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SUMMARY

An analytical technique for predicting the performance of an active
flutter-suppression system is presented. This technique is based on the use
of an interpolating function to approximate the unsteady aerodynamics. The
resulting equations are formulated in terms of linear, ordinary differential
equations with constant coefficients. This technique is then applied to an
aeroelastic model wing equipped with an active flutter-suppression system.
Comparisons between wind-tunnel data and analysis are presented for the wing
both with and without active flutter suppression. Results indicate that the
wing flutter characteristics without flutter suppression can be predicted quite
well but that a more adequate model of wind-tunnel turbulence is required when
the active flutter-suppression system is used.

INTRODUCTION

A difficulty in analyzing active flutter-suppression systems lies in the
modeling of the unsteady aerodynamic forces. These aerodynamic forces are nor-
mally computed only for simple harmonic motion at discrete values of reduced
frequency. The use of harmonic motion for flutter analysis is adequate since
the problem is one of finding the neutral stability boundary for which the
motion continues with constant amplitude. The problem facing the analyst is
one of modeling the unsteady aerodynamics for arbitrary motion.

In lieu of developing a completely new aerodynamic theory, there has been
considerable interest in using the results of oscillatory unsteady aerodynamics
to generate approximate solutions for arbitrary motion (refs. 1 to 4). This
paper presents a method for analyzing active flutter-suppression systems. The
method is based on a technique for approximating the unsteady aerodynamics in
the time plane through an interpolating function in the frequency plane. By
using the aerodynamic approximating function, the equations of motion are for-
mulated in terms of linear, ordinary differential equations with constant coef-
ficients. Active control functions are added to the equations in a straight-
forward and convenient manner. The resulting equations are reduced to a series
of first-order differential equations which are solved to construct a root
locus of the modes as a function of dynamic pressure. Also included is a
method for calculating the response of the control system to turbulence.

The analytical method is then applied to an aeroelastic model equipped
with an active flutter-~suppression system. Comparisons between wind-tunnel
data and analysis are presented for the wing flutter characteristics both
with and without active flutter suppression. Also presented is a comparison
of wind-tunnel data and analysis for the response of the active flutter-
suppression system to tunnel turbulence.



SYMBOLS

Aj (s) polynomial in s (see egs. (B3))

a speed of sound

b reference semichord used in aerodynamic theory

c streamwise local chord

D(s) denominator polynomial in s of transfer function
Dn feedback filter parameter

E error function

H(w) control surface frequency response function

; L al

k reduced frequency, wb/V

L characteristic length in Von Karman gust spectrum
Lg wing span

1 Laplace transform operator

M Mach number

M; generalized mass in ith vibration mode

m(x,y) mass distribution

N(s) numerator polynomial in s of transfer function
n number of flexible modes

Ap(x,y,t) pressure distribution

Q4 generalized aerodynamic force in ith mode
Qij generalized aerodynamic force in ith structural mode due
to pressure distribution in jth mode
1
q dynamic pressure, Epv2
qdi generalized displacement in ith mode
r number of control surfaces



s integration surface

s = jw

t time

\' free-stream velocity

Wy gust velocity

X,¥Y streamwise and spanwise coordinates, respectively

z(x,y) vertical deflection

By aerodynamic lag

84 control-surface deflection

8, 8" control-surface command and compensation, respectively

z viscous damping coefficient

p fluid density

Owg rms gust velocity

b1 (W) Von Karman gust spectrum

b4 (x,y) normalized modal deflection in ith mode

w circular frequency

Wh,i circular frequency of ith natural mode

Matrices:

(a) matrix representing first-order equations of motion, system off
[Ac] matrix representing first-order equations of motion, system on
(a;] real aerodynamic matrix coefficients

(a;,s] real aerodynamic matrix coefficients for control surfaces
{Ai,g} real aerodynamic matrix coefficients for gust forces

(al. . .[gG] see equations (B3)
{FG} approximate aerodynamic gust vector

[F;] real coefficients of equations of motions



[K] generalized stiffness matrix

[M] generalized mass matrix

(N] numerator polynomial in s of transfer function matrix
fol matrix representing generalized aerodynamic forces

[Eﬂ matrix representing approximate aerodynamic forces in the

Laplace plane

{q},{q} complex response vectors

{T] transfer function matrix

{X} response vector of first-order equations of motion
(o] matrix of modal deflection at sensor location
Subscripts:

c control

I imaginary part of complex value

max max imum

R real part of complex value

rms root-mean-square value

t sensor location

Dots over symbols denote derivatives with respect to time.

DESCRIPTION OF TECHNIQUE

Three-dimensional unsteady aerodynamics are normally computed, at a given
Mach number, for simple harmonic motion at specific values of reduced frequency
k. The control law for an active flutter-suppression system is usually given
as a transfer function which relates control-surface motion to wing response.
It is normally expressed as a ratio of polynomials in the transform variable
s. The problem associated with the analysis of an active flutter-suppression
system is developing a set of equations where the form of the unsteady aerody-
namics and the control law are compatible. The approach taken in this report
is to permit the variation of the aerodynamic forces with frequency to be
approximated by a rational polynomial in the variable s. This technique is
similar to that described in references 3 and 4.

The generalized aerodynamic forces are approximated in the s-plane through
an interpolating function of the form
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2
A b b 6 [a,])s
(o] = [ag] + [Aﬂ(‘—,)s + [AZ](‘—’> 2 +S — 1)

where s = jw and Bp-g = Wy.ob/V. As described in reference 3, the form of
equation (1) permits an approximation of the time delays inherent in unsteady
aerodynamics subject to the following requirements: complex conjugate sym-—
metry, denominator roots in the left-hand plane, and a good approximation of
the complex aerodynamic terms at s = jw. The approximating coefficients
(Ags, Ay, . « +,+ Bg) in equation (1) are evaluated by a least-sgquares curve
fit (described in appendix A) through the values of complex aerodynamic terms
at discrete values of reduced frequency. Figure 1 illustrates a typical fit
through the values of complex aerodynamic coefficients. The solid curve
represents the approximating function.

Wing Without Flutter-Suppression System
The equations of motion are formulated through a modal approach using
Lagrange's equations of motion. In the modal approach, the elastic defor-

mation at any point on the wing is described by a linear combination of
orthogonal modes,

n
Z(X,7,8) = > qj(t) ¢;(x,y)
i=1

where ¢i(x,y) are the undamped natural modes of the system and n is the
number of modes used. Assuming a viscous form for structural damping, the
equations of motion become

. i ) 1
Mi qi(E) + 2TiMjon, 5 di(t) + o, M) gi(t) = -—pvZ Q4 (t)
(1=1,2, « « s ) (2

where
M; = tS:jim(x,Y) ¢12(XIY) dx dy
S

is the generalized mass and

AP(XIY t)
Qi (t) = SS *~ 45 (x,y) dx dy
q

S



is the generalized aerodynamic force. The total pressure distribution
Ap(x,y,t) can be expressed as the sum of the contributions due to each
flexible mode. Therefore,

n
Ap(x,y,t) = 2 Apj(x,¥) qj(t)
3=1

where Aps(x,y) 1is the lifting pressure at point (x,y) due to wing motion
in the jth flexible mode. Substituting this expression for Ap(x,y,t) into
equation (2) results in

.o 'y 2
Mj qj(t) + 2 iMjwp,; qi(t) +wp iM; qj(t)

1 AP (%,¥)

Il
=--0v2 > |aqj(t) SS
2 j='|

S

¢i(x,y) dx dy (3)
q

where i =1, 2, . . ., n. By taking the Laplace transform of equation (3), the
equations of motion can be written as

<[M] s2 + [2omu,ls + -12-pv22([Q]) + [K]>{q} =0 (4)

where ] is the Laplace transform operator, and

Ap5 (x,Y)
Qij = SS T ¢j(x,y) dx dy

S

Wn,iMji (i=13

kij =
0 (i # 3)

By substituting equation (1) into equation (4) and following the procedures
outlined in appendix B, the equations of motion are reduced to a series of 6n
first-order equations of the form

s{x} = [Al{x} (5)

The eigenvalues of [A] are the roots of the characteristic flutter equations.
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Wing With Flutter-Suppression System
The equations of motion are formulated in the same manner as described

for the case with no control. For the wing equipped with an active flutter-
suppression system, the equation which corresponds to equation (4) is

[iia] 2 + [mmanio s + ;pvzz([Q;QcD o [xire] {} -0 o

where

M) control-surface inertial coupling

(k] control-surface stiffness coupling
Ap,qc (x,y)

[0c] - Sg ———— ¢ity) ax ay

S

For a single control surface and a single sensor (accelerometer) the control-
law transfer function can be assumed to be of the form

1(63) N(s)
(7)

1(2¢) D(s)

where

1 (zt) S2 I.Cbtj {q}
and
84 = q¢

Therefore, equation (7) can be written as

s2N (s) Loy

4 = ———5?;7-—-{q} (8)
where
N(s) numerator polynomial in s
D(s) denominator polynomial in s

and l¢y] is a row matrix of modal deflections at the sensor location. Substi-
tuting equations (8) and (1) into equation (6) and following the procedures



outlined in appendix B, the equations of motion are written as a series of mn
first-order equations of the form

s{x} = [a){x} | (9)
where
m 6 + highest order term in D(s)
n number of modes

The eigenvalues of [Ac] are the roots of the characteristic equation for the
wing equipped with an active flutter-suppression system.

APPLICATION OF TECHNIQUE

To evaluate the adequacy of the analytical method in predicting the per-
formance of an active flutter-suppression system, stability calculations were
made for an aeroelastic wind-tunnel model equipped with an active flutter-
suppression system. Tests were performed in the Langley transonic dynamics
tunnel. A photograph of the model mounted in the wind tunnel is shown in fig-
ure 2. Model geometry is given in figure 3.

As input to the analysis it is necessary to determine a set of generalized
masses, mode shapes, and natural frequencies of the model. The first 10 elas-
tic modes were used for analysis purposes. The modes were determined using a
finite-element model of the wing. The modes cover a frequency range from
5.23 Hz to 118.15 Hz. Generalized masses and frequencies are presented in
table I.

Aerodynamic Properties

The aerodynamic terms appearing in equation (2) were calculated using
doublet-lattice aerodynamics by a numerical method similar to that described
in reference 5. To calculate the pressure distribution on an oscillating wing
undergoing simple harmonic motion, the lifting surface is subdivided into an
array of trapezoidal boxes arranged in strips parallel to the airstream as
shown in figure 4. The lifting surface is then represented by a lattice of
doublets located at the quarter-chord of each box. The downwash boundary con-
dition is satisfied at the three-quarter-chord of each box. - The downwash is
computed from the slope and deflection of each structural mode. The lifting
surface was divided into 210 boxes arranged in 30 streamwise strips with 7 boxes
per strip. Oscillatory aerodynamic forces were calculated at eight reduced fre-
quencies (k = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.3, and 1.8).

Each of the aerodynamic terms was approximated in the s-plane through the
use of equation (1). The Bm_2 terms were arbitrarily selected to be 0.2, 0.4,
0.6, and 0.8, respectively. Figure 5 shows a comparison between the oscillatory



data and the approximating function for Q77 and Q35 at M = 0.90. These two
aerodynamic terms were selected because of their importance in the flutter cal-
culations. As indicated in figure 5, the fit is good. In general, errors in
the aerodynamic forces were less than 10 percent and in most cases less than

1 percent.

Control Law

The active flutter-suppression system that was implemented on the model is
illustrated in the following sketch:

6c| 60 (Sa

( ) > Actuator:' > Actuator Wlng > Z¢
compensatlon

\4

Feedback
filter

where

8c'(s) 4.37 x 10V 1s(s2 + pys + 1.169 x 10%4) (s2 + 22.7s + 1432) (s2 + 216.25 + 4.675 x 109

s2 zp (s) (s + 111)(5 + Dp) (s + 21.%)2(52_+ 43,35 + 2922) (s + 432.4) (s + 486.5)2(s + 628.3)2

in degrees per g unit,

Sc(s) 2.795(s2 + 179.4s + 8.945 x 10%)

' (s) (s2 + 350s + 5002)

in degrees per degree,

Sa(s) 3.057 x 1013

S (s) (s + 214) (s2 + 179.4s + 8.945 x 104) (s2 + 747.9s + 1.597 x 106)

in degrees per degree, and

z¢ = z(X = 0.60c, y = 0.92Lg)

Therefore,

8 (s} 3.734 x 102553(82 + Dps + 1.169 x 104) (s2 + 22.75 + 1432} (s2 + 216.25 + 4.675 x 104
—_—

(10)

2e(8) (g +1.1)(s + Dg) (s + 21.6)2(s2 + 43.35 + 2922) (5 + 432.4) (s + 486.5)2(s + 628.3)2(s2 + 3505 + 5002) (s + 214} (s2 + 747.9s + 1.597 x 106)



in degrees per g unit. The control surface has a 20-percent chord and is
located between span stations y = 0.763Lg and y = 0.893Lg. Locations of
the control surface and of the feedback accelerometer are shown in figure 3.
The feedback filter parameter Dp varies with Mach number M and dynamic
pressure q in the following manner:

Dp = -83.54q - 900M + 1540 (a1

RESULTS AND DISCUSSION
Wing Without Flutter-Suppression System

The eigenvalues of equation (5) are the roots of the characteristic flut-
ter equation for the wing without flutter suppression (system off). Since the
matrix [Al varies with dynamic pressure, a root locus illustrating the varia-
tion of the flexible mode eigenvalues with dynamic pressure can be constructed
for each Mach number. A typical root locus at M = 0.90 is given in figure 6.
(It should be noted that extra roots associated with the aerodynamic poles in
eqg. (1) are calculated when solving for the eigenvalues of eq. (5), but are not
presented in fig. 6.) Root loci for each flexible mode are indicated in the
figure. Arrows indicate increasing dynamic pressure. A classical flutter
behavior is apparent since the frequencies of modes 1 and 2 tend to coalesce
with increasing dynamic pressure as mode 1 crosses into the unstable region.
The value of dynamic pressure q at flutter is given in the figure. Calcula-
tions performed at M = 0.60, 0.70, and 0.80 show a similar behavior but with
a more rapid degradation in damping as the flutter point is approached. This
is shown by the results given in figure 7 which compare the loci of mode 1 at
M= 0.6, 0.7, 0.8, and 0.9. The tick marks represent calculations performed at
dynamic pressure increments of 0.24 kPa. The results show that as Mach number
is reduced the variations in the real part of the roots near the instability
are increased for the same increment in dynamic pressure. Calculated flutter
dynamic pressures and frequencies are given in table II. A value of equivalent
viscous damping T of 0.005 was assumed for all calculations.

Since modal damping is proportional to

Real part of root

tan
Imaginary part of root

the same analytical results presented as root locus plots can also be presented
in the familiar form of damping and frequency versus dynamic pressure. An exam-
ple of these data at M = 0.90 and M = 0.60 for modes 1 and 2 is presented

in figures 8(a) and 8(b), respectively. These plots are useful in qualitatively
assessing the nature of flutter onset. At M = 0.90 (fig. 8(a)) the damping of
mode 1 is low throughout the dynamic-pressure range and the slope of the curve
at flutter is not severe. These results indicate that the response in mode 1
would be quite evident and the variation in frequency could be easily monitored.
Figure 8(b) shows that at M = 0.60 the reduction in damping above a dynamic
pressure of 6.7 kPa is quite rapid, which indicates a more violent flutter
onset. These qualitative results were confirmed during tunnel tests.
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System-off experimental flutter points were measured at M = 0.6, 0.8,
and 0.9. Figure 9 presents a comparison of the predicted and measured flutter
dynamic pressures and frequencies. Measured dynamic pressures and frequencies
are given in table II. The results show good agreement at all Mach numbers.

Wing With Active Flutter-Suppression System

The eigenvalues of equation (9) are the roots of the characteristic equa-
tion for the wing with active flutter suppression (system on). Root locus
plots at M = 0.90 and M = 0.60 are presented in figures 10 and 11. Root
loci for each flexible mode and for the two filter modes introduced by the
denominator terms (see eq. (10)) (s + 21.6)2 and (52 + 43.3s + 2922) are
given in each figure. (It should be noted that the equations were solved
with the complete transfer function defined by eq. (10). However, only the
results of the 10 flexible modes and the 2 filter modes are presented in
figs. 10 and 11.) At M = 0.90 an instability at a dynamic pressure of
9.289 kPa results from a coupling between the first structural mode and the
filter mode (s + 21.6)2. An 84.8-percent increase in flutter dynamic pressure
over that of the wing without flutter suppression is predicted. Calculations
performed at M = 0.7 and 0.8 (not shown) predict the same type of behavior
with increases in flutter dynamic pressure of 68 percent and 60 percent,
respectively. Calculations at M = 0.60 (fig. 11) show a different behavior
with the first flexible mode going unstable at a dynamic pressure of 9.337 kPa.
This probably occurs because as Mach number decreases the system—off flutter
frequency increases, which results in a decoupling between the first wing mode
and the filter mode. Calculated system—on instability dynamic pressures and
frequencies are given in table II. All system-on calculations include schedul-
ing of the filter parameter D, as given by equation (11).

System-on tests above the system-off wing flutter boundary were performed
only at M = 0.90. Figure 12 presents a summary of the predicted and measured
effect of the flutter-suppression system. The model was stable to approximately
42 percent above the system-off flutter boundary. At this point, the control-
system-commanded aileron displacement exceeded that available on the model
(8a,max = +14°) and the system saturated, which resulted in an instability.

The frequency of the instability was approximately 8.5 Hz, which indicated a
complete loss in effectiveness of the flutter-suppression system when the sat-
uration occurred. System-on tests at M = 0.8 and M = 0.6 were performed
below the system~off wing flutter boundary. 1In all cases the wing was stable
and the response of the wing to tunnel turbulence was reduced with the flutter-
suppression system operating.

It is believed that the saturation and resulting instability experienced
on the model was a result of tunnel turbulence. Unpublished data taken from
measurements of pressure fluctuations in the transonic dynamics tunnel indicate
that the largest pressure peaks occur in the 8 to 15 Hz frequency range at Mach
numbers between 0.87 and 0.95. At M = 0.90 and q = 7.59 kPa, equations (10)
and (11) predict a control-surface displacement of approximately 11° per g unit
for motion in the first flexible mode., At this test point accelerations in the
frequency range of the first flexible mode were in excess of 1.6g. It can
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therefore be assumed that the turbulence input to the model is greatest in the
frequency range of the first mode and this led to large control-surface motions
and finally to saturation. Prior to the instability, control-surface commands
in excess of 20° were recorded. Reference 6 points out the need to consider
stability and turbulence criteria simultaneously when designing a flutter-
suppression system.

In an effort to predict these results analytically, a gust calculation was
performed on the wind-tunnel model using the methods described in appendix B.
However, the power spectral density of the wind-tunnel turbulence is not modeled
properly using a Von Karman gust spectrum. During the calculations the char-
acteristic length of the Von Karman spectrum was varied to match the root-
mean-square (rms) deflection of the control surface at the saturation point
(M =0.9; gq=7.59 kPa). The measured and predicted variation in rms control
deflection is given in figure 13. A gust intensity of 0.3048 m/sec was assumed
for all calculations. The effect of reducing the gust length is to increase
the gust input power at the first mode frequency.

Since the design of a flutter-suppression system depends on both stability
and response to turbulence, some effort to adequately model the tunnel turbu-
lence is necessary if meaningful results are to be obtained. This study is
beyond the scope of the present investigation.

CONCLUSIONS

An analytical method for predicting the increase in stability provided by
an active flutter-suppression system has been presented. The method is based
on approximating the unsteady aerodynamic forces in the time plane through an
interpolating function in the frequency plane. The analytical method is
applied to an aeroelastic model equipped with an active flutter-suppression
system that was tested in the Langley transonic dynamics tunnel. Some of the
important conclusions are:

(1) The analytical technique presented provides a convenient method for
adding active control systems to the equations of motion.

(2) The use of interpolating functions to approximate the unsteady aero-
dynamics provides a good prediction of the flutter characteristics of the wing
without flutter suppression at all Mach numbers investigated.

(3) Analytical results predict an 84.8-percent increase in the flutter
dynamic pressure for the wing with flutter suppression at M = 0.90. Experi-
mental results demonstrate a 42-percent increase prior to control-system
saturation.

12



(4) Results of this study indicate the need for a more adequate model of
wind-tunnel turbulence before a thorough evaluation of the analytical techniques
can be performed for the wing with active flutter suppression.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 22, 1978
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APPENDIX A

AERODYNAMIC APPROXIMATION

Three-dimensional unsteady forces are normally computed at a given Mach
number for simple harmonic motion at specific values of reduced frequency k.
The transfer function which relates control-surface motion to wing response is
normally expressed as a ratio of polynomials in the variable s. This appendix
describes a technique, similar to that described in reference 3, which permits
the variation of the aerodynamic forces with reduced frequency to be approxi-
mated by a rational polynomial in s,

Consider the function

~ 2 i An (Fk)
Q(k) = Ag + Ay (jk) + Agy(jk)< + -_— (A1)
0 ! 2 m=3 (Jk + Bp-2)

to be an approximate fit to Q. The real and imaginary parts of Q are

~
k2a4 k22, k2ag k2ag
Qr = Ag - Axk? + + + +
k2 + B12 k2 + B52 k2 + B32 k2 + B,?
L
B1kA3 BokAy B3kAg B 4kAg
QI = A]k + + + +
k2 + B12 k2 + B2  kZ + B32 k2 + B,? y

Q is calculated at discrete values of reduced frequency k. At each value of
reduced frequency real and imaginary error functions are determined from equa-
tions (A2); that is

ER,i = Or,i *+ lBR,iJ{C}

(A3)
Er,i = 9r,i + !Br,il{c}
where
-klz _ki2 _klz —k12
I'BR,iJ =!-1 0 kiz
N kiz + 812 kiz + 622 kiz + 332 kiz + 842
-B1ky B akj B3ki -Baks
lBr,i! =0 -kj o
| k12 + 812 kiz + 822 kiz + 832 kiz + 842
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APPENDIX A

er
Aq
{q =« .
Ag
-
and i refers to a particular reduced frequency k; at which Q is calcu-
lated. Defining a complex error function as

Ej = Ep,i + JE1,j

a least-squares fit can be passed through the N data points by setting
3

N
3 > (Bj x Ej*) =0

c i=1

Where Ei*

is the complex conjugate of E;. Performing this differentiation
results in the following set of normal equations

N
> (QR,i + [BR,iJ{C}){BR,i} + <QI,i + lBI,iJ{C}>{BI,i} =0
i=1

which can be solved for the coefficients of the fit. That is,

—1
N N
{c} = —Z({BR,i}lBR,iJ + {Bx,i}le.iJ> >

1=.|- i=1

(QR,i{BR,i} + QI,i{BI,i}> (R4)

Since k = wb/V, let s = jw

and 3jk = s(b/V).
into equation (Al) results in

Substituting this relationship

2
A b b 6 Aps
Q(s) = AO + A](‘—’)S + Az(;) 32 + 23 —V— (A5)
m=
+ - By :

where the coefficients Ag, Ay, . . ., Ag are determined from equation (a4).

The values of B, _, are arbitrarily selected from the range of reduced fre-
quencies for which Q has been calculated.

As described in reference 3, the form of equation (A5) permits an approx-
imation of the time delays inherent in unsteady aerodynamics subject to the
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APPENDIX A

following requirements: complex conjugate symmetry, denominator roots in the
left-half plane, and a good approximation of the complex aerodynamic forces at
s = jw. The form of equation (A5) is used to fit all of the wing motion, con-
trol surface, and gust unsteady aerodynamic forces.
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APPENDIX B

FORMULATION OF EQUATIONS OF MOTION FOR STABILITY AND GUST ANALYSIS

The equations of motion are formulated in terms of real matrices by using
an "approximation function" for the complex aerodynamic forces. The variation
with s of the aerodynamic matrix [§] is given as (see appendix A)

=]
0

2
N b b 6 (a
[Q} = [Ao] + [A] ]<—>S + [A2]<—> s2 + E _—
A\ v mn=3 v
(S + -t; 8m_2>

After substituting [Q] for (kﬂ) in equation (4), the equation of motion
may be written as

([M]s2 + [2zmMw ls + -;ov2 Q1 + [K]> {q} = {§G} (B1)

These are the equations for n structural modes with r active controls where
(M} represents the mass matrix, [R] the stiffness matrix, © the fluid density,
V the fluid velocity, {ﬁg} the aerodynamic gqust force, and {q} the response
vector. All the matrices in equation (B1) are of the size n x (n + r).

Flutter Analysis - No Controls

Sugstituting the aerodynamic approximating coefficients into equation (B1)
with {FG} = 0, the equations of motion in terms of real matrices are written as

2
[szlml + [2zmo )s + [K]]{q} + %pv s2<§> F.9%

b 6 [Am]s
. s<->[A1] s lagl +5 — 2" _l{g} =0 (82)
\'4 m=3 v
(S + E Bm_2> .

where {gq} = {q} for the no-control case. The matrices in equation (B2) are
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APPENDIX B

of the size n x n. Multiplying through by the denominator term yields a
polynomial in s of the form

(Ao(s)[[il s2 + [Bls + [E]] + Aqy(s) [D] + ay(s)[E]l + Az(s) [F] + A4(s) [é]) {at =0

(B3)
where

A VB VB VB VB
= + - + = 4+ - + -
o(s) s*oPs o Pafls - B3)is+ 4>

A VB VB VB
= 4+ - 4+ - 4+ -
1(s) s{s + ¢ P2f\s b 3/l s 5 4
A = +V6 +VB
2(8) = s|s n 1118 = 3
A VB> VB VB
= + - + - + -
3(s) sis + g 1<s : 2/l s : 4

Ay (s) VB VB VB
s s|s + - s + - s + -
4 b'l b2 b3

(A = (M + %pbzlAZ]

[B] = %DVb[Aﬂ + [2zmo]
[@ - %DVZ[AO] + (¥

(5] - %DVZ[A3]

(8 - %sz[A4]
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APPENDIX B

(F]

1
-ov2 [ac]
5 5

[c]

1
-pv2(agl
5 6

After the indicated polynomial products are performed, equations (B3) can be
written as

([F51s6 + [Fglsd + . . .+ [F0]>{q} =0 . (B4)

The matrix coefficients [Fi] (i=0,1, . . ., 6) are functions of dynamic pres-
sure and velocity for a given Mach number. By using the relationships that

KSS{qﬂ

s4{q}

{x} = g .

Lso{q})

equation (B4) can be reduced to the following 6n first-order equations:

s{x} = [al{x} (B5)
where
-[—F6_1F5] [-F6_1F4] « o o [—F6—1 Fo]T
(1] 0 . . 0
0 [1] . . . 0
{a]l = (B6)
0 0 (1] 0

19



APPENDIX B
The matrix [A]l is 6n x é6n. For a fixed value of Mach number, dynamic pres-
sure, and velocity, the eigenvalues of equation (B6) are the roots of the char-
acteristic flutter equation. Since the matrix elements [F;] are functions of
dynamic pressure (for a constant Mach number), the loci of roots as a function
of dynamic pressure can be constructed.! These loci correspond to the varia-
tion in the eigenvalues of each flexible mode as dynamic pressure is varied at
a constant Mach number.,
Stability Analysis - With Controls

For the case of r controls, the response vector {a} can be expressed in
terms of n structural modes and r control deflections as

_ q
{q} =
dc

Equation (B1), with {Fg} = 0, can be written as

' 1 1 A T ' q
[M:Mc-lsz + [ZCMDn:OJS + EpVZ[Q:QcJ + [K:Kc] { } =0 (B7)
dc

where the subscript ¢ denotes a control quantity. The control law relates
control-surface motion to wing response and can be written in the form

{ac} = [T){zy) (B8)

where {zt} are the values of wing response at the sensor location. The response
{z¢} can be written in terms of modal response by

{z¢} = [0 {a}

where [¢4] is the matrix of modal deflections at the sensor locations.
Therefore,

{go} = [T [oy) {a}

1For a given Mach number, the flight velocity V varies somewhat because
of the change in speed of sound with altitude. TFor a wind-tunnel model, Mach
number fixes the value of V.
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Typically, the transfer function matrix [T] is expressed as a rotational
polynomial in s. Therefore, let

(B9)

where D(s) is a polynomial representing the common denominator of all the [T]
terms, and [Ty} is a matrix of the resulting numerators. (For the example in
the text, Ty = szN(s).) Substituting equations (B9) and (B8) into (B7) results
in the following equation of motion:

2
b
[sz M] + sl2oMw,] + [K]J{q} + 1Epv2 52<5> (a,] + s(‘-,>[A1] + [ag]

2 .
1 b b
+ m§=3 T {q} + | s2[mM.) + [RC] + -2-pv2 52<‘_’> [A2:qc:\ + s<‘-’>
s + g Bm_z

[2m,qc ]S -l['rN] [o¢]{q}
x [AT’qc] + [:Ao’ch} + > ° =0

= v D(s)

where the values of [Ailqc] (i=0,1, .. ., 6) are the aerodynamic matrix

coefficients for each control surface. Multiplying through by the denominator
term yields a polynomial in s of the form

l:D(s)(Ao(s)[[Z] s2 + [Bls + [E]] + A (s) [D) + ay(s) [E) + Az(s) [F] + a4(s) [6])
+ (Ao(s)[[l-\c] s2 + [B.ls + [Ec]] + By (s) [Do] + Ag(s) [EQ) + Agz(s) [F) + Ag(s) [c';c]>

x [Tyl [¢t]}{q} =0 (B10)
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where

- 1
A = prz[Az,qc] + [MJ]
(B = -

Bl = -PB[A1,q, ]

[CJ) = EDVZ_AOrqc] + [k
L

(Bl = el _A4’qc]

=1 1 o
[FJ] = PV -Aslqc]

L
(6. = PV _A6'qc]

Equation (B10) can be written as
([Fm] oM 4 [Fpqls™1 4 . . . 4 [F0]>{q} -0

where m = 6 + highest order of polynomial D(s). In a manner similar to that
discussed in the previous section this equation can be reduced to a series of
first-order equations of the following form:

s{x} = [aJ{x} (B11)

where

f' N
s 1{q}

s2{q}

el . ?

| s%a}
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and

o =

[—Fm'1Fm_1] [-Fm'1Fm_2:l . . . [:-Fm"1Fo_l
[1] 0 . . . 0
0 [1) . . e 0

[ad = (B12)

0 0 [1] 0

L ..1

The matrix [A.] is mn x mn. For a fixed value of Mach number, dynamic pres-
sure, and velocity, the eigenvalues of equation (B12) are the roots of the char-
acteristic equation. Root loci can now be constructed which correspond to the
variation in the eigenvalues of the system as dynamic pressure is varied.

Gust Analysis - With Controls
The gust response analysis is performed using power-spectral-density (PSD)
techniques similar to those described in reference 7. Equation (B1) permits

the direct evaluation of the system response to a sinusoidally varying gust.
The term {Pg} in equation (B1) is defined as

2
~ 1 b b 6 {a , }s
{Fg} =~--pV {Ao’g} +<—>{A1'g}s + <—> {A2,9}52 + E — n.9
2 \/ v =3

_— W
VB>9
s + -
b m2

The modal response of the system with controls per unit gust velocity can be
determined by solving the following set of simultaneous equations at discrete
values of s (where s = jw). In this context the aerodynamic approximation
is used only to interpolate data between calculated values of reduced frequency

{ - - -
[Equation (B10)] _Sl = D(s) AO(S)[{AO,g} + {A1,g}s + {Azlg}sz]
W,
g
+ Ay (s){B3,q} + Ax(s){Bg,q} + A3(s){B5,q} + A4 (s){Ag, g}
(B13)
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where

- 1
{ag,4} =- ;"V{Ao,g}

- 1
{A] 'g} = ‘;pb{A1 'g}

— 1 b2
{AZ,g} = ‘Ep ;_{AZ,Q}

- 1
(23,4} = --2-DV{A3,g}
- 1

(24,4} = -EDV{A‘;’Q}
- 1

{a5,4} = ‘EpV{AS.g}
- 1

(26,4t = 'EpV{AG,g}

and {a; 4} i=0,1, ..., 6 are the aerodynamic matrix coefficients for a
sinusoidal gust. The control-surface transfer function can then be evaluated

by

{qc} [TN] [d)t] {q}
Wg - D(s) ;;-

(B14)

The power-spectral-density (PSD) values of control-surface motion are determined
by evaluating

bo@) = dyw) |HW)|2
where

H(w) = Control-surface frequency-response function described by equation (B14)

¢1(w) = Von Karman PSD gust spectrum defined by
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L<1 + 8(1.339I00/V) 2/3)

w1 + (r.330mpm2]

The root-mean-square (rms) value of control-surface motion per unit rms gust
velocity ng is defined by

{qc} © 1/2
= y dp (W) dw) (B15)
G 0

W
9 /rms
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TABLE I.- FREQUENCY, GENERALIZED MASS, AND MODAL

Mode

—
CWOWOJIAAUL & W~

Mach
number

0.9
.8
.7
.6

aNo flutter to g = 7.590 kPa.

Natural frequency,

Wing without flutter suppression

Analysis
q, |Frequency,
kPa Hz
5.027 8.1
6.033 8.9
6.799 9.6
7.374 10.3
ai

Hz

5.233
19.129
20.906
25.769
46.110
61.234
79.682
86.030
98.087

118.150

E
Generalized mass, Modal deflection at
kg sensor location
3.678 0.9228
7.769 -.6361
7.044 -.0002
2.970 .3450
4.714 .1760
4.758 .2356
5.156 .0199
11.297 .0002
7.558 .0438
5.501 .0172

DEFLECTION DATA

TABLE II.- SUMMARY OF RESULTS

EXp

q,
kPa

5.36
6.08

7.25

Wing with flutter suppression
eriment Analysis W Experiment
Frequency,|{ qd, Frequency, |q, |Frequency,

Hz kPa . Hz kPa Hz

8.0 9.289 4.1 (a) -—

8.6 10.128 4.2 -— -—
—-——— 10.896 4.0 -— —-——-
10.1 9.337 7.6 - -

- - S
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o ijth calculated unsteady aerodynamic force [QI at discrete values of k

Dijth approximation to unsteady aerodynamic force [Q] at s = J'%/

. b b2 Aps
Q(s)=AO+A1<v>s + A, <V>S + Z_: v
m=3 (s + 3By

Figure 1.- Typical fit of a complex aerodynamic force.
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Figure 2.- Flutter-suppression model mounted in the Langley transonic dynamics tunnel.
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Figure 4.- Paneling scheme for doublet-lattice aerodynamics.
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Figure 5.~ Aerodynamic curve fit for Q17 and Q35 at M = 0.90.
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Figure 6.- Dynamic-pressure root locus at M = 0.90 (system off).
Arrows indicate increasing dynamic pressure.
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loci of mode 1 as a function of Mach number and dynamic pressure (system off).
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Frequency,
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(a) M = 0.90.

Figure 8.- Damping and frequency versus dynamic pressure (system off).
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(b) M = 0.60.

Figure 8.~ Concluded.
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Figure 9.- Comparison of predicted and measured flutter characteristics
(system off).
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Figure 10.- Dynamic-pressure root locus at M = 0.90 (system on).
Arrows indicate increasing dynamic pressure.
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Figure 11.- Dynamic-pressure root locus at M = 0.60 (system on).
Arrows indicate increasing dynamic pressure.
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Figure 12.- Effect of control law on flutter dynamic pressure
as a function of Mach number.
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O Von Karman gust, L =30.48 m

A Experiment
12 -

a,rms’ |
deg 6 -

>

A A

—— | | | | |
0 4 5 6 1 8 9

Dynamic pressure, kPa

Figure 13.- Variation with dynamic pressure of rms response of control surface at M = 0.90.
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