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1. INTRODUCTION

This report is the third Semi-Annual Status Report on the
research project '"Models and Techniques for Evaluating the
Effectiveness of Aircraft Computing Systems' being conducted
for the NASA Langley Research Center under NASA Grant 1306,

The subject grant was initiated 1 May 1976 for a one year per-
iod and extended 1 May 1977 for a second one year period. This
report concerns work accomplished during the first half of the
second year, that is, the period from 1 May 1977 to 31 October
1977, hereafter referred to as the reporting period.

The purpose of this research project is to develop models,
measures and techniques for evaluating the effectiveness of
aircraft computing systems. By '"effectiveness" in this context
we mean the extent to which the user, i.e., a commercial air
carrier, may expect to benefit from the computational tasks
accomplished by a computing system in the environment of an
advanced commercial aircraft. Thus the concept of effectiveness
involves aspects of system performance, reliability and worth
(value, benefit) which must be appropriately integrated in the
process of evaluating system effectiveness, More specifically,
the primary objectives of this project are:

,1)'The development of system modelsuthat can provide

‘a basis for the formulation and evaluation of .
aircraft computer system effectiveness,

2) The formulation of quantitative measures of system
effectiveness, and

3) The development of analytic and simulation tech-
niques for evaluating the effectiveness of a
~ proposed or existing aircraft computer.



Work accomplished during the first year [1], [2] was con-
cerned-primérily with objectives 1) and 2). Midway through the
first year, a decision was made to decouple the performance and
reliability aspects of effectiveness from the worth aspect, and
to focus the effort on performance and reliability issues,
As:argued when this research was originally proposed, and as
further substantiated by work accomplished to date, the issues
of performance and reliability must be dealt with simultaneously
in the process of evaluating system effectiveness. The term
"performability" was introduced to refer to thisunification of
performance and reliability, and performability was identified
with effectiveness in the above stated objectives.

During the éurrent reporting period, work has been per-
formed in connection with objective 3) as well as objectives
1) and 2). More specifically, this work has concerned:

1) Further formal development of the general modeling
framework that serves as the basis for performa-
bility evaluation, including more precise defini-
tions of "base model'" and '"system performance"
which permit a general definition of "performa-
bility" relative to any discrete-valued performance
variable, B

2)‘Forma1 justification of the performability cencept
and identification of conditions under Wthh
performance and rellablllty can be treated-
independently, :

3) Further development of the general concept of
"capability" and verification of the fact that
capability functions, in their ability to relate
state behavior to system performance, are indeed
more general than "structure functions'" or equiv-

alently, the representation of structure functions
by "fault-trees",



4) Formulation of the capability function in terms
of a model hierarchy and its associated "inter-
level translations',

5) Further investigation of the "functional dependence"
inherent in a capability function, including proofs
of fundamental properties,

6) The use of time "phasing" and state "lumping"
to simplify the evaluation of performability,
in particular, the establishment of con:ditions
under which different phases '‘can employ different
lumpings (refered to informally as "Michigan
lumping"),

7) More detailed development of analytigil methods
for determining the trajectory set y. (a) of an
accomplishment level a, including methods of
representing trajectory sets at various levels
of the model hierarchy and methods of computing
the trajectory set yj,j(a) at level i+l, given
the trajectory set Yi(a) at level i, and

8) Application’of the above theory and methodology
to specific examples, including a comprehensive
example illustrating the modeling and subsequent
performability evaluation of a computer in the
environment of a portal-to-portal air transport
mission.

We believeithat:the following report attests to a substan-
tial amount of progress in each of the above areas. Mdreover,
~we feel that the progress to date represents the greater part
of the total effort proposed for the second year of the project
(33, |

Section 2 of the report describes the manpower effort pro-
‘ﬁosed for tﬁé'current yeaf; ﬁhe personnel involved in conducting
the investigatiqn, and their levels of effort during the repor%-
‘ingwpéfiod. Scction 3, the body of the report, describes the
technical status of the research pcrformed during the reporting

ﬁeriod;
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3. TECHNICAL STATUS

The following is a comprehensive description of the research
performed during the reporting period. The report is divided

into five subsections under the headings:

5.1 System Models,

3.2 Performability Evaluation,

3.3 Capability and Functional Dependence,

3.4 Computation of Trajectory Set Probabilities, and
3.5 Hierarchical Modeling of an Air Transport Mission,

Relative to the eight topics listed in the introduction,
Subsection 3.1 reports on further work concerning the formaliza-
tion of our general modeling framework (topic 1). Subsection 3.2
gives precise definitions of "performability'" and '"capability"
and, in terms of these definitions, describes results which
formally justify a unified performance-reliability approach to
system evaluatiog (topics 2 and 3). Suﬁséction 3.3 reports on
our work concerning hierarchical formulation of the capability
function (topic 4) and on the general concept of fuhctionél de-
pendence (topic 5). Subsection 3.4 reports on research concerning
model simplification for the purpose of computing trajectory set

probabilities, in particular, the use of time '"phasing" and state

“lumping" (topic 6). Finally, Section 3.5 discusses the problem

~of trajectory set determination and develops a detailed example

of the modeling and evaluation of an air transport mission (topics

7 and 8). . o -

The numbering of definitions, theorems, and supporting results

“begins anew in each of these major subsections. Reference numbers

in the margin carry the prefix of the major subsection, é{g., the

first item referenced in subsection 3.1 is numbered 3.1.1.

.



3.1, System Models

During the reporting period, we have developed a prob-
ability-theoretic basis for the modeling framework discussed
in the previous Semi-Annual Status Reports [1,2]. This formal
representation permits us to figorously restate various
intuitive concepts and assumptions associated with models of
the total system. It also provides us with a more precise
foundation for the investigation of model simplification

techniques such as time 'phasing" and state "lumping."

3.1.1. The Model Hierarchy

As noted in the previous reports (see [2], Section 3.1.1,
pp. 7-8), the total system may be viewed at several levels.,
At a lower level, there is a detailed view df how various com-
ponents of the computer's hardware and sof£ware structure
behave throughout the utilization period., At this level there
is also detailed view of the behavior of the computer's
"environment," where by this term we mean both man-made compon-
ents (user input, perin::ral subsystems, etc.) and natural
components (radiation, weather, etc.) which can influenge the
computer's effectiveness. A second view of the total system
ié the user's view of how the system behaves during utilization,
that is, what the system accomplishes for the user during the
'utilization period. A third, even higher level view, is the
computing sYstémvs "worth" (as.meésured;ﬁéay, in aollérs)’when
operated in its use environment.. |

To_formalize these views, we postulate the existence of

a probability space (@, E,P) that underlies the total system,
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where Q@ is the (sample) description space, E is a set of

(measurable) events and P: E -+ [0,1] is the probability measure

(see [4], for example). This probability space represents all
that needs to be known about the total system in. order to
describe the probabilistic nature of its behavior at the
various levels described above. It thus provides a hypo-
thetical basis for defining higher level models. In general,
however, it will neither be possible nor desirable to completely
specify @, E and P.

In the discussion that follows, let S denote the total
system, where S is comprised of a computing system C and its
environment E. At the most detailed levei, the behavior of S

is formally viewed as a stochastic process

Xg = {tht e T}

where

T = a set of real numbers (observation times) called
the utilization period

and, for all t e T, Xt is a random variable

kt: g+ Q

defined on the underlying description space and takihg values

in the state space Q'of'the total system. Dependihg on the

application, the utilization period T may be discrete
(countable) or continuous and, in caSes where one is interested
in long-run behavior,'it'may be unbounded (e.g., T =R, = [0,=)).
The state Sﬁécé Q embodies the state seté of both the computer :
’.ahd'itslenvironment, i.e.,:

Q=Q x
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where QC and QE can, in turn, be decomposed to represent the
local state sets of computer and environmental subsystems. For
our purposes, it suffices to assume that Q is countable (finite
or countably infinite) and, hence, for all t € T and q ¢ Q,

"X, = q" has a probability (i.e., {wlxt(m) = q} ¢ E). The
random process Xg is referred to as the base model of S. An

instance of the base model's behavior is a state trajectory

u T »~ Q (w e Q) (3.1.1)
where

um(t) = Xt(m). (t € T)

Thus, corresponding to an underlying outcome we(, u, describes
how the state of the total system changes as a function of
time throughout the utilization period T. Accordingly, the
"description space" for the base model is tﬁe‘set

U = {umlw e Q}

which is referred to as the (state) trajectory space of S.

It is wbrth noting at this point that, for even moderately
complex systems, the base model may be so large that practical
methods of formulation or even simulation are precluded. 1In
such cases, one must seek simplifications of the base model
which nevertheless remain detailed enough to support the usef’s
view of total system behavior. Accordingly, the questibn of
base model simplification will be considered after the complete
vmodellng framework has been described.

In terms of the underlylng probability space (Q E,P) the
‘user's view of the system is formalized as follows. We assume

that the user is interested in distinguishing‘a number of

-

Ny
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different levels of accomplishment when judging how well the
system has performed throughout the utilization period. (One
such level may be total system failure.,) The user's "description

space' is thus identified with an accomplishment set A whose

elements are referred to alternatively as accomplishment levels

or (user-visible) performance levels. A may be finite,

countably infinité, or uncountable (in the last case, A is
assumed to be a subset of real numbers). Thus, for example,

the accomplishment set associated with a nondegradable system

is
A= {ao,al}
where
; ag = ""system success""
a, = "system failure."

In their modeling of the PRIME system, Borgerson and Freitas

viewed the accomplishment set as the set

A = {ao,al,az,...}
where a = "k crashes during the utilization period T." If
the user is primarily concerned with system '"throughput'" a
~continuous accomplishment set mightvbe appropriate, i.e.,
A=R, where an element a € A is the '"average throughput over

the utilization period T."

In terms of the accomplishment set, system performance is
formally viewed as a random variable
YS:Q'+ A

where Yg(w) is the accomplishment level corresponding to
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outcome w in the underlying description space. Similarly,
assuming that the economic gain (or loss) derived from using
the system is represented by a real number r (interpreted, say,

as r dollafs), system worth is a random variable defined as

WS:Q + R (the set of all
real numbers)

where Ws(w) is the worth associated with outcome w. The

terminology and notation defined above is summarized below.

Model Description Space
Base model XS Trajectory space U
System performance Yg Accomplishment set A
System worth Wg The real numbers R
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3.2 Performability Evaluation

As discussed in the first Semi-Annual Status Report ([1];
Section 3.3.4.2) and, sﬁbsequently, in the proposal for the
second year ([3]; p. 14), our research effort has focused on
the problem of formulating and evaluating the probabilities of
accomplishing Various types and qualities of missions. This
probléﬁrwas referred to informally as "performability evaluation"
to distinguish it from the more general problem of "effectiveness
evaluation." During the reporting period, we have established
a more precise meaning for the concept of performability so as
to further justify our claims that i) performability is a com-
ponent of effectiveness, and ii) performability evaluation cannot
in general be accomplished via independent evaluations of per-

formance and reliébility.

3.2.1, Performability

In terms of the general modeling framework discussed in
Section 3.1, a natural méasure that quantifies both system per-
formance and reliability (ability to perform) is the probability
function of the performance variable YS.v Accordingly, we have
identified the cdncept of perfbrmabiiity ﬁith this measuré, that is:

Definition 1: If S is a total system and A is the accomplish-

ment set associated with system performance YS’ then the

performability of S is the probability function pg:A » [0,1]

where pg(a) = the probability that S performs at level a, that

is, pg(a) = P({w|Yg(w)=al).
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The above definition presumes that the performance variable
YS is discrete (i.e., there are countablyiﬁahy accomplishment
levels) although a similar approach, using probability density
functions, can be applied to continuous performance variables.
We will assume that Y¢ is discrete throughout the following dis-
cussion.

Given the performability of S and assuming the existence
of a worth measure (see [1], pp. 36-37), system effectiveness
cén be expressed as the suh

Eff(S) = L w(a)ps(a) (3.2.1)
achA
where w is a worth measure
wiA + R
such that, for ali w e N, .
Ws(m) = w(YS(m)).

(If a € A, w(a) is interpreted as the "worth of performance
level a.") Equation 3.2.1 generalizes a relationship noted in
oﬁr original proposal and shows that performability is an impor-
tant component of effectiveness.’

To further justify this concept, we note that traditional
evaluations of computer performancekand,computer;reliability
are concerned with special types of performability; Performance.
,eValuafion'is COncérned with evaluating Pg under the assumption;
“that the computer partvof’S is fixed (i.e., its Structurg‘doés,
nbt change as the consequeﬁce of internal faults), Reliability

evaluation is concerned with evaluating pS(B) = :E:pS(a) where
' ‘ ‘ L : aeB *

B is a designated subset of accomplishment levels associated
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with system "success.'" In these terms, aperformability
evaluation can alternatively be regarded as | A| reliability
evaluations, one for each singleton success set B = {a} and,

if A is finite, the evaluation may actually be carried out in
this manner. As this process is generally more complex than a
typical reliability evaluation procedure (in particular, it
involves distinguishing all the performance levels as well as
determining their probabilities), we reserve the term |
"reliability evaluation" to mean the evaluation of "probability
of success" for éome specified success criterion B. Thus
performability reduces to reliability only when S is nondegradable,
i.e., |A]| = 2. Due to the special nature of both performance
and reliability evaluations, we find that a. direct combination
of the two is generally unable to support an evaluation of
system effectiveness. A case where independent evaluations

do suffice (and hence the more general concept of performability
is not really needed) is the following.

Let S be a system with accomplishment set A and suppose
that successful performance of S can be associated with the
performability of some fault-free reference system S (i.e.,
the computer part of S is fau1t~free), More precisely,

this says that for some designated subset B of the accomplish-

-

ment set A the‘conditional performability of S given B, i.e.,
the function pS,B:A - [0,1] where
‘ P(Y5=a andeSEB) *
Ps,3(2) = —p(veeny

(3.2.2)

* As is standard practice, our notation here omits explicit
reference to the underlying space, e.g., ”YS.= a and YSeB"

means the set {w]YS(w)=a and Ys(w)eB}.
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is equal to the performability of S, i.e.,

pg(a) = Pg B(a), for all acA. (3.2.3)
2

(Note that Dbg B(a) = 0 if ag¢B and thus the accomplishment
?
set of § need only include B.) Assuming further that accom-

plishment levels outside of B are of no worth to the user,

i.e.,
w(a) = 0 if a¢B

then, by equation 3.2.1 ,

Eff(8) = Z w(a)pg(a) = ZB w(a)pg(a).

acA ae
But aeB implies ps(a) = P(YS = a and YS e B). Hence, by the
definition of conditional performability (equation 3.2.2),

Eff(S) = Z w(a)pg pla)pg(B)

aeB
where pS(B) = P(YSEB). By assumption 3.2.3we conclude that

aeB aeB

E££(S) = 2>_ w(a)pg(a)pg (B) =(§Z: WIa)pgca))ps(B)

or equivalently,

BEE(S) = BE£(S)pg(B). (3.2.4)

Accordingly, a performance¥wofth‘(effectiveness) evaluation

of the fault-free reference system S, along with a reliability
evaluation of S, sufficerto determine the effeqtiveness of S.
Alternatively, equation 3.2,4 can be regarded as expressing

the effectiveness of S relative to two levels of‘accomplishment:
B (success) and A-B (failure), and a worth function w where

w (B) =’Eff(§) endk w(A-B) = 0. Then, by equation 3.2.1,

| ” w(B)pg(B) + W(A-B)pg(A-B)

wBpg (B

E££(S)ps (B).

i

» Ef£(S)
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The secret here, of course, is to find a system S that

satisfies assumption 3.2.3 .S is easily identified only

when 8 = (C,E)* is such that faults of C which are tolerated (i.e.,

YSEB) cause no change 1in the performance of S. In this case, |

S = (C,E) can serve as the reference system where C is the
fault-free version of C. In particular, this is the case for
fault-tolerant computer architectures which employ standby

sparing [5], N modular redundancy, or combinations thereof.

On the other hand, if tolerated faults can alter the performance

of S, the discovery of S requires an evaluation of conditional
performability (see 3.2.3) which is tantamount to evaluating

the performability of S.

3.2.2 Capabilitf Functions

A critical first step in the evaluation of performability

is to establish a relationship between the base model XS

and the user-oriented performance model YS (see Section 3.1.1). To

accomplish this, we assume that the base model is refined

enough to distinguish the levels of accomplishment perceived

by the user, that is, for all.w,w' e Q,

Ys(m) # Ys(mf) implies u, # u, ‘(3,2,5)

wherevué and u,r are the state trajectories associated with:

outcomes w and ' (see equation 3.1.1). This implies'that each

trajectory u € U is related to a unique accomplishment level -

aeA. ,Aécordingly, the concept of capability (introduced during

the previous reporting peribd; see [2], [3]) can be more pre-

,ciéely defined as foilows: B

* C is the computer part of S; E is the environment.
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Definition 2: If S is a system with trajectory space U and

accomplishment set A then the capability function of S is
the function YS:U -+ A where YS(U) is the level of accomplishment

resulting from state trajectory u, that is,

Ys(u) = a if, for some w € 2, u = u and Yg(w) = a.
By condition 3.2.5 it follows that yg is well-defined and,
when there is no chance for ambiguity, Yg will be written simply
as vy.

Given the capability function of S, the performability
pg can be expressed in terms of the base model Xg. Let V denote
the collection of measurable trajectory sets, i.e., Vel if
and only if there is an event EeE such that V = {uw]maE}.
Let Pr:V -+ [O,l];denote the probability measure of the base
model where Pr(V) = P(E) if V corresponds to the underlying
event - E. In practiée, of course, the measure Pr is derived
ffom known properties of the base model (e.g.;XS is Markovian)
rather than from the underlying probabilitykspace. If a is an
accomplishment level then, by the definition of performability

(Def. 1),
pgla) = P({wlYS(m)=a})

Pr({uwlYS(m)=a})

‘and hence, by the definition of capability (Def. 2)

pg(a) = Pr({ulyg(w=al) - -
Pr(ygl(a)). - (3'2f6)

The preimage Ygl(a)‘is referred to as the trajectory set of_é.

and its determination requires an analysis of how an accomplish-

ment level aéA relates back down via Yél to trajectories of the
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base model. pS(a) is then determined by a probability
analysis of Yél(a). Methods of implementing this process
are discussed in Section 4,

The role of a capability function in performability
evaluation is similar to that of a "structure function"
in reliability evaluation. However, even when performability
is restricted to reliability, the concept of a capability
function is more general, The special class which corresponds
to structure functions may be characterized as follows. Let
S be a system where Q is the state space of the base model
and A = {0,1} is the accomplishment set (where 1 denotes
"success" and 0 denotes 'failure"). Then the capability

function y is structure-based if there exists a structure

function*wzQ -> {O,l}‘such that, for all ueU,
y(u)‘= 1 iff p(u(t))=1, for all teT.
Thus, when capability is structure-based, a local (in time)
success criterion can be applied to ”snapshots"‘of u throughout
T td determine whether u results in system success. Alternatively,
this criterion can be specified as membership in a prescribed
set of '"success states'" R where | '
L) = {ale(@) = 1},

When system success is viewed in structural terms, as
in the caée in most feliability studies, a strutture-based. 7 -
capablllty function w111 often sufflce. - On the other hand,

- when success relates to system behavior (e. g., when re11ab111ty

* The usual definition (see [6], for example) requlres that

Q = {0, 1}™ where the 1th coordinate of qeQ is interpreted
as the operational state ofthe ith component of the system,
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is "computation-based" [ 7]), we find that success is generally
not definable in terms of a local success criterion such

as ¢ or R. The following example serves to demonstrate this
fact,

Example 1

Let S = (C,E) where C represents a distributed computer

comprised of n subsystems, and E represents the computer's

workload. Suppose further that system "throughput" (i.e., the

user-visible work rate of C given E) varies as a function
of the number of fault-free subsystems. Assuming a constant
workload E, the operational states of S can be represented by
the state space

Q = {0,1,...,n}
where state i cofresponds to "i faultéfree‘gubsystems." The
variation in throughput is described by a function

7:Q - R,
where 1 (i) = throughput of S in state i.
Assuming S is used continuously throughout a utilizatioh

period T = [0,T], the base model of S is a stochastic process

<

g = (X |tel0,T])

t;is a random variable taking values in Q. (The

probabilisti;"nature of Xg is not an issue here.) As for

performance, §uppose that the user is interested in the

average throughput of the sYstem, where the averagé is taken

“over the utlization period T. Then, depending on the nature

~of the accomplishment set; the performability of S can be

expressed in several different ways. For a continuum of
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accomplishment levels, A can be identified with R, = [0,«) and the
capability of S is the function YU > R, where

T

Yl(u) = f t(u(t))dt/T.
0

From a more practical point of view, the user may be interested
in only a finite number of accomplishment levels

A = {o,rl,rz,...,rg}‘c IR+

where 0 < Ty < .ee<X Ty and r; represents a range of average
throughputs between r, and Ti,1- More precisely, the capability

function in this case is the function YZ:U-+A where

0 1if Yl(u) € [O,rll
yz(u) = r; if 0 <i <2 and Yi(u) € [ri,ri+1)
T, if Yl(u) e [r, ,»).
Finally, the user may be interested only in success or
failure where success is identified with a minimum average

throﬁghput T. In this case Yg is the function YS:U + {0,1}

where

|

| T
Y3(u) - 1 if‘ jg T(u(t))dt/T >

0 otherwise.

For each of the capability functions Yg = yi~df the
aboVe example, it is obvious that the value ys(u) depends on
a complete knowledge of‘thé st&tertrajectory u, due to the
inherent membrykof the integration operation. In particular,
when throughput is degradable fi.e., the interesting case

where different states can exhibit different positive

throughputs), it follows that yg = vy, will generally not
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admit to a structure-based formulation. (A simple, two-state
example will verify this.) This remains true when the

concept of structure-based capability is extended to permit
different structure functions to be associated with different
"phases'" of the utilization period (see [ 8], for example),
i.e., there exists a decomposition of T into k disjoint

time periods (phases) Tl’ T2’ ""Tk and there exist structure

functions P1s @ps eees P such that

v (u) 1 iff ¢ (u(t)) =1, for all i e {1,2,...,k} and

for all t ¢ Ti'

In general, we have found that a capability function cannot be
structure-based wherever there exists an intermediate time
period T' and a "success trajectory" v (i.e.) Yy(v) = 1)

suﬁh that the knowledge that a trajectory ﬁ agrees with v
during T' alters the success criterion for u during T - T'.

Thus, even in the case of two accomplishment levels, the cencept

‘of a capability function (Definitipn 2) represents a proper

extension of reilations between state behavior and system
performance that are typically assumed in the theory of

reliability.
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3.3. Capability and Functional Dependence

3.3.1. Capability and The Model Hierarchy
As discussed in:Section 3.2,, the performability of the
total system S with accomplishment set A may be expressed as

the function pS:A + [0,1] where
pg(a) = Priyg' (a))

and YS is the capability function. From this formulatidn\it
may be seen that one method of evaluating a particular ps(a) is
to i) determine a characterization of the set V = Y-l(a) which
suffices to ii) calculate the probability Pr(V).' In this
section we consider the problem of expressing yfl for the purpose
of characterizing the sets V = y"l(a). Section 3.3.2 presents
one tool, functional dependence, for use-inh calculating Pr (V).

Recall that for a system S with trajectory space U and
accomplishment set A the capability function is the function
yg:U + A where ys(u) is the level of accomplishment reSulfing‘
from state trajectory u.  Thus, Yg exprésses the relationship
between the base model XS and the performance model YS. A
major problem in expressing this relationship for a given XS
and YS is due to the potential diSsimilarities between the two
models. To ease the problems of transition, a model hier-~
archy is introduced. The hierarchy provides for a step-by-ste?,i
’top-down elaborationkof each accomplishment level a, terminatin;
in the desired base model deScfiption Y_l(a). The performance
model Yq itself sits abéve the level-0 (top) mddelrof the

hierarchy. Each intermediate model of the hierarchy is defined
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?in a manner similar to that of the base model. More precisely,
zif there are m+l levels in the hierarchy, the level-i model
(i=0,1,...,m) is a stochastic process Xi defined in terms of
two independent processes Xi and X% referred to as the
%comEosite and basic parts of the level-i model. The composite
ipart inherits its behavior from the next lower (level-(i+l))
%model; the basic part represents new information, external to
%the level-(i+1) model, that is introduced at level-i.
For instance, at a certain level in modeling the actual
jhardware of a system, the effects of weather may be of no
%consideration in developing an accurate model. Higher up in
jthe hierarchy, however, the effects of weather on the system
émay have to be considered to adequately reflect the user's
gneeds. Thus, weather would be regarded as a part of the total
%system whose effects may be introduced as a basic part at a
;higher level., After introduction,’as a basic part, it supports
%the higher (lower numbered) level compoSite parts.
' We express this more precisely by

xt = x} L leet))

Z where X; i Qé is a random variable taking values in the
: ’ ;

. composite state space Qé (at level-i). Qé may be further

 coordinatized. The projection of X2 ¢
: H

on a particular

coordinate iS‘called’a‘composite variable (at level-i). A

. . e . Ll i
composite trajectory-is a function u, w:rc + QC where
) . 4

5 u. (t) = x! (w); the composite trajectory space is the set
W c,t> : o
Uz = {u, wlwsﬂ}. Similar definitions, terminology and

2 notation apply to the basic processyxg. To permit'extension
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of either Xé or X; to larger time-bases, a fictitious state
¢ is adjoined to each of Q; and Qé. Then, relative to a
time-base T0 > T;, Xé (similar remarks apply to X%) is taken
to be the process

i i

O-Té, xt is defined to be the constant-valued

where, if t ¢ T .t

random variable
i
Xc,t(w) = ¢, for all w e @ .
i

Extending both Xé and X; to T™ = TC U T;, the level-i model

is the stochastic process

X' o= xglt e T

where X% = (XX ,,X+ .). The state space of the level-i model
c,t>"b,t
is
Q= Qg x Q

and its trajectory space Ut is represented by the set

i _ '
U ® U = {(Uc’w,

ub’w)lw e Q}
(With a slight abuse of terminology and notation, Ué ® Ut will
be denoted as U' and referred to as the trajectory space of

Xl.) In case there are no composite (basic) variables at -

level-i, Q. (Qp) is simply deleted, that is Q' = Qg (Q* = QJ).
In these cases the corresponding trajectory space is ut = Ué R

(U1 = Ué). Combiniﬁgbsuch models, we have:

Definition 3: If S is a total system with base model Xg and
Lo XM of

1

capability function’ys, the collection {XO,X

level-0 to level-m models is a model hierarchy for S if the
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following conditions are satisfied:

m m

i) X' = Xb, that is, all variables of the "bottom model

are basic.
ii) If each model X' is extended to the utilization
interval T, the base model XS is the stochastic process
Xg = X[t e T}

m-1

m 0
b’t’.oa’)hb,t)o

where Xt = (Xb,t’

X

(Accordingly, the state space of XS is

Q = QEXQE e, XQg and the trajectory space U is

represented by the set UbwUE 1®...®Ug.)

iii) For each level i, there exists an interlevel translation

K4 where
KOZU

o o

®U > A

1-1

TR OO

:U ®U - U (1 <1<m

o's O ke

m-1
Uc

Km:U

>

such that the capability function Yg can bekdecomposed
as follows. If ge:U where u = (um,um_l,;..,ul) with
u; € Ub, then

Ys(u) = KO(...Km 1(Km(u ), um 1), ..,uo).
The tefminology and potatlon of Definition 3 is summarized in
Figure 1. It shbuldiee clear that this formal definitiee of a -
ﬁodel hierarcﬁygfollows from the less rigorous approacﬁes in
[1] and [Z]fw{Netice that while the performance model YS sits
above the level-0 model the base model XS may “be completely

rcpresented by the m+1 intermediate level base models.
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Performance Yq
a)
Base-model XS
a—— v e awa— e e
Perform- Y
ance S
/
level-0 x() XO
C by
1
level-1 X X U
C b .
b) Model
hicrarchy <
[ J
[ J ®
© [ ]
level-{m~11 Xm—l Xm~1 ‘;b g 1
c b :
K
m
ele m m
level-m Xb Ub
\

=g

- Figure 1. A total system S with base-model X (1. a)
and ‘a model hierarchy for S(1.b). -
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A model hierarchy thus provides a step-by-step formulation
of the capability function in terms of interlevel translations
of state trajectories, beginning with a translation of the
bottom model., It also permits the expression of capability
relative to higher level (less detailed) views of total system
behavior. More precisely, beginning at the highest level,

the i-level based capability function (denoted Yi) can be

defined inductively as follows. Recalling that Ui = Ui@Ué

and letting Uy (i) = U§®U§"1®...®Ug, if i = 0 then

YO:UO + A where yo(u) = Ko(u).

If i>0, then y,:U" ® Uy (i-1) = A where, if ue ut,
u' € Ub(i—l) then
| vy (uut) = vy g ey (W) ut).
It is easily shown that Y3 has its intended interpretation,
j.e., if u and u' correspond to a base model trajectory Vv then
Yi(u,u') = YS(v). In particular, if i = m then Yo = Yg*

The capability functions Yio in turn, provide the basis
for a systematic method of determining Y'l(a) fbr a given
accomplishment level a. Beginning with level-0-based cap-

ability, by (4.1) we have
e RPNt :
Yy (a) = Ko (a). | ‘ -‘

© Assuming that Y;}l(a)‘has,been determined,.byv(4.2) it follows

- that

Ygl(a) =

BN R R -1, . ;
U kT (u),ut).
,(u,u'JEYi}l(a) L
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where (Kil(u),u') = {(v,u)|k; (v) = ul.

This process is iterated until i=m, yielding y%l(a) = yél(a).
We have described one way of evaluating the sets Yél(a)

by introducing a model hierarchy which permits us to write Yg

as the composition of several smaller functions, namely the

interlevel translations. A simplified but relatively complete

example of this process of evaluating the sets Yél(a) is pre-

sented in Section 3.5.

3.3.2 Functional Dependence

Elaboration of the capability function ysyields a char-
acterization of the trajectory sets corresponding to a particular
level of accomplishment a. These trajectory sets may possess
properties which either aid or hinderbprobability calculations.
One such property is the apparent functional dependenﬁy of the
various system components on one another( For instance, the
knoWledge that certain dependencies exist between the opera-
tional states of a system over timé may permit the
simplification of considering certain states of the system only
at specific times. The concept of R-dependence (see [1], [21)

is a characterization of functional dependency as reflected in

ktrajectory sets,

The remainder of Séction 3.3 intrbduces a further
generalization of R-dependence, together with the notion’of
"conditional"™ R-dependence, and some basic properties of these
concepts. The idea of cbnditiOnélvR-dependenée is embbdied in
the question "If C is known, does the knowledge of B increase
the knowledgeof A?ﬁ For the purpOSesvof'the‘foiiowing discussion,

we restrict consideration to systiems whose tiajectories may be
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sampled at discrete intervals with no loss of relevant information.

3.3.2.1 Basic Definitions

Suppose we have a '"phased" model (Section 3.4.2) of system
S. Let S be the system of interest with subsystems
Sl""’sn' A subsystem may be any part of the total system
(that is, the computer and its environment) whose behavior
influences the overall performance of S. An operational state
of S will be defined in terms of the operational states of the

subsystems of S. Thus, the sets of states of S considered here

are "structured" or "coordinatized' sets in the following sense.

Definition 1: Let D be a totally ordered (index) set. A

structured set V is some subset of the Cartesian (cross)

product of an indexed family of sets {Vd[d.a-D}, that is,

\% g’déD,Vd (see [3]).

Note that the ordering on the index set D may be arbitrary.
However, once chosen, the ordering is fixed. Any set D'c D will
inherit that ordering, andcross products will be taken according
to the order of the indices deD'.

Two examples should help to clarify this definitioh. In [1],
with each subSyStem'Si(l é i < n) of S was associated a corresponding
state set Qi' The state set Q of S was defined to be Q =
Qix...xQﬁ. This set Q is a structured set where the index set is
D= {1,2,...,n} with the natural ordering. The collection of )
sets‘{Qiil = i1 = n} corresponds to {ledeD} of Definition 1. In
[2], the set of state trajéctoriés of avsystemrs is described.
Ea¢h suBsy$tem Si is sampled at k different times. The‘set;

Qg (L<isn, 1=t=k) denotes the set of possible operational
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th

states of Si at the t time sasriple, Then a state trajectory

f i be e = . . t =
or S is an n x k array u [qlt] where qltEQi' Let U
{fagella;, € Qf, 1 =isn, 1=stsk}. The set U is a
structured set with index set D = {(i,t)|1 =i =n, 1 =t < k}
totally ordered, the indexed family of sets is {QE](i,t) e D},
and U = (i?%)eDQE‘ Throughout this report, the ordering imposed
on a structured index set as in this example will be row-major

order. This ordering is defined by

(a,b) < (c,d) if a < c or (a=c and b<d)

{a,b) = (c,d) if a=c and b=d

(a,b) > (c,d) otherwise.
Due to this linear ordering we can represent a state trajectory
as either an n x k array or as an (n-k)-tﬁple. We shall use
whichever representation is most suggestive in what follows.
Often an m-tuple (arbitrafy m) is used. The methods and results
described, however, apply to arrays of any dimension and size.

For any structured set V with index set D one can define a

family of (single) coordinate projections which, when applied to
an element v € V, will yield the value of a particular coordinate

of v.

Definition 2., Let V be a structured set, V ngD Vq. For
el

each d ¢ D, the projection on d, denoted Y is the

function
Ed:V -+ Vd where

| : gd((vl""’vd""’vm)) ;_Vd'
While the family of projections {Edldye'D} provides a method
for_éxaminiﬁg thebvaiue of a single coordinafe,-one'wduldilike to

be able to examine the values of seversl coordinates simultaneously.




In order to make the requisite extension, the notion of a cross

product function [3] is introduced.

Definition 3. Let V be a structured set with index set D,

let D' ¢ D, D' # # and let {f:V >~ V [d € V} be an indexed

family of functions. A cross product function on V is a

function
(X £:v-> X vV
- gept & gepr @
defined by
(X £ = (£, (V),.e..,f; (v)) where D' = {d,,...,d.}
dep' 47 dy d; e

and dl < d2 <...<dj.

g, define

For D'
(Xfﬂ):V - {lﬂ} where 1ﬂ is an arbitrary constant.
)
Using Definition 3 one can define projebtions on sets of

coordinates. Thus for V,D,D' and {€4]/de D} as above, define

Eay = (X £ ).
D deD' d

‘For example, if V = RxRxR, D = {1,2,3} and D' = {2,3}, then

ED,((8,9,10)) =‘(9,10).,,For an array, an example is

|
Sra,n,2,3)) (l} : gi) = (1,6) and
W J
1 2 3]) _

When |D'| = 1 (D' is a singleton set) the set brackets will

‘often be dropped, i.e.,
E¢1y ((8,9,10)) = £;((8,9,10)) = (8).
For V' ¢ V, D' ¢ D define | |

ED'(V') = {ED‘(VYJI\;V I ",r'}

-
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In this report, a set will usually be partitioned relative

to projection equality. This is defined by

Vi FaAVY2 if gA(vl) = gA(vz), AcD, ViV, € V.
Thus if we partition V by equality of projection on A, denoted

WX, then two elements VsV, € V are in the same nlock of Ta if

vy EAV2° In cases where ambiguity is precluded, we may denote

nX by m,. For example, let D = {1,2,3} and

(0,0,0),(1,0,0)
v = (0,0,1),(150,
(0,1,0),(1,1,0
(0,1,1) 1,
Then
‘"{1} = {{(0,0,0),(0,0,1),(0,1/,0),(0,'1,1)},
{(1,0,0),(1,0,1),(1,1,0),(1,1,1)}},
W{2,3}= {{0’0’0)’(1’030)}’{(070,1),(170)1)}’
{(0,1,0),(2,1,0)},{(0,2,1),(1,1,1)}}, and
ﬂg =V
If nX and ng are two partitions of V and each block in
Ty is a subset of a block in my, then mp "'vefines' mg, ~denoted
Ta < T Or Mg 2 "A‘

It W111 be useful to be able to refer to a partlcular block

of n (A c D). Thus 1f‘s e EA(R) deflne

B (s) = {qc¢ VIEA(q) = s},
The set BA(s) is the set of all elements of V whose pro;ectlon on

A is equal to s. Clearly, if EA(V) = sl,...,sm} then
| v, V.o o
WX = {BA(sl),..o,BA(sm)}.
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As with partitions, the superscript V will be dropped when the
meaning is unambiguous. (The notation BR{i}(Q4) corresponds to
J

~ the Rw(j’qj) of [2]). Further to the above example,

BY;;((1) = {(1,0,0),(1,1,0),(1,0,1),(1,1,1)}

and
B\{,ZQS}((O’O)) = {(1’0’-0))(0,0,0)}.t

3.3.2.2 R-dependence

In [1], the CARSRA notion of functional dependence

(see [5]) was formalized as ¢p-dependence. Its application was
restricted to the context of structure-based reliability analysis.,
The concept of ¢-dependence was subsequently extended in [2] to
R-dependence. While this extension provided several useful
generalizations, it still restricted "depéndence? to a single
coordinate depending on another single coordinate. The extension
to subsets of coordinates is given below together with certain
basic results. It should be noted that previous characteriza-
tions are special cases of the extended definition.

| The context of our investigation is that one knows something
‘about the behavior of the system; that is, one has been given
some’sgt of §£ates or state trajectories which giﬁeirise to a
certéih desired perfofmance of the system of intéfesf. One such
set might be the set of all ”suécess“ stateé relative to a ’
structure function. More generally, these%Sets may be induced
by the values which the capability function'y,{SeeKSecs.Z] assumes.
Thus, in the following diScussipn, let Q = le“'me be‘a‘

structured set and lét R ¢ Q. R is the set relative to which
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R-dependency is defined. Let D = {1,...,m} be the index set for
Q and R.

Definition 4. If A, B ¢ D then A R-depends on B (denoted

A Ap B or (A,B) € AR) if 3r ¢ €A(R) and 3s € EB(R) such

that ¥q e R[£ (q)=s =¢E,(q) # r].

Accordingly, A is R-independent of B (A MR B) if and only if
Vr ¢ EA(R), Vs € gB(R),Bq £ R[EA(q) = r and EB(q) =s].

Several items should be noted about this definition. First,
there are two general modes of dependence (see also [2]). The
"stronger' mode is dependence as found in "linear dependence' of
vector spaces. There "A depends on B" means that knowing B tells
us everything of interest about A. The "weaker' mode is
demonstrated by statistical dependence. In.this case, knowing
that "A depends on B" and knqwing B tells something about A.
R;dependence is a type of weak dependence. Second, R-dependence
is defined relative to the set R un&er consideration. The fact
that A R-depends on B does not mean that A R-depends on B relative
to a set R' 2 R. Third, the notion of R-dependence is extended to
sets of coordinates. However, in the attempt to achieve maximum

generality, references to subsystems have been dropped. Since

the specific context of our research indicates that each coordin-
i

_ate represents an operational state of a subsystem at some parti-

cular time, the relationships between subsystems may easily be
inferred.

The above definition of R-dependence is felated to the pro-
jection approach'([l];[Z])'and thekpartition approach’(fZ])kas

stated in the following theorem.
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Theorem 1: Let R ¢ Q and A, B ¢ D. The following statements

are equivalent.
i) A R-depends on B.
ii) 3s ¢ EB(R) such that 5AOB§(5)) is a proper subset of
£4(R).

iii) 3r e EA(R) and 3s € EB(R) such that BA(r) n RB(S) = g,
Proof: (i) = (ii). Suppose A Ap B and let r,s be as guaranteed

"in Definition 4. Let q € Bp(s). Then £5(q) = s which implies

that €,(q) # r, i.e., v £ £, By(s)). But r e Ep(R) so £, Bg(s))
< EA(R).
(ii) = (iii). Suppose (ii) and let EB(S) be the block
with the property gﬁaranteed by (ii), s ¢ EB(R). Then-
3r ¢ EA(R) such that r ¢ EA(B (s)). If we now consider BA(r)
it must be the case that B (r) n m (s) = p. (wapose not.
Then 3q € R such that q ¢ B, (r) and q € B (s). But q ¢ BB(s)
= EA(q)'e aA(BB(s)) and q ¢ BA(r) = £A(q) = r, Therefore,

T € EAOBB(S)). Contradlctlon )

- (iii) = (i). Suppose 3Ir ¢ EA(R), s € EB(R) such that
BA(T) n B”(s) = . Then Yg e R, if q ¢ B (s), q # B (r). lBut’

q € BB(s) o gB(q) = s and- 51m11ar1y q € BA(r) o EA(q) = r.

Thus 3r ¢ EA(R),;BS e,gB(R) such that ¥q e R[Eg(q) = s =£,(q) # r].
Due to the equivalende of the aBeVe three formulatlons, we.

are now free to use whlchever is ‘most appllcable when deriving -

new results. It should be noted that (11) in Theorem 1

corresponds to the‘"prOJectlon formulatlon of [2] and-(lii)

corresponds to the "partltlon" formulation of [2], each extended

to deal with subsets of coordinates.
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Consider the following. Let

{(0,0,0,0).(0,1,1,031

R= {05000 0 a2,

(1,0,0,0),
Then ¥q € R[[£;(q) = 1 = &,(q) # 1] so {1} ap {2}. However,
{1} 4p {3}. Looking at coordinate 4, m, = {R} because the value
of coordinate 4 is constant. In this case no coordinate or set
of coordinates may R-depend on {4}. We call such a set of
coordinates "universally independent' [6]. Now consider R' =
RU{(1,1,0,0)}. Again {4} is universally independent, but
(1} Ap, {2}. However, ¥q & R' [E(y ,3(a) = (1,1) = £5(a) # 1]

so {1,2} Apy {3}.
Several observations should be made regardlng the nature

of R-dependence. First, R-dependence is symmetrlc, that is,

VA,B ¢ D if A An B, then B Ap A. This fact is easily seen from

(iii) of Théqrem 1. Second, if lgA(R)I =1, A‘C‘D, then A will
alwéys be R;inaependent of any other set B ¢ D, including A
itself (i.e., A is universally independent). However, YA ¢ D
such that"]EA(R)] > 1, A R-depends.on A. This is eésily seen
from thé fact that if [£,(R)| > 1 then 3r,s e £, (R) such that

r # s. Then VYq € R{EA(q) =T = EA(q) =71 # s]. R-dependence is not
~transitive. Consider the set '

(0,0,0)
R = (1’0’0) : ' -
(0,0,1)
(1,1,1)

' Then {1} ap {2} and {2} Ay {3} but {1} sz' . Hence, in

’general R- dependence is neither reflexive nor transxtlve..
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The following result is useful in establishing other
properties of R-dependence.

Lemma 1. Let A,B ¢ D. If A A, B then VA' 2 A, VB' > B,

R
' 1]

A' Ap B'. ‘

Proof: Suppose A Ap B, Let A' 2 A, B' 2 B. We know that

Ir € £,(R), 3s ¢ gB(Rj such that
BA(r) N BB(s) = §.

Since A ¢ A', Tar € Tas that is each block in Tat is a subset of
sume block in TA and each block in Ta is a superset of some
block in'wA,, Similarly for B' and B. Hence 3r' € EA,(R),

Is' € EB.(R) such that

By, (r') N Bg(s) =

=

and so
BA,(r') N By, (s') = g.

Therefore A’ AR B'. Intuitively, this lemma says that if A R-depends
on B, then A R-depends on any superset of B,

'The notions of "strhhg" and "weak'" dependence were introduced
abovq, R-dépendence itself is a weak form of dependﬁn?e; of which
a st;ongwfgimfis a special case. This special case i§>distinguished
as follo@é.;Ltonsider (iii) of. Theorem 1 Suppose that for A
B ¢ D where IEA(R)I > 1 and |€B(R)| > 1, wAR srnBR. “Then |
Yr'e EA(R) Is e Ep(R)- SUCh that B (T) ¢ By (S) Clearly A R- depends
fon;B. But also, Yq € R. [EA(q) =T = EB(q) = s] For r,s as desig- f
nafed above. Thus if one knows the values of the coordinates in -
A,ls;e knows the values of the.coordinétes in B. This is precisely

a characterization of a type of strong dependence. Thus if
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]“Kl > 1, IWBR] > 1, and w, < 7y, then A R-depends (strongly)
on B. Note that while the weak form of R-dependence is
symmetric, the stronger form is not necessarily so.

So far the notion of a set of coordinates R-depending on
another set of coordinates has been introduced. Eventually,
one would like to have a quick test to discover, given a
structured set with its index st, whether any dependencies
exist., In order to characterize a set which contains depen-
dencies, the notion of an "R-dependent" set of coordinates has
been introduced.

Definition 5. Let C ¢ D. € is R-dependent if 3A,B c C

where A 1 B = § and A R-depends on B. C(C is R-independent
if C is not R-dependent.
Essentially, this says that C is R—debendent if some part
of C R-depends on some otﬁerpart of C. The requirement that A and
B be disjoint insures that a set is not characterized
as dependent simpiy because some subset of coordinates R-depends

upon itself. (If this qhalificationwas not made, thenonly universally

independent sets of coordinates would be R—dependént.)

Theorem 2: A coordinate set C is R-dependent if and only if

3i e C such that {i} &, C-{il. |

Proof: (=) Suppose that 3i e C such that {i} A, c-{i}. By

choosing A = {i} and B = C-{i}, C is R-dependent by Definitioh 6.
(=) Suppose C is R—dependenﬁ. Then HA,B < C such that

AN B= @ and A A

p B. This means that 3r e £,(R), 3s € E4(R)

such that

B, (r) N By(s) = f .
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Let A

{il,.u.,ik}, B = {jl,...,jg} and s = (sl,..a,sg). Notice

BB(S) = le(sl) N sz(sz) ﬂ...ﬂmjg(sg). (There is nothing
special about using B. The argument is the same whether we

choose to start with A or B.) Then B,(r) N B. (s,;) N...NB. (s, ) = P.
AT Jq 1 Jg L

Consider BA(r) n B (sl). This intersection is either empty or
1 ;

j

non-empty. If B,(r) N le(sl) = p then {j;} oy A. From

Lemma 1, A ¢ C-{j;} so {j;} Ap C-{jl} and we are done.

Suppose BA(r) n Bj (sl) # . Then 3q € R such that &A(q) =T
_ 1 -

and £. (q) = s,. Let A' = A U {j;}. There exists a t € £,,(R)
J 1 1 1 v A

such that EA(BA,(t')) = v and EjlﬂBA,(t)) = Sq, i.e., BA'(t) =

B(r) n Bj(sl) £ p.
Consider now BA,(t) N Mj (sz). Either this intersection is

2
empty or non-empty. Employing the above arguments, either {jz}

3 ' " . . " -
Ap C-{j,} or 3t" e £,y {3, (R) such that B,, U{jz}(t )

J
repeat., The process must terminate at some j

B, (t") N m.z(sz). Now look at By, | {jz}(t") N Ejs(ss)’and
0’ i.e., {jm}

R-depends on C—{jm}, i.e.,

B

AU {jl’-- }(t*) n ]B-"m(sm) = f

o3I pmo1 J

because, at worst,

B n B, ool B . = .
By (x) N By (s)) NN By (sp )0 By (sy) =
Therefore, C is R-dependent if and only if 3i e C such that
: Fi} Ap c-{i}. : T
Corollary: D is R-dependent if and only if 3i € C such that
{i} R-depends on D-{i}. Conversely, D is R-independent if and

only if vi € D, {i} is R-independent of D-{i}.
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To further the understanding of R-dependence and to continue
the search for simple characterizations of R-dependent
(R-independent) coordinate sets, we now turn to consideration of
R-independence. From results derived above one can immediately
make the following characterization.

Theorem 3: Let A,B ¢ D be disjoint sets and let ¥ be a coordinate
mapping such that

vq e RI¥(Ey y p(a)) = (Ep(a),E5(a))]
(Such a map ¥ always exists.) Then A is R-independent of B if
and only if ¥ (gA U B(R)) = gA(R) X gB(R).
Proof: Suppose that A #p B. It suffices to show that ¥ is onto.
Let T ¢ gA(R), S € EB(R). By negation of Definition 5, 3q € R
such that EA(q) = 1 and EB(q) = G, Accordingly, W(EA U B(qD =
(6, (a),E5(@)) = (r,s). ‘

Conversely, suppose V¥ isronto. Then Vr ¢ EA(R) and
¥s € £5(R), 3q € R[¥(E, , 5(@)) = (r,s)]. But r e £,(R) and
s € £Ex(R) so 3q ¢ R[EA(q) = r and EB(q) = s]. Hence AdRB.

This theorem says that if two disjoint sets A,B are such
(A,B) £ AR, then the projection relative to A and Brcan be written
as a cross pfoduct. Mbrc pfeciéely, the coordinate mapping b4
~re-orders the set A U B such that all'elements of A appear“before

the elements of B. (The union operator preserves the originai'

ordering of D in A U B and so may interweave elements of A and B.)
The re-ordering allows.one to write the (re-ordered) set as a

Cartesian product.
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For example, let D {1,2,3} and let R be as given in
Table I where, for each q ¢ R we associate a unique label to

simplify notation. Let A = {1,3}, B = {2}, Then A U B = D, Then

{{ac},{bd},{eg},{fh}} and

=

{{abef},{cdgh}}.

=]
x>

Each block of Ta has a non-trivial intersection with both blocks
. 3 3

of my so AMRB. If v:{0,1}° - {0,1}" such that ¥((a1,9,,935)) =

(aj,a5,9,) it is clear that ¥(£, , p(R)) = §4(R) x £5(R) = {0,1}7

x {0,1}. |

R label

N
—
=
(@)
N
SR A0 A0 o'

Further examination of R shows that R iskin fact a Cartesian

set. How do such sets fit into the notion of R-independence?
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The relation is demonstrated in Theorem 4 below. However, in
order to ease the discussion we first prove the following useful
result,
Lemma 2: Let A,B ¢ D. 1If A ApB then VA' ¢ A, VB' c B,
A' fg B'.
Proof: Let A,B be as above, A' ¢ A, and B' ¢ B. Because A
is R-independent of B, ¥r e £,(R)), ¥s e £4(R)) 3q a’ﬁ[EA(q) =r
and EB(q) = s], that is Vr eng(r) and Vs ¢ gB(R), BA(r) n
BB(S) # #. Reflection shows that if r' = Epr (Ba(r)) € Ear (R)
then BA(r) E.BA,(r'). Thus for r', s' so described (s' =
Epr (By(s)), By, (r') 0 By, (s') # 0.
Since each 1 ¢ EA(R) has an éssociated T' € EA,(R) (similarly
for s,s') we see that
YT e £y (R),¥s & Ey(R)B,(r) N By(s) # ] = Vr' e £, (R),Vs' € &, (R)
By, (r') 0 By, (s') # 9].
Therefore A' is R-independent of B'.
This says that if A is R-independent of B then any subset
of A is R-independent of any subset of B. This knowledge is used to ob-
tain the following characterization of an R-dependent set of coordinates.
Theorem 4: A coordinate set A c D is R~independent,if and only
if Ep(R) = fpE,(R).
Corollary: R is Cartesian if and only if vd e D, {d} is .
R-independgnt of D-{d}. , » _
2222£:~ Suﬁpése A:is R-ihdependént, that is, Va € A,“{af*is R-
‘ » Cas of A ag

independent of A-{a}. Relabel the elements a;,...,a,

1,,.,,m. For a = 1, by Theorem 3, we have ¥(g,(R)) = £;(R)
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gA-{l}(R)' Since a = 1 is the first element of A, ¥ is just
the identity function, i.e., W(gA(R)) = gA(R) = EI(R) X gA-{l}(R)'
Consider the coordinate set A' = A-{1}. Then {2} ic R-independent
of A'-{2} since, by assumption, {2} is R-independent of A-{2}
and so by Lemma 2 {2} is R-independent of A'-{2} (A'-{2} ¢ A-{2}).

3]

Repeating the above argument with a = 2 we derive EA,(R)
gZ(R) X EA'-{Z}(R) and therefore EA[R) = El(R) X'EZ(R) x

EA'-{Z}(R)‘ Continuing in this fashion we obtain

gA(R) = agAga(R)‘

Conversely, suppose gA(R) = aéAga(R). Let a € A and let Wa
be the coordinate transformation of A which replaces the first
coordinate of A by a and increases by ome the rank (in the

ordering) of every other coordinate in A, (For example,

\ys((qlsqzyqs’qéi)) = (q3:q1,q2:Q4))- Then

Y (EA(R)) = £, (R) x Ky o vE  (R)

Ea(R) X Ep a3 (R).

By Theorem 3, {a} is R-independent of A-{a}. )

From the corollary to Theorem 4 we see that R- 1ndependence
of the coordinate set D characterizes a Cartesian structure for
R. This ylelds a stralghtforward computational test for i
di#cqverlng whether D has an absence of R-dependent coordinate
suﬁsets; namely, fest R to see if it is Cartesian. The fact K
vthathrindepeﬁdent cocrdinate subsets correspond to Cartesian
projections (Theorem 3) likewise provides a simple, test for
the R-independence of a pair of coordinate sets.

In any iarge system, the number of disjoinf coordinate
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sets which may R-depend upon each other is also very large, and
not all the dependencies reflected may be relevant to the
analysis. One area for further investigation is in determining
which coordipate sets to examine. Along with this problem is
the problem of characterizing the strength of dependency
between sets. Given A'AR B, one possible méasure is the
minimal number of elements of Q which must be iﬁeluded in R

so that A is R-independent of B, This is importent because,"
in general, the stronger the dependence between a set of
subsystems, the likelier it is to be able to use that set as

a subunit 1in decomposing the overall system,

3.3.2.3 Conditional R-Dependence

The idea of conditional dependence was characterized in
Section 3.3.2 by the question "If C is knbwﬁ, does the knowledge of
B increase the knowledge of A?" If so, we say that "A depende‘
on B given C." More formally, in the context of R-dependence,

we introduce the following.

Definition 6: For A,B,C ¢ D, A R-depends on B given C (denoted

(A 8g B)[C) if 3t e E-(R), 3s e EgB,(t)),3r e £, (B-(t)) such
that ¥q e Bo(t)[£4(a) = 5 = £4(@) # v].

This concept of conditional R-dependence can be likened to
ethekconceptrof conditionai ﬁroeabilities. The closest parallel. -
lies in the observation that in both ceses,éby reducing £He universe
of discourse to the particular.subset (subpopulation) ﬁnder

consideration, all theorems about "absolute" R-dependencies
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(probabilities) once again hold. 1In effect, the presence of
conditional R-dependence may be alternately regarded as showing
the existence of R'-dependence for particular choices of R',
that is, (A A B)|C if 3t ¢ Eo(R) such that A B (t)-depends on
B,

For example, let D = {1,2,3,4}, A = {1,2}, B = {4},
C = {3}, and

(0,1,0,0)
(1,0,0,0)
R = ¢(1,0,0,1))
(0,1,1,0)
(0,1,1,1)
(1,0,1,1)

/
Then for gc(q) = 0 (i.e., t = (0) in Definition 7), V¥q € BS(O),
Ep(a) = (0,1) = gg(a) # 1. Hence ({1,2} Ap {41)]{3}). Note
that BS(O) = {(0,1,0,0),(1,0,0,0),(1,0,0,1)} so, alternatively,
{1,2} BS(O)-depends on {4},

One property that ;onditional dependence should have follows:
if B ¢ C, then. Ashould beR-independent of B given C. This is
intuitively justified by the argument that because knowledge carried
by B is contained in the knowledge carried by C, no furthér informa-
tion 1is being-addéd. That this is a property of conditional R-
dependence as in Definition 6 is shown in Theorem 5, |
Theorem 5: If A,B,C ¢ D and B cC then A does not R- depend on
B glven C (A is R-independent of B glven C) )
Proof: Let t e £.(R). If B c C then £5(By(t)) = {s,} for some
s, EVEB(R), i.e., £y takes on but oﬁe'value, Let T e £y (B-(t)).
We must show that Bq € B (t) ‘such that gA(q) —'r (51nce' |

¥q € Bc(t), EB(q) = so)n But this is true by definition of
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EA(BC(t)). Hence A is R-independent of B given C when B ¢ C.
One may verify that in the above example that ({1,2} AR {41)|{3,4}.
The study of the properties of conditional R-dependence
has just begun. It is hoped that it will provide a powerful
tool for use in system decomposition. One area for further
investigation is the delineation of the properties of con-
ditional R-dependence. Another area is suggested by the
similarities between probabilistic notions and R-dependence
concepts.. What is the relationship between existing R-depen-
dencies and the underlying stochastic processes? How cén such
relationships be discovered and used? These quéstions guide

our further research.
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3.4 Computation of Trajectory Set Probabilities

As discussed in Section 3.2, if S is a total system, the
performability of S for accomplishment level a € A may be
expressed as

pg(a) = Pr(y ' (a)).
The research reported in this section concerns the evaluation of
probability function Pr for a given trajectory set y'l(a). During
the previous reporting period, this problem wés studied for the
special case when the capability function y is phasewise structure
based (see [ 2], Section 3.2.2) in the sense of Esary and Ziehms
[ 8]. In this case, we proposed and illustrated an iterative
method of computing the trajectory set probabilities associated with the
"success' level of a two-level accomplishment set. (See [2],
pp. 43-47.) During the current reporting ﬁefiod, we have inves-
tigated extensions of this computational method to i) any "Cartesian"

trajectory set, and ii) phased base modelsthat are not necessarily

stationary Markov processes.

3.4.1 Phased Models

Borrowing from the terminology of earlier work concerning
"phaséd hissions" (see [ 1, for example), a model of a tétal
system is phased if the observation times in the utilization
peri&d is finite, i.e., |

' T = {ty,ty,eesty) H
where ty < ;1 < 4.. < tk; ' The interval [tm-l’tm]’ 1 ¢ mg k,
is referred to as the mt! phésé; Although'phésedfmodels appear

at the outset to be quite restricted, this is not the:case,ffor

LT



T

given a non-phased model, there often exists a phased model where
performability is the same as that of the non-phased model. In
general, system models having the same performability will be

referred to as equivalent models. In other words, a total system

model with capability function y and base model probability
function Pr is equivalent to a second model with capability
function y and probability function Pr if and only if for all
accomplishment levels a ¢ A

Priy () = Priy t(a)).
Much of the traditional reliabilit} analysis is facilitated by the
fact that equivalent phased models (often siﬁgle-phased) can .be
used to evaluate system reliability.

To illustrate this point, consider a typical continuous time
Markov model of arTMR system (with a perfécf voter) where the
simplex system has failure rate A, i.e., the Markov process
Xg = {Xthza T} is represented by the graph

1o
3
Y
)

ZA

3y
If the utilization period is T = [tO,tl] and the accomplishment
set is A = {ao,al} (where a, = success and ap - failure), then -
the capability function is given by: k

| ag if u(t) e {1,2}, v t e T

-Y—S(u)= . )
3 otherwise .



-48-~

Accordingly,

ps(ao) = Rz(lél(ao)) = Pr({ulu(t) e {1,2}, ¥ t e T}).
However, since yg is structure based and the probability of
entering a success state (1 or 2) from the failure state (3)
is zero, there exists a one-phased model having the same perform-
ability. More precisely, consider the base model

Xg = {X, » X, !

0 1
i.e., the new base model is a pair of random variables describing

the state of the original model at the beginning and the end of
the utilization period. Furthermore, if we let Yg be the function

a, if u(tl) e {1,2}

0
a; otherwise,

Yg(u)

then
pg(ay) = Privg (a,)

=Pr()(t e {1,2})
1

= Pr(x, e {1,2})
1

= Pr({ufu(ty) e {1,2}})

= E_I_'({u|ls(u) = aO}) +
kgg('[ulls(u) # ad and u(tl) e {1,2}}).

e {1,2} imply that Pr({ul}) =0,

—

Since ls(u) # ag and u(ti

pg(ag) = Privg'(ag))

= gg({u!ls(u) = aO})

= Priyg'(ay)

Thus, the single phase model is equivalént to the original model
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permitting performability (which, in this case, is reliability)
to be computed in terms of the state of the system at the end
of its utilization period.

Such single phase equivalents (or multiphase equivalents
in the case of phased missions) exist whenever traditional
reliability modeling assumptions are made with regard to the
intra-phase processes. Accordingly, we have continued our in-
vestigation of phased model evaluation methods, where the results
obtained during the current reporting period are discussed in

the subsections that follow.

3.4,2 Performability Evaluation of Phased Models

Let S be a phased total system model (see Section 3.4.1)
with base model Xs, state space Q = {ql,qz,.,.,qn} and utilization
period T = {tO’tl""’tk}' Since the utilization period is
finite, the trajectory space of S can be represented by U = Qk =
Qx .,. X Q, and the capability function is a function
k'times X
Y+ Q

where k is the number of observation times. With regard to eval-

+ A

uating the probability of a trajectory set Y”l(a) < Qk, we have
found thét Cartesianvfrajectory sets are amenable tovinteractive
methods of evaluation. Accordingly, by decomposing Y'l(a) into
a finite‘number of disjnint Cartesian subsets, Pr(yfl(a)) can be
evaluated in a straight-forward manner.‘ '

As defined in Section 3.3, a trajectory set V‘QQk is Cartesian
th

: . . k
if V= 'X

&i(V) where Ei(V) is the projection of V onto the i
i=1 ) :
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coordinate. Note that the projection Ei(V) provides one with a

method for examining the state of the system at the ith

observation
time t; with respect to the trajectnry set V. Thus, the coordina-
tization system used here is temporal rather than the more
general case (both temporal and spatial) discussed in Section 3.3.
As demonstrated in Section 3.3.2.2, Cartesian sets are
characterized by the notion of R-independent coordinate sets.
Thus, a test for determining whether a set is Cartesian is to
determine R-dependencies between its coordinates,
For each £;(V), let B, = {u e Q¥|£.(u) € £;(V)} be the set
of all state trajectories in U that assume values in Si(V) at

th

the i observation time. Using the notation developed in the

previous section, B, can be expressed as
B, = U Bg(s) .
seg; (V)
Moreover, the probability of mi can be expressed as a one-dimen-
sional distribution of the base model X, i.e.,
Pr(B;) = P(luiX, () e £5(N1)

(see Section 3.1).

When V is a Cartesian set, it is clear that V can be repre-

sented as the intersection of those rather elementary sets B,, i.e.,

A 1 qi(V)

i

[ (s Bl | -2
L

i=1 By -
By iteratively applying the definition‘Of conditional probability,

it is also clear that

e
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k-1 | k-2
Pr(Vv) = Pr(B, | n B Pr (B, | (1 By)
i=1 i=1

‘e Pr(leml)Pr(Bl) .

Since each term in the product involves only elemenféry sets

Bi’ we show in the following discussion (see equation 3.4.1)

that Pr(V) can be determined iteratively using matrix multiplications.
Without loss of generality, we suppose that the initial time

tg = 0 and we let I{0) denote the initial state distribution

for the base model, that is,

I(0) = [py(0)s.ee, P (0)]

where Pi(ﬂ) = Pr[Xt = qi], 1 £ 1< n., Let P(m) be the state
0

transition matrix of the itn phase of the base model XS, i.e.,

{ P (m) = [Pij (m) ]

where Pij(m) = Pr(Xtm = qjl)(tm.1 = q;). |
For each phase m (1 ¢« m < k), let G(m) denote the character-

th

istic matrix of the m ~ phase, i.e., G(m) = [gij(m)] where

1 if i = j and a; etgm(V)
g;;(m) = ,
J 0 otherwise .

For the final phase, we define a characteristic vector

_fltkfw
F(k) =
-fn(k)_ ;
where . :
1 if q. € &, (V)
£, (k) = 1Dk

1? otherwiseA .

Then as a special case of the more general formula proved in
Theorem 3, the probability of the Cartesian set V can be formu-

lated as:
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k-1
Pr(v) = I(0) { . P{i)G(i)| P(k)F(k). (3.4.1)

i=1

Given the above result concerning Cartesian sets, an important

step inevaluating Pr(y'l(a)) 1s to express y' (a) in terms of

Cartésian componerits. Thus, if y'l(a) = k_} V where
i=1
{Vili = 1,2,...,m} are Cartesian sets and V; N V = p if i # j, then
1 m -
Pr(y “(a)) = .21 Pr(V;)
1:

and hence performability can be calculated by summing the proba-
bilitﬁes of Cartesian sets. The exlsﬁence of the set {Vi[,i =
1,2,...,m} can be shown as follows. Since each singleton set'

{u € U} is a Cartesian set, by definition, yfl(a) = ugy-l(a){u}
satisfies the?aboye conditions. However, in practical situations
where y'l(a) is very[large each singleton eetlwill'have negligible
probability and the cumulative error resulting from‘the sum of a
large number of single probabllltles w111 generally be 1ntolerab1e
To avoid this enumeratlon approach we have developed a method

(see Section 3.5.4.2) for determ1n1ng {V i = 1,...,m} in a systematlc

manner, us1ng a hierarchical formulatlon of the capab111ty function.

3.4,3 SimplificatiOn of Phased Models

Let S be a phased total system model with base model

Xe = X
S Tty

li =0,1,...,k} -
where t, < t; < ... < t, and where each random variable Xt takes

i
values in the state space

Q = {qlk’qZ’.“"qn} v*



Since the phased base model XS may have been derived from a

larger equivalent model XS (e.g., a continuous-time Markov model),
the state space Q may be much larger than needed to distinguish
accomplishment levels via the capability function of the phased
model. Accordingly, we have continued to pursue our investigation
of state "lumping" methods which can further simplify the evalua-
tion of state trajectory set probabilities. (See [12], for example,
where a Markov model with 146 states is reduced to a model with

11 states.) In particular, we have conducted a more detailed
study of '"Michigan lumping" wherein different lumping relations
can be associated with different phases of the phased model.

In general, we define the lumping relation of phase m

(1 £ mg k) to be an equivalence relation =, on the state space

Q. The partition of = is denoted
Q, = {ml,mzj.f.,mbm}

where bm is the number of equivalence classes (lumps) of the
lumping relation =ne Each equivalence class mi is a subset of

the state space Q where, if r € mi, then

ni = {q € Qlq =, T}

To illgstrate,isﬁppose*s~is a triplicated system with state‘sﬁ;ge
Q = {0,1}3, where d-é;Q0,0,0) means all three subsystems are
fault-free and, attthé bthér extreme, q = (1,1,1) says fhat'alL
three subsysfems are f;ulty. Supposing further that there is

only one phase with the lumping relation

q =, r if q and r represent the same
number of faulty subsystems
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then the corresponding partition (lumping) is given by:

Q = {11,12,13,14)}

where
11 = {(0,0,0)}
12 = {(1,0,0),(0,1,0),(0,0,1)}
13 = {(1,1,0),(1,0,1),(0,1,1)}
14 = {(1,1,1)}

In general, given m lumping relations, one for each phase,
we can associate a lumped base model YS with the original phased

base model Xg by defining XS as follows:
Xe = {X |m=0,1,...,k}
where if m = 0 then

X, =11 if X e 11 (L1 1< D

)
’0 tO 1
and if 1 < m g k then
Xm = mi if Xt emi (1 € 1< bm) .

m
(The variables Xt » 0 €« m € k, are the random variables of the

phased base modelmXS.) For a lumped model to be useful, it must

be compatible with the capability function y in the sense that
system performance can be determined kncviing the state trajectory

of fé at times t;,t,,...,t,. More precisely, if U is the trajectory

space of the phased model then two trajectories u, u' ¢ U are -

equivalent (denoted u = u') if u(t ) = wu'(t ), for m = 1,2,...,k.

Then we require that the lumping‘relations = be such that

it

u = u' implies y(u) = y(u')
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for all u, u' € U. Under this condition} the trajectory space

U of X can be effectively regarded as the space
U = Q X Qy X vvv x Q

and the induced capability function y:U + A is given by

7(lil,2iz,...,kik} vy (u)

where u 1s any trajectory in U such that u(tm) e mi m=1,2,...,k.

m? -
Finally, if V ¢ U, the induced probability function Pr of the

lumped model is given by

Pr(V) = Pr(W)

where

for some (1i,,2i ..,kik) eV,

l’ 2"
u(tm) € mim, m=1,2,...,k .

W=4d{ueU

In particular, it follows that

Pr(X_ = mi) = Pr(X, e mi) (3.4.2)
. m . t m )
and, mecre generally, that
F&(Yl = 1i1,...,Yk = kik) = Pr(Xt € lil""’xt € kik) (3.4.5

S k
Given the above definitions of ¥ and Pr, it is easily verified

that the lumped model is equivalent to the original phased model.
~Although the probability function Pr is well defined for arbitrary
lumping rglations, the lumpings may be such that Pr is very diffi-
cult to evéluate, due to the fact that lumping does not, in general,
preserve special stochastic properties. For example; if the phased
base model Xg is a stationary Markov process, a iumped'model YS is
generaily neither stationary nor Markovian. This problem is

addressed in the subsections thatbfollow, beginning with the case
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where the lumpings are unrestricted.

We suppose first, as in the previous subsection, that the
structure of the trajectory set in question is Cartesian, that
is, V ¢ U where .

V= X EM,
j=1

or, alternatively, letting Ri Ei(V),

V.= Rl X R2 X voo X Rk .
Then the objectsof study are a) the probability

Pr(v) = ?r(fl e R,, X, e Ry, ..., X

10 % 2 e R

K & Ry
and b) its formulation in terms of the probability function Pr
of the (unlumped) phased model.

We begin by'éonsidering the more restricted problem, that

of evaluating the one-dimensional probabilities
Pr(X, e R) , 2 = 1,2,...,k
Relative to the mth phase of the phased model, define

p(m) = [Pij(m)]
where
p::.(m) = Pr(X, e mj|X e mi)
1j tm tm_l ’
i.e., the probability of being in lumped state mj at the mth
observation time given that the phased model state is in lump mi

tl

at the beginning of the m 1 phase. - Thus p(m) is the initial pg

final state transition matrix of the mth phase. For all but the
final phase define |

H(m) = [hy; (m)]
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where

hij(m) = Pr(Xtm e (m + l)letm e mi) ,

i.e., the probabilityASf being in state (m + 1)j at the beginning

of the m + 1th phase given that the lumped model is in state mi

th

at the m observation time. Thus H(m) is the interphase tran-

sition matrix between phase m and phase m + 1. Note that the

above matrices are definable beginning with an arbitrary process XS.

Let I(0) be the initial state probability distribution of the

lumped model Xs, i.e.,
I(0) = [pl,pz,---,pbll
where .
p; = Pr(XtO e 1i) = Fr(YO = 1i)
Let J(&) be the gtate probability distribﬁtion of YS at the end of

phase &, i.e.,

J('Q') = [rl’- ’rb ]
where
L r(XQ = 2i) |
is the probability of being in state 2i at the ﬂth observation
| time. Then fo-1 | ,
Theorem 1: J) =1(0)| I P(m)H(m)] P(2) (3.4.4).
m=1 '

Proof: We prove this by induction. For £ = 1,

J(1) = I(O)P(l) = [al""’aj""fabll

'whefe

2L b ) e Pr(x, e 1j] )
a. = IS Pr(X, e 1i) +Pr(X. e 1j|X. e 1i
) i=1 to 7 1 to
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e 15, X
1 Tt

i
(LI o I8 o

Pr (X
1

. ¢ e 1i)
0

Pr(X, e 1j) = ?i(fl = 13j) .
1

Suppose that the formula holds for 2, 1 ¢ & < k, we have to
show that

‘ %
JL + 1) = I(O)LH P(m)H(m)JP(2+1) .
, =1

When multiplied by H(2)P(&+1) on both sides, the equation for

J(L) becomes

L

J(RH(R)P () = I1(0) [ i
=

P(m)H(m)] P(2+1)
=1

When we iteratively compute the matrix product on the left hand

side, beginning from the left, then the first two terms become

J(HR) = e sCiyenn
(LIH(L) [cqys K ’Cb2+1]
where bz
c. = T Pr(X, = Ri)ePr(X, e (2+1)j|X, e 2i)
Ioi=1 . ty ty
b L .
= I  Pr(X, e 2i)-Pr(X, e-(2+1)jlxt e 2i)
i=1 % % | g
bl S ;
= T Pr(Xt e (2+1)j n &i)
i=1 Ty

-

= pr(xt2 e (5+1)3)

is the probébility of being in state (2+1)j at the beginning of

the lflth phase.
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h

Finally, multiplying the product by the 2+1t phase transi-

tion matrix,

J(LH(R)P(L+1) = [dl,...,d.,...,d ]
‘ J boe1
where
bpe1
d. = = Pr(X, e (2+1)i)ePr(X e (R+1)j|X, € (2+1)i
] i=1 tﬂ, t£+1 JI tﬂ, ( ) )
bosy
= I Pr(Xt e (2+1)5 , Xt e (2+1)1)
i=1 L+1 2
= Pr(Xt2+1 € (g+1)j) = ?f(f2+1 = (2+1)j) .
Thus
J(e+1) = J(Q)H()P(2+1)

)
I(9) { I P(m)H(m)] P(2+1)
m

which completes the proof.

If we compare equation-3.4.4 with the formula on:page 44 of
the Second Semi-Annual Status Report, we note that it does not
involve thércmgnd F matrices. It is used solely to compute the
proﬁab11{£y (mass) function 6f the random variable Ylv(the state

of fhe'lumped process at thé zth

observation_time).f‘Also, it is
importan&ﬂto noté that this formula appliesrto'anzafbitrary
phased Base modei'xs and; in particular, the lumped,process_is
need not beiMarkov. : ‘ ' ,i  e
Let‘us,now conSidef the problem addressed atvtherdutset of
" this subsection, i.e., the probability éva}pation;of a Cartesian
trajectory set | k .

Vv f R1 X R2 X oo X Rk ¢ U
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where

Pr(v) = ﬁr(il e Ry, X, € Ryy oues X‘k € Rk).

Extending the G and F matrices of the previous subsection to

the phased base model XS, let G(m) denote the characteristic

h

matrix of the m® phase (1 ¢ m < k), i.e.,

G(m) = [g;;(m)]

where
1 if i=j and mi ¢ Rm
gij (m) =
0 otherwise ,

and for the final phase (m=k) we define a characteristic vector
£, (K)
F(k) = .
£ (k)
by

where
1 if ki € Rk
£, (k) = R
1 0 otherwise .

We first prove a lemma which is a generalization of the
iterative formula
Pr(X1 € Rl; X2 € RZ, ooy Xk £ Rk)

k-1

= 1(0) | T P(m)G(m)H(m):l P(k)F (k) . (3.4.5) |

m=1

-

For each Ry & = 1,2,...,k, let URQ be the union of all the
_equivalence classes contained in RQ,,i.e.;

R, = U o
QieRl
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For each phase m, except the final phase, defihe
K(m) = [kij(m)]’ m = lgzgoou,k'l,
where

klj(m) = Pr(Xtm € (m+1)J|Xtm e mi, X - eUR 15 «ee)X

t1
The matrix K(m) is similar to the interphase transition matrix
H(m) except that thé interphase transition probabilities are now
conditioned by the first m-1 components of the Cartesiaﬁ set VJ
Hence K generally depends on V while H does not. (Conditions
under which K can be identified with H are a subject of later
discussion.)

To compute Pr (V) in terms of the matrices P(m), G(m), F(m)
and X(m), we assume further that the lumping relations Em are
compatlble w1th the phased model Xg to the extent that transition

_probabilities are invariant over the states in a lump. More

precisely, we say that'XS is strongly lumpable with respect to =

m
if for all mi, mj € Qm’ the probabilities

Pr(X, e mjl|X = q)
tm tm i

are the same for all q e mi. A lumped model XS is strongly lumped

if X is strongly lumpable with respect to allz, m = ijZ,...,k“

Although we refer to such lumping as "strong”, it can be
shéwn that the usual type of stationary‘Markov Chgin luhping (i.é;;
where the Markov property is preserved relative to all initialf
stéte distributions) is St}ong in the above sense (see, for

' ex;ﬁple, (141, p. 124). In parficular, all the work we have

seen concerning Markov model_Simplification'for'reliability

L N
-

sURl).
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analysis has utilized strong lumping. Thus, strong lumping, as
defined above, is not a severe constraint. Indeed, our concept
cf a strongly lumped process XS is weaker than the usual type
of strongly lumped process which presumes the use of a single
lumping relation throughout the utilization period.

In terms of the above concepts we are able to prove the
following important lemma,

Lemma 1: If Ké is strongly lumped then

k-1
Pr(X; € Ry,e.sXy € Ry = 1(0) n1 P(m)G(m)X(m) |P(K)E(k), (3.4.6)
m= .

Proof: We show this by induction. When k = 1,

I(0)P(1)F(1) = = ?&(Kl = 1j) = ?E(Yl e Ry
: 1j£R1 R

Suppose that the formula holds for E”=_2, that is

e R

Pr(X, € R;,%, € Ry,.nn, Xy € R))

2-1
= I(O){ Hl P(m)G(m)K(m)}P(K)F(L).
m=

Then

[L=== =3

‘I(O)[ P(m)G(m)K(m)}P(% + 13F(2 + 1)
m :

1

m=1

-1 ‘ ' :
'ﬁ(O)( it P(m)G(m)K(mﬂ P(R)G(Z)}K(Q)P(l#l)F(2+1)

AJK(R)P(2+1)F(4+1) i
~where

Ay = [8y,eensBiyensydn ]
1 1° "J" ’;bjl,
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and _ - — .
Pr(Xl € Rl""’xz-l € Ry _1» Xp = 23) if 2j ¢ Ry
0 otherwise

a. =
J

by applying the equation for k = &. )

When we iteratively compute the matrix product, beginningtfrom

e

the left, then the first two terms become #

/

A, = AJK(L) = [CqyseeesCryenasC ] .
z 1 1’ ’ J’ b4 b2'+1 R
where '
bk %
c. = T a. k..(2 »
J =1 1 ij M y
= £ Pr(X, eR,...,%, , e R, . X, = 2i)s ;
liERE 1 1’ -1 2-1,"8 4
Pr(X, e (&+1)j]X, e 2i,X € UR, 1,...,X.X_& UR.)
‘ tQ] tz ’ tg,-l 24-1’ ’ tl 1

= z Pr(Xt e UR S ¢

. e UR, ,,X_. € 2i,X, €.(2+1)j)
RicR, 1 L ty-1 =177ty Tty !
= Pr(Xt € URl""’Xt € URE’Xt e (L+1)3) . £
1 L 2
i The next partial product is the result of multiplying.A2 by
A ~ '
the transition matrix P(2+1) which yields: - h

AS AZ(P(Z+1) = [dl"f"dj""’db ]

2+1
where :
bos1
d. = ¢ P (+1)
3 Z s lJ( ) -
bos1 - '
= I ¢y Pr(X, e (O*D)J]X, e (2#1)1) . z
;i=1 2+1 v L , :

,
S s e

ey
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Since XS is strongly lumpable with respect to the lumping
relation S0+l

Prox, = (DlX = a)

2+1
is-the same for every q € (&+1)i. Let p denote this common

probability and consider the events

A = Xt e (2+1)j
2+1
B =X e (2+1)i, X e UR oo X e UR
tosy ty 2+1° Tty 1
C =X, e (2+1)i .

ty

Then, since B ¢ C, there is a subset R of the lumped state (2+1)i

such that
B =X e R
ty
Accordingly,
Pr (AB)
Pr(A|B) = ——
Pr(B)
where

N

~ Pr(AB) = T Pr(Alxt

q)Pr(X, =aj .
geR L L

Since Pr(A‘th = q) = p for all q € R,
L , .

q)

Pr(AB) = I pePr(X, = AR
. qeR 2 JEETE -
=p-I Pr(X, =aq)
~qeR L

p+Pr (B)
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Accordingly
p-Pr(B)
Pr(A|B) = ——— = p .
Pr(B)
In particular, when B = C
Pr(A|C) = p

and, hence

Pr(A]C) = Pr(A|B)

In other words,

Pr(X, € (z+.1)jlxtz e (#+1)i) = Pr(X, (z+1)j[xt2 e (R+1)1i,

2+1 2+1

th € URQ, ceny th € URl)

Strong lumpability therefore allows us to forget the past

history when determining the intraphase transition probabilities.

Accordingly, by replacing Pr(A|C) with Pr(A|B) in dj’
b1 ‘
3 izl Pr(th € (2+1)1,Xt£ € URZ, ..

[=%
i

B e UR,)
’ ty 1

Pr (X e (4*1)j[X, e (8+1)i,X, € UR

LN ] x
Lol % % ’

2’ t e URy)

| b5L+1
= I Pr(X
i=1 t

e (2+1)3,X, & (2+1)i,X, URQ,’...,xt e UR

)
R+l 2 3 1 1

X € URl)

e(2+1)j,X £ UR,y veey
| ’ tz '3 tl

= Pr(X X, € Ry, -vu,X, £ Rp,X, 0 = (241)5)
The product is completed by multiplying A3 by the characteristic

vector F(2+1) of the final phase, that is,

-y,
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)
I(O)[ I P(m)G(m)K(mﬂP(2+l)F(Q+l)

= ASF(2+1)

= pX Pr(X; ¢ R,,X, € R,...,X, €R,,X = (2+1)3)
(2+1)j€R2+1 1 1°72 2 R 227441

= Pr(X1 € Rl,X2 € RZ’ "”X£+1 € R2+1) .

Thus, equation 3.4.6 holds for all & £ k, which completes the
proof of Lemma 1.

Note that in proving the lemma, we did not use the assumption
that XS is strongly lumpable with respect to % and hence we can
relax the hypothesis and require only that XS be strongly lumpable

with respect to =, m = 2,3,...,k. However, in order to simplify

m’
the calculation qf the transition probability matrix P(1l) associated
with the first pﬁase, it is convenient to éssume that XS is strongly
lumpable for all phases. This remark applies as well to the
sqbsequent results concerning the evaluation of Pr(V).

Although Lemma 1 provides us with relatively unrestricted -
closed form formulation of Pr(V), its disadvantages derive from
the fact that the K(m) matrices may be difficult to obtain in
practical applications. In pa%ticular, K(m) will generally depend
on V as well as XS and, moreover, will generally depend on the
history of XS prior to phase m. The latter objection disappears

when the lumping relations are such that -

Pr(X, e (m+1)J[Xt e mi,X, e UR th

€ URI) =
m oom-1

m_l’-ci,
m E

Pr(X, e (m+1)j|X, e mi) (3.4.7) -

m m

for all (m+l)j € Qm+1‘and mi e Q-
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Recalling the definitions of K(m) and H(m), the preceding condi-

tion is just the condition which guarantees that K(m)

= H(m).

Accordingly, we obtain the following specialization of Lemma 1.

Theorem 2:

If Ys is strongly lumped, V = Ry x Ry x ... x Ry and

equation (3.4.7) holds for m = 1,2,...,k-1, then

m=1

k-1
Pr(v) = I(O)[ i P(m)G(m)H(m)]P(k)F(k) .

(3.4.8)

Since equation (3.4.7) depends on the specific natufe of the

Cartesian set V, for a fixed strongly lumped model Ys,

the hypoth-

esis of Theorem 2 may hold for certain trajectory sets V but not

for others.

conditions under which equation

Accordingly, we have sought to identify even stronger

Cartesian trajectory sets.

3.4.8 will hold for arbitrary

Lemma 2: If_YS is strongly lumped then equation 3.4.7 holdskfor

all Cartesian sets V and for all phases m, if and only if

Pr(Xt > (m+1)1m+1lxtm € mi

for all m

Proof:

\'s
L

k
X Ri, then by taking R; to be the singleton set {2i,},

m

m,xtm-l € (m-l)im_l,.o

= Pr(X, e (m+1)i X, e mi)
tm m+1 tm m

1,2,...,k-1, and for all (m+1)im+1 € Qm+1’mim e Q. .

i=1
1’2’ooo,m+1’

Pr(xt

m -

€ (m+1)im+1|Xtm

- Pr(x,

m

€ m;m,Xt € (m*lJl

m-1 m-1°°

., X

e ’X

€ (m+1)im+1|Xtm emi ) .

t

t

1

~ Suppose equation 3.4.7 holds for all Cartesian sets

1

€ lil)
(3.4.9)

m

€ lll)v
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Converseiy, when equation 3.4.9 holds for every %i

9‘ £ Ql,
£ =1,2,...,m+1, then
Pr(X, € (m+D)j|{X, e mi_,X e UR ...,X, € UR,)
tm tm m? tm-l m-1° ? tl 1
= z Pr(X, e (m+t1)j|X, e mi ,X e (m-1)i e
i eRy th th mth.l Tm-1?
2=1,...’m
Pr(Xt € (m-l)im_l,...,Xt € lil)
X, € 1i))- m-1 1
1 Pr(X e UR coe X e UR
tm“l m-l’ ’ tl 1
= PT(Xt € (m+1)j|Xt e mi)e
m m
Pr(Xt ) € (m-l)im_l,...,xt € lil)
T m-1 1
Li,eR, Pr()&’tm"1 € URm~l""’xt1 e URy
2=1,..,m
= Pr(Xt € (m+i)j!Xt e mi)el = Pr(X, e (m+1)j|Xt e mi)
m m m m

which shows equation 3.4.7.

Combining Lemma 2 with Theorem 2,

res@ltiw .
Theorem 3: If XS

each phase m, m=1,...,k-1,

Pr(v)

m=]

k-1
‘,WI(O)[ I P(m)G(m)H(m)

}P(k)F(k)

we obtain the following.

is strongly lumped and equation,3.4.9'ﬁofds for

then for any Cartesian trajectory set V

Under the conditions of Theorem 3, we observe that XS is -a

Markov process (but not necessarlly statlonary)

demonstrated as follows.

This can be

4
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5r(fﬁ+1 = (m+1)j|ih =mi X ;= (m—l)im_l,...,')f1 = 1i,)

Pr(X, € (m+1)j|Xt e mi ,X,

e (m-1)1 .o X, € 1i
m+1 m m-1 m-1°

)

z Pr (X e (m*D)j[X, € (m+1)i,X, € mi_,...
(m+1)ieQ ,,  ‘m+l t Tt LI

X € lil)° Pr(Xt e (m+1)i Xt € mim,...,x

t1 m m t1

€ lil)

T Pr(X, £ (m+l)j|Xt e (m+1)i)
(m+1)ieQm+1 m+1 m

‘Pr(X, e (m+1)i[X, € mi )
tm tm m

|
e~
a1
~
el

|
o

e

~
>

Hence, fg satisfieséthe Markov property,. .
Moreover, if we extend the definition of the interphase

transition matrices so that H(0) is the identity matrix, i.e.,

H(0) = [hy;(0)]

where [
1 if i=j

S hi.(O) |
] J 0 otherwise,

then the transition probabilities of YS associated with phase m

can be expressed as a matrix

P(m) = (B35 (m)

where

el
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pij(m) = Pr(X, = mJ!iﬁ_l = (m-1))
= Pr(X, e ijXt e (m-1)1i)
m m-

= I Pr(X, e mlet 5 msL)-Pr(Xt € mR,lXt e(m-1)1i)
meeqQ m m-1 m-1 m-1
by

= Z . h_. m"’l .
o Paj (m)h, , (m-1)

Accordingly,

P(m) = H(m-1)P (m)

and equation 3.4.8 can be represented in a more convenient form:

k-1
Pr(v) = I(O)[ Hl F(m)G(m{}?(k)F(k) ‘ (3.4.10)
m.’:

Since hij(m) gengrally depends on the obsqryation time tm even
when Xg is stationary, the transition probabilities ﬁij(m) may
not be the same for different phases. Hence KS is-a time varying
Markov process.

~Although Theorem 3 provides us with a formula for evaluating
ihe probability of an arbitrary Cartesian trajectory set V, it has
the disadvantage that equation 3.4.9 has to be verified with

respect to all possible sequences of lumped states Xt e mi_ where

m
: m c
mim € Qm’ m=1,2,...,k. Thus in order to further simplify the

~computation, we have identified the following stronger condition.
By applying arguments similar to the proof of Lemma 1,vwe?
show that equation 3.4.9 holds when the probabilities
Pr(X, e (m+l)i X, =4q)
th T Tm+l th ‘ |
~are the same for all q € mi_. Hence, we obtain the following

importantkresult.
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Theorem 4: If YS is strongly lumped and for all m ¢ {1,2,...,m-1},

(m+1)j € Qm+1’ and mi € Qm the probabilities

Pr(X, e (m+1)j|Xt = q)
m m

are the same for all q € mi, then

k-1
Pr(v) = I(0) Hl P(m)G(m)H(m)}P(k)F(k)
m=

for all Cartesian trajectory sets V.

Theorems 2-4 tell us, under successively more stringent
conditions, how the probability of a Cartesian set V may be
iteratively computed from knowledge of the intraphase processes
(the P matrices), the 