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SUMMARY

The thermomechanical behavior of unidirectionally fiber
reinforced laminae in plane stress has been described by a set
of nonlinear thermomechanical stress-strain relations. A
general procedure for analysis of in-plane loaded symmetric
laminates, composed of such laminae, has been established for
simultaneous loading and temperature inputs. A *45° laminate
subjected to heating and uniaxial load has been analyzed in
detail.

Analyses of Craphite/Polyimide laminates have shown that
the thermomechanical strains cannot be separated into mechani-
cal strain and free thermal expansion strain. Consequently
the free thermal expansion coefficient is generally not useful
for computation of thermal strains in a loaded nonlinear
laminate. Moreover, a laminate such as the *45° which behaves
isotropically for free thermal expansion behaves anisotrop-
ically when loaded and heated.

Elastic properties and thermal expansion coefficients of
unidirectional Graphite/Polyimide specimens were measured as a
function of temperature to provide inputs for the analysis.
The *45° symmetric Graphite/Polyimide laminates were tested to
obtain free thermal expansion coefficients and thermal expan-
sion coefficients under various uniaxial loads.

The experimental results demonstrated the effects pre-
dicted by the analysis, namely dependence of thermal expansion
coefficients on load, and anisotropy of thermal expansion
under load. Numerical agreement of analytical and experimen-
tal results was fair. The significance of time dependence on
thermal expansion was demonstrated by comparison of measured
laminate free expansion coefficients with and without 15-day
delay at intermediate temperature.



1., INTRODUCTION

Determination of the thermoelastic properties of fiber
composite laminates on the basis of the thermoelastic proper-
ties of the constituting laminae and their stacking sequence
is a routine procedure used by composite materials analysts.
Even when the thermoelastic properties of the laminae are
temperature dependent, the determination of laminate proper-
ties is of conventional nature, provided the laminae are
elastic at all temperatures.

In recent years, nonlinear mechanical properties of lam-
inates have been successfully incorporated into laminate

analysis, primarily in the isothermal case. In the case of

linearity is exhibited primarily in shear and transverse ten-
sion and compression. Room-temperature laminate stiffness
properties are affected by this nonlinearity, but not drasti-
caliy. The most significant nonlinearities are exhibited by
the #45° laminate under uniaxial loading.

The situation appears to be significantly different in
the case of laminates subjected to large temperature changes.
This is due to two phenomena. The first is that nonlinear
behavior of a unidirectional lamina results from matrix non-
linearity which increases significantly with temperature.

The second is that large thermal expansion coefficients exist
in directions normal to the fibers of a unidirectional lam-
inae. Therefore, as a result of temperature changes, large
transverse stresses or strains will be induced even for a
fiber-dominated laminate. It is to be expected that non-
linearity in the fiber direction can be neglected since the
fibers remain stiff and elastic. However, nonlinear effects
of the stress-strain relation in a direction transverse to
the fibers, and in shear, both increase with temperature and
have to be considered. Moreover, these transverse and shear
effects are not superposable, but are interactive; i.e. the

nonlinear shear strain depends also on the transverse strain




and vice versa. These nonlinearities may have a very signifi-
cant effect upon thermal expansion coefficients even when the
effect upon laminate stiffnesses is small.

In addition, epoxies and polyimides exhibit time-dependent
effects whose significance also increases with temperature.
Therefore, internal stresses and strains change even when tem-
peratures and loads are held constant. In the first approxi-
mation, such behavior can be modeled as viscoelastic.

The above effects can be expected to occur to some extent
in laminates designed for moderately elevated temperature ap-
plications. The possible consequences of these effects in-
clude the following:

1) 1laminate thermal expansion coefficients and internal
stresses as determined by conventional thermoelastic

analysis will be incorrect;

2) laminate thermal expansion coefficients and internal
stresses will be time dependent; and

3) the deformations and stresses of a laminate subjected
to loads and temperature changes will not be correct-
ly obtained by adding stresses and strains due to
loads alone to those obtained due to temperature

changes alone.

The temperature-dependence problem has been reported,
e.g. in references [l1] and [2]. The general approach is that
one takes as a starting point the stress-free temperature.
(It is important to emphasize that depending upon the fabrica-
tion process, this may actually mean a temperature different
from room temperature at which all stresses in the laminate
vanish.) One may then imagine an experiment in which free
thermal expansion of each layer takes place from the stress-
free temperature to the final temperature or temperature dis-
tribution. At the final temperature, one may then apply
stresses to satisfy equilibrium and compatibility and reas-
semble the laminate. Hence, it follows that the final stress



distribution is obtained by using secant AL/L values from the.
stress—free temperature to the final temperature and by using
elastic constants at the final temperature. The incremental
theory has been shown in reference [2] to.be obtainable from
the total strain theory outlined above. _

Time-dependent properties have been treated by a number
of authors, and methods of varying complexity exist in the
literature (e.g. refs. [3] to [6]). Similarly, for stress-
dependent phenomena in isothermal laminate analysis, there is
a significant body of literature (e.g. refs. {7] to [11]).

For both of these problems, the various existing analytical
methods have various limitations.

In the present work there is established a general pro-
cedure to compute the thermomechanical properties and internal
stresses of laminates composed of nonlinear temperature depen-
dent laminae. The methods used are similar to those employed
in reference [7] for isothermal nonlinear laminates.

In addition to the analytical investigation an experimen-
tal program has been carried out whose purpose is to measure
thermal expansion coefficients of free and loaded Graphite/
Polyimide laminae in order to examine the validity of the

analytical results.



2. THEORY
2.1 Lamina Thermomechanical Stress-Strain Relations

The approach to be adopted is a generalization of the
method of reference [7] for isothermal nonlinear stress-strain
relations for plane stress. N

 The lamina state of stress i; G117 9227 O127 where xl'is”
in the fiber direction and.x2 is~in the t;ansverse_direqtipn
(fig. 1).

The strains in the lamina plahe are given'by:

'_ [ ] ”" ‘b .
Eas = € + € + € (2.1.1)

]
where EaB is the linear elastic strain, EGB is the nonlinear
part of the strain, 628 is the free thermal strain, and Greek
indices such as o and B range over 1,2.
[ ]

The strains eaB have the form:

€17 = Syp (9) 097 * 85, (0) gy,

2.1.2
9p = Syp (@) 09 * S,y (9) 0y ¢ )

™
i

12 = 2866 () 995

™
!

where ¢ is the temperature.
The compliances in (2.1.2) can also be written in the

form:

! 1
S = —
11 E, (¢)
s =_9A(¢)
12_' EA(?)



S =

22 T E ()

S, = i __ 2.1.3

66 = 4G, (9) (2.1.3)
where E_, Vv E

3 ?
A A’ Eqr GA are temperature'dependent axial Young's

modulus, axial Poisson's ratio, transverse Young's modulus,

and axial shear modulus, respectively.

It is assumed that because of large fiber stiffness, the

nonlinear strain Ell vanishes and that Gll has no effect on
" "

the strains €55 and €12° Consequently, the nonlinear strains
can be written as:

Ell =0
€50 = Spp (Ogor Typr ¢ 05y (2.1.4)
e _ [1]

where 822 and 566 are nonlinear temperature dependent (secant)
compliances,

The one-dimensional isothermal responses to ¢ and to

22
Gypr each of them acting separately, are modeled in the famil-

iar Ramberg-Osgood form:

.

" \ " o o m-1
_ _ _22 _22
€22 T €2 t €5y T l 1+ <c > J

T Yy
(2.1.5)
" ] n ] ag n-1
12 12
€ =g + € = 1 +( ) }
12 12 12 2GA [ TY

where cy and Ty are temperature dependent stress parameters
and m and n are exponents which may also be temperature de-
pendent. These four quantities are to be regarded as curve
fitting parameters to best fit the experimental data.
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Employing the same reasoning as in [7], it follows that

in the case of combined stresses g _. the nonlinear parts of

the strains are given by:

m Oy [ P 2 9.5 2] m-1
€22 E c + (T 2
T - Y Y
{(2.1.6)
g" _ 012 G55 2 .\ 012 2 n;l
12 2G o T
A 1 Y Y

Finally, the free thermal strains EZB in (2.1.1) are written

in the form:

=gl
[

11 = a (@)
(2.1.7)

<
|

€59 = On (¢)¢d

where ®a and a, are axial and transverse temperature-dependent

(secant) thermal expansion coefficients assumed to be stress
independent.

Summarizing equations (2.1.1) through (2.1.7), we have
the following nonlinear temperature dependent stress-strain

relations:

1 vA(¢) %)
£ = o - o + a $)¢
11 EA(¢) 11 EA(¢) 22 A
v () { {022 2 91, 2] m—l
A 1 o
€ =. o] + 1 + + ) 2
22 EA(¢) 11 ET(¢) (oy(cb)) (ry(d))

- . g 2 o 25 n-1
.1 22 12 =
£ = 1+ l( )+( ) ] 2 o (2.1.8)
12 2GA(¢) oy(¢) Ty(¢) 12



2.2 Analysis of Nonlinear Temperature Dependent Laminates

Consider a balanced symmetric laminate loaded on its
edges by uniformly distributed stresses and subjected to the
temperature rise ¢.

The following problems are to be considered: (i) find
the stresses in the laminae; (ii) find the effective thermo-
mechanical stress-strain relations of the laminate.

The laminate is referred to a fixed system of coordin-

ates Xy X, (fig. 1). Any lamina, kth say, is referred to
its material system of coordinates, x{k) in fiber direction
and xék) transverse to fiber direction (fig. 2). The fiber

orientation of the kth lamina is defined by the angle:

(k)
1

(k)

5 (2.2.1)

6, = ¥ x_,X = 3 ! X

1 2

The stress-strain relation of the lamina in its material
system is:

g(k) =S g(k) + oo (2.2.2)
where underbars denote tensors. Here S is the temperature and
stress dependent compliance tensor and o the temperature de-.
pendent thermal expansion tensor as defined by (2.1.8).

It may be easily shown by trivial considerations of heat
conduction theory that the temperature throughout all laminae
is the same constant ¢. Also in accordance with usual lamin-
ate theory: (i) all laminae are in states of plane stress;
(ii) the strains in all laminae as referred to the laminate
fixed coordinate system X1 0¥, are the same uniform eaB'

These considerations make it possible to construct a set
of nonlinear equations for computation of all laminae stresses.

First, define the transformation tensor T(k) by:

() g k) (k) (2.2.3)



(k)

where ¢ is the lamina stress referred to the material sys-

tem and (k)o is the same stress referred to the laminate
system.

(k)

The matrix of T is given by:

'Coszek Sinzek —2Cosegsin6k-
[Exkﬁ = Sin26k C0526k 2Cos6 Sind,
SinekCosek -sinekCosek Coszek—sinzek
(2.2.4)
Similarly,
Krg = gk () (2.2.5)

K °
Z X)st, = “oh (2.2.6)
k=

where:

2K - number of laminae;
2h - thickness of laminate;

t, - thickness of kth lamina;

k
o -]

o o
3nd o has components oaB' i.e. the stresses 0117 Og2¢ and

o] applied to the laminate edges.

12
By hypothesis (b)

M, o @, e _ K, (2.2.7)

—— — -—

Now introduce (2.2.3) into (2.2.6), (2.2.2) into (2.2.5)
and subsequently into (2.2.7). The results are: '



S WMy = o
- (2.2.8)
k=1
Mg oMy g Mgy = p@s o2 4 2@ag =,
pR)g (), g0y
p(Kg o (K E(K)gq) (2.2.9)

Since o k has three components, there are altogether 3K un-
known laminae stresses. To determine these we ha
equations (2.2.8) and the 3(XK~-1l) equations (2.2.9
nonlinear equations.

Once the laminae stresses are known, the effective
thermomechanical stress-~strain relations of the laminate can
be determined in the following fashion. Write (2.2.2) in the

laminate coordinate system:

(k) (k) ~ (k)

O (k)

g +

ad (2.2.10)

All tensors in (2.2.10) are obtained from their counterparts
in (2.2.2) by the transformation (2.2.3).

Define:
(Ko o g1 (2.2.11)
where the inversion has to be carried out for (k)§ components

computed as functions of the lamina stresses. Since also by
(2.2.7) ¥

be written as:

o]
e is the laminate uniform strain g, (2.2.10) can

(Kl o (R g o (R (2.2.12)

10



[-] . % © *

g=C € +T¢ (2.2.13)
where

» & (k)

cC = C t, /h (a)

= 1:L-=:1 k

» & .

r=-Y c'a t, /h (b) (2.2.14)

k=1 :

Equation (2.2.13) formally resembles an effective thermo-
elastic stress-strain relation. It is nonlinear since'g* and
L* depend on the laminae stresses.

The inversion of (2.2.13) is:

o % ©O *
€ =8 g +a ¢ (2.2.15)
where
* * _1 * o
S = (C) =85S (g ,9) (a)
* * * * o
a =-8T =ga (0 ,¢) (b) (2.2.16)

It is seen that (2.2.l16a) are the nonlinear compliances of the
laminate while (2.2.16b) are its nonlinear stress dependent
thermal expansion coefficients. '
The usual definition of thermal expansion coefficients is
based on heating of an unloaded body. If this is done in the

present case, equations (2.2.6) - (2.2.8) become:
K K
Z (k)gtk = Z pKlgk _ (2.2.17)
k=1 k=1 k

11



The last of

(
the laminae stresses.

2.2.17) together with (2.2.9) now determine
Repeating the same procedure as previously used it
follows that:

£= E*¢ (2.2.18)

*
where o is defined by (2.2.16b), (2.2.14k) and (2.2.11).
Note, however, that since the laminae stresses in the present

free body heating problem will be different from the previous
ones, the thermal expansion coefficients defined by (2.2.18)

are in general different from the ones obtained in the case
of laminate loading and heating. Indeed, the thermal expan-
sion coefficient in (2.2.18) can be written as a special case
of (2.2.16b); i.e.:

* *
o = a (0,9¢) (2.2.19)
(°0=0)

Consequently, the classical concept of thermal expansion
coefficient is not useful in the case of a nonlinear laminate
since the strains due to loading and heating can no longer be
found by super-position of mechanical and thermal strains.
Instead, the laminate strains must be found on the basis of

the interactive effect of loading and heating.

2.3 Analysis of *45° Laminate

The general analysis of paragraph 2.2 will now be applied

to the case of a balanced *45° laminate which is heated and

subjected to uniaxial stress (fig. 3). From symmetry con-
siderations:
1 _ 2 1 _ 2 1 _ _ .2
911 7 %11 922 T 922 912 912
1 _ 2 1 _ 2 1 - _2
°11 7 %11 022 T 923 912 912
(2.3.1)

12



The stress transformation (2.2.3-4) with 68 = 45° yields:

1 1 1 1

911 = 72% 1 Y392 " %

1 _ 1.1 11 1

022 =2 %1 Y329 *0;;

1 11 1 1

032 =391 "% %2 (2.3.2)

The three equations of equilibrium (2.2.6) assume the

form:
lo11 + %y, = 270,
1022 + 25, =0
Yo, + 20, =0 (2.3.3)

In view of (2.3.1) and (2.3.2), equations (2.2.3) become:

1 1 1 .o
011 ¥ T, T 207, = 20y,
1 1 1
oll + 022 + 2012 =0 (2.3.4)

the last of equation (2.3.3) is identically satisfied.
Adding and subtracting egquations (2.3.4) gives:

1 1 °
011 Y922 % %13 (a)
1 __1°
o1, : oy (b) (2.3.5)

thus determining the lamina shear stress.

13



The lamina strains are given by:

1 1

€11 ¥ 511911

11 +

1 1

€22 ¥ 51,91

22 +

1

1
€1y = 07,726

S Ol

12022+ %39

1
Sy2032 + @y

where according to (2.1.8):

1
S.. = —=
11 EA(¢)
-v, ()
S12 = E ? )
A o)
' ]
1 T 932y 2
S . = 1+ _22
22 T B, (§) [ (oy( 7)
; - 1 i 0;2 2
G Gyle) s [ (E“(&)‘)
a; = aA(¢)
@y = g (9)

From symmetry

1 2 _
€12 % €12 F
Therefore:
11
€11 22

14

(2i3.6)
* (Ti%i)) 2] ~%£
* (Ti%i)) 2] E%%}
(2.3.7)
(2.3.8)
(2.3.9)



Introducing (2.3.6) into (2.3.9) gives:

5 i . )
S117512) 911 * (8127833) 935 = (epmey)e (2.3.10)

(

Equation (2.3.10) contains the stresses b;z and 012 in non-
linear form. Togéther_with (2.3.5) it determines the stresses
1 1

°11 and 055 Eliminating 931 between these two equations and

using (2.3.5b) yields the result: -

[

" 1 2 ° 2, m-1 ]
2 °11\ | 7T

| ) a L 0y 1
R RS G C B s B

- (1 + vA)ooll + By (ag=a,)é = 0 (2.3.11)

which determines_c%z.

The laminate normal strains are given in terms of tensor
transformation and use of (2.3.9) by:

° 1 1

~ 1
€11 7 %11 T f11 T f12
. 1 _ 1 1
€22 T €22 7 f11 * €12 - (2.3.12)

From (2.3.7), (2.3.6), (2.3.5a) and (2.3.12):

]

° ° 011 l+\)A 1
e11( 09708) = E, ~ E, ‘22"
o Ol 2 OO 2 n-1
O -
11 L ( 22 ) 11 ) ] 271,
1+ —££ + a, b
2 A
4GA oy ( Ty

15



€ (o ' 9) - Y -
22 11 EA EA 22
o 1 2 ° -
[o r T 7104n 1 1011\% nﬁl'l
i Lae [(%2) 4 (5R)] T e
A y g '

(2.3.13)

Next some special cases are considered Let the laminate

first be heated without loading. Then (2.3.11) becomes:

E 1 m-1
1 A ("22) ]+ -
022 1 + ZvA + o 1 + - EA(aT—aA)¢ =

T Y
(2.3.14)
The laminate strains are then from (2.3.13):
1+v
° R A 1 . _ 4 (2.3.15)
Ell(U,Q) = 522\U1‘P) EA U22 + u.Aq) {(2.3.10

1 . . .
where 0,5, in (2.3.15) is defined by (2.3.14). Conseqguently,
the free thermal expansion coefficient a; of the laminate is

given by:

1+v._ -


















































































































