figure 4b shows that the pitch and pitch rate histories are almest
identical. Figure S5c shows that the throttle and thrust settings have been

lowered only slightly compared to figure 4c.

Figures 6a to 6c show the interesting results achieved when the simula-
tien was conducted without augmenting the original system with either integral
state or the control variables. The appropriate gain matrix was computed and
the system was simulated with the same wind profile (fig. 4d) acting on the
aircraft. The time responses of figures 4a, 4b, and 4c leok very similar to

these of figures 6a to 6¢c, except for slightly higher thrust settings.

Figures 7a to 7c¢ show the flight performance of the aircraft on a -3°

glidepath entering a wind field shown in figure 7d. The aircraft eficounters a

- 10-kn tailwind decreasing at 5 kn/30.48 m (100 ft) and a 5-kn updraft decreasing

at 1 kn/30.48 m (100 ft). Figures 7a te 7c shew the time histories of the
various states. It is seen that the increased angle of attack (due to updraft)
affects the performance faster than the decreasing airspeed (die to tailwind),

and the sink rate begins to decrease initially.

Figures 8a to 8c shew the performance of an aircraft entering a wind

field shown in figure 8d. The aircraft encounters a tailwind at 10 kn
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increasing at 5 kn/30.48 m (100 ft) and a downdraft of 5 kn increasing at

1 kn/30.48 m (100 ft). This is the mest unfavorable wind profile simulated in
the present study. Figures 8a to 8c show the time response of the closed-
loop system using the control law with the control variable censtraint

method of section 4.2.2. The performance of the aircraft is seen to be
satisfactory in the presence of an unfavorable wind profile. Again, the

absence of any oscillatery behavior in the sink rate is noted.

Thus, it is neted that the performance of the closed-locop system is
very much satisfactery when the aircraft is neminally en the glidepath and
encounters a specified wind prefile. The method was extended, as in the
previous study (refs. 1, 2), to achieve an optimal transitien from a neminal
glide slope to the desired touchdown conditiens, using the same set of optimal
gains derived for the case having an identical wind profile. The differences
between the desired touchdown trajectory and the neminal glide slope were
supplied as the initial conditiens te the problem, in addition to the speci-
fied wind conditions. However, it was found that in almest all cases the
response tends to oscillate without achieving the touchdown conditiens in the
time interval considered, This is found to be mainly because of the large
initial conditions and the resulting high corrections. However, one case was
found to be working. Figure 9 shows the results of the simulatien fer this
particular case. The aireraft is trying to achieve an optimum trunsition
from a -3° glide slope to the desired touchdown cenditiens. The coentrel law
used here is derived for am unaugmented system, and the aircraft encounters a
10-kn headwind decreasing at 5 kit/30.48 m (100 ft), and a 5-kn updraft
decreasing at 1 kn/30.48 m (100 ft)}. The aircraft touches down at 7.1 sec
with a sink rate of about 0.249 m/sec (0.82 ft/seec). It is interesting te
note here that, in spite of the favorable wind field (headwind and updraft),
the sink rate increases slightly before being reduced to a low acceptable
value for touchdewn. This is in sharp contrast to figures 4 to 6 where
the sink Tate decreased under wind conditions identical to those assumed in
the present case. Therefore, this result, together with results obtained
in figures 2a, 3a, and in the previous study with time vatying gains
(ref. 1), clearly indicates a canéistent trend in the sink rate history.

The hegative pitch and pitch rate (even theugh of very small magnitude) are, .

however, not acceptable in practice.



It was also decided to conduct some simulation runs with a few simple, open-
loop control laws forced on the system and to observe the time responses of
the aircraft. The open-loop law used for flare maneuver consisted of two ramps
on the throttle and the elevater. Both were reduced from their nominal values
to zero with varying rates and held at zero. Figures 9 and 10 show twe sample

Tuns.

Figure 10 shows the transition of the aircraft on a -3° glide slope to
touchdown. The elevator rate imposed was 1.8 times the nominal rate, and the
throttle rate was 2.9 times the nominal rate. The nominal rate is defined here
as the rate which will reduce the contrel from its nominal initial value te
zero in 7.1 sec. It is seem *that the aircraft touches down at 6.8 sec with a
sink rate of 0.289 m/sec (0.95 ft/sec). The maximum pitch rate was about
1.1°/sec. The discentinuities seen in the pitch rate histery at 2.6 sec and
4.1 sec were due to the abrupt changes in the throttle rate and the elevatoer
rate, respectively, at these instants in order te hoeld them at zere and

prevent them from assuming nmegative values.

Figure 11 shews the flight perfermance of the aireraft tryihg to achieve a
forced transition from a -6° glidepath to touchdown. The elevator rate impesed
was 3.1 times the neminal rate, and the throttle rate was 2.9 times the nominal
rate (defined above). The performance was very similar te the previous case,

" except for a higher maximum pitch rate (2.3°/sec) due to a higher elevator

rate.

It is to be noted that the simulated studies with epen-loop contrel law
showed that the performance of the aircraft was very sensitive to the small
changes in the control variable (rates). For example, in the -6° glidepath
case shown above, keeping the threttle rate at 2.9 (times the neminal rate),
simulation runs were conducted at different elevator rates. It was found
that an elevator rate of 3.0 resulted in an early and unacceptably hard
landing (touchdown at 5.6 sec at sink rate of 1 m/see¢), whereas an elevator
rate of 3.25 results in no touchdewn, with aircraft actually climbing before
7.1 séc. Results obtained for a -3° glide slope also showed similar behavier
of extreme sensitivity to small ¢entrel variations. This behavior was
c@nsidered unacceptabls, and hence the open-loep contrel law sheuldfbe
implemented as a nominai law to be supplemented by a closed-loep contrel law

derived in any one of the several ways available.
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6. CONCLUSICNS

A discrete, time-invariant, eptimal, closed-loep centrol law wagwpresented
for a linear regulator problem. The method was extended teo include a system
being acted upen by a constant disturbance. Twe forms of contrel laws were
derived to solve this problem. One method utilized the feedback of integral
states defined appreopriately and augmented with the original system equations.
The second methed formulated the problem as a contrel variable constraint, and
the control variables were augmented with the original system.

A new method of formulating the wind medel was described. It was shown
that thé new wind medel was more realistiec than the previous moedel which
modeled the steady, shearing winds as a white neise with known initial condi-
tions. The present wind medel alse overcame the uncon;rollability problem
posed by the previous model, and it was shewn that the optimal gains could be
computed in the same way as for a regulator problem with a constant disturbance

acting on the system.

The various contyol laws derived were implemented to simulate the clesed-

loep system in following cases:

(1) optimal flare tramsition from glide slope to touchdewn in absence

of winds,
(2) glide slope tracking in presence of various wind profiles specified,
(3) eptimal flare transition-in-presence of wind profiles speeified, afid
{4} flare with open-loop centrel laws ferced on the system.

It was shown that the flight performance of the aireraft was satisfaectory

and within acceptable limits in cases (1) and (2).

It was seen that the optimal gains computed for case (3) failed to
achieve an optimal transition from glide slepe te touchdown in presence of
wind disturbanceés, even though the same gains performed satisfactorily in
cdse (2). It was pointéd out that this is due to the large initial conditions
(errors) impesed, which foree overcorrectiens. Only one simulation result
was presented for this case. It is propesed to eondugt further study of thi§
case by passing the large initial error through a low-pass filter and usingﬁ:"

the output of this filter as a feedback variable initially.
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It was also shown that the control variable constraint contrel law yields a

better performance compared to feadback control law for the integral states
chosen. However, as was pointed out, the previous method requires a priori

knowledge of the magnitude of the disturbance acting on the system.

In the study with open-leop contrel laws forced on the system to achieve
the flare maneuver (case 4), it was shown that, although this law was extremely
desirable, the performance is very sensitive to small variatioens in controls
even in absence of winds. It is therefore proposed to reformulate the problem
as a tracking problem, with the open-loop control law obtained experimentally,
as a baseline law, supplemented by a closed-loep, optimal gain, feedbagk

contrel law.
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Table 1. Desired terminal (er touchdown) conditiens.

Parameter

thrust

throttle

Values

30
0.0
3.52°

0°/sec

— (not constrained)

idle thrust = 889% N

09
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Table 2.

Inertial wind profiles simulated.

Profile

A

Wind Parameter

Head wind of 10 kn decreasing
at S kn/30.48 m

Updraft of 5 kn decreasing
at 1 kn/30.48 m

Tailwind of 10 kn decreasing
at 5 kn/30.48 m

Updraft of 5 kn decreasing
at 1 kn/30.48 m

Tailwind of 10 kn increasing
at 5 kn/30.48 m

Downdraft of 5 kn increasing
at 1 kn/30.48 m
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Table 3.

Types of controllers simulated.

2A

2B

2F

Description

Linear regulator case (ne wind)

Linedr regulator with constant disturbance —
integral feedback case

Linear regulator with constant disturbance -—
control derivative constraint case

Linear regulator with constant disturbance =
unaughented system

Open-loop — forced input case (ne wind)
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Figure 1. Coordinate frame and flight geometry.
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Figure 2(b}. Flare response, -3° glide slope: pitch and pitch rate;
' "no wind case, controller 1.
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Figure 2(c). Flare respense, -3° glide slope: thrust and
throttle; no wind case, controller 1.
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Figure 3(a). Flare response, -6° glide slépe: altitude, sink rate,
and herizontal dispersion; ne wind case, controller 1.
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Figure 3(c). Flare response, -6° glide slope: thrust and throttle;
no wind case, controller 1.
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Figure 4(a). Glide slope capture, =3° giide slmpe: sink rate;
wind profile A, controller 2A.
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Figure 4(b). Glide slope capture, -3 glide slope: pitch and pitch
rate; wind profile A, controller 2A. .
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Figure 4(e). Glidé slope ‘capture, -3° glide slope: thrust and
throttle; wind profile A, controller 2A ,
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Figure 4(d). Glide slope capture, -3° glide slope: wind velocities
at the wing; wind profile A, controller 2A.
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Figure $(a). Glide slope capture, -3° glide slope: sink rate;
wind profile A, contreller 2B.
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Figure 5(b). Glide slope capture, -3° glide slope:
rate; wind profile A, coentreller 2B.
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Figure 5(c).

Glide slope capture, -3° glide slepe: thrust and

throttle; wind profile A, controller 2B.
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Figure 6(a). Glide slope capture, 23° glide élepe:
wind profile A, controller 2F.
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Figure 6(b). Glide slope capture, -3° glide slope: pitch and pitch
rate; wind profile A, contreller 2F.
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Figure 6(c). Glide slope capture, -3° glide slope:  thrust and
threttle; wind profile A, coentroller 2F.
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Figure 7(a). Glide slope capture, -3° glide slope: sink rate;
wind prefile B, centroller ..
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Figure 7(b}. Glide slépe capture, -3° glide slope: pitch and pitch

rate; wind prefile B, contreller 2A.
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Figure 7(c). Glide slope capture, -3° glide slepe: thrust and
throttle; wind profile B, controller 2A..

52



5.15 p~=

2.57
+ u +
W
Uiy o Wig s
g2 f . ‘ Wwg s
m/sec '/ m/sec
e i j e ——— " - SCECTee | —— —— l i - L o e l e = ] ~
of 2 4 6 |
A\ Time, seec +
\
-5.15 *

Figure 7(d). Glide slope capture, -3° glide slepe: wind velocities
-~at the wing; wind profile B, ¢ontreller 2A.
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Figure 8(a). Glide slope éépﬁure, +3° glide slope:

wind prefile C, centroller 2B.

sink rate;

54

4




4.05

S—
/ N
/ N\
/ \
/ \ 8
/ \
+ / \
/ \ 4
8, / \
/
deg / \
/ \
/ \
\ LT T~
- ~
\ g N
\ \
| | AN 'y __EiJ/ o L
o f S =% . sl SR 5
. N o
Time, sec » -~
-4.08 B 5 o .

Figure 8(b). Glide slope capture, -3° glide slope:

rate; wind profile C, contreller 257.
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Figure 8(¢).

Glide slope capture, -3° glide slope: thrust and
throttle; wind profile C, controller 2B.
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Figure 8(d).

Glide slope capture, -3° glide slope: wind velocities
at the wing; wind profile C, controller 2B.
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Figure 9(a). Flare response, -3° glide slope: altitude, sink rate,
and herizontal dispersien; wind prefile A, controiler 2F.
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Figure 9(b). Flare response, -3° glide slepe: pitch and pitch rate;
wind profile A, contreoller 2F.
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Figure 9(c). Flare respense, -3° glide slope: thrust and
throttle; wind profile A, centreller 2F.
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Figure 9(d). Flare respeﬁse, -3° glide slope: wind velocities at the
wing; wind profile A, controller 2F.
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Figure 10(a).

Flare response, -3° glide slope: altitude, sink rate,
and herizontal dispersion; no wind case, controller 3.
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'?igure 10(b). Flare response, -3° glide slope:
no wind case, contraller 3.
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Figure IO(G). Flare response, -3° glide slope: thrust and
throttle; no wind zzs- .

controller 3.
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Figure 11(a). Flare response, -6° glide slope: altitude, sink rate,
and herizontal dispersien; no wind case, centroller 3.
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Figure 11(b).

Flare response, =6° gli.de:slope: pitch and pitch rate;

no wind case, contreller 3.
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