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ABSTRACT

The feasibility of a moderate temperature Na battery having the
configuration

Liquid Na / Solid Electrolyte / Dissolved Na,S,

@-A1203) or Metal Sulfide

has been studied. This battery is to operate at a temperature in the range
of 100-150°C., Two kinds of cathode were investigated: (i) a soluble S
cathode consisting of a solution of Nas$, in an organic solvent and (ii)

an insoluble S cathode consisting of a transition metal dichalcogenide in
contact with a Nat-ion conducting electrolyte.

Four amide solvents, dimethyl acetamide, diethyl acetamide, N-methyl
acetamide and acetamide, were investigated as possible solvents for the
soluble 8 cathode. Results of stability and electrochemical studies using
these solvents are presented. The dialkyl substituted amides were found to
be superior,

Although the alecohol 1,3-cyclohexanediol was found to be stable in
the presence of NazS;, at 130°C, its NasS, solutions did not appear to have
suitable electrochemical properties.

The limited amount of work carried out with transition metal dichalco-
genides indicates that they present iInteresting possibilities as cathode
materials in a moderate temperature Na battery.

e
e
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I. INTRODUCTION

The aim of this research program has been to investigate the feasi-
bility of a moderate temperature, secondary Na battery utilizing S cathodes.
The S cathode is either in the dissolved form as Na sulfides, NayS,, n 2 1,
in a suitable organic or inorganic solvent, or in the insoluble form as a
transition metal sulfide such as TiSp. This system, having the cell con-
figuration,

Liquid Na J Solid Electrolyte [ Dissolved Na35p
or metal sulfide

is aimed at high energy density and high power density applications and is
expected to have an operating temperature inm the range of 100° to 150°C.
The solid electrolyte is B—A1203, an ionic conductor permeable only to
WaT ioms.

The dissolved S cathode battery would be a modification of the much
researched (1,2) system,

Ligquid Na BmA1203//Eblten s

The latter system was first described by Kummer and Weber (3). In this
system the fully charged cathode usually consists of a conductive graphite
felt matrix imbedded in a pool of nonconductive liquid S. During dis-
charge, Nat ions migrate through the solid electrolyte to form various Na
polysulfides (Na25,) at the surface of the porous graphite cathode. The
initial discharge reaction is believed to be

MWa’ + 58 + 2¢ + Na,S, (1)
Further discharge products would involve S4~2 and S32 species, coupled
with chemical steps involving ion-radical species. The operation of the
system, however, is temperature-limited, and further complicated by forma-
tion of various phases, as described in its phase diagram (4). Upon
discharge, insoluble Na253 precipitates out when the overall composition
reaches a critical value. Because of the sclidification of Na,S3, the
lower limit of the operating temperature is 300°C. Furthermore, on charge,
when the overall composition exceeds Nap55, two immiscible liquid phases



(Nazs5, 5) coexist; of these, the S phase is nonconductive. The porous
graphite cathode operation is believed to be transport~limited (5), as a
result of the high exchange current density, the complicated phase-
relationship, and the nonconductivity of S-rich phase.

S8ince the discharge reaction stops at NapS3, the attainable energy
density of this system is considerably less than that corresponding to the

theoretical reaction
2¥a + § » Nazs (~700 Whr/1b) (2)

The theoretical energy density with an end-of-discharge composition of
NayS3 is 345 Whr/lb., The high operating temperature (>300°C) of the molten
S system has introduced severe problems in the implementation of this
battery concept. The successful development of the battery is contingent
upon solving severe corrosion and materials problems: Cell failures occur
because of accumulation of sensitive materials on the positive electrode,
deterioration of the solid electrolyte or of seals, or more general cor-
rosion {(5,1). These problems fundamentally result from operation at very
high temperature.

-

It is evident that many of the problems encountered in the Na/molten
S system could be resolved by lowering the operating temperature. One way
to achieve this is to use a S cathode as Na sulfides dissolved in a solvent
so that the operating temperature is just above the melting point of Na,
i.e., in the range of 100 to 150°C. In this case, if the solvent dissclves
appreciable amounts of NagS, it might be possible to achieve the end-of-
discharge composition closer to the theoretical NasS. Also the use of a
solvent which dissolves appreciable amounts of Na-polysulfides (i.e.,
Nas8, where, n >> 5) could eliminate the undesirable phase separation
problems encountered in the molten S battery.#®

An alternative approach is to use an insoluble tramsition metal sul-
fide cathode in contact with a Nat-ion containing electrolyte so that
during discharge the cell reacticon is the intercalation of Na into the
sulfide lattice, as depicted in Equation 3. ’

Ms, + Nal 4+ e 2 Nalts, (3)

#Some solution to this problem has been found (1) by the use of metal sulfide
additives such as FeS to the molten S cathode,



Such a battery would be analogous to the ambient temperature Li/TiSy cell
and should operate conveniently at a temperature in the range of 100 to
150°cC.

The major advantages of a moderate temperature system are:

1. Minimal problems from corrosion, seal fracture and
thermal cycling.

2, lesgs expensive and simpler sealing procedures, e.g.,
the use of plastics becomes possible below 200°C.

3. Less insulation and hence less weight and cost,
making smaller battery packages economical.

A preliminary battery design with a soluble S cathode indicates that
for an end-of-discharge composition of NasS, a charged-state S solubility
of 1.6M in Sg is required to give an energy density comparable to that of
a molten S battery designed for 100 Whr/lb performance. On the other hand,
if the end-of-~discharge product is NapS2, the required Sg concentration is
v3.3M. We must, of course, take into account that compared with operxration
at 300-350°C, there will be some energy loss due to increased resistance of
the 8-Alp03 and, possibly from polarization losses at the electrodes. The
resistivity of B~Al,03 at 300°C is ~3 ohmem and at 150°C it is 18 ohmem. With
tubes 0.8 mm thick, and discharge rates of 50 mA/cmZ, this involves a loss of
0.012V at 300°C and 0.072V at 150°C. Since the OCV is 2,08V, there is a
corresponding additional loss from working at lower temperatures of 3%. In
the high temperature cell, there is a further ohmic drop in the catholyte
compartment about equal to that of B~Aly04 (7). We can expect at least
this additional loss at the lower temperature. Thus the overall energy
loss from ohmic polarization in a soluble S battery would be of the order
of 10%. Although the additional ohmic voltage drops associated with
operation at lower temperature will effect the battery's ability to deliver
the required energy density at the highest rates, it is not improbable that
at less than the highest rates the soluble S battery (150°C) could achieve
energy density comparable to the molten S battery (350°C). Rate goals of
25 mA/cm? at 1.8V seem reasonable for most applications.

The moderate temperature Na battery is analogous to the Na/SbClj
battery under development with EPRI support for electrical load-levelling (8).
The latter battery is to operate at ~200°C with current densities up to
25 mA/em2 of B-Alg03. It is projected to have power densities of V50
mW/cm2. This battery overcomes one of the major difficulties of the Na/
molten S system, that of sealing. Plastic seals appear to be satisfactory (9).



A preliminary study, carried out at EIC (10), has shown the basic
feasibility of the liquid Na/dissolved S battery concept. In this study,
a liquid Na/B-Al,03/dissolved S cell utilizing N,N¥-dimethyl acetamide
(DMAC) as the S-solubilizing agent, exhibited, during short term cycling
studies, good reversibility between voltage limits of 1.00 and 2.70V.
The average cycling stoichiometry at 130°C corresponded to

-2 -2 -
58, T % 8y, "+ 8e D)

No elemental S was formed during cell charging, but only long chain, soluble
polysulfides. The major system limitation was found to be the termination

of discharge (sharp voltage cut-off to 1.00V) in the vicinity of a polysulfide
composition of WSZ‘Z. The principal reasons for this appeared to be the very
low solubilities of the lower order polysulfides and the consequent choking

of the carbon felt current collector by the precipitated Na sulfides.

Studies (10) of NasS in various aliphatic amides had shown that its
solubility decreased with increasing N~alkyl substitution. Thus acetamide
(AC), N-methylacetamide (NMAC) and dimethylacetamide (DMAC) dissolved Na28
in the amounts of 1.10, 0,60 and 0.0075 M/2 respectively at 150°C. The
long term stability characteristics of these amides in the presence of NasS,
had not been determined.

In the present program a detailed investigation was carried out to
determine the suitability of the amides as solvents for the dissolved S
cathede. The major areas of investigation were solubility determinations
of NasS, in the amides at 2150°C, long term stability characteristics of
the amides in the presence of Nas8, at 130°C, and cell ecycling studies in
practical configuration utilizing B-Al,03 as the solid electrolyte. We
have alsc evaluated 1,3 cyclohexanediol (CHD) as a possible solvent for the
dissolved § cathode.

The transition metal disulfides, TiSo and TaS were Investigated as
possible cathode candidates. The studies included determination of their
long term stabilities in the presence of DMAC or DEAC at 130°C and evalua~
tion of their cyceling behavior in Nal solutions of these amides.



IX. THE Na-DISSOLVED S BATTERY

The successful development of a Nawdissolved S battery is contingent
upon the selection of a high boiling solvent which shows high S solubility,
intrinsic thermal stability up to 150°C, and which is unreactive towards
NasSy. Our preliminary studies (10) had indicated that aliphatic amides
were promising solvents with respect to many of these properties. Another
class of solvents showing appreciable solubilities of the Na sulfides,
ineluding Na3S, was aliphatic alcohols. The present study therefore
emphasized these two class of compounds.

A, Alivhatic Amides as Solvents for the Dissolved § Cathode

The suitability of aliphatic amides as solvents for the Na/S battery
was evaluated by studying their ability to dissolve Na sulfides, NasSy,
(n 2 1) at ~ 130°C, their long-term stability properties in the temperature
range of 100-150°C, and by examining the electrochemical behavior of solu-
tions of NajSp in these amides. The aliphatic amides investigated in the
program were AC, NMAC, DMAC, and diethylacetamide (DEAC). Some physical
properties of these solvents are shown in Table 1.

1. Solubilities of Na28y in Amide Solvents

The solubilities of Na2S, (n =1, 2, 4 or 8) in each of the amides,
AC, NMAC, DMAC or DEAC at 150°C were measured. The experimental procedures
and the results are given below.

@ General Experimental

The experiments were carried out in the absence of air and mois-
ture using standard techniques employed for the manipulation of air
sensitive compounds (11). Whenever appropriate, the handling and transfer
of reagents were also carried out in an argon-filled dry box (Vacuum-
Atmospheres Corporation).

e Reagents

Commercially obtained reagents were purified as described below:

Acetamide (Fisher Scientific, Lot No. 742523) was twice-
recrystallized from a mixture of methanol and diethyl ether. In this pro-
cedure, acetamide was initially dissolved in anhydrous MeOH (nlg AC/0.8 ml
MeOH). It was then crystallized out by adding anhydrous diethyl ether



TABLE 1

SOME PHYSICAL PROPERTIES OF ACETAMIDE, N-METHYLACETAMIDE,
DIMETHYLACETAMIDE AND DIETHYLACETAMIDE

N,N-dimethyl

. \ N,N~diethyl
Solvent Acetamide N-methylacetamide acetamide acetamide

M.P., °C 80.5 29.5 -20 -

B.P., °C 221.5 206.0 165 185

Density, g/ml

Refractive
Index

Viscosity, CP

Dielectric
Constant

Min. Specific
Conductance
(glem—1)

0.967 (120°C)

1.4274 (78°C)

1.06 (120°C)

74 (25°C, extrap)

2.6 x 10‘6 (94°C)

0.9503 (30°C)

1.4277 (30°C)

3.885 (30°C)

186 (25°C, extrap)

1 % 1077 (40°0)

0.936 (25°C)

1.4351 (25°C)

9.2 (25°C)

27 (25°C)

20 (25°C)

0.924 (25°C)




(v10 ml Etp0/g AC), vielding long needle-like crystals. The crystals were
further dried in vacuum (n10~3 torr) by continuously pumping for ~20 hr.
The melting point of the twice-recrystallized material was found to be
78-79°C, very close to the reported value (12) of 80.5°C.

High purity N-methylacetamide, obtained from Aldrich Chemical Co.
(Lot No. 021777) was used after the following treatment for removal of
its water content. About 100g of NMAC was dissolved in ~100 ml anhydrous
diethyl ether and the solution was then passed through a chromatography
column (1.5 cm ID and 28 cm long pyrex glass tube) packed with freshly
regenerated® Linde 44 molecular sieves. The flow rate of the solution
through the column was maintained at Al ml/min. The ether from the sieved
solution was removed in vacuum by collecting it in a dry ice/acetone
cooled cold trap. Final drying of the amide was carried out by continuously
pumping it in vacuum at room temperature for ~20 hr. The N,N-dimethyl-
acetamide was obtained from Burdick and Jackson Laboratories, Muskegan,
Michigan. This material was of high purity, "distilled in glass™ quality.
The water content of the solvent was further reduced by passing over activated
Linde 4A molecular sieves. Diethylacetamide was vacuum distilled first
using a spinning band column (Perkin-Elmer Corp.) and then dried over
molecular sieves.

Elemental S (Ventron, random pieces), Na?S (Ventron) and NapSy
(Ventron) were used as-received. The polysulfides, NazS2 and NajSg,
were prepared from stoichiometric mixtures of NagS and Na284 respectively
with elemental S.

® Solubility Determination

The experimental setup for solubility determination is shown in
Figure 1. In a typical experiment, a mixture consisting of an excess of
the sulfide (equivalent to 2-12M S) and a known amount of the solvent (10 ml)
was taken in A and the system was thoroughly flushed with dry N2. The
mixture was then heated with stirring to 150°C and maintained at this
temperature for 3 hr for equilibration. After the 3 hr of heating, any
undissolved sulfide was allowed to settle down. Thereafter, by maintaining
a Ny flow, the joint at B was disconnected and an aliquot of the sample was
withdrawn for analysis of total sulfur and g~2, Sampling was done by means
of a pipette which had been heated to 150°C using a heating tape. Analytical
procedures for sulfur determination are given below in detail.

#Fresh molecular sieves obtained from the manufacturer were regenerated by
heating at 400°C under a stream of Ar for ~16 hr. About 0.30g of molecular
sieves/ml of the solution was used. Use of molecular sieves has been sug-
gested as the best method for removal of Hy0 content of amide solvents (13).
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Fig. 1: Experimental set~up for determination of I\Ta2Sn solubilities.



® Sulfide Analysis

Sulfide analysis was carried out iodimetrically (14). It is based
on the reactions, -
2

- o -
12 + Sn -+ nS°® + 2T (5)

-2 -2 -
23203 + 12 + 85,0, " + 21 (6)

Samples of the polysulfide solution, measuring 0.50 ml, were quickly added
to an excess of standardized T2 solution (0.05N). The solution was then
titrated i1mmediately with standard thiosulfate soclution (0.05N) to a starch
end peint. When sulfide solution is added to I7 solution, a white to off-
white precipitate is formed at the meutral point. The precipitate is
elemental 5, Equation 5. In the presence of excess I7 the solution has a
yellow to pink color, showing unreacted iodine. Sodium thiosulfate
neutralizes this iodine according to Equation 6. The S~2 concentration is
calculated from the amount of iodine consumed.

® Total Sulfur Analysis

Total S analysis was carried out by oxidation of the polysulfide
to 804"2, with Hy09 in ammoniacal medium and determination of 504‘2 by titra-
tion with standardized Ba(Cl04)2 solution (15).

Sn"2 + (20-2) OH + (2n+1) H,0, + nso‘{}“2 + 4n Hy0 (7
A sample of the nonaquecus polysulfide solution, 0.50 ml, was withdrawn.
An excess of 507% NH;4OH, followed by excess 30% Hp02 were immediately added,
until a colorless solution was obtained within a few minutes. The solution
was then heated to beiling to destroy unreacted Hy02 and to insure complete
oxidation of S. Heating was continued to drive off all the NH3. The solu-
tion was then diluted to 50 ml, adjusting the pH to 2.5-4.0 with 1IN HC1.
(Very little or no acidification should be necessary if the NH3 is completely_
removed). To a 2-5 ml aliquot, sufficient CH40H was added to make the
solution 80%. One drop of thorin indicator solution (0.2%) was added and the
solution was titrated with 0.005M standardized Ba(ClO4)9 to a pink end point,

The following procedures are important for obtaining accurate results:

For very dilute 8 solutions, a 1/5 dilution of the Ba(C104)9 should
be used for titration. The end point is indicated by a change from yellow
to pink., Practice is required to distinguish the intermediate orange from
the final pink to within several drops (v0.02 ml/drop in a 25 ml buret). It
is helpful to have, for comparison, a sample that has been titrated beyond
its end point.



® Results and Discussion

The solubilities at 150°C of NagSh, n= 1, 2, 4 or 8, in AC,
NMAC, DMAC and DEAC, respectively, are shown ;ﬁ/iable 2. It can be seen
that AC dissolves 1.06M Na,S and NMAC dissolves 0.75M NajS. 1In general,
the total § solubility in the two solvents is seen to increase with
increasing polysulfide chain~length, reaching an upper limit when the
Sy~% chain~length is ~4. The solubility of Nay§ in AC or NMAC at 150°C
is much higher than in DMAC. The observed trend of AC > NMAC > DMAC for
the NapS-solubilizing properties of the three solvents is consistent with
the increasing H-bonding ability in going from DMAC to AC. Thus from the
stand point of 8 solubility, both AC and NMAC are superior to DMAC. How-
ever, preliminary stability studies, carried out as described previocusly (10)
along with the solubility experiments indicated that in the long run, solu-
tions of NagpSy in AC or NMAC might be less stable than sclutions of NasS,

in DMAC or DEAC.

2. Stabilities of Amide Solvents in the Presence of Na2Sp at 130°C

The ultimate usefulness of the amides as solvents for the S cathode
in the Na/S battery is dependent upon their long term stabilities. The
stability properties should include both intrinsic thermal stability and
chemical compatibility with NasS, at temperatures ~130°C. A thorough inves-
tigation of the long term stability characteristics of AC, NMAC, DMAC or
DEAC in the presence of NapS, at 130°C has been carried out. The procedure
employed for this consisted of incubating amide solutions containing Na-
sulfides at 130°C in sealed, evacuated glass tubes equipped with break-
seals. The tubes were opened after known intervals of time (days) and the
gas pressure in each tube was measured with a manometer. The solution and
gas products were analyzed spectrometrically.

o Reagents

All the reagents used in these tests were carefully dried according
te procedures outlined below.

N-methylacetamide, dimethylacetamide and diethylacetamide were
dried and/or purified as described earlier (Section ITA.1). Acetamide was
also purified by the recrystallization procedure, described in Section
ITA.Yl. However, before recrystallization with Et20, the methanolic seclution
was dried by passing twice through a chromatography column containing mole-
cular sieves,

Sodium monosulfide, Nass (Ventron), was dried by heating in wvacuum
at ~510°C with continuous pumping for 16 hr. After the heating, some
shrinking of the volume, coupled with a slight darkening of the sulfide,
was observed.

10



TABLE 2

SOLUBILITY DATA FOR Na2Sp in AMIDE

SOLVENTS AT 150°C

Solvent Naz$s Na252 NapS4 Na2S3g
(MS=2/1) (MS°/2) (MS°/1) (MS°/2)
Acetamide 1.06 2.4 7.6 7.4
N-methylacetamide 0.75 1.8 6.2 7.0
Dimethylacetamide 0.0075 - 4.27 6.6
Diethylacetamide T ‘ - 3.2 6.9

‘tApparently none dissolwved.
~Not: done.

11



Sodium tetrasulfide, Nag5y {(Ventron), was also dried in vacuum at
n215°C with continuous pumping for 16 hr. Elemental § (Ventron, random
pieces) was also dried in vacuum at 110°C for 24 hr. At the end of the
heating, all the sulfur had sublimed off and condensed onto the cooler
parts of the flask in which it was heated.

® Experimental Procedute

The test vessels consisted of pyrex tubes (30 ml capacity)
equipped with break-seals as shown in Figure 2A. Each tube was also
provided with ground glass joints, A and B, for attachment to the vacuum
system. The accurate volume of each tube was obtained by measuring the
amount of water it required to f£ill the tube. In a typical experiment,
weighed amounts of the sulfide or S and the amide were charged into the
reaction tube inside a dry box. The tube was then evacuated at ~10-3 torr
and sealed off at C. The hermetically sealed tube was heated at 130°C in
a constant témperature oven (Tenney Envirommental Chamber) for a known
period of time. Three sample tubes were used for each solution to be
tested so that the tubes could be opened after different periods of heating.
Before the tube was opened for measuring the gas pressure, a breaker, con-
sisting of an iron rod sealed inside a glass tube was held above the break-
seal on the sidearm of the sample tube using a pair of magnets wrapped in
a piece of electrical tape. After attachment of the sample tube to the
manometer assembly (Figure 2B8) and evacuation, the break-seal was opened
by dropping the breaker, and the gas pressure was measured. Since the
volumes of the manometer assembly and the sample tube are known, the amount
of gas (mmoles) could be calculated using the ideal gas equation,

.

PV = nRT
where P = pressure {atmosphere)
V = volume (liter)
T = temperature, °K
R = gas constant, 0.082 liter, atmosphere/mole/0°K

After the pressure measurements, the gases were analyzed by vapor phase IR
and mass spectrometric methods. The solutions were also analyzed spectro-
scopically using IR, NMR and mass spectra.

#® Results and Discussion

) Thermal Stabilities of Aliphatic Amides. Gas pressure measure-
ments and spectroscopic data indicated that the aliphatic amides are thermally
stable for at least 21 days at 130°C.

12
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Thus no gases were formed from any of these amides. The IR and UV
visible spectra of these solvents after the heat treatment did not show
any noticeable changes. The results suggest that the overall thermal
stabilities of the amides in the operating temperature range of the battery
are satisfactory.

Stabilities of Amide/NasS Solutions. The test mixtures used

for the evaluation are shown in Tables 3, 4, 5 and 6 respectively

for the amides AC, NMAC, DMAC and DEAC. The monosulfide is only sparingly
soluble in DMAC or DEAC. However, the results of tests, performed with an
excess of undissolved Na28, indicated that these two amides are stable in

the presence of Nap8 for at least 21 days at 130°C. No gases were produced
from either the DMAC/Na9S or the DEAC/NapS mixture. The solution maintained
its colorless nature during the 21 days of heating. The visible-~UV absorp-
tion spectra of DMAC or DMAC/NajsS sclutions recorded before and after heating
are shown in Figure 3. The solutions heated for Z 6 days showed two
absorption peaks at 285 nm and at 345 nm in addition to the peak at 265 nm
due to DMAC. The peak at 285 nm is due to $-2, as evidenced by the spectrum
of a freshly prepared sclution® of Nag$§ in DMAC. A similar absorption pattern
at v280 nm is exhibited by a solution of NasS in DMF (16). The absorption
peak at 345 mm is due to a reaction product. However, the intensity of the
peak at 345 did not increase with increasing heating time, and the relative concen-
tration of the material exhibiting this absorption was very small. Similar
experiments with DEAC/Na)S mixtures indicated that its stability was similar
to that of the DMAC/NayS mixture.

The monosulfide was moderately soluble in the amides NMAC oxr AC at
130°C (see Table 3). The stability characteristics of the AC/NayS solution
was investigated in detail. A mixture containing 0.33g (4.2 mmoles) NasS
in 2,05 AC produced 1.01 mmoles of gases in 18 days at 130°C. Vapor phase
IR spectrometry (Fig. 4) indicated the gases to be mostly NH3. However, it
contained small amounts of HyS5 also. The formation of these products may
be explained by the following gemeral reactions in a solution of NasSy in

acetamide 7T
CH,CONH,, + sn'2 + CH,CONH + HSn_ (8)
CH4CONH,, + Hsn" > CH3CONH_ + H,S_ (9)
H,8 + H,S + (a-1) §° (10}
2HS T > H,S + szn__l'2 (11)
. CH,CONH, + H5; > c:H3cosn‘ + NH, (12)

*The solution was obtained by heating an excess of NapS in DMAC for w15
min at 80°C and subsequently cooling the solution to room temperature.

14
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TABLE 3

STABILITY TEST DATA FOR ACETAMIDE/Nazsn MIXTURES AT 130°C

Tube No. of Days mmoles
No. Reactants Heated at 130°C of Gas Comments
3A 2.02g AC, 0.21g NajS89 3.5 2,75 Strong H7S odor for gas. Strong onion
(5.8 mmoles 8) odor for residue. Wew peak in the iR
spectrum of solid at 2050 cm-1l. Vapor
phase IR showed that the gas contained
CO8 as a product.
3B 1.96g AC, 0.2228g Na,Sg 12.0 3.50 Same as above.
(5.9 mmoles S)
3c 1.98g AC, 0.251lg NajSg, 5 20,0 4.19 Same as above.
25 2.01lg AC, 0.239g Na2$, 5.5 0.22 Slight onion odor for residue. Strong
(5.5 moles §) HyS odor for gas. COS as the major pro-
duct in the gas by IR,
2B 1.998g AC, 0.228g Na,S5; 13.0 1.02 Strong onion odor for residue. Strong
(5.25 mmoles 8) H78 odor for gas. Growth of new iR peak
at 2050 cm~l. Mostly COS in the gas as shown
by vapor phase IR.
2¢ 1.966g AC, 0.253g NasSy 21.0 0.58 Same as above.
(5.8 mmoles §)
4 2,05g AC, 0.328g Nay8 18.0 1.01 Solution turned dark brown from clear.
(4.2 mmoles §) The gas formed a green precipitate with
CuCly. IR spectra showed it to be NHj.
6A 1.953g AC, 0.2664g NayS, 11..0 - Tube leaked.
(6.12 mmoles 8), L.4M
butylborate
6B 1.9622g AC, 0.2572g NayS5, 11.0 0.42 Dark browm solution, appeared to be more

(5.91 mmoles S8), 2.3M
butylborate

viscous. The gas was found to be HsS,
C0S and other minor components,
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STABILITY TEST DATA FOR NM'AC/NaZSn MIXTURES AT 130°C

TABLE 4

Tube No. of Days mnoles of
No. Reactants Heated at 130°C Gas Comments
5A 1.982g NMAC, 6 0.14 Dark red solution; gas was
0.1876g NasSg. 2 found to contain COS, HoS
(4.86 mmoles 8) and other minor products.
5B 1.879g NMAC, 12 0.58 Same as above.
(4.63 mmoles 8)
50 1.85g NMAC, 18 1.05 Same as above.

0.1974g NapS
(5.16 mmoles S
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TABLE 5

STABILITY TEST DATA FOR DIMETHYLACETAMIDE/N&ZSn MIXTURES AT 130°C

No. of
Tube No. of Days mmoles Moles of Gas/

No. Reactants Heated at 130°C of Gas Mole S Comments

1A 2 ml DMAC, 0.207g Nas$, 5 0 - All the Nag84 dissolved and the
(4.76 mmoles 8) solution had a green color.

1B 2 ml DMAC, 0.216lg Na,S, 12 0.01 - Same as above.
(4.97 mmoles S)

1C 2 ml DMAC, 0.2440g NasSy 21 0.01 -~ Same as above.
(4.92 mmoles §)

24 2 ml DMAC, 0.247g NaySg 5 0.36 0.054 Solution was dark red. Major
(6.64 mmoles S) component in this gas phase was

CO0S.

2B 2 ml DMAC, 0.2259g Na;Sg 12 Q.47 g.079 Dark red solution with green tinge
(5.942 mmoles §) at 130°C. Mostly COS i1n the gas.

20 2 ml DMAC, 0.243g NasgSg 21 1.02 0.157 Green solution at 130°C became
(6.472 mmoles S) dark red on cooling. Mostly COS

in the gas.

3A 2 ml DMAC, 0.344g NasS 5 0 - Very little Nas§ dissolved. The
(4.4 mmoles 8) solution was clear.

3B 2 ml DMAC, 0.32%g Nags§ 12 0 - Very little NapS dissolved., The
(4.22 mmoles S) solution was clear,

3c 2 ml DMAC, 0.319g NasS 21 0 - Very little Na9oS dissolwed. The
(4.10 mmoles 5) solution was clear,

3D 2 ml DMAC, Olig 5 21 0.775 0.25 Yellow sclution. The gases were

(3.1 mmoles)

a mixture of COS and CS» as evi-
denced by IR and mass spectra.
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STABILITY TEST DATA FOR DEAC/NaQSn MIXTURES AT

TABLE 6

136°C

Tube . of Days mmoles % 8ulfur

No. at 130°C of gas Reacted Comments

L1 2 ml DEAC, 0.267lg NagSy 3 7 0.686 9.8 Dark olive-green with brown tint.
(6.98 mmoles §)

L2 2 ml DEAC, 0.243g Nas57 5 14 0,739 11.6 Dark green solution at temperature.
(6.38 mmoles §) Turns dark brown on cooling.

L3 2 ml DEAC, 0.2450g NasS7 3 21 1.00 15.5 Same as above.
(6.46 mmoles 8)

Xl 2 ml DEAC, 0,2305g NaySy 7 0 - Dark blue-green solution., Nas§y
(5.30 mmoles S) not all dissolved.

X2 2 ml DEAC, 0.2332g NapSy 14 0 - Same as above.
(5.36 mmoles S)

X3 2 ml DEAC, 0.2342g NasSy 21 0 - Same as above.
(5.84 mmoles S)

C 2 ml DEAC, 0.2239g Na,S 6 0 - Salmon color over Na,S powder.

1 2 2
(2.87 mmoles 8)

C2 2 ml DEAC, 0.2120g Nap$8 12 0 - Same as above.
(2.72 mmoles 8)

03 2 ml DEAC, 0.2227g NasS 21 0 - Same as above.
(2.86 mmoles S)

B 2 ml DEAC 21 0 - Remained clear.

FF 2 mlL DEAC + 0.13g 8 43 0.53 13.25 Reddigh~yellow solution.

(4 mmoles)




ABSORBANCE

0,75 p === A - DMAC with no heating
- B - DMAC, after heataing for 21
days at 130°C E
—  C - Dilute solution of Nay$S
(n0.0075M) in DMAC
Hi— D - Dilute solution of Nas$S in
DMAC after heating for 12
days at 130°C D
—w_. E~ Dilute solution of Nas$S in
DMAC after heating for 21
days at 130°C
0.50 -
—C
0.5 |
B
A
/0"'--.
.
/ \' —
&
i i i { 1
3/0 340 310 280 250
WAVELENGTH, nm
Fig. 3: Absorption spectra of DMAC or DMAC/Na2$S solutions before and after heating
at 130°C.
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It appears that in an Na)S/AC solution with an excess of acetamide, as in
the present case, reactions 8 and 12 predominate. Reactions 9 and 11,
leading to the formation of HyS, probably occur only to a small extent.
It may be noted that reaction 12 is analogous to the well characterized
reaction of CH3C00CgH5 with NaSH to form CH3COSNa and CgHs50H, as depicted
in Equation 13.

CH3C0006H5 + NaSH -+ CH3COSNa 4+ C6H50H (13)

Stabilities of Amide/Na2Sp, n > 1, Solutions. The tests were
performed with amide/Na?Sy solutions where n = 4 or 8. The test solutions
had a S concentration of ~v2-3M/litre. The various test mixtures for the
amides, AC, NMAC, DMAC and DEAC respectively are shown in Tables 3, 4, 5 and
6.

A solution of NasSy in DMAG or DEAC did not produce any gas even
after heating for a period of 21 days at 130°C. The visible spectra of
fresh and heated solutions, shown in Figure 5, were similar. The primary
absorption in these solutions is the strong peak at 618 nm due to 83“1. The
NMR and IR spectra also indicated no products in sclution.

Longer—chain polysulfides (Sy~%, n > 4), were found to react with
DMAC or DEAC at 130°C. Both of these amides produced gases, the amount of
which increased with increasing heating time. A plot of the amount of gases
produced versus heating time (days) is shown in Figure 6, Vapor phase infra-
red spectrum (Fig. 7) indicated that the gases were the same from both of the
amides and were identified as containing mostly carbon oxysulfide, C0S. The
visible spectra of these solutions also showed major changes after the
heating. This is illustrated in Figure 8 for a solution of NaySg in DMAC.
After heating for 21 days at 130°C, the absorption peak at 520 nm, charac—
teristic of long chain polysulfides found in freshly prepared solution, has
considerably decreased in intensity. The spectral properties of the solu-
tion before and after the heating suggest that during heating S° present
in solution in equilibrium with polysulfides reacts gradually with the
amides to produce carbon oxysulfide and polysulfides of shorter chain
lengths. It appears, thus, that the reactive species in these solutions
is elemental S. The stability tests at 130°C on mixtures of § and DMAC or
DEAC seem to support this. Elemental S is insoluble in N,N-dimethylacetamide
or in N,N-diethylacetamide at room temperature. However, when a mixture of S
and either of these amides is heated to 130°C, an orange-yellow solution is
formed. WNo gas is formed from this reaction mixture in 16 hr at this tem
perature. The visible spectra® of these solutions, Figs. 9 and 10, show
broad absorptions with a peak at 437 nm for the DMAC-sulfur reaction pro-
duct and two peaks at 500 nm and 425 nm for the DEAC-sulfur reaction product.

*The solvents alone show no absorptions above 300 nm after heating for
the same period of time.
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22

in



MumBer oF MoLEs oF Gas/MoLE oF S

Fig. 6

5 10 15 2
Nuveer oF Davs Heatep at 130°C

A plot of the amount of gas produced vs.
heating time for r;mu'_de/l\TazSI_1 solutions

[0}

AC/NasS;, solution, n =
DMAC/NasSy, solution,
NMAC/Na2S, solution,
DEAC/NasS, solution,

o I w=
[ |
=}
I

(s =
1
oo O o0

23



WAVELENGTH IN MICRONS

25 30 40

18 20

1

14

12

10

75

65

535

435

335

25

PERCENT TRANSMISSTON

h=4 o o (=3 = (=] o
& & =3 =]

~ - wy - [ ] =)
E S S = -F 3 Y A e IR TR M L e LT
= =] e S T e o o o T it s et pi el pi e
e = b TR R P [y~ vy gy ==
o I o i [ S it [ et B gl N oo
S N P s RPN N IR L R st
] I gy MR [ e ol IR O | -yl Pl i il )
o R EE O 7 - N N =
et el R \.\\ ' e I | A R g e e el
= N I I H - s - | == -3 ==k
e =i- 4t z_{ S I [ P R e e
EE TR ] o [T R ==
e e e e R £3 — o
=i = e T T = o e e
il el S I | Ao A e N s
o e e B s R e I S PR N N e s
Py ey Tl -1 1 -] W u afom 17 [ e
o e -t T [ .n..m. RN S
[ gt S e R I . 2 e e
I L ==
' L
i

¥
i

-} "o = - e I e e
R R R R L B =T e e
e ot o £ fo T e SiESannns
e el Tl e A B N i
i e =y L e W e
oty EET N Lo el Y S R e e
S St o) T P L N R B X Pl JEal fe
frgs e i L T Ny A S S I G P
o T i I BN o e e

= T O R R T TS
) s e e £ I S TN B e el vt 2 o e

ThIS bl o e L T e
N e R e M RIS TR G N s RO B
e B e [ S P W B o N FeiC S o ol SR
Snt e R Y I ol e sl o i e e
= Eird T o R I e P o
== AN P P A S S e e N Tk
N P Lt T I N - T
Ey Kol iyt ol = = e i =
EACT S I R D DO S NN ST N S i
PR it Bl ey n =3 el EH RS
N T - == - S
Bt o el O I_.H - S |- um LI [ e el Pt B
= =t {=F = =] e | e ma] e fm
Jeiupert el bl S o ER T I P P Bl iy Sadea woie
== T 5 T o i e
et Mindially i —_— h% [y S I T - 1
Rl Tt Ml Y ESEE ~-] 1=
) S e e B P e - e e e L ey
SRR O Jr+. I S S N SRR S E sl
SO it U St PO U - L P T N LA
St e SR SER R ol I D TR il i I Pl e ot
el CEaE S e n_ | c B e e
e |- . — =5
N B M = b ajemafz_ =
I I et Bk _ [ i i e SR ol
T T T-- T
R - g [ DI IR B BT O
i -k ' Y ey ...wa.-...
: t
~ L (LAY I
_I-.ni.... | L Ll.l:..lllkl
| =1 .= LI, [N N N MR-
H el I Pt I, [N ERY ¥ M E Y
= | T o} o aaret
"I - - o ST =] 3=
| - ol i i =
L] T ] - - -
_ _ E L S
I ! L Cic
t+
e i . T
. N 1 Dy | ! e i
u i [ o [ I
t i N T, W : T -
+ - Y : =
I O B AT
i) |l-li - ul - T []
1 B ] * [
i PR L ) !

ROTISSTHSNVAL INID¥dA

24

Y600 1400 1200 100Q 800 400 500 400 o0

1800

2000

3000

+000

WAVENUMBER, cm~1l

t

fter 21 days of heati

100 a

frared spectrum of gases from DMAC/Na;Sg solut

Vapor phase in
130°c.

7

Fig.

ing a



PERCENT ABSORBANCE

100

80
/0

40
30

20

10

1

L]

[
[
!
]
i
1
t
A r o B i
! ll l‘ E
1 { b1
I 1 AR
! 1 !
L ; \ ! i
i " i
! \ I
{ 1 !
- ! § / J
i \ J
!
I \ f’
X i
] \\" B
; /
:
.
- p -
y
[/
700 600 500 400 300
WAVELENGTH, NM
Fig. 8: Visible spectra of solutions of Na,Sg in

DMAC.

B - After heating for 12 days at 130°C
C ~ After heating for 21 days at 130°C

25



PERCENT ABSORBANCE

W
B 8 & 8 8 3 3

=
o

(]
i

800 700 600 500 400 2300
WAVELENGTH, NM

Fig. 9: Visible absorption spectra of 1M DEAC/S reaction
product in solution.

A - after 16 hours of heating at 130°C
B - After 40 days of heating at 130°C
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reaction product in solution.

A - after 16 hours of heating at 130°C
B - After 21 days of heating at 130°C
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Further heating of these solutions produce gases, the amount of which
increases with increasing heating time. Some changes are also observed in
the visible spectrum of the solution, although the gross features of the
spectra are maintained. Vapor phase infrared (Fig. 11) and mass (Fig. 12)
spectral data proved that the gases were a mixture of carbon oxysulfide
(COS) and carbon disulfide (CSp). About 75% of the mixture was carbon
oxysulfide. It was found that the reaction of each of the four amides with
S under the present reaction conditions produces a similar mixture of
volatile products of COS and CSy. The evidence that COS and CS2 are pro-
duced considerably after the initial reaction with S, suggests that in all
cases these gases are secondary reaction products. It appears that elemental
sulfur reacts initially with the amides to produce long chain sulfur con-
taining products which on continued heating decomposes to give COS and CS7,
as shown in Equations 14 and 15.

130°C

CHBCON(CH3)2 + nS§ ———>= CH3COSHN(CH3)2 (14)
I
A
CH3COSHN(CH3)2 ——--iv--CHBSn__lN(CHg)2 + C0S (15)
iT

The wvarious physical properties of the solution products are also consistent
with the formation of the polysulfides T and I1II. For example, the visible
spectrum resembles that of alkali metal polysulfides in non-aqueous sol-
vents (10). The infrared spectrum of the orange solution from DMAC and S
exhibited an absorption at 1135 em~1l which is in the region of C-5 stretching
vibrations. The 1H MMR spectrum of this solution exhibited a complex
pattern, Nevertheless, the presence of new -N(CH3)7 resocnances centered at
2.9 ppm and a new-COCH3 or -5CH3 resonance at 1.51 ppm, are also consistent
with the structures I and IT.

The formation of the same gas products from the reactions of both
elemental S and NapS,, n > 4, suggests a possible explanation for the observed
reaction with NasSp, n > 4 as follows:

A variety of equilibria involving S chains and elemental S are usually
present in solutions of alkali metal polysulfides in nonaqueous solvents.
There is evidence, from spectroscopic and electrochemical studies (17),
for the existence of equilibrium of the type 16, in solutions of alkali metal
polysulfides in solvents such as dimethylsulfoxide (DMSQ) or tetrahydrofuran
(THF).

-2 5 -2

o Sn—x + x8° {(16)
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The solution properties of Sn'2 in DMAC resemble strongly those of Sn-2
in DMSO (17). It appears that when a solution of Sn‘z, n > 4, in DMAC,
is heated, the neutral S present in equilibrium, reacts with the amide

to form I. This reaction shifts equilibrium 3 to the right until all the
Sn—2 is converted to 84'2. Further disscciation of 84‘2 iz not obserwved,
probably because of a unique stabilization of 84—2 in this solvent.
Spectral data suggest that S;~2 is strongly dissociated in DMAC to form
837, according to Equatiomn 17.

254‘2 + 52"2 + 253' (17)
In general, it is seen that basic solvents such as DMAC, DEAC, hexamethyl
phosphoramide (HMP) or DMSO promotes the dissociation of S4~2 in the manner
shown in Equation 17. The rather high concentration of the anion radical
in these solvents may indicate a unique stabilization accorded to it
through solvent coordination. A common feature of all these solvents is
that they possess electron-riech structural units such as C=0, P=0, or §=0.
It appears that the solvent-S3~ coordination occurs through these functional
groups and may involve a five-membered ring structure, IIT.

- S
)
N
. ITTL.

Selutions of Sn_z, n > 4, in acetamide or N-methylacetamide also
behave in a similar manner to the N-dialkyl substituted amides, except
that the acetamide solution is much less stable. Some H2S is also produced
from these solutions. The formation of H3S may be explained on the basis
of Equations 8-11.

& Summary and Conclusion of Stability Studies

The aliphatic amides investigated in this program are thermally
stable for long periods of time in the temperature range of 100 to 150°C.
However, their Na sulfide solutions show wvarying degrees cf reactivity which
depend both on the nature of the sulfide and the nature of the amide. The
overall stability trend is CH3CON(CH3)2 = CH3CON(CpHs5), > CH3CONH(CH3)p >>
CH3CONH,. Tt is also found that with the dialkyl substituted amides, the
reaction is limited to NajS,, with n > 4. Thus, of the four solvents the
most suitable ones are CH3CON(CH3)2 and CH3CON(CgHs)g. With these two
solvents, it might be possible to achieve a relatively stable cathode by
suitably controlling the charging 1imit of the battery to the formation of
a medium chain polysulfide such as 84‘2.
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3. Sodium-Sulfur Cell Studies with CH3CONR2/NajS, Cathodes

® Experimental Results

Tn a previous program (10), we studied the cycling behavior of
the DMAC/NasSy cathode, incorporated in a cell of configuration shown in
Figure 13. During short-term cycling studies, this cell exhibited good
reversibility between voltage limits of 1.00 and 2.70V. Typical discharge/
charge curves are shown in Figure 1l4. The average cathode cycling stoichio-
metry at 130°C corresponded to

58 -2 TS 2 4 8e (18)

No elemental S was formed during cell charging, but only long chain, soluble
polysulfides. The major system limitation was found to be the termination
of discharge (sharp voltage cutoff to 1.0V) in the vicinity of a polysulfide
composition of 82“2. The major reasons for this appeared to be the very low
solubilities of the lower order polysulfides and the consequent choking of
the carbon felt current collector by the precipitated Na sulfide(s).

The carbon current collector in the above cells was fabricated from
graphite felt (Union Garbide WDF felt). This has a porosity of only v15% (1).
The Teflon—bonded carbon electrode used in Li/soluble § cells (17) or in
1.i/80C12 cells (18) has a porosity in the neighborhood of 80%. The effect
of the higher porosity Teflon-bonded carbon electrode on the discharge
capacity of the DMAG/Na9Sp cathode was assessed in the present study using
a cell similar to the one shown in Figure 13, except that the graphite felt
electrode was replaced with a Teflon-bonded carbon electrode. The latter
electrode, 6 cm X 3.6 e¢m x 0.096 cm, was fabricated by Teflon-~bonding 0.6g
Shawinigan 50% compressed carbon black on an expanded stainless steel grid
(Exmet Corp.) The electrode was wound around the $-Alp03 tube and, when
placed in the cell, it was firmly positioned by pressure contacting the
walls of the two compartments. The cell was filled with 7 ml of 4M § as
NayS4 in DMAC/0.75M Nal electrolyte. The open circuit potential of the
cell was 1.82V, as found previously with the graphite felt electrode, and
the cell exhibited a resistance of 7@ at 130°C., The cell was galvan-
ostatically discharged and charged within the limits of 1.00 and 2.40 volts.
A typical charge/discharge curve is shown in Figure 15. The open circuit
potential of the cell, measured at the end of discharge was 1.23V. This
suggests that the discharge of NasSy to a composition below 52“2 was
achieved with the Teflon~bonded carbon electrode as opposed to a discharge
only to 52‘2 with graphite felt. In the latter case, the OCV of the cell
at the end of discharge, corresponding to the polysulfide composition of
82‘2, was 1.76V. The present cell cycled five times, and the average
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charge utilization in discharge was just below le™/S. Hewever, the lower

5 utilization might be due to the unoptimized current collector, especially
with respect to the solution to current collector volume ratio. Since we
know that the primary self-discharge reaction is the reaction of the amide
with elemental S, which would occur in significant amounts only when the
polysulfide composition is >4, it might be possible to achieve long cycle
life as well as good S utilization with an optimized cathode structure
consisting of a solution of NasS, in DMAC and a high porosity carbon such
as a Teflon-bonded carbon current collector. Note that the reversible
reaction

-2
4

involves l.5e~/S, and the loss of 0.3e~/S by restricting the charging
limit to 84—2 is minor, compared with the possible gain in cycle life.

2

S + 6e Z 48 (19)

The cycling behavior of a Na/S cell with a DEAC/Na2S_/Nal cathode
was also evaluated. A Teflon-bonded carbon electrode similar toc the one
discussed above was used. The cell initially contained 6 ml of a 2M S
solution as NagS; in DEAG/0.5M NaIl electrolyte. The OCV of the cell was
initially 1.84V, similar to that observed with a DMAC/Na2S, cathode. The
cell exhibited a resistance at 130°C of 152. The cell was cycled at the
various constant currents of 10, 20 and 30 mA, corresponding to current
densities of 1, 2 and 3 mA/cm2. Cycling limits of 1.0V and 2.7V were
used. The discharge/charge curves are shown in Figures 16, 17 and 18.
The cell exhibited good reversibility behavior, although the discharge
capacity did show a tendency to decrease with increasing cycle number,
especially after the 5th discharge. Much of this loss may be attributed
to the self-discharge reaction between DEAC and elemental S. In this cell,
we made no attempt to restrict the charging limit to an intermediate size
polysulfide chain such as 54“2, the highest charge composition with
minimal amounts of elemental sulfur in equilibrium.

e Summary and Discussion of Cell Cyecling Studies

The cell cycling studies indicate that DMAC and DEAC exhibit
analogous behavior with respect to their solvent properties for the
dissclved S cathode. The discharge capacities obtainable practically for
cathodes consisting of solutions of NapSp in these two solvents appear to
be strongly dependent on the porosity of the current collector; the more
porous the current collector, the greater the depth of discharge. This
results from the fact that with a highly porous current collector, it would
be possible to store larger amounts of the insoluble di- and monosodium
sulfides on the electrodes, as i1s done in the case of Li/SOClg cell (18).
There is a slow self-discharge reaction in these cathode systems. However,
it appears that this can be minimized greatly by restricting the charging
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limit of the battery to a medium size polysulfide such as 84'2. Comparison
with the high temperature battery (1) shows that for an equivalent energy
density of 60 Whr/lb, it is necessary to achieve a solubility (as NazS10)

of v1,.3M if the charged cathode is to be in solution and if a complete
reduction to $—2 is obtained. As we have seen, with a highly porous

cathode it might not be necessary to achieve this much solubility for

Snfz. The insoluble materials could be stored on the cathode current
collector itself. To date only lower-rate cycling has been achieved, mostly
due to ohmic drops in thick, non-state~of-the-art B-Aly03 tubes.

B. Sodium-Sulfur Cell with a 1,3 Cyclohexanediol (CHD)/Na3S, Cathode

Alcohols, in general, are unstable in the presence of NapSh at tem—
peratures >100°C. However, it was pointed out to us by Drs. W. L. Fielder
and J. Singer of NASA-Lewis that 1,3 eyclohexanediol (CHD), CgH1(002, was
an exception. Long~term stability tests, carried out as in the case of
the amide/NasS, solutions, indicated that CHD/Nas$S or CHD/NazSn, n = 4, 8,
were stable at 130°C at least for 21 days. The higher stability of this
diol may be associated with the "cyclohexane structure”. Two cells were
studied using this solvent. They were: (i) cell in which the initial
catholyte was CHD/Na25/0.5M NaBr, (ii) cell in which the initial catholyte
was CHD/Na2S4/0.5M NaBr.

1. Cell with CHD/NapS/0.5M NaBr Solution as the Initial Catholyte

The cell was assembled, as described earlier. Since Na28 is soluble
in CHD to the extent of about 1M, the cell was initially charged with 1l.lg
of Na28 and 7 ml of CHD/Q.5M NaBr electrolyte was then added to make the
solution the equivalent of 2M in Na,5. The Teflon-bonded carbon electrode
used in the cathode compartment was identical to the one described before.
The OCV of the cell initially was 1.38V. The cell exhibited a resistance
at 130°C of 23Q. The cell wgg cycled at 10 mA or about 1 mA/em?. The
charge/discharge curves are shown in Figure 19. The first charge curve 1C,
to 2.7 volt corresponds to 0,33 e~/S. Only about 17% of NajyS was utilized
in the charging process. It appears that NazS was poorly distributed on the
carbon electrode sco that most of it was not available for the cell process.
The first discharge, curve 1P, commenced at 1.6V, but in ~20 mAh the cell
polarized to V1.1V and further discharged proceeded at ~1,.1V, This dis-
charge voltage is considerably lower than for the Na/DMAC/NajS, cells. The
second charge corresponded to A0,8e~/S. Evidently more NasS was available
for the charging process. The second discharge, curve 2D, proceeded with
voltage fluctuations and the cell reached the 1V 1imit in about 4 hours or
40 mAh. The third charge, curve 3C, proceeded smoothly but at a considerably
higher voltage, and after 34 mAh of charge the cell open circuited to the
voltage of the current source. The experiment was terminated.
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2. Cell with CHD/NaS54/0.5M Nal Solution as the Initial Catholyte

The cell initially contained 9 ml of a 2ZM S solution as NayS; in CHD/
0.5M Nal electrolyte. All the other features of the cells were similar to
thogse in the cell with CHD/NasS as the initial catholyte. The OCV of the
cell at 130°C was 1.83V and the cell exhibited a resistance of 25Q. The
resistance was twice that found for cells with DMAC/Nap$, or DEAC/Nap$,
cathodes and having the same type of 3-A1203 tube. The higher resistance
was probably due to the higher viscosity of CHD. The galvanostatic discharge
and charge curves at 9 mA or 1 mA/cm? are shown in Figure 20, As observed
previously, the discharge begins at ~1.6V, but the cell polarizes imme-
diately to a plateau of 1.25V. This initial polarization to the 1.25V
plateau is more pronounced in the second discharge (2D). The first dis-
charge proceeded for 194 maAh (0.4e~/S), at which point a malfunction of the
cycler caused the cell to charge. The charge capacity to 2.7V was, however,
much less than the previous discharge; i.e., only 110 mAh (0.23e—/S). The
second discharge (2D) proceeded for 630 mAh. After accounting for the
charge utilization in the first cycle, a charge equivalent to 640 mAh would
be required to reduce the NajS;,, present at the beginning of 2D to Na2S. The
discharge capacity of 650 mAh thus corresponds to the reaction

-2
b

This agreement, as well as the fact that a le reduction of CHD would
require 1.7 Ah charge, indicate that the solvent is not reduced at
potentials above 1V. WNevertheless, the second charge (2C) proceeded for
only 124 Ah (0.25e~/S). The third discharge was less than the second
charge, and the subsequent charge and discharge also showed the decreasing
efficiency. The cell could not be operated after the fourth cycle.

S + 60" > 452 (20)

The following conclusions may be drawin about the behavior of the
CHD/NajS; cathode:

® Na-5 cells with CHD/Na2S, cathodes have relatively higher
registances, probably due to the higher viscosity of CHD.

¢ The operating voitage of the cell is low.

® NasSp can be reduced to NagS, but the cathode exhibits
poor reversibility.

42


http:CHD/Na2S4/0.5M

ew

POTENTIAL, VOLTS

3.0 -

4c G 1C 2C
2.5
2.0
1.5

1D

\ —2
1.0 -

up 2D

/S
) | | | I L | |
10 20 W W0 50 &0 70
MAH

Fig. 20: Galvanostatic discharge/charge curves for the cell liquid Na/B-A1203/CHD, 0.5M NaI, 2M S as NapSy (9 ml)

Teflon-bonded C at 130°C. Current = 9 mA; current density = 1 mA/em2. The cell was discharged
first.



ITTI. THE Na-TRANSITION METAL SULFIDE BATTERY

A preliminary evaluation of transition metal disulfides as possible
cathode materials for the Na battery was done using the disulfides, TiSo
and TaSp;. They were separately evaluated in a cell of the configuration,

Liquid Na/B—A1203/M52, DMAC, Nal

The DMAC/Nal solution served as the Nat-ion conducting electrolyte. The
experiments were conducted at 130°C.

A, Preparation and Characterization of the Disulfides

1, Titanium Disulfide, TiS2

Titanium disulfide, TiS2, was prepared by the direct reaction of
stoichiometric amounts of Ti metal and S wvapor at ~750°C. The reaction
was carried out in a sealed, evacuated (103 torr) quartz tube under a tem—
perature gradient achieved in a tube furnace.

In a preparation, 7g Ti metal powder (100 mesh) and 9.6g S (Ventrom,
crystals, 99.99%) were introduced into either end of a thick-walled quartz
tube of 25 mm OD and 57 cm long. The tube was evacuated (10-3 torr) and
sealed off. It was then introduced into a three-zoned furnace and heated
with the temperature profile shown in Table 7. After heating, the tube
was allowed to cool to room temperature and the TiS2? was collected. It
was a dark green solid with a distinct yellow metallic luster when spread
into the form of a thin film. The X-ray diffraction pattern for a sample
of TiSs prepared by the same procedure as is shown in Table 8. The experi-
mental values are in good agreement with those calculated for hexagonal TiSs.

The titanium content of the sulfide was analyzed as the oxide,
according to the reaction

[+]
Tis. + 30, 199°C_ 150, + 250

2 2 2 2 (21)

In this procedure, 0.5235g of TiSy, contained in a preweighed alumina
erucible, was ignited in air at 700°C until all the sulfide was converted
to the oxide. The oxide weighed 0.3785g which was equivalent to 43.4%Z Ti
in the disulfide sample. The formula of the disulfide was calculated to be

Ti) 525,-
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TABLE 7

TEMPERATURE PROFILE FOR THE PREPARATTON
OF TiSy FROM Ti and S

Temperature, °C

Zone A Zone C
Time (hr) (15 cm long) Zone B (15 c¢cm long)
at Fach Temp. (Titanium Metal) (30 cm long) (Sulfur)
i 500 500 400
2.5 550 550 400
19 600 600 400
29 650 650 400
20 700 700 400
27 750 750 600
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TABLE 8

X-RAY DIFFRACTION DATA CALCULATED FOR HEXAGONAL TiS2
AND OBSERVED LINES OF SAMPLES PREPARED BY
THE PRESENT PROCEDURE

Calculated Experimental

28< Intensity 26< Intensity
15.6 500 not done

34,2 1000 34,4 1000
- - 39.8 149
44.1 450 44 .4 505
- - 48,0 75
53.9 250 54.0 333
56.4 30 56.6 118
57.5 160 57.9 204
65.3 100 65.4 268
72.1 80 72.3 129
- - 75.0 53
89.5 80 89.8 225
89.7 100 - -
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2. Tantalum Disulfide, TaS,

The tantalum disulfide was purchased from Cerac Inc., Milwaukee,
Wisconsin (Catalog No. T~1018). 1Its X-ray diffraction data, according
to the manufacture, matched the pattern® for hexagonal TaS2. We analyzed
the Ta content of the disulfide as the oxide, Tay0s5, using the reaction

700°C

> Ta 0_ + 480 22)

1
2Tas, + 6402 295 5

2

In the analysis, 0.6051g TaSy gave 0.5482g Taj05, which corresponded to
74.2% Ta in the disulfide sample. The formula of the disulfide was cal-
culated to be Tal 0152.

B. Stability Characteristics of Metal Sulfide/Amide Mixtures

The long term stability characteristies of dimethylacetamide (DMAC),
diethylacetamide (DEAC) or their Nal solutions in the presence of TiS2 at
130°C were evaluated by the sealed tube technique. Titanium disulfide was
insoluble in these amides both at room temperature and at 130°C. The
tests were performed with mixtures of the amide or its Nal solution con-
taining an excess of undissolved TiSg9. The various test mixtures and the
results are shown in Table 9. HNo gases were produced from any of these
mixtures even after 43 days of heating at 130°C. After the heating, the
liquid was analyzed by UV-visible and infrared spectroscopy. The liquid
from each of the test mixtures exhibited a weak but broad absorption
beginning at 500 nm and tailing off into the UV. This absorption pattern
resembled that of the reaction products of § with the amides, described
earlier and it might be due to minor products resulting from the reaction
of unreacted S in the TiS)p with the amides.

The results seemed to indicate that the overall stability of the
amides in the presence of the disulfides was acceptable. However, it should
be noted that since the amides are basic solvents, their intercalation with
the metal chalcogenide is possible. This was not investigated.

C. Electrochemical Evaluation of Transition Metal Disulfides

i, Titanium Disulfide as the Cathode

® Preparation of Pressed Electrodes

A mixture of TiS) and Teflon powder (90:10 w/o) was intimately
mixed with a mortar and pestle for ~20 minutes. The cathode mix was bonded

*See Powder Diffraction File, No. 2-0137.
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TABLE 9

STABILITY TEST DATA FOR AMIDE/TiSp MIXTURES AT 130°C

Tube No. of mnoles
No. Reactants Days at 130°C of Gas
A 0.47g TiSg, 43 no gas
2 ml DMAC
B 0.49g TiS,, 43 no gas
0.31g NaI,
2 ml DMAC
C 0.49g Tisoy, 43 no gas
2 ml DEAC
D 0.46g TiSs, 43 no gas
0.31g Nai,

2 ml DEAC

Comments

light brown liquid over dark
grey powder

light green liquid over dark
grey powder
orange-red liquid over dark

grey powder

orange-red liquid over dark
grey powder



to an expanded nickel screen by pressing at 4800 psi for ~10 minutes at
a temperature of 250°C. The pressed electrode had an average thickness
of 0.56 mm. The electrode was weighed to determine the TiS7 content
before incorporating in the electrochemical cell.

® Cell Studies

The cell setup was done as described previously for the soluble
5 cathode with a liquid Na/f-Al903 counter electrode. The TiSy cathode
measured 6.5 cm x 2.5 cm and contained 1.42g TiS2. A solution of 1M Nal
in DMAGC formed the catholyte. The cell, at 130°C, exhibited an unusually
high impedance of ~60Q. The discharge was performed at 4 mA (0.2 mA/cm?),
The discharge and charge are shown in Figure 21. The initial OCV was 2.19V.
Three plateaus are evident in the discharge curve for the sodium contents,
x, of 0.41<x, 0.41<x<0.66 and 0.68<x<0.95. These values are based on the
weighed amount of TiS9 originally present in the cell; 1.42g or 340 mAh.

A previous electrochemical cell study (19) also showed three plateaus
for the discharge, but at slightly different ranges of the Na content, i.e.,
0.45<x, 0.45<x%<0.80 and 0.80<x<l. However, these were found to be dependent
on the composition of the sulfide, i.e., on x in Tij4xS2. Also, these values
were obtained at room temperature and the electrolyte was propylene carbomnate/
Nal.

Our data show that the three phases are formed at the higher tempera-
ture also. The different ranges of x values for the three phases in the
present study may have resulted from the higher temperature condition or
from the different solvent employed here.

The charge curve alsc showed three regions at essentially the same
ranges of Na contents. The rechargeability of the cathode was sluggish at
higher rates. In one experiment, it was possible to cycle the cathode
several times, Figure 22, at reasonably high discharge rates, but keeping
charges at low current demsities. It can be seen that the efficiency after
the first cycle remained essentially comstant. In general it was found
difficult to charge compositions of Na,TiSo with x £ 0.4. The exact reasons
for this were not investigated. TFactors such as co-intercalation of the
solvent and phase transitions in the ternary system, NayxTiS?, are possible
reasons.

2. Tantalum Disulfide as a Cathode

® Preparation of Pressed Electrodes

An electrode was prepared by a slightly modified procedure used
for the TiSs electrodes. An intimate mixture of the disulfide and Teflon
powder (92:8 w/o) was cold-pressed onto an expanded nickel screen (Exmet
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Current = 4 mA, current density = 0.2 mA/cm2.
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Corp. 5 Ni 5 - 5/0) at 5600 psi for ~6 minutes. The pressed electrode was
then sintered in an argon atmosphere at 300°C for half an hour. We alsc
prepared electrodes with NaTaSg9. In this case, the cathode was cold-
pressed but no sintering was done afterwards,

¢ Cell Studies

Two kinds of experiments were carried out: (i) initial discharge
and subsequent cycling of the fully charged cathode, TaSg; (ii) initial
charge and subsequent cycling of the fully discharged cathode, NaTaSy. The
NaTaS9? was prepared chemically from Na naphthalide and TaSy in tetrahydro-
furan as described later.

Tests with the TaSy Cathode. The cell utilized 1M Nal/
DMAC electrolyte. A plot of the discharge potential (volts) wvs. the
degree of Na intercalation (mole Na/mole TaS2) is shown in Figure 23
(curve A)Y. The cell EMFs corresponding to the various degrees of Na inter-
calation are shown in curve B, Figure 23. Both of these curves show fairly
linear transitions to lower potentials as the amount of intercalated Na is
increased from zero to one. At a discharge cutoff voltage of 1.00V, only
0.8 mole of Na per mole of TaS9 was intercalated. The EMF corresponding to
this composition was 1.20V., The EMF value corresponding to the fully inter-
calated compound, NaTaSs; was obtained from a cell incorporated with this
material initially as the cathode. The EMF was 0.97V at 130°C. It thus
appears that in order to achieve full intercalation of the TaS; lattice,
the lower limit of the operating cell voltage has to be below 1.00V when
the electrolyte is DMAG/NaIl. The EMF-composition curve for the NayTaS2
ternary system for values of x from zerd to onme in DMAC/Naf at 130°C,
constructed from the two sets of data, is shown in Figure 23 (curve B).

The EMF-composition curve for the Nay,TaS) system is different from
that observed with the NayTiSy ternary. The present data for NayxTaSp are
in agreement with a previous study (20) on TaS2 at room temperature using
PC/Nal electrolyte (see also inset in Figure 23). In that study, the
EMF-composition data along with the X-ray results indicated a single
phase ternary system for Na TaSy; for all values of x, O<z<l. The present
data suggest the formation of a single phase ternary system also in the
DMAC/Nal electrolyte at 130°C. The EMF-composition curve does show some
deviations from linearity at low and high x values. This, in the absence
of X-ray data, may be attributed to the different solvent employed here.
The experimental data in the previous study also showed this behavior at
low x values, but X-ray revealed only one phase.

Tests with NaTaSs Cathode. The fully Na intercalated disulfide,
was prepared according to the reactions,
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THF + =
Na +-ClOH8 e N ClOHS

=+ i3
TaS2 + Na ClOHS - NaTa82 + ClOHS

In a preparation, 2.61g (20.4 mmoles)} of naphthalene and 0.47g
(20.4 mmoles) of Na were mixed in ~50 ml THF and stirred overnight at
room temperature to obtain a dark green solution of the naphthalide anion
radical. The exact Na concentration of the solution was analyzed by
treating an aliquot of the solution (2 ml) with an excess of standard
HCL and then back~titrating the unreacted HCI with a standard solution of
NaQH using phenolphthalein as the indicator. To 48 ml of the naphthailide
solution, 4g (16.3 mmolés) of TaS, were added, and the mixture was stirred
for 2 days. The NayTaS, product was filtered, washed with THF and finally
dried in vacuum. The NaxTaS2 product was collected as a very shiny dark
grey material. The filtrate was analyzed for its Na content. The compo=~
sition of the intercalated material was calculated to be Nai_05TaSz. The
EMF value of 0.97V vs Nat/Na for this material also suggests a composition
with x very close to,one. This material was used for testing the recharge-

ability of the TaSs éathode.

Rechargeability of TaS2 Cathode. The rechargeability of the

cathode in DMAC/Nal electrolyte appeared to be kinetically limited as evi-
denced by data from cells in which the cathode initially was either TaS?

or NayTaSs. In general, the efficiency of rechargeability increased with
decreasing current density. Tt was also found that the EMF-composition

curve during charge showed considerable deviation from that during discharge
for the same degree of Na intercalation, Figure 24. The galvanostatic charge
curves, obtained from the two different initial cathode compositions, however,
showed analogous voltage-composition behavior.

The work carried out herein suggests that transition metal disulfides
present good possibilities as cathode materials in moderate temperature Na
batteries. Further work should concentrate on a-search for suitable elec-
trolytes that can accommodate high rate battery operation and on selection
of cathode materials with minimum phase transition. A most important issue
is the inter-relationship between phase changes during Na intercalation and
the rechargeability of the cathode. This needs to be systematically explored.
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Iv. SUMMARY AND CONCLUSIONS

The feasibility of a moderate temperature Na battery having the
configuration

Liquid ¥a B—A1203 Dissolved Na,S,
or
transition metal disulfide

has been investigated. The operating temperature of the battery is 130°C.
Two kinds of cathode were investigated (1) a soluble S cathode consisting

of a solution of Na2S, in an organic solvent and (ii} an insoluble § cathode
consisting of a transition metal dichalcogenide in contact with a Nat-ion—
conducting electrolyte.

A series of aliphatic amides was investigated in an attempt to find
a suitable solvent for the soluble S cathode with special emphasis on long
term stabilities in the presence of NasSp. The dialkyl substituted amides
were found to be the most stable. They did show some reactivity during
long term heating with NajS,,n > 4. However, isolation studies indicated
that the reactive species in these solutions was the elemental sulfur
present in equilibrium. The stability studies also indicated that relatively
longer cycle life could be obtained for the CH3CONR2/NasS, cathode if the
cell operation is limited to the cycling regime,

4'2 + 6e  Z 45’2; 1.5¢ /8

Cell eycling studies using the solutions CH3CON(CH3)9/Na2Sn or
CH3CON(C2Hs)o/Na2Sy indicated that these cathodes were reversible and that
the reduction of S;=2 to $2 could be achieved with a highly porous cathode
current collector structure,

3

The suitability of 1,3~cyclohexanediol as a solvent for the soluble
S cathode was also investigated. It was found that this sclvent is stable
with respect to Na,5, for long periods of time and that it\dissolves
moderate amounts of NasS. However, the electrochemical reversibility of
1,3-cyclohexanediol/NasSy solutions was poor.

A limited amount of study was carried out to determine the suitability
of transition metal dichalcogenides as possible cathodes for the Na battery.
Our results of studies with TaS2 or TiSg indicated that the phase transitions
during intercalation of Na into the transition metal dichalcogenides are
strongly dependent on the structure of the dichalcogenide themselves. In general,
transition metal disulfides present good possibilities as cathode materials for
the moderate temperature Na battery.
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