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ABSTRACT

The feasibility of using range/pointing angle data such as might be
obtained by a laser rangefinder for the purpose of terrain evaluation in
the 10-40 meter range on which to base the guidance of an autonomous rover
has been further investigated. The decision procedure of the Rapid Estima-
tion Scheme for the detection of discrete obstacles has been modified to
reinforce L},2 detection ability. With the introduction of the logarithmic
scanning scnheme and obstacle identification scheme, previously developed
algorithms are combined to demonstrate the overall performance of the inte-
grated route designation system using laser rangefinder. In an attempt to
cover a greater range, 30m to 100m, the problem estimating gradient:y in the
presence of positioning angle noise at middle range is investigated.
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DATA ACQUISITION AND PATH SELECTION DECISION MAKING
FOR AN AUTONOMOUS ROVING VEHICLE

I. INTRODUCT ION

Current national goals now include an autonomous rover mission to Mars
in 1986 and a possible sample return mission for Mars in 1990. The values to
be derived from these missions will depend on the extent of the ranges of ex-
ploration which are permitt:d by ihe roving devices and the effectiveness of
their guidance systems.

The large round-trip communications delay which ranges from about nine
to forty-five minutes, depending on the positions of Mars and Earth, precludes
direct earth control except for emergency situations. Systems capable of
sensing terrain, detecting hazards and selecting safe but efficient paths to-
wards desired locations are essential.

1ln seeking alternative concepts for the unmanned exploration of Mars,
consideration should be given to: (a) the character of th: rover, and (b) the
path selection system.

The mobility, maneuverability and stability of the rover will have a
direct influence on the availability of safe paths to the desired locationms.
A rover of limited ability to handle in-path or cross-path slopes or boulders,
craters, trenches, etc., will be forced to follow tortuous paths to the speci-
fied destinations. Indeed if its mobility is sufficiently limited, there may
in many cases be no acceptable path. Thus, one objective of research and de-
velopment programs should be the conception and evaluation of rovers of ex-
ceptional mobility.

The quality of the path selection systems which are available will also
have a profound influence on the mission. The term "path selection system"
is intended to encompass the devices employed to gather terrain information,
the procedures by which these data are processed and the algorithms used to
select the optimal path. A path selection system possessing a poor capability
to discriminate between safe and hazardous features will have to be biased
conservatively to protect the rover. In such a case, an unnecessarily longer
path will have to be followed. Indeed, in certain situations, the conservative
bias may exclude all possible paths and segments of the mission will go unful-
filled. On the ocher hand, a4 path selection system of high accuracy and per-
ceptiveness will make it possible to take full advantage of the mobility of
the rover. Shorter paths will be followed, less time will be consumed and more
areas will be explored.

Research programs at Rensselaer have been aimed at both of these major
objectives. The research program described herein has been focused on the
feasibility of using range/pointing angle data, such as might be acquired by a
laser rangefinder, to characterize the terrain in such detail as required fer
safe designation of route for an autonomous rover and on the development of
path selection algorithms employing such information.



IIL. SUMMARY OF PROGRESS

The research program during the past year addressed the following
topics:

1. Middie range gradient estimation with noisy eleva-
vation angle.

2. Obstacle detection by rapid estimation scheme with
modified decision tree.

3. Integrated path selection system utilizing obstacle
detection and terrain modeling algorithms.

First, an approach to the problem of estimating in-path and cross-path
slopes in the presence of positioning angle noises at middle range, 30m to
100m, has been developed. The change in slopes has been expressed as a func-
tion of the noise perturbations affecting the elevation angle measurements.

Second, decision procedure of the Rapid Estimation Scheme and the evalu-
ation of the probabilities are modified to reinforce the detection ability.
Simulation results show that the modified version succeeded in reducing almost
all the false detections at far distances. Also, it showed increased detection
ability at near distances.

Third, with the introduction of logarithmic scanning scheme, and obsta-
cle identification scheme, an overall performance of the integrated path selec-
tion system is demonstrated. This integral path selection system defines the
coordinations among the previously developed algorithms such as Rapid Estimation
Scheme, terrain modeling, and path selection algorithms. The computer simula-
tion results are promising in that the rover is capable of electing a locally

optimum path for low risk and energy expenditure while maintaining a desired
target direction.

III. DETAILED PROGRESS REVIEW

TASK A. Gradient Estimation at Middle Range - Ricardo Mediavilla
Faculty Advisor: Prof. C. N. Shen

1) Genesis of the problem - Stochastically Spaced Rows of a Measurement Matrix.

The middle range, some 30 to 100 meters distance, poses a problem for
Mars rover navigation. If a laser rangefinder is located at the top of the
mast of the rover, say two meters above the ground, a horizontal terrain point
100 meters away has a very shallow elevation angle of about 0.02 radians. A
point 2 meters inward from the first point (98 meters from the laser mast) will
have an elevation angle 8 of 0.0204 radians, which makes an included angle A8
of 0.0004 radians, or about 1.5 arc-minutes. This approaches the standard de-
viation of the measurement of the elevation angle §8, which at present can be

assumed to be 1 arc-minute. In this case the rows of the range matrix displace
stochastically.

2) Introduction.

Terrain iso-gradients can be used to evaluate passable terrain regions



for an unmanned roving vehicle to he used on Mars' surface. Range data,
measured in a spherical coordinate system, is stored in a range matrix.
Such range matrix consist of a listing of the distance measurements from &
ranging device to the terrain surface as a function of azimuth and eleva-
tion angle measurements. So far, the range data matrix has been assumed to
be fixed in spacing since the noise in the elevation and azimuth directions
is small. However, for the shallow elevation angles near the skyline the
magnitude of the noise in the elevation angle can approach that of the sig-
nal, displacing the information in the range data matrix.

3) Scanning scheme

Range data are stored in the range matrix

P
fu f1z2 - . FIn
1'21 !'22 ™ - -
i " Fi-1y
(] = 0 . r r
1j 141§
Fi-15 Ti+14
Fi+1j
5 fm

—

-
where 8, the elevation angle, varies with index i, and 9, the azimuth angle,
varies with index j.

In order to change the data spacing as a linear function of the radial
distance Py from the rover it is desired that Aoi - 91.36. (See Figs. l-a and
l"bo}

A8 (1)

P tanBH_l 0 e

i

HAQ
P A0tanB, ., * 739

Thus, a recursive equation for the calculation of Bi-l- is given by

1

o Hag "
o tand, 1-36 (2)



Fig. l-a. Horizontal Prcjection of Range Measurement.

Fig. l-b. Range Measurement.



4) Computation of row spacing.

Taking 48 as constant in equation (2), the elevation angle 84 is re-
cursively calculated. Table I shows some typical calculations of the eleva-

tion angle 61 where equation (2) and a value of 48 = ,03 radians has been
used.

Note that as the distance from the rover becomes smaller, A8>>1 arc-
minute, and the error &8 in elevation angle measurement becomes negligible
compared to A8, the angle increment.

Table I

Recursive Calculation of Elevation
An;;e B for Horizontal Terrain

Distance from AB
Elevation Angle 8 Mars Rover o Ap A3 (arc~-
(radians) (meters) (meters) (radians) ‘minutes)

.02499 92.11 1.53 .00078 2.69

.02577 90.58

.02910 83.28 2.48 .00090 3:11

.03000 80.80

.05687 30.98 .64 .00175 6.03

,05862 30.34

. 15485 13.45 .40 00475 | 16.32

.15960 13.05

It

5) Error in slope due to error in elevation angle measurement.

Fig. 2 shows that at far distances from the rover the error in the
elevation angle measurement can seriously offset the slope calculation.

Let 88 represent the error in the elevation angle measurement. The
following quantities are assumed to be:

s 100 meters H = 2 meters

i

58 = 1 arc-minute

Then from Fig. 2 we have

o N 8.586
ry < sin(3 +08) = 98.38

and

.‘h H
r =
i+l sin(81+1-68

)




Fig. 2. Noise Effect in the Calculation of In-Path Slope at 100 Meters.
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where 81+1 has been calculated using equation (2). The terrain slope is given

by
A "
r sing ~ ¢,8inl
slope ® - m1+;___ i+l »1 i 1)
r1+1cosﬁi+l - rlcolﬁ1

Fig. 3 shows that at a distance of 30 meters from the rover the error in
the elevation angle measurement does not have as serious an effect as in the
case of 100 meters distance. Let

p, = 30 meters H = 2 meters

58 = 1 arc-minute

o H

r B eomseeE—— 29.936
i -in(81+681)
ps H 29,292
v = - R
1+1 " SInls_ -08)

Using equation (3), it 1is obtaju~d

slope = ,026

In a flat terrain condition an error of 1 arc-minute in the elevation
angle measurement will produce an in-path slope of .323 when the distance from
the rover is 100 meters, and an in-path slope of only .026 when the distance
from the rover is 30 meters.

6) Evaluation of the in-path slopes from range slopes.

So far the approach that has been followed is that of recursively esti-
mating the range slopes in spherical coordinates, and then transforming to a
cylindrical coordinate system to obtain the terrain slopes. As seen from
Fig. 4 the equations describing the coordinate transformation are given by

Pyy = rijalBij (4)
911 = aij (5)
Zij = H - rijsinsij (6)
Taking differentials of equations (4) and (6) one obtains
dz = 3% . a8 + & ar )
do =32 . 48+ 22 ar (8)
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The in-path terrain slope becomes

iz, 32,

dZ _dz/d8 _ 38 Or 8 (9)
do ~ dp/d8 "~ 3p 30 , dr
LT ir g

where dr/d8 is the in-path range slope.

7) Evaluation of the in-path slopes in terms of the inverse of the range
slopes.

At middle range the error in the elevation angle measurement &8 cannot
be neglected. (See Fig. 5.)

Let r, and Ti4l be the best available estimates of the range measure-
ments. Dcti&.

Boy =0y = P4 AB = 31+1 - ai (10)
AZ = Zi - Zi+1 -Af = Bi - 51+1 (11)
AT = ri - ri+1 (12)

As before, the spherical to cylindrical coordinate transformation
equations are ~fven by:

o = Tcos (13)
A = 8 (14)
Zel-r (15)

Taking differentials of equations (13) and (15) one obtains

dZ-%EdB+§%d; : (16)
B
ar
do = 28 45 + 28 4» an
38 3r

Assuming that the error in the range measurement r has a standard
deviation of 5 centimeters, its effect can be neglected as compared to the
effect of error in the elevation.angle measurement 2. So, this time deriva-
tives are taken with respect to r.

. 238,22

dZ _dz/dr _ 38 dr  3r (18)
¥ ajer BAEL2R
ar ar

Comparing equation (18) with equation (9) one can see that in equa-
tion (18) r is considered known while 2 is stochastic. In equation (9) the
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Fig. 5. Displacements in the Range Measurements Caused by
Noise in the Elevation Angle Measurement.



error in @ is negligible, and so 8 is considered tc be fixed.

11

For th:se

reasons differentials are taken with respect to £ in equation (9) and with

respect to r in equation (18).

From the spherical to cylindrical transformation equations, (13)
through (15), one obtains:
i, -;COCB Qg = cosf
ag S
3 o _sinB 3% = -ratng
e
. dg . 48
(-rcesB) - - sin@  =-r ,° - tang
e . dr - dr
in-path slope - T ~ T (19)
(=rsing) g; + coss -r(tang) =< + 1
= dr
where gg-lt the inverse of the range slope.
dr
Ler tmy-—;d—‘f. Then
dr
Q_Cuny-tann_ .
do 19 tanytant tan (y-8) (20)

When Ar + 0 in equation (20) the terrain will be interpreted as a
vertical wall and tany + =, creating a problem in the evaluation of dZ/dp.

8) Error analysis.

Fig. 5 shows how noise 88 in the elevation angle measurement # can

displace the range measurement r.

Let r represent the actual range measure-
ment after accounting for the noise in the B measurement.

Let 68, be

Gaussian random noise of zero mean and 1 arc-minute standard deviétion. An
expression will be derived relating a change in slope due to 48,

"~
r

i+l

ne

Yie1 = vy48inbig, =
v
X = r cosg

i+l i+l i+l

H
i+1 ~

sin (8 631+1)

H
sin(ﬁi + 561)

Hsinﬁi+l

sin(51+1 - 88,.,.)

i+l

Heost

i+l
sin(51+1 - 551+1)
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" Hsing,

yy © rysing, = sin(, + 46,)

"~ HcocB1

g ® rycos8, = sin(B, + 06,)

Define 5S as the change in slope due to a perturbation in Bi and Bi+1
. 4 -y
§S = = x_i'.".l_.-_x.!. (21)
i+l i
. ainBi+llin(ﬁi + 681) - aineifin(ﬁi+1 - 881+1)
co-Bi+1s1n(Bi + 681) - conBinin(el+1 - 681+1)
ain81+1[nin81coséei + cosﬁilinéﬂil - l1n81[31n81+1co-681+1 - cosBithin681+1]
conﬁiﬂ[sinaicol&Bi . cosﬂiuinéﬁil - c0181[l1n31+1c0l681+1 B col81+1|1n681+1]
(22)
Since 68 is small, the following approximations can be used:
costSBi = ] (23)
c03631+1 =1 (24)
aindbi = 661 (25)
sin681+1 = 581+1 (26)

Approximations (23) througzh (26) are valid since 681 is Gaussian with zero
mean and 1 arc-minute standard deviation.

sinB [sinﬁi + BBicosﬁil - 31n61[31n81+1 - 681+ cosB, . .}

58 o o P14 19958541
coaﬂi+1[sin81 . Gﬂicosﬂil - c0881[51n81+1 - 531+1u0581+1]
§B,tanB + &8 tang
o 1530814 * OByy candy ar

If it is also assumed that 68 = &8 1 then equation (26) becomes

1+
8 +
8 2 (tanzi(catstanﬁt:nfi;;gm (28)
i+l i i
From equation (10) it is obtained that
tanBi + tandB
tans, ., = tan(s1 + AB) = (29)

1l - tanBitanAS
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1f B£+1 and BL are both small, then
l - tanBitanAB + 1 and
equation (29) becomes

tang tanf, + tanif

Ay
i+1~ i
; 681
i+1” (tandg) = 2681

&s ::(tlnﬁi + tan?

tanB, + tanp 2
58 ~( 12 itl,  (aap) %8y
2
l- (tanAB)681

Some method of analysis should be developed for obtaining the variance of
88 1if 681 is Gaussian.

TASK B. Obstacle Detection by Stabilized Rapid Estimation Scheme with Modi-
fied Detection Tree - C. S. Kim
Faculty Advisor: Prof. C. N. Shen

Rapid Estimation Scheme, Reference 1, was developed earlier to detect
the outlines of discrete obstacles by processing noisy contaminated range
measurement data obtained from laser rangefinder. It was found that the sys-
tem equations of the previous R.E.S. are unstable, since the eigenvalues of
the system matrix lie outside of unit circle in the 8-plane. For the reason
above, the previous R.E.S. generated many false detections in identifying the
outlines of the obstacles at the ranges greater than 30m or less than 10m. A
stable system model was formulated by introducing weighting parameters and re-
versing the direction of the recursive estimation and detection procedure.

As a result, increasing accuracy in state estimates reduced the number of
false detections. It was reported, Reference 9, that the stabilized R.E.S.
succeed2d in detecting the complete outlines of obstacles at 40m away from the
rover. However, it was also pointed out that the conditional probabilities
following the input estimation were evaluated by approximation. Thus, the
effect of the approximation was partially compensated by assigning excessive
penalties to false detections in the Bayes decision process. For the reason
above, the detection ability of the scheme is weakened and the R.S.E. was not
able to detect an input whose signal to noise ratio is less than 4.5.

In an effort to increase the detection ability of the R.E.S., modifica-
tions have been made to the structure of the decision process and the input
estimation process. Simulation results show that this modified R.E.S. generates
only few false detections in identifying the complete outlines of obstacles at
40m without assigning excessive penalties to false detections. Also, the modi-
fied R.E.S. detected half of the bottom edges of the boulder at 4m where the
signal to noise ratio is in the neighborhood of 1.5. The following describes
modifications made to the decision process and input estimation procedure:

R.E.S. estimates the state of the system by using an input estimation
scheme and it detects large inputs of unknown magnitude by utilizing a decision
tree and the Bayes decision rule. The impulsive input in the svstem equation
corresponds to the existence of an edge of an obstacle. Fig. 6 shows modified



o

'

—

o'ﬁ -
” 'A.
r r-‘--- f""“"J '
: I
PR L o
] —~p
"’ J.»&
ff peejmeeggrecsen
TR
v : ~d
Hm--:‘o (3 ] —w%‘:'
:,” :A'
¢ r "'?'-‘u.:u
. -
..= | =3,
S - 2, -
He Hs

Fig. 6.

I

o

8 Rie
He H,

Basic Decision Tree with Input Estimations.

1H;.}“-{L PAG}, 16
oy : 2l '
) }lKUi(JIAfJT?
tor P
4 St %
% ' J
K-" i K.’a r | '
I i ees
Ad R.E.S. — X o i | A
i === (X %o e |x“ o Z\m
7 \
«.nl J: KR r \\P N j“ ‘\P
A
Ay _RES ~s AT A ; Ad _':: e A
X SR EIT (RE, mlx"'—- Y y
| \ )
r l v N ,\\., ™ X o
: \ \ 4 re ""'?L
X . Ad . x
X2 R R o) Ko (7L Y . Ry
1 (Ha \ % (H) (Ha\ o~ I \ \ \
| \p \EF \EF ‘P . P * kb + kFE
1 \ \ ) l \ \ x
P A X X A x 2 :i:‘
7:: p ¢ Toes 7; " ™ .
. » o v " s Ha HY

Fig. 7.

€Consecutive Decision Tree.



15

decision tree, each of which represents a particular hypothesis as follows:

Hl; impulsive input exists between stages i and i+l.
Hz; impulsive input exists between stages i+l and i+2.
H3; impulsive input exists between stages i+2 and 1i+3.
Ea; no input exists between stages i and i+4.

y&th reference to Fig. 6, along branch a, the conditional state estimates i:+2.
X{4+3 and xi{44 are obtained by using Kalman filter equations, since H, assumes

no impulsive input between stages i and i+4. The procedure to estimate the state
at stage i+l, xg+1, will be discussed later.

For branch 3, the state estimates for stages i+l and i+2 are the same as
branch a. Since Hy assumes in input between stages i+2 and i+3, §1+3 is obtained
by utiliz§?g an input estimation scheme. As shown in Reference 2, the input es-
timation uj4), is obtained from z444, since the e§§stcnc¢ of an input uq42 does
not affect zjy,q but zj4, directly. As a result, xj43 is obtained by utilizing
measurement éag z4,, one stage ahead. Since zji44 has already been used for the
gstination of Xj{43, it cannot be used twice. Thus, the following stage estimate
xj is obtained by prediction only. As is noticed from above discussion, we
need at least 4 stages to distinguish branch 3 from branch a.

For branch 2, the state estimate at stage i+l is the same as §?+1. How-
ever, the stage estimate x{4+2 is obtained by using an input estimation scheme.
This is because H2 assumes an input between stages i+l and i+2. As a consequence,
x{+2 is estimated by using measurement data z{4+3 one stage ahead. The following
state xj4+3 is estimgted by prediction only, since zi43 has already been used for
che estimation of X{47. To make branch 2 comparable with branch a and branch 3,
stage estimate xj44 1s obtained by using an input estimation scheme, since H
assumes an input between stages i and i+l. The following state ii+2 is estimated
by prediction only, since z447 has already been used for the estimation of xj4.
?o make bngch 1l to be comparable with the rest of the branches, state estimates
xi+3 and xj,, are obtained by Kalman filter equations which use the measurement
data zq43 aﬁﬁ Zi44 respectively.

As shown in Fig. 7, which will be discussed later, the state estimate X341
is obtained by either prediction or Kalman filtering. If the state x4 has been
obtained by utilizing input estimation scheme in the former decision tree, ii+
is obtained by prediction only, since the data zy, has already been used in tée
former stage. On the other hand, if x4 is obtained by Kalman filtering in the
former decision tree xg+1 is obtained by using Kalman filtering. The conditional
state estimates along the decision tree in Fig. 6 and the corresponding covari-
ances are used for the computation of the joint conditional probability of the
residues for each branch of the decision tree as follows:

m m m m
PriTi 1s Tiy2r Ti43e Tyl Xpr Hp) (a)

m 2 - = - ! - =
Tipp ® Zg4-E(H xi+1lxi, H ) =z, -0 £] x, for m = 1,2,3,a (b)

m 4 - 20 & HOE' L x -
Tiga = Zy4 ElH xy o xT B} = 2, -0 €1, Xj4y form - 1,2,3a (c)
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l'|:+?. - 2, +3°EH x1+3|;‘:+2' Hyt = 2.8 Pl ;i+2 form = 2,3a (d)
Flag | 20 B Xy R By =z R R, (o)
r:+‘ 8 z,,4-E(H ‘1+a|gi+3' H)es 0P i{+3 for m = 3,a (f)
! 2B x, 3T, By =z B E XD, for m= 1,2 (8)

The joint conditional probabilities are used to evaluate the Bayes risk index
Rl for the branch L as defined below:

m m
Ry & Pl omPr (Fia1 T 1420 T 143 i4g | Xy oy ) (2)

L 2=1,2,3,a m im r
where Pm; priori probability for Hm.

Clm; cost associated with accepting Hl when Hm is true.

If R2' R, or R, is minimum, it is concluded that there is no input between
stages 1 and i+l. As a consequence, the state estimate xf+1 is accepted as a
correct state estimate and branch 1 is discarded. As shown in dotted line in
Fig. 7, with x%+1 as a new initial state, branches 2, 3 and a are extended to
stage 1+5 and become branches 1, 2 and a respectively. Branch 3 is newly
generated and the algorithm proceeds with a new set of data.

If is minimum, it is concluded that there is an input between stages
i and i+l. "xjy4; is accepted as a correct estimate for stage {+l and totally
new set of decision tree is generated to the stage i+5 with xj4; as a new
initial state. This procedure is illustrated in chain dotted line in Fig. 7.
It should be noted again that ig+2 should be obtained by Kalnan‘filter equa-
tions when x§+ is accepted as a correct state estimate. When xj,, is
accepted as a correct state estimate, x?+2 is obtained by prediction ogty since
the measurement data zj,) has already been used for the estimation of xj4+] in
the former decision tree.

Now, the joint conditional probability in equation (2) is computed as
follows:

_ m m g
P F 1 F 1429 143 Ty | Xy 0By = P

m -~
Vi) %0210 2 4002 0By e

~m . m - . m -
Pr(ri+3131’zm'zi+2’nm) Pr(ri+2|xi'zi+1’um) Pr(r1+1 x;,H) (3)

It should be pointed out that the last term of equation (12),
Pr(r? ]xi,Hm) is the same for all branches, since r?+1 is common to all the
brancﬁ%s as can be seen in the decision tree of Fig. 6. For this reason,
reduced joint conditional probability Pr(rT+2.r?+3.rT+AIx%+l,ﬂm will be used
for comparison among the hypothesis.

As Markov property has been preserved in the procedure of state estima-
tions, the reduced joint conditional probability for each branch is written
as follows:
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1 TS P T ,
P (r1+2"1+3"1+6|*1+1 i) Gy 14308 Pr(r1+31’1+2'ul) P ('1+2|‘1+1'u )
(4a)
2 Az G ‘a
P (r1+2.r1+3.r +alx1+1. ) = Pr(t1+‘|x1+3.ﬂz) P ('1+3|‘1+2'H2) Pr(r1+21‘1+1'ﬂz)
(4b)
3 3 A0t a |~a
P "1+2"1+3"1+a|‘1+1'“3’ Pe(Fypg | XiqgrBy) * B (el qlx0 000 © B(zy, I, Hy)
(4ec)
a a a . a |sa .
Pr(r1+2.r1+3.ri+4 *£+1'Ba) P (r1+a| 1+3.H ) P (r1+3|x1+2.nu) Pr(r1+2|x1+1. )

(4d)

For the computation o of Pr('i+2|*1+1'31) in equation (4a), the expected
value of residue ri{42 is ur1+1nu1 as shown in equation (6) of Reference 2.
As a result, the correct evaluation of the probability would be:

1 |za = 1 1 .
P L(rd ol %{ 41 0H)) 7“[“—[ Exp {- 2 42} (5a)
i+2
. g4t T -1 5b
b 142 © Ti42'Yi42°T 142 (3b)
1

Wi4p = cOV {r1+2} (5¢)

al 1 -
and Tiw2 = T4 ~ HF ) Bu (5d)

Since u, in equation (5d) is unknown. the best approximation would be
to substitute HF1+IBu1 by HF1+13” which is derived in equation (c8) of
Reference 2,

-~

Thus, the residue r becomes:

|
i+2

1
1 = 1 ] = - ' -
Tipp = Tygp ~ Py Bug = r o - HF} , Bu=0 (Se)

Since the input estimate ui is obtained from one :hot estimation by using
Z442, it does not distinguish noise from signal. This approximation will result
in a deterministic quantity as shown in equation (5e), and exact evaluation of
the probability P (ri+2 o i+ ,Hy) is not possible. It iszfound that similar prob-
lems,occur with the evaluation of the probabilities P (fi+3|xi+2 Hy),
Pr(ri+4|x1+3,ﬂ ) in equations (4b) and (4c) respectively. Thus, the j c. p for
each branch become-‘
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' 1 e |
Branch i: P (r£+‘.:i+3131+2.u ) =P (r1+4|xi+3.ﬂ ) 't+3|’1+2'“1) (6a)

: 2 a |3 2 . a |oa
Branch 2: P (r{ ,,rl ) [x{ ) elq0ly) = P (riﬂl"us' YR MWL)
(6b)
i o a ol = a -2 "
Branch 3: Pr(r1+3,r1+2|xi+1.ﬂl) P (r1+3|x1+2.R3) P (ri+2|xi+1,ﬂ ) (6¢c)

For branch a, all the conditional probabilities in equation (4d) can
be evaluated. Since the same number of probabilities are needed to be com-
pared with other branches, only first two probabilities are chosen to be used.

Branch a: P (r .HQ) P (r .H“) . P (r H ) (6d)

1+3"1+2|“1+1 1+3|‘1+2 1+2|‘1+1'

.3 As %a noticed in equations above, the estimation of the states x:+4
%143 and x{44 are not needed for the evaluation of the probabilities.

In the procedure of redefining the j.c.p. of each branch as above, the j.c.p.

of H3 and H become the same, since the two hypotheses share the same branch
till the stagc i+3. As_g result, branch 3 is deleted from the decision tree
and the state estimate xj,, in branch a is not needed. The final structure

of the decision tree with the residues to be compared are illustrated in Fig. 8.

Now we can explain heuristically how the R.E.S. distinguishes a large
input to the system from a large observation noise. For the purpose of expla-
nation, assume the diagonal element of the cost matrix is zero and all others
are equal. Also the priori probabilities for the branches are equal. It can
be shown that this leads to a maximum likelihood decision rule for multiple
hypotheseés except that the R.E.S. proceeds one stage for each decision recur-
sively. Since each of the probability functions ie Gaussian, the one with
smaller residue will have larger probability. One may analyze the effect of 5
cases on the residuals for the 3 branches. The 5 cases are:

1. A large impulse input u, between stages 1 and i+l.

i
2. No input, but large observation noise v

3. A large impulse input Uil
4. No input, but large observation noise v with 2z

i+3 i+3°
5. No input, but large observation noise Vi with 2 44"

142 Vith 2,0,

between stages i+l and i+2.

For case 1, there is an input between stages 1 and i+l; then §i+1 would, be a
correct estimate and the following residues ri43 in equation (le) and ri4+4 in
equation (lg) becomes small. On the other hand, xi+ which does not include
input estimation of uy, would be a wrong estimate. targe residues result in
r1+2 in equation (lc) and r1+ in eq uation (ld). For case 2, there is a large
observation noise with z, Ehen Xi+1 includes a lpufious input estimate which
is not present and the fotiowing residuals ri4+3 and rj44 become large. On the
other hand, x%4+] is obtained by filtering the observation noise by Kalman filter
and the following residuals ry,, and ri,; will be small. This line of reasoning
leads to Table II which illustrates the qualitative picture of the residuals for
the five cases mentioned above.
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Table II
case 1 case 2 case J case 4 case 5
large u, large Vis2 large #iilr large :iil, large +
Branch 1 ri+3 small large large large sma..
ri+4 small large large small large
Branch 2 ri+2 large large small small small
ri+¢ large small small large large
Branch r;+2 large large small small small
r:+3 large small large large small

Looking at Table II, one cai notice that:

In case 1, branch 1 is  ikely to have the largest probability,
and detect th presence of input.

In case 2, branch 1 will . ive the smallest probability and the
scheme will succeed to ignore the measurement noise
Vg2 and proceed to the next stage.

In case 3, branch 2 will have the largest probability. The
scheme will proceed to the stage i+l and detect the
input afterwards.

In case 4, all the branches are equally likely, since all the
branches have one large residue ard one small residue.

In case 5, branch a is most likely, and the scheme will proceed
to the next stage.

It has been shown qualitatively that R.E.S. would work very well except
for case 4. Since all of the 3 branches are equally likely in case 4, a
slight biasness in the cost assignment or priori probability will handle the
situation.

Computer simulations were performed for a boulder-crater obstacle pair
located 40m and 4m away from the rangefinder. Range data were obtained from a
previously developed program which simulates the rangefinder measurements.

The measurement data were corrupted by a Gaussian noise with its standard de-
viation 0.05m. The rangefinder was assumed to be located 2w above ground, and
the boulders and craters were of hemispherical shape with 2m in diameter. For
the cost matrix, the diagonal elements C;j, C22 and C33 are assigned the value
zero, since correct decision should cost the least. All the off diagonal ele-
ments are set to 1.0, so that no excessive penalties are assigned to the false
detections. 1In the simulation with obstacles at 40m, elevation angle 2 of the
rangefinder changes from 0.7° to 3.3° with constant increment A8 = 0.04° and
azimuth angle changes from -5° to 5° with A = 0,20, The simulation result
in Fig. 9 shows that the modified R.E.S. succeeded in reducing almost all the
false detections without using excessive penalties to false detecticas. In
the simulation with obstacles at 4m, 2 changes from 8.210 to 45,529 with
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48 = 1.49° and the azimuch angle O changes from -45° to 459 with &+ = 3,60,
Fig. 10 shows the outline of obstacles extracted by modified R.E.S5. It is
noted that the modified R.E.S. detected half of the bottom edges of the
boulder at 4m which could not be detected by the previous R.E.S. Approxi-
mate signal to noise ratios at the edges of the obstacles were computed ac~-
cording to the formula SNR = u/0_, where u is the magnitude of the impulrive
input occuring at the edge of obBtacle and Oy is the standard deviation of
the noise. The SNR at the bottom of a boulder at 4m is found to be in the
neighborhood of 1.4 while the SNR at the bottom of a boulder at 40m is about
7.0. This is the reason why the detection of the bottom edge of the boulder
at 4m has been a harder task to be performed.

In summary, for the particular set of state equations and measurement
equations that we considered, the existence of an input does not affect the
next measurement but affects the measurement data after the next. For this
reason, the first section of the decision tree becomes common to every branch,
thus it {s excluded from comparing the j.c.p. The magnitude of an input is
estimated by second residue which is one shot estimation. This one shot es-
timation cannot distinguish the signal from noise. The conditional proba-
bility for the residues which include the input estimation becomes determinis-
tic and these probabilities are deleted from comparing the j.c.p. for the
branches. To test whether the R.E.S. can distinguish a large itput from a
large noise, the residues of the branches are compared qualitatively as a
measure in determining where the decision scheme is correct.

In conclusion, the stabilized R.E.S. with modified decision tree
generated only few false detections in identifying the complete outlines of
obstacles without using excessive penalties to the false detections. Also,
with the reinforced detection ability, R.E.S. detected half of the bottom
edges of the boulder at 4m.

Thus far, R.E.S. assumed that each column or row of the range matrix
is independent and ignored the interdependency between each other. It is
thought that the detection ability of the R.E.S. will be increased if R.E.S.
is expanded to incorporate the interdependency between the columns and rows.

TASK C. Integrated Path Selection System for Martian Rover Using Laser

Rangefinder -~ C. S. Kim
Faculty Advisor: Prof. C. N. Shen

There have been separate studies on obstacle detection, References 1, 2,
terrain modeling and evaluation, References 3, 4, and path selection algorithms,
References 4, 6. With the introduction of the logarithmic scanning scheme and
obstacle identification scheme, an overall performance of the integrated path
selection system for autonomous Martian rover is demonstrated in this work.

With reference to Fig. 11, a laser rangefinder is used to obtain the
measurement data. A logarithmic scanning scheme is designed so that it can
provide the obstacle detection and terrain modeling algorithms with a set of
measurement data meaningful in the sense of data spacing over the entire
scanning area. The design of the scanning scheme becomes complicated due to
the noise elements in the range as well as in the positioning angles. By
processing the range measurement data obtained, Rapid Estimation Scheme,
Reference 2, detects the possible edges of the discrete obstacles. The result
of R.E.S., is fed into an identification scheme in which the whole set of
detected points are classified into subsets. Each subset is recognized either
as a boulder, a crater, cr a ridge. Now, the location and sizes of the obstacles
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are us: ' to determine the lengths of the passable corridors for the path
selectic scheme. In parallel with the R.E.S., the inpath and cruss-path
slupes at the data points are estimated by recursive slope estimation scheme,
Reference 4. This recursive algorithm is not valid at the edges of obsta-
cles and ridges where discrete changes in range occur. 3ince the edges of
obstacles aid ridges are known from the obstacle detection scheme, the slope
estimation scheme will initialize itself at those points. Inpath and cross-
path slopes computed at the data points are utilized to estimate the terrain
variables at the spine and track points along each corridor. The terrain
variables considered are inpath slope, tilt slope, wheel deviation and body
clearance. Since the spine or track points do not coincide with the measure-
ment data points, the inpath slopes, cross-path slopes and elevations at the
spine and track points are estimated from two-dimensional Hermite interpola-
tion function, Reference 8, in a rectangular coordinate syst:n. Now, each
corridor is evaluated in terms of the terrain variables. The corridor which
is expected to incur the least amount of energy consumption and risk is
chosen by dynamic programming method as the optimum corridor in the path
selection scheme.

The range measurement data is obtainod by changing the elevation angle
5y and azimuth angle Bj in spherical coordinate system, The three coordinate
systeme used in this work are depicted in Fig. 12:

spherical coordinate - (2, 8, B)
cylindrical coordinate - (p, 9, Z)

rectangular coordinate - (x, y, z)

It is desired for the scanning scheme to covur a horizontal terrain
from 5m to 80m in radial direction from the rangefinder 2m in height. The
resolution of the rangefinder is limited by the noise elements in positioning
angles as well as the range error. It is assumed that the standard deviations
of the elevation angle and the measurement range are o,=l1 arc-minute and
g_ = 0,05m respectively. Scanning scheme is evaluated by three criteria as
£ 1low:

(i) signal to noise ratio of the incremental elevation
angle, A31’°Ae‘

(ii) horizontal data spacing in radial direction, Api;
(iii) signal to noise ratio of the incremental range, Ami/cAﬂ'

Assuming that Bi's and m

and GAm become:

l'l have Caussian distribution, the quantities 9,8

°AB = N2 GB = 1,414 arc-min.

gy - N2 ¢ = 0.07m
m

It is noticed that to have asi/oA and /cB greater than unity, the corres-
ponding 48, and Am, should be gregcgr thaé 1.414 arc-minutes and 0.07m
respective&y all over the scanning area. Since the obstacle detection scheme
needs at least four data points, inside or on the obstacle to be identified,
the horizontal data spacing Ap, determines the size of obstacles that can be
identified. If constant increment of radial distance 4p = 0.5m is used, the
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the obstacle detection scheme can detect obstacles of 2m in size for all

range.

However, A8, becomes smaller at far distances and ac p

= 80m,

AB., becomes 0.54 arc-min., which is much smaller than its standard devia-
ti&n Oag 1.414 arc-min. Even if constant in~rement of radial distance

Ap
arc-min. at p

cles <hose dimensions are less than m in size.

To design a scanning scheme which will make 4p

small as possible while keeping A8

following variable increment of el

where 0<31<ﬂ/2 and 0<A8, and h is the height of the rangefinder.

If the quantity Aoltanﬂ
becomes smaller and o8 becones
ing, the scanning lcheﬁa will resul
smaller data spacing at near distances.

ZAﬂih/linZBi = Ap

/9sa and Am /o
*vation angl‘ 1%nuuggcot¢d.
ence to Fig. 12, the relation between Aoi and ABi is derived as follows:

tanB1

= \p = 1,82m will result in the incremental elevation angle A8, = 2
= 80m, the obstacle detecrion scheme cannot identify obsta-

at near distance as

greater than unity, the

With refer-

(1)

in equation (1) is set to a constant, Ap,
larger as 8, gets larger. From this reason-
t in a ldrge data spacing at far and

By setting the radial data spacing

Aoé to equal the horizontal data spacing AB,, it has been derived in Refer-
ence

7 that the quantity
In Table III,

increases.

Ap

thie

incremental elevation angles are listed.

becomes smaller logarithmically as the index {1
resulting data spacings and the corresponding

Table III
Data Spacing and Signal to Noise Ratios
Py 80m 50m E 25m S5m
Aoi = Adi 2.4m 1.5m 0.75m 0.15m
Am1/°Am 34.3 21.4 10.7 241
ABi 2.7 arc-min. 4.3 arc-min. 8.4 arc-min. 36.5 arc-min.
Aﬁi/ods 1.9 3.0 5.9 25.8

From the measurement data obtained in this manner, R.E.S. can identify the

obstacles whose dimensions are as small as 0.6m at p
= 50m. The range data obtained according t

6m at p

scanning scheme are stored in the form of range matrix

W

%3

Moy

.

e

M2

M

Me2

99t

e

M1n

M
2n

*en

1

.

= 5m and dimension of
é this logarithmic

(2)
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To cover a_sector in horizontal remain defined by 5m - p : 80m and
=0.54 rad = 8 = 0,54 rad, the required number of rows and columms of the
range matrix in equaticn (2) are k = 102 and n = 37 respectively.

Now, R.E.S., Reference 2, processes the measurement data obtained
from logarithmic scanning scheme toc detect the possible edges of obstacles.
To show the detection ability of ‘he R.E.S., range measurement data are
obtained from a previously developed range measurement simulation program.
The general terrain model is a wavy surface with plateaus and valleys ana-
lytically defined in rectangular coordinate system as:

z=0.5 con(%%) sin (%% (3a)

where the units of x, y and z are meters. Also the following features are
super-imposed on the general terrain described by equation (3a)

(1) hemi-ellipsoidal boulders at (x, y) = (0,17) and (11,34);
(11) hemi-spherical boulder at (x, y) = (1,7);
(111) hemi-spherical craters at (x, y) = (7,45), (-9,44), and (=4,67).

The top view of this terrain is shown in Fig. 13. The rangefinder
is located at (x, y, z) = (0,0,2) and the scanned area is defined by
S = (,3805 rad, 8 = 0,025 rad, 6 = 0.54 rad, and 8 = =0,54 rad.
e process of geﬁé?ating the measufecment data, white Gnﬁégian noise with
0.05m standard deviation is added to each of the range measurements.

The measurement data obtained are processed by R.E.S. The vertical
edges of the boulders, crater and ridges are detected as '*', and the side
edges are detected as '0' in Fig. 14. In Fig. 15, top of the ridges are
identified by chains of several column detections. Boulders are identified
by consecutive column detections at the top and single column detections at
the bottom. Craters are identified by single column detections at far edges
and consecutive column detections at near edges. It should be noted that
the use of R.E.S. is subject to produce false detections as well as to miss
some of the detectioms.

A has been mentioned previously, it is nceded to develop a scheme
which wily !dentify the whole set of detection points into subsets of detec-
tions. By utilizing the characteristics of the boilder, crater and ridge, as
well as the required relationship between the detected points to form an out-
line of an obstacle, an algorithm has been developed, Reference 7, to identify
a set of detections as a boulder, a crater or a ridge. By using the identifi-
cation scheme, the whole set of detection points obtained §rom R.E.S. in
Fig. 14 is characterized either as a boulder, a crater, a ridge or a false
detection. As shown in Fig. 15, the scheme clearly identified each of the
boulders, craters and the ridges. This information is fed into path selection
scheme in determining the lengths of the passable corridors.

Recursive slope estimation scheme, Reference 4, was developed earlier
to estimate the inpath and cross-path slopes at the data points by utilizing
the range data. As has been mentioned earlier, this scheme cannot be applied
where discrete jump in range occurs, such as edges of obstacles and ridges.
Since the edges of obstacles and ridges are identified by R.E.S. and obstacle
identification scheme, the recursive slope estimation scheme is modified to
reinitialize itself at those points. For simulation of the scheme, the range
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data obtained for the terrain in Fig. 13 are processed by the recursive
slope estimation scheme. To display the information, the gradient for each
data point is classified to lie within a specified interval for mapping
purpose. Each interval and the corresponding character is defined in

Table IV.

Table IV
Isogradient Regions

Gradient
Character min max
A 0.0 0.02
B 0.02 0.04
[+ 0.04 0.06
D 0.06 0.08
E 0.08 0.1
F 0.1 0.15
G 0.15 0.2
H 0.2 0.3
I 0.3 0.4
J 0.4 L
U urdefined gradient

Fig. 16 shows as isogradient map describing the terrain in x-6 plane
projection. It is noted that there are circular isogradient regions on the
faces of sinusoidal dunes and valleys. Also, high gradients such as 'J'
are assigned on the faces of boulders and inside the crater. It is also
noted that hidden regions exist at the back of a boulder or inside the crater
where laser beam could not reach. Undefined gradient, represented by charac-
ter 'u', occurs when the recursive algorithm cannot be applied due to a large
discrete change in ranges between the adjacent measurement data. The esti-
mated inpath and cross-path terrain slopes and the iso-gradient map are used
for the evaluation of the passable corridors.

So far, we have obtained the outlines of obstacles and slope estimates
at the data points by utilizing logarithmic scanning scheme, R.E.S., obstacle
identification scheme, and recursive slope estimation scheme. Now, with the
information obtained above, path selection scheme is utilized to determine an
optimal corridor which minimizes certain performance indexes. The path selec-
tion scheme used here is based on the method outlined in the previous work,
References 5, 6. One major modification made to the previous work is the
evaluation of terrain variables. Since we have already obtained the slopes
at the data points, the terrain variables (inpath slope, tilt slope, body
clearance and wheel deviation) are estimated by employing two-dimensional
Herminte interpolation function which utilizes the estimated terrain slopes.

A detailed description of the modifications is found in Reference 7. The
simulation of the path selection procedure was performed for the terrain illus-
trated in Fig. 13. With the starting location (x, y) = (0,0) and the target
location (0,350), the rover determines the corridor lengths and evaluates the
terrain variables by utilizing the algorithms described earlier. Finally,
optimum corridor is chosen by path selection scheme. The cost associated with
each corridor is tabulated in Fig. 17 where the index (i, j) corresponds to
that of the primary corridor CRy and secondary corridor CRy;. The length of
primary corridors CRy and CR4 become short due to the presegce of obstacles
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at near distances. The value 100 is assigned to penalize short corridors.

The terminal costs for CRy and CRg become larger because of the target de-
viation and low elevation at the end of the corridor. As is noted in Fig. 17,
the scheme selected the corridor of 25m in the direction 6 = 0.18 rad for

the corridors (2,2). In the next path selection procedure, the rover scans
the terrain at the position (x, y) = (-4.5, 24.6). The measured data are pro-
cessed by R.E.S. to detect the possible edges of obstacles. Fig. 18 shows the
outlines of craters detected. Crater #1 corresponds to the crater at (x, y) =
(=9,44), which was not detected in the first path selection because it was
hidden by the ridge. Crater #2 corresponds to the crater at (x, y) = (=4,67).
It was not detected in the first path selection procedure since it is too small
compared to the data spacing at the far distance. Now, the rover utilizes
again the terrain evaluation and path selection scheme described earlier. In
this second path selection procedure, the corridor of 25m in the direction

8 = 0.18 rad is selected as optimum corridor. The route resulting from the
two path selection procedure is illustrated in dotted line in Fig. 13.

In conclusion, this work presents an integrated study of logarithmic
scanning, obstacle detection, terrain evaluation, and route designation prob-
lem. The resolution provided by the scanning scheme is appropriate for the
detection of small obstacles at near distances as well as large obstacles at
far. The outline of obstacles and ridges are identified from the detected
points. This information is used in the design of passable corridors in that
the corridor lengths become adaptive to the obstacles identified. The terrain
variables along each corridor are computed by using the terrain slopes esti-
mated recursively. The path selection procedure is made more practical by em-
ploying a finite dimension vehicle rather than a point mass. The integrated
system for the autonomous navigation of Mars rover is completed by establish-
ing the coordinations among existing algorithms as well as making modifj_ations
to them. Computer simulation results are promising in that the rover iu capa-
ble of selecting a locally optimum path for low risk and energy expenditure
while maintaining a desired target direction.

The following are the areas in which more research work is needed for
improved performance of the route designation problem for autonomous Mars
rover:

(1) Adaptive scanning scheme.
It is needed to develop a scheme which will detect the skyline
and make the scanning scheme adaptive to the upgraded hills as
well as downgraded valleys.

(1i) Improvement on the obstacle identification scheme.
The obstacle identification scheme outlined in Reference 7 is
just a beginning of the contour extraction problem. A more
rigorous study is needed to employ all the possible information
in constructing the outlines of the obstacles and ridges.

(1ii) Improvement on path selection scheme.
In the previous path selection scheme, Reference 5, all the
terrain variables computed are treated in a deterministic
manner. It is needed to modify the previous scheme so that
the stochastic nature of the terrain variables are considered
in the evaluation of the cost for each corridor.
Also, in the previous scheme, the relation between the proba-
bility of impassability and the amount of risk involved is
not clear.
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