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A. Problems
 

HCMM Data and digital RS-18 data from the August 1978 WB-57F
 

aircraft flight have not been received.
 

B. Accomplishments
 

Analyses of the ground data, and model simulations are
 

continuing. During the next reporting period, analysis of HCMM
 

data will begin upon receipt of the data.
 

C. Significant Results
 

1. Detection of Flooded Areas
 

In early April, 1978, heavy spring runoff from snowmelt caused
 

significant flooding along a portion of the Big Sioux River Basin in
 

southeastern South Dakota. The flood delayed spring planting by as
 

much as two months in some areas.
 

The flooded-area (primarily alluvial soils) was visible from
 

surrounding areas on a May 15 HCMM day IR test image (Fig. 1). On
 

May 15, the flood waters had receded but an area of anamolous residual
 

high soil moisture remained. The soils were at or near field
 

capacity. Soil moisture in the surrounding terrace soils was
 

generally less. The cooler temperatures of the flooded area were
 

primarily the result of a higher thermal inertia and more available
 

water for surface evaporation due to the high soil moisture content.
 

The high soil moisture area was not visible on a HCMM day
 

visible test image of the same scene (Fig. 2), or on Landsat imagery
 

acquired on May 16, 1978 (Fig. 3 and 4).
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Fig. 1. 	Photographic enlargement of a May 15, 1978, Day IR test
 
image (scene I.D. A-AO029-19575) showing a high soil
 
moisture area (arrows) in southeastern South Dakota.
 
The flooding occurred in early April. (Approx. scale =
 
1:500,000; dark is cool).
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OF POOR QUALITY
 

Fig. 2. Photographic enlargement of a May 15, 1978, Day Visible
 
test image (scene I.D. A-AO029-19575) of the same area 
as Fig. 1. (Approx. scale = 1:500,000).
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Fig. 3. Photographic enlargement of a May 16, 1978 band 5 Landsat
 
image of the same area as Fig. 1. (Approx. scale =
 
1:500,000). Note the generally lower reflectance of
 
alluvium and terraces around Brookings (arrow), but the

absence of differential spectral properties identifying

the lower lying alluvium from the terraces to north and
 
east of Brookings.
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Fig. 4. Same as Fig. 3 except image is from band 7. 
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2. Water Table Depth
 

The previous quarterly HCMM progress report (September 1978)
 

discussed the significant correlation between'soil temperatures at
 

50-cm below the soil surface and depth to water table to about four
 

meters. Results indicated that shallow water tables produced a
 

heat-sink effect, thereby influencing soil profile and surface
 

temperatures for possible detection using remote sensors.
 

To evaluate the effect of water table depth on surface 

temperatures, thermal scanner data1 / collected on September 5 and 6, 

1978, at approximate HCMM overpass times at an altitude of 3650-m 

AGL were analyzed. Scanner data were not corrected for emissivity
 

variations. Test sites included three land-cover categories (stubble,
 

pasture, Corn) with percent covers ranging from about 20 to 95
 

percent, and six soil types (Renshaw sandy loam, Fordville loam,
 

Estelline silt loam, Kranzburg silt loam, Lamoure silty clay loam,
 

Volga silty clay lam). Ground data collected included soil moisture
 

(0 to 15 and 0 to 50-cm layers), 50-cm soil temperatures, and percent
 

cover. Data corresponding to water table depths greater than four
 

meters were not included in the analysis.
 

Apparent surface temperatures measured by the scanner included
 

emittance contributions from the soil surface and the land cover
 

(canopy, stubble, etc.). Scanner estimates of the diurnal surface
 

-/Aircraft 
 data were collected as part of a watershed development
 
investigation supported by NASA Grant No. NGL-42-003-007.
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temperature difference were not significantly correlated with
 

water table depth (Fig. 5).
 

Results of a study in a barley canopy (see Appendix A) indicated
 

that soil surface temperatures could be estimated from remote
 

measurements of canopy temperature if minimum air temperature and
 

percent cover were known. The equations
 

Ts = 0.40 Tc + 0.60 Ta min + 5.10 (1)
 

2

(R = 0.78)
 

and
 

Ts = 0.79 Tc e (-0.80 PC) + 20.35 (2)
 

(R2 = 0.86)
 

were developed for measurements at 0230 and 1330 local standard
 

time, respectively, where Ts (°C) is soil surface temperatures,
 

Tc (°C) is the remote measurement of canopy temperature, Ta min (0C)
 

is the minimum air temperature from the nearest National Weather
 

Service Station, and PC is percent cover expressed as a fraction.
 

Soil surface temperatures were estimated from the scanner
 

measurements using equations (1) and (2), and the resulting diurnal
 

temperature differences were significantly correlated (r = 0.87**)
 

with depth to water table (Fig. 6). The results in Fig. 6
 

indicated that the shallow water tables produced a damping of the
 

amplitude of the diurnal surface temperature wave.
 

=
Depth to water table was correlated (r 0.66**) with soil
 

water content in the 0 to 50-cm layer of the profile (Fig. 7).
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Fig. 5. Diurnal surface temperature difference (AT), estimated
 
from simulated HCMM data (uncorrected for effects of land
 
cover), as a function of depth to water table.
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Fig. 6. 	Diurnal surface soil temperature difference (AT), estimated
 
using simulated HCMM data and a land cover corraction, as
 
a function of depth to water table.
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Water tables that were less than 2 m below the soil surface occurred
 

under irrigated corn. When the two data points in Fig. 8 corresponding
 

to the irrigated corn fields were excluded from the analyses, soil
 

water content and depth to water table were not correlated.
 

Previous results indicated that depth to water table was
 

significantly correlated to 50-cm soil temperature. We found a
 

significant -correlation (r = 0.84**) between scanner temperature at
 

1330 local standard time (uncorrected for land cover) and 50-cm
 

soil temperatures (Fig. 8). Ile also found that corrections for
 

land cover improved the correlation (Fig. 9).
 

Results to date using simulated HCMM data appear very promising
 

for evaluating water table depth from thermal data. Thermal data
 

can be corrected for effects of land cover, and the resulting
 

estimates of surface soil temperature can potentially be used to
 

estimate depth to water table directly, or to estimate-50-cm soil
 

temperatures which are highly correlated with depth to water table.
 

3. Soil Water Content
 

A study was conducted in a barley canopy to evaluate the
 

potential for extending the thermal approach for estimating soil
 

water from bare soil to developing crop canopies (see Appendix A).
 

Equations developed as part of that study were applied,to the thermal
 

scanner data discussed in the previous section. Soil water content
 

(0 to 15-cm layer) was estimated from the relationship
 

AT = e (-0.03 SWC + 3.58) (3)
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where ATs (°C) is the diurnal surface temperature difference
 

estimated from the scanner data and equation (1) and (2) in the
 

previous section, and SWC (percent of field capacity) is soil
 

water content. (Equation (3) differs from equation (1) in Appendix
 

A only in that soil water content is expressed as percent of field
 

capacity instead of percent by volume).
 

Figure 10 compares predicted and observed values of soil
 

water content for stubble, pasture, and corn. The average difference
 

of observed from predicted values was 1.6 percent. Differences
 

ranged from -24 to 15 percent. Results in Fig. 10 demonstrated
 

that extension of equations developed for barley to other land
 

cover categories and soils was possible.
 

A direct comparison of soil water content with diurnal
 

surface soil temperature differences- (ATs) estimated from the scanner
 

and the land cover correction yielded the equation
 

ATs = e (-0.02 SWC + 3.02) (5)
 

which was somewhat different than the relationship developed for
 

barley (Fig. 11). We also found a high correlation between soil
 

water content and diurnal temperature differences from the scanner
 

data uncorrected for land cover (Fig. 12).
 

4. 	 Model Simulation
 

The finite-difference heat flow model (see previous quarterly
 

HCMM report) was used to simulate a variety of bare soil conditions 

that might occur for two profiles of the same soil type. The results 

are summarized below. 
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* Surface temperature differences associated with water 

table differences between two profiles are relatively
 

constant during the diurnal cycle.
 

* Surface temperature differences associated with soil. 

moisture differences between two profiles are highly
 

dependent on time of day.
 

D. 	Publications
 

"Thermography for Estimating Soil Moisture in a Developing
 

Crop Canopy" to be submitted to Journal of Applied Meteorology
 

(see Appendix A).
 

E. 	Recommendations
 

None at this time.
 

F. 	Funds Expended
 

$59,311.22
 

G. 	Data Utility
 

HCMM Data for the test site have not been received.
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APPENDIX A
 

"Thermography for Estimating Soil Moisture in a Developing Crop Canopy"
 

(Draft copy - RSI internal review required before submission to journal)
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I ABSTRACT 

2 Previous investigations of thermal-infrared techniques using remote 

3 sensors (thermography) for estimating soil water content have been 

-I limited primarily to bare soil. A ground-based study was conducted 

throughout a complete growing season to evaluate the potential for
 

6 extending the theniography approach to a developing barley canopy. A
 

7 significant exponential relationship resulted between the volumetric
 

8 soil water content in the 0 to 4-cm soil layer and the diurnal difference
 

9 between surface soil temperature measured at 0230 and 1330 local standard
 

time (satellite overpass times of NASA's Heat Capacity Mapping Mission 

11 HCMM). The difference between surface soil temperature at 1330 LST and 

12 maximum air temperature was also exponentially related to soil water 

13 content. Surface soil temperatures could be estimated from remote 

JI measurements of canopy temperature provided that minimum air temperature 

and percent cover of the canopy were known. The significant results of 

16 a data set with varying percentages of land cover over the period of a 

17 growing season indicate that aerial thermography such as HCMM together 

18 with other remote sensing or climate data may provide synoptic and 

a9 repetitive estimates of soil 


conditions.
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1 1. Introduction 

2 Numerous investigations have been conducted to evaluate remotely 

3 sensed surface temperatures for estimating soil water content (Idso et 

4 al., 1975; Idso and Ehler, 1976; Schmugge, 1978; Schmugge et al., 1978). 

5 The basic approaches have related soil water content to the differences 

C between the daily maximum and minimum soil or crop temperatures, or the 

7 differences between maximum soil or crop temperatures and air 

s temperature. The investigations have generally been limited to bare 

9 soils or fully developed crop canopies because of difficulties in 

o interpreting thermal data at less than full cover when significant 

1 emittance contributions from both soil and vegetation occur. 

12 Environmental factors interacting with physical and biological 

is processes which affect soil-water-plant relations are important at all 

1I stages of plant growth and development. Thus, the ability to derive 

15 useful information from remote temperature measurements for conditions 

16 other than bare soil or fully developed canopies would greatly expand 

17 the usefulness of the remote sensing techniques. 

18 Investigators have shown that, even at full cover, thermal 

19 emittance from the soil surface can affect remote temperature measure

20 ments of crop canopies (Blad and Rosenberg, 1976; Steinmetz, 1977). 

21 Thus, surface and soil temperatures can potentially be estimated from 

22 remote measurements of land surface emittance where a crop canopy is 

23 the primary source of radiation. 

24 We conducted an investigation using ground based radiometry to 

25 evaluate the potential for estimating soil surface temperature and soil 

26 moisture from measurements of total area emittance (such as an aircraft 

27 or satellite would measure) at various stages inthe development of a 



1 crop canopy. The investigation was conducted to examine data collected 

2 during times of the diurnal temperature cycle corresponding to data 

3 collection by NASA's Heat Capacity Mapping Mission (HCMM), launched in 

4 April 1978. The satellite, which carries a two-channel radiometer 

5 (0.5 to 1.1 and 10 to 12 pm) in a sun-synchronous orbit, collects data 

0 at mid-latitudes at approximately 0230 and 1330 local standard time 

7 (LST) during the diurnal cycle with repeat coverage of five or 16 days 

s depending on latitude. 

9 2. Materials and Methods 

10 Experiments were conducted on a 25 x 300-m field of Volga loam 

11 (fine, loamy over sandy, mixed (calcareous), frigid, Cumulic 

12 Haplaquoll) at the South Dakota State University Agricultural Engineer

13 ing Research Farm located 8-km south of Brookings, South Dakota. 

jj Barley (Hordeum vulgare L.) Larker was planted in the field at 15 cm 

15 row spacings (north-south rows) and a population of 2.5-million 

16 plants/ha. The barley was rainfed in a rainfall zone averaging 558 mm/ 

J7 year. Surface roughness of tile soil was minimal. 

is Surface soil temperatures (about 1 mm below the soil surface) were 

j9 measured with copper-constantan thermocouples for two replications 

20 within the field. For each replication, three thermocouples were 

21 wired in parallel to obtain an average surface temperature measurement. 

22 Apparent canopy temperatures consisting of emittance contributions from 

23 the soil surface and the barley were measured with a portable infrared 

2- radiometer (Model PRT-5, Barnes Engineering Co.) at a vertical position 

'25 (zero degree look angle measured from nadir). The temperature 

26 resolution of the 20 degree field of view PRT-5 was ±0.50 C in the 8 to 

27 14-pm wavelength interval. Apparent crop temperatures were measured 
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1 with the PRT-5 at a look angle of about 60 degrees to minimize emittance 

2 contributions from the soil. Temperatures were measured at times 

3 corresponding to HCMM overpass (0230 and 1330 LST). 

4The temperatures measured with the PRT-5 were not corrected for
 

emissivity. Emissivities, determined using a procedure similar to that
 

6 described by Fuchs and,Tanner (1966), ranged from 0.96 for bare, dry
 

7 soil to 0.98 for the fully developed barley canopy.
 

8 Soil water contents (0 to 4-cm layer) for each replication were 

9 gravimetrically sampled at the time of the temperature measurements. 

The average of soil water contents measured at 0230 and 1330 LST was 

1n used to represent the 24-hour average. Jackson et al. (1976) reported 

12 that the average of the daily maximum and minimum water content closely 

13 approximated the 24-hour average. 

14 Temperature and soil water content measurements were initiated 

when the percent cover of the canopy reached 30 percent. Data were
 

10 collected for 22 dates during the 45-day investigation.
 

17 Plant samples for determining leaf area index (LAI) were taken
 

18 every five to seven days. Leaf areas (green leaves only) were
 

19 measured with an optical planimeter (Lamda Instrument Corp.). 
 Percent
 

cover was determined using 35-mm color infrared slides of the canopy
 

21 (photographed from a vertical position approximately 1 m above the
 

22 canopy) projected on a random dot grid. Daily values of LAI and per

2:3 cent cover were estimated from graphs of observed LAI and percent cover
 

21 versus date (Fig. 1).
 

Maximum and minimum air temperatures were obtained from the
 

26 Brookings National Weather Service Station (approximately 12 km from
 

27 the research site. All data were subjected to regression analyses.
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1 3. Results and Discussion 

2 In the discussion that follows, canopy temperature refers to the 

3 apparent temperature measured by the PRT-5 at a zero degree look angle 

4 that viewed both exposed soil and the crop. Crop temperature refers 

to apparent temperature of the barley measured by the PRT-5 at a 60 

6 degree look angle to minimize emittance contributions from the soi. 

7 Soil Water Content Versus Temperature Relationships 

8 The amplitude of the diurnal soil surface temperature wave is a 

9 function of thermal inertia and meteorological factors (solar insolation, 

air temperature, humidity, etc.). Thermal inertia, an indication of a 

11 soil's resistance to temperature change, is defined as pcx2 where p is 

12 density, c is specific heat, and X is thermal conductivity. Since p, c 

13 and x of a soil increase as soil water content increases, the resulting 

11 amplitude of the diurnal temperature wave decreases. 

When the soil surface is wet, soil evaporation is a major factor 

11 controlling surface heat loss. After the surface layer dries and the 

17 soil water supply cannot meet the evaporative demand, surface heat loss 

18 is by conductive transfer and is largely influenced by thermal inertia. 

I9 Nocturnal cooling is highly related to thermal inertia. Thus, the 

diurnal surface temperature range can be an indication of soil water 

21 content. Idso et al. (1975) found a linear relationship between the 

22 diurnal range of surface soil temperatures and soil water content in 

23 the 0 to 4-cm layer of soil, and reported that the temperature versus 

21 water content relationship was also a function of soil type. However, 

they also found that if soil water content was expressed in units of 

2o pressure potential, this dependence was minimal. 

27 
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I Vegetative cover alters the solar insolation at the soil surface 

2 and thus affects soil evaporation and soil temperatures. Thus, dynamic
 

3 growth and development of vegetation would be expected to complicate the
 

4 temperature versus water content relationship.
 

5 Initially, we evaluated the relationship of day minus night surface
 

o soil temperatures (ATs), measured at HCMM overpass times, versus soil
 

7 water content at various stages of canopy development. Leaf area index 

8 and percent cover of the barley canopy ranged from 0.3 to 3.2 and 30 to 

9 90 percent, respectively. Seasonal trends in observed leaf area index 

io and percent cover are shown in Fig. 1. The exponential equation
 

(1)
11 AT = e (-0.06 SWC + 3.59)
s 

12 with an R2 of 0.81 and a standard deviation from regression of 2.54 was 

J3 found to best represent the relationship between ATs and the average 24

jI hr volumetric soil water content (SWC) in the 0 to 4-cm layer of the 

i5 soil profile (Fig. 2). 

10 Idso et al. (1976) proposed a procedure for compensating for 

17 environmental variability in the thermal inertia approach by normalizing 

18 ATs measurements with respect to an arbitrary standard diurnal air 

19 temperature variation. We found no significant improvement in the ATs 

20 versus SWC relationship using the same normalization procedure. 

21 Since daily and seasonal air temperature differences influence 

22 surface soil temperature, we also evaluated the relationship between 

2:3 soil water content at 1330 LST (SWC 1330 ) and the differential between
 

24 surface soil temperature at 1330 LST (Ts, 1330 ) and maximum air
 

25 temperature (Ta max) measured at the nearby Brookings jdational Weather
 

20 Service (NWS) Station. The exponential equation
 

27
 



I Ts 133 - T max1330
1 Ts,1330 Ta max (-0.08 SWC + 3.26) (2)
 

2 with an R2 of 0.70 and a standard deviation from regression of 3.70 was
 

3 obtained (Fig. 3).
 

4 The temperature versus water content relationships ( Eqs. 1 and 2)
 

5 apply only to Volga loam. However, Idso et a]. (1975) have shown that
 

6 if soil water content is converted to a pressure potential, a more 

7 universal relationship results that appears to be independent of soil 

s type. The relationships between temperature and soil water content 

9 have limited usefulness unless soil temperatures can be estimated from 

1o remote measurements under varying conditions of crop cover. 

1 Estimating Soil Temperature from Measurements of Canopy Temperature 

32 During the growing season, surface-soil temperatures at 0230 LST 

13 were 1.1 to 5.40 C higher than apparent crop (barley) temperatures, 

jj while PRT measurements of apparent canopy temperature (including crop 

15 and soil background) at 0230 LST were 1.1 to 2.20 C higher than apparent 

16 crop temperatures (Fig. 4a). The difference between canopy and crop 

17 temperatures suggested that, even at full cover, significant amounts of 

Is thermal radiation from the soil surface were detected by the infrared 

19 radiometer at 0230 LST. Those results agreed with results presented by 

20 Blad and Rosenberg (1976) and Steinmetz (1977). 

21 At 1330 LST, radiometric measurements of apparent canopy 

22 temperature were 0.5 to 170 C higher, and surface-soil temperatures 1.5 

23 to 200 C higher, than apparent crop temperatures (Fig. 4b). At full 

2-1 cover, greatest differences between canopy and crop temperatures 

25 occurred on days with high temperatures and high evaporative demand. On 

26 those days, some wilting of leaves occurred which exposed more of the 

27 soil background. 
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1 Because emittance contributions from the soil surface were 

2 detected by the infrared radiometer, equations were developed from 

3 regression analyses to estimate soil temperatures at HCMM overpass times 
/ 

4 from remote measurements of canopy temperature. For the 0230 LST 

5 measurements, the equation 

6T s = 0.40 PRT + 0.60 Ta min + 5.10 (3) 

7 with an R2 of 0.78 and a standard deviation from regression of 1.31 was 

8 obtained where Ts (0C) is surface soil temperature, PRT (0C) is PRT 

o measurement of canopy temperature, and Ta min is the minimum NWS air
 

ii with an R of 0.86 and a standard deviation from regression of 2.63 was
 

10 temperature. For the 1330 LST measurement, the surface soil temperatures 

11 were related to the PRT measurements of canopy temperature and an 

12 exponential function of percent cover (PC). The equation 

13 Ts = 0.79 PRT x e (-0.80 PC) + 20.35 (4) 

2 

i5 obtained where PC is expressed as a fraction (Fig. 5). Correlations for
 

1 (3)and (4)were significant at the 0.01 level with 19 and 25 df,
 

17 respectively. We found no improvement in estimating soil temperature
 

18 by including leaf area index, solar insolation, or maximum air tempera

19 ture in the analyses. Figure 6 compares predicted soil temperature with
 

20 )bserved values.
 

21 Measurements of canopy temperature used to derive (3)and (4)
 

223 ranged from 13 to 220 C for (3), and from 24 to 52* C for (4). Percent
 

2:3 cover ranged from 0.3 to 0.9.
 

2.j Evaluation of Results
 

25 Figure 7 compares observed soil water contents with values pre

2 dicted using Eqs. (1)through (4), and the same data sets from which (3)
 

27 and (4)were derived. The PRT measurements are similar to those
 

,;IK
 



9 

1 derived from aircraft or satellite platforms excluding the effects of 

2 atmospheric transmission. Differences of observed from predicted values 

3 of 24-hr average soil water content ranged from -3.6 to 6.2 percent 

4 (Fig. 7a). The average difference was 0.01 percent. The average 

,5 difference of observed from predicted soil water content at 1330 LST was 

6 2.7 percent. Differences ranged from -4.9 to 9.5 percent (Fig. 7b). 

7 The estimates of the diurnal soil temperature differences provided 

8 a better estimate of soil water content than did the soil - air 

q temperature differential. However, both techniques demonstrated a 

10 potential for evaluating surface soil moisture conditions in the 

11 developing barley canopies. 

12 4. Concluding Remarks 

13 Results of this investigation indicate that thermography for 

ji estimating soil water content can potentially be extended to 

15 developing crop canopies. The diurnal difference between surface 

16 soil temperatures measured at HCMM overpass times is an indication of 

17 surface soil water content, as is the surface soil - maximum air 

18 temperature differential . Surface soil temperatures can be estimated 

J9 from remote measurements of canopy temperature if minimum air 

20 temperature and percent cover of the canopy are known. Remote sensing 

21 techniques have been developed for evaluating crop cover (Heilman 

22 et al-, 1977; Kanemasu et al., 1977; Tucker et al., 1978) for certain 

23 species. 

24 Relationships presented in this paper are not expected to 

25 universally apply for all soils, crops, and climatic conditions. 

26 However, they do support continued research to more fully evaluate the 

27 usefulness of the thermal-infrared techniques for estimating surface 
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Fig. 1. 	Seasonal variations in leaf area index (A) and percent
 
cover (B) of the barley canopy.
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Fig. 2. Relationship of the difference (ATs) between soil surface
temperatures measured at 1330 and 0230 local 
standard time
and the average 24-hr volumetric soil water content (SWC)
 

in the 0 to 4-cm layer of the profile. Correlation was
 
significant at the 0,01 level with 20 df.
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Fig. 3. 	Relationship of the difference between surface soil
 
temperatures (Ts) measured at 1330 local standard time
 
and maximum daily air temperature (Ta max) to the
 
volumetric soil water content at 1330 local time (SWC1330)
 
in the 0 to 4-cm soil profile layer. Correlation was
 
significant at the 0.01 level with 20 df.
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Fig. 4. Comparison of soil-surface (1-nn below surface), apparent
 
canopy (PRT), and apparent crop temperatures measured at
 
0230 (A)and 1330 local standard time (B). Canopy
 
temperatures included enittance contributions from the
 
crop and soil background.
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local standard time and a multiplicative function of
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Correlation was significant at the 0.01 level with 25 df.
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Fig. 7. 	Comparison OT preoictec and observed values of 24-hr average

volumetric soil water content in the 0 to 4-cm layer of the
 
profile (A), and the volumetric soil water content in the
 
0 to 4-cm layer at 1330 local standard time. Predictions were made
 
using equations (1), (3), and (4)for A, and equations (2)

and (4)for B.
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