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X,Z

Greek

NOMENCLATURE

seal clearance along centerline

axial force

nondimensional force, F/6uu(r°/c)2r§
film thickness

integrals defined in Eqs. (21) and (22)
integrals defined in Eqs. (36) and (37)
given by Eq. (26)

given by Eq. (41)

restoring moment

nondimensional moment, Mxlsuu(ro/C)zrg

transverse moment

3

nondimensional moment, Mz/6uw(r°/C)2ro

pressure
nondimensional radius, r/ro

radial coordinate

radial coordinate of extreme pressure

orthogonal axes, see Figure 1

Symbols:

angle of tilt

tilt parameters, yro/C
angular coordinate
viscosity

rotational anqular velocity
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INTRODUCTION

Seal leakage and short seal life are common problems found in a host of
industrial equipment and in other applications. For this reason seal research
has been carried out since the early sixties in an attempt to understand the
mechanism of seal operation. Denny [1] has shown experimentally that hydro-
dynamic effects in a misaligned radial face seal are the cause for axial for-
ces and pressures in excess of those theoretically predicted for aligned flat
seal faces. Following Denny's findings, many investigators have treated this
problem and there have been several hypotheses put forth to explain the mecha-
nisms responsible for the development of the lubricating film pressure that
acts to -eparate the primary seal faces. These hypotheses include surface
angular misalignment (2], surface waviness [3,4,5], microasperities (6], vapo-
rization of the fluid film [7], and thermal deformation (8,9]. Examination
reveals that these theories are of limited use from an operation prediction
standpoint, and that face seal lubrication theory is still very primitive.

It is also noted that seal dynamics, which is thought to be of major impor-
tance, is poorly understood.

In some recent papers [10,11) an attempt is made to solve analytically
the dynamic behavior of a radial face seal. In these papers the dynamic res-
ponse of an angular misaligned seal is considered due to a restoring moment
that coincides with the angular misalignment veciar. This restoring moment,
which is an important factor in seal stability, is by no means the only mo-
ment acting on the seal faces, a fact that somehow was overlooked in the
past. A transverse moment that leads the angular misalignment vector by 90

degrees and is generated by hydrodynamic effects is pointed out in [12]. This



transvers2 moment may be the origin of dynamic instability and has to be con-
sidered in any dynamic analysis of a realistic seal model.

In order to establish a better understanding of radial face seal mecha-
nism of operation, it is important to obtain the complete system of forces
and moments. As a first step the hydrostatic effects in a misaligned seal
were analyzed [12] and both the axial force and tilting moment were found.

In this paper the hydrodynamic components of the forces and moments will be
treated.

In previous works analytical results were limited to very small angular
tilts (2], or to an approximated film thickness geometry where radial varia-
tions were neglected [11). Also the transverse moment, mentioned before, was
overlooked,

It is the objective of this paper to present an analytical solution for
the hydrodynamic effects in a realistic misaligned seal geometry. This solu-
tion covers the complete range of seal misalignneant from parallel faces to

surface touch down.



ANALYSIS

The Reynolds equation for a narrow seal and incompressible fluid is:

:—F(rh3 %g) = SUur\g—z— (1)

where the film thickness, h, for a misaligned seal (Figure 1) is given by:
h = C + yrcosé (2)

It is shown in [12] that while curvature effects may be neglected, thus allow-
ing the replacement of r in (1) by the mean radius rme the film thickness in
(2) should remain a function of both r and 6. This is due to the fact that
the pressure is strongly affected by radial changes in the film thickness
along the narrow width of the sealing gap.

In contrast to the film thickness, its circumferential gradient is al-
most unaffected by the radius and hence may be approximated by

ah :
G B e Yr‘mSHIB

L%

Eq. (1) then becomes

3 (p3 3Py . .
a—r(h ar.) 6uwyrmsine (3)

Integrating once we have

g§-= - Q%?-yrmsine(r-r') (4)



where r' is a constant of integration corresponding to the radius where the

pressure has an extremum. Integrating once again qives

g o Gumyrmsine[m- e 2—"i?) + —f—1 + (5)

2yh"cose

with C] as another constant of integration. The boundary conditions for the

hydrodynamic case are p=0 at e, and at rer.. Hence

1 C 1 r 1 C 1 P
Teoss 5,2 TRt 7 T Teoss 5,2 TRt o2
i

YCOS

2h1 2 0 0 2h0
or
o —L42—rh°hi - C) (6)
YC0s§6 hO + j
Since
hohi = C2 + Cw(r°+ri)cose + yzroricosze
and

C(ho+hi) = 2C2 + Cy(ro+ri)cose

we get from (6)

+r.) + ’
) E(ro rl) 2yr°r1cose
C + y(r0+ri)cose

rl



or in dimensionless form

Rm + cRicose
R * v ek C0s0 (7)

where R = /Ty €% Yro/C. ana Rm = (1=R1)/2.

Eq. (7) gives the radius where the radial pressure profile reaches its
maximum or minimum. This radius clearly differs from the mean radius Rm at
which the maximum pressure is obtained when radial variation in h are neglec-
ted [11].

The constant C] in Eq. (5) is found by equating p to zero at r=r.. Thus

0
the pressure distributioun is

h=h_h _+h
°(7—(c + yr'coss) - hh] (8)

6LI“"'m siné
i cos 0 h h

From (6) we have

h_h
20 1 1

]
C + yr'cost = h

Hence

buwr h- h +h

p - —2 L0 Tz*—h'*‘"

COS
or

(r_=r)(r-r;)
P = 3uuCR esing 9 5 L (9)
hmh




where h = (h°¢h1)/2.
In [11) where radial variations in h are neglected and the film thick-

ness expression is:
h = hm =(C + YrpCOSe

the pressure is given by

3uuCRmcsine ) 2 »
p = ——-——h!'—(l'(ro'ri) - (r'rm) )
m

which can be rearranged in the form

(ro-r)(r-ri)
pap = 3uwCRmcsin0 X (10)
h
m
The symbol p__ is used in (10) to indicate that the pressure in [11] is onlv

ap
an approximation resulting from the omission of radial variations in h. The

accurate pressure given by (9) is related to the approximate pressure of Eq.

(10) by
h
= _m2
p pap(h) (1)
The film thickness, h, given by Eq. (2) can be written in the form

h = C{1 + eRcos®) (12)

The mean thickness,hm‘is



hy = C(1 + eR coso) (13)

Hence, from (11) it is clear that for cose>0, p‘p underestimates the pressure
at any R>Rm and overestimates the pressure at any R<Rm. For cose<0, p‘p is
an overestimation when R:Rm and an underestimation of the accurate pressure

when ReR . The approximate pressure p._ i1s antisymmetric about the line BB

ap
which connects the highest and lowest points of the seal (see Figure 1), but
the ratio hm/h is symmetric about that line. Hence, the accurate pressure p
is from (11) also antisymmetric about line BB.

In the absence of an hydros”a ic component this will mean negative pre-
ssures in the diverging clearance where dh/dé>0. For the narrow seal approii-
mation cavitation is assumed to occur in this section of the seal [11] and
the pressure is assumed to he zero (half Sommerfeld condition). When the
hydrostatic pressure component does exist the extent of cavitation is depen-
dent on the pressure differential across the seal boundaries. The cavitation
zone decreases as the sealed pressure increases until a full fluid film con-
dition is reached.

The two extreme cases, namely, the half Sommerfeld condition for cavita-

ting flow and the full fluid film condition for high pressure seals, will now

be considered.

Cavitating Flow:

Axial Force:
In the case of a very small pressure differential across the seal boun-

daries the axial force is



noer,
Fe J rJ Y prdrde (14)
*n

Substituting Eqs. (12) and (13) into Eq. (9) we have

0,2 esing
= Juw R (1-R)(R=R;) 15
d ’ (1?) " 4 ! (1 + :Rmcose)(1 + cRcose{z it

Neglecting curvature effects and substituting the pressure given by (15), Eq.

(14) becomes

F e 3um(;?)2r; jan
0

1 (I-R)(R-Ri)csine
J dRds (16)

/ (l+cRcose)2(l+cRmcose)

The integration over R can be performed by parts noting that

d
HF{I-R)(R'Ri) = Z(Rm-R) (17)
Hence
(1 (1-R)(R-R, ) (1-R)(R-R;) (1
R% (1+cRcose) " ecosd{]+eRcosd) R; !
1 R - R
2 m
* Tcose ’J T+ cReose N (18)

i

The first term on the right hand side of (18) vanishs on both limits of the

integration. The second term yields

1 R-R R
EEBEE’RI T+eRcoss R * Tcose 'ccoss LN(1*eRcose)
i

1
- ] [1 + €Rcosd - en(1+eRcose)]} =

(ecos6) Ri



s ——E—{ (14cR cOS6) in 1—1%‘3:2!-;—26 - (1-R,)ecoso)

Substituting into (16) yields

F e Buul )2 2 "[ esing - l+ecoso
T "o (ccose)3 I+‘”1““’

- “-Ri) zcsine 1d6
(ecose)4(1 + cRmcose)

Defining the integrals

I,(R,8) = J—-Eéiﬂgg in(1 + eRcose)de
! (ecose)

and

csing
(ECOSB)Z(I + cRmcose)

12(8) = ds

and using the substitution u=ccose, we find [13]):

2
1+cRcos6) R R 1 + ¢Rcoss
I,(R,0) = 20 . . R% 4p 1+ eRcose
] z(ccosa)z 2eC0SH 2 £C0OSH
1+ dgncose 1+ cRmcosa
15(8) = ——5c5— - Rpen £C0S6

(19)

(20}

(21)

(22)

(23)

(24)

Substituting Eqs. (23) and (24) into Eq. (20) we have for the axial force

F = R J](B)

(25)



where
Jy(8) = 1,(1,0) - l,(ai.a) - (I-R‘)Iz(e) (26)
and F is a dimensionless force defined by

F = ___:____
6uu(-D)r
11(1,8) and I](R1.6) are obtained from Eq. (23) by substituting R=1 and R=R_,

respectively, After some algebra J](e) is obtained as follows:

1-R

s () = 1 on tecosé i _ ) ,n tecosé
1 Z(ccose)f l+c§1cose 2ecosé 2 |+c§;cose

af 1+:R1cose

* 7 " TR cose (27)

It is noted that J](e) as given in (27) is bounded at 6=n/2 and hence, F is
inteyrable over the interval O<é<n. This can be readily show by expanding

tne first logarithmic term of (27) in the form

2 3

zn(1+x)-x-x?+3-+... (28)

As 6-+n/2, cosé+0, :nce orders of (cose)2 and higher can be neglected, and by

(28) we have

2
1+ec0s8 1-R; R1']

lim [ ] 7 *M T+eR,cos6 - Zccoss) - @
p+n/2 2(ecose) N b

Finaily, the dimensionless axial force is by (25) and (27)

10



Fati o 1 galse IR e MR
(= - ;:?( Wee ° 40 |~£R1 7t Jog * *® I"!m
Rf lﬂ:Rm l+cR1 2
+~2-'(ln ‘_—EE;- in ta—i-),km (29)

Eq. (29) gives the axial force over the complete range of misalignment that
is, frcm aligned faces at ¢=0 to touch down at c=1.

A simpler expression for F can be derived for small tilts by using the

expansion
3 5
jox _ X X
ﬂ.rr.-l-:-x- Z(X+T*T+...) (30)

With this expansion Eq. (29) can be rearranged in the form

1-R 5

L. ie(1-r,) + 53<1 R3) + £{1-RY) + ...]
- 2 - i 3R 1?‘ i 4

-

={

53 3
+ [e(l-Rm) + TT{I'Rm) + ...]

3
v RLe(Ry-R,) + SHRE-RD) + L..1iRE (31)

Neglecting terms of order 52

and higher and noting that
1
IR = Rm-Ri = E{I‘Ri) (32)

we have for the axial force at very small tilts

-

=(- £0-R3) + £1-r,)(14R2) IR2

1



which reduces to
F = £0-r)30% (33)

The expression for the axial force given by (33) is the same as the one ob-
tained in [11]) where very small tilts are assumed. Hence, when dealing with
small ¢ values the omission of radial variations in h is an acceptable app-
roximation.

When the sealing surfaces come into contact at e=1, the dimensionless

axial force in (29) becomes

1-R%  14R !

-R 2
F =[1-R, + -—2-—(1 sm--,—n—1 + zml—n—m) + 1im —2-1'5 n(1-¢) IR2
i 4 R 2 n

e+l 2e
Using Eq. (32) and noting that

ﬂ-ez)’Zcz
1im &n(1-¢) = 0

e+

we have at c=)

R
% (34)

?C‘] = “-R'i)(] + Rmﬂn W)R

Restoring Moment:

The restoring moment about the x axis (Figure 1) is

mor
M = - I J * przcosadrde
X

0’ ry

12



Neglecting curvature effects this becomes
M = - rZJIpcosedrde (35)
X m

The sign convention in (35) assures that a restoring moment will have a posi-

tive value. Using Eqs. (15), (18), and (19), we have

r B
2.3 £sind l+£cos6
M'-ﬁuu(o)r—J[ in
X C me . (ccosé) i+sR1cose
£sind
B (]'Ri)ecose +e r,1¢:osallde’

Defining the integrals

ing
I,(R,8) = [—EEL———jz in(1+cRcoso ) ds (36)
3 (ecoss)
and
1 (B) - £sinede (37)
4 ecosaT1¥ERmcosa}
we find
_ an(1+eRcos8) 1+eRcos®
I3(Re0) = ccose ¥ Ri—ccose (28)
1+eR _cosé6
14(9) = mn—E-o—sB—— (39)

and the nondimensional restoring moment becomes

13



H(x) = -2 Jp(0) . (40)
where

3,(8) = 15(1,6) = I3(R;,8) = (1-R,)1,(6) (41)
and

= M

b suu(;?)zra

After some algebra, J,(6) becomes

+
1+€C0S6 1+ccos6 1+cR;cosé

Jple) = ) 2Cos8 " T+eR,coss * " ToeR coss - Ni*M TF R 056 (42)
€COS €Ry £ 0 [
Expanding the first logarithmic term in (42) by the serie of (28), yields

1+ecosb  _
91172( cose tn l+eﬁicose)

Hence, M(x) is integrable over the interval O<é6<n and the nondimensional

restoring moment is

M =[L Ln ]'52 + l(l!. =% . R.rh'—n—HERm)
X 52 . ZRZ e M- -eR
i
i l*eR 1+:R
+ —(ln1—r lﬂT—u—)]R (43)

For small e, if we use the expansion

14



2 3
gn(]-x)l. (x'}%#%#_”) (44)

and the one given by (39), ﬁ(x) can be expanded in the form

4 3
M=t t—lz-lcz(l-Rf) ¢ S0RD 4 L+ HR) ¢ SR ¢ L
2R 3
¢ e(RyR) + URIRD) + LR (45)

wiich, after neglecting high orders of ¢, becomes for very small tilts

2
M= %R;(I-Ri)3 (45)

At +=1 (he nondimensional restoring moment is

4R .
M, =[Ryin -i; = ian(HRm)]Rm (46)

e=1

Transverse Moment:

The moment about the z axis (Figure 1) is

n rr
M, = J J o prasinedrde
o' r

i
which after neglecting curvature effects becomes

r

"o

rm
M, = r | | © psinodrds (47)
o vl

Again, by Eqs. (15), (18), and (19)

15



r " 2
. 0,23 esin®e 1+ecosé
M, = buel(F)rp J (=== R coss

(ecose) i

2
- (1-R,)——5102 1de (48)
(ecose) (l*enmcose)

Integrating by parts and using I, and I, as defined in Eqs. (21) and (22)

we have
[ esine f
in(1+cRcos6)do = I,(R,8)sin6 - Jil(n.e)coseae (49)
(ccos8)
and
f csinzﬁdﬁ
J 5 = Iz(e)sina - le(e)cosada (50)
(ccose) (1+egmcosa)

On both boundaries of the integration (6=0 and 6=v) siné=0. Hence, substitut-

ing Eqs. (49) and (50) into (48) yields
a.2.3 [*
N, = - ﬁhm(jr) e OJ [I](l,e) - I](Ri.e) - (I-Ri)lz(e)lcosede (51)

The sum in the brackets under the integral of Eq. (51) was already found, see
Eqs. (26) and (27). Thus, the transverse moment in its dimensionless form

can be written as

= -R; Ll 1+£C0S6
M oJ (ccose *n T+eR,cosb ~ (1-R;)

2 1+¢R,cos6

1+ecosé
- ecose(en T:;R;EBEF + Riin 1;Eﬁ;35;3)]d5 (52)

where

16



. T

4 r
Gpw(jg)zrg

From [14] we find

cos6

dd -
J in(1+eRcose ) dé = nsin ](CR)
0

Also, integrating by parts, we have

sinzo

|+£RCOSB de

n rﬂ
J cosoin(1+cRcose) = ¢R |
0 0

and from [15)

n 2
€

(53)

(54)

(55)

Substituting Eqs. (53), 154), and (55) into Eq. (52) yields after some alge-

bra

m ={iz-[sin'](cR1) - sin7 (e)] + H1-R)(1-c%RE)*

m Catrvhy 2\%,.03
+ ?E[Ri(]-e Ri) - (1-€°) ]lRm

For small tilts we can use the approximations

53R3

. =1 -
sin (eR) = e¢R + 53

* oo

and

17
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(1-c2R%) " = | - % R

Thus, for very small ¢ Eq. (56) becomes

M, = 550-R)°% (57)

Full Fluid Film:

Under full fluid film condition the hydrodynamic pressure is antisymme<-
ric about the line connecting the highest and lowest points of the seal ring
(line BB in Figure 1). This results in a net zero axial force and eliminates
the hydrodynamic component of any restoring moment, Hx‘ However, the trans-
verse moment, Mz, becciles twice its value for the half Sommerfeld condition.

Thus, by (56) we have for full fluid film condition
= w1, ) -1 2n _ 2.2k
M -{F2[s1n (eRy) - sin”'(e)] + «E4I-Ri)(l € Rm)
Y2
+ 1R, (1-e%R8)% - (1-c2)] 2R3 (58)
and by (57) for very small tilts

— n 3
M, = 150-R )% (59)

—

The hydrostatic pressure ir a misaligned seal is symmetric about line BB.
Therefore, in contrast to hydrodynamic effects, it does not produce any trans-

verse moment. Hence, this moment, which is shifted 90 degrees from the mis-

18



alignment vector, is entirely due to hydrodynamic effecvis.

Although leakage was not treated in the case of a cavitating flow, it
chould be mentioned that under full fluid film conditions the leakage is
entirely hydrostatic. This is due to the antisymmetric nature of the hydro-

dynamic pressure which results in zero hydrodynamic leakage.

19



RESULTS AND DISCUSSION

Values of the nondimensional parameters F, ﬁ;. H;. and the ratio M, /M
for the case of cavitating flow (half Sommerfeld condition) are presented in
Tabie | and Figures 2 to 4. These cover the whole range of tilt parameters,
from ¢=0 to e=1,

The axial force and the restoring and transverse moments are greatly in-
fluenced by the radius ratio, rilro. As ri/ro decreases the force and mo-
ments increase quite rapidly. At a given radius ratio both the axial force
and the restoring moment increase with €. An increase in the tilt parameter,
£ = wrolt. is a result of a decrease in the seal clearance C or an increase
in the angle of tilt y. Hence, dfF/de and dﬂ;/dc are proportional to the
axial stiffness dF/dC and to the angular stiffness de/dv. respectively.

From Table | and Figures 2 and 3 it is seen that decreases in the radius ra-
ti1o are accompanied by increases in the axial and angular stiffnesses. Also
at a given ri/r° the axial and angular stiffness increase with increasing
tilt parameter ¢.

An interesting result is the ratio of transverse to restoring moment
Mz/Mx' Whenever ¢>0.6 Mz is smaller than My but, as ¢ decreases, the ratio
Hz/Mx increases and becomes larger than 1 for any ¢<0.6. At e=1, the trans-
verse moment is only about 10 to 20 percent of the restoring moment but be-
comes about 8 times larger than the restoring moment at e¢=0.1. These results
are true for any r'i/ro indicating that the center of pressure is not sensi-
tive to the radius ratio and, what is more important, that there is a strong
coupling between transverse moment and angular misalignment immediately after

the misalignment begins. Such coupling can lead to dynamic instability

20



wobbling of the primary seal,similar to a whirl in journal bearings.

In the case of a high pressure seal where the full fluid film condition
prevails the hydrodynamic components of the axial force and restoring moment
vanish but the transverse moment becomes twice its value for the cavitating
flow case. The transverse moment vs. tilt parameter for the full film con-
dition is presented in Figure 5.

It is interesting to compare the transverse moment due to hydrodynamic
effects with the hydrostatic tilting moment due to the pressure difference
across the seal boundaries. These two moments are 90 deqrees apart from each
other and therefore the problem of dynamic instability and wobbling in high
pressure seals is similar to that occuring in low pressure seals with cavita-
tion.

As an example, a seal havirg the following dimensions and operating con-

ditions was chosen:

Outer radiug, T., M . .« « &+ o 0 s b0 e e 5
Radius ratio, r./P_ . + « « + « & T R RN 0.9

i o
Mean radius, Pp OM o v v v e e 4.75
Seal Clearance, C, em . . « + « + . R EEEEEEEE 0.00256
Shaft speed, M, PPM + +« « « o« o 4 4 e e e 4 e s 1000
Fluid viscosity, u, Heggo/M® « + v s s s 0 v b w s 0 s 1.72 10°°
Pressure differential, 8p, N/mz ............ 106

In [12) a hydrostatic tilting moment of 430 N-cm is found for that seal
when ¢=1. The hydrodynamic transverse moment at the same tilt parameter and

full fluid film condition is 536 N-cm, and would be even higher for smaller

21



seal clearances C without affecting the hydrostatic tilting moment. Hence,
the hydrodynamic transverse moment, which was overlooked in the past, is a
significant factor in both low and high pressure seals and clearly plays an

important role in radial face seal operation.
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