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NOTA1 ION

pentad parity coefficients used in the pseudosensora Ij

A vector of constrained - fit polynomial coefficients whose
elements are	 bi,

b subscript or superscript for "body" frame

b sensor bias error

b i bias compensation for sensor 	 i

polynomial coefficient for sensor 	 i, order	 j, prefailureb ij

bi t polynomial coefficient	 for sensor	 i, order	 J,	 postfailure

C weighted measurement sum 3p-vector whose elements are 	 ci

c subscript for "constrained - fit" solution

c i weighted measurement sum 3 - vector of order	 j	 used in the
constrained - fit formulation

pseudosensor mapping coefficients, prefailure
c51

cs i pseudosensor mapping coefficients, postfailur.

d (1)	 summed parity residual detection threshold value;

(2) subscript for "detection"

F specific force

FD data frames required to detect a failure

G matrix of sensitivities used in the constrained fit

g gravity

li(r) constrained- fit sensitivity matrix corresponding to time 	 T

i (1)	 subscript for sensor number; 	 (2) subscript for
"isolation;"	 (3) summation index

index usually used for polynomial order

k index of the faulty sensor as identified by the constrained-

c fit strategy

•	 r	 iii
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t
a

td

t0

t
T 

b
T 

bU, tU

U.

iv

index of the faulty sensor as identified by the pseudosensor
strategy

mass-unbalance compensation vector for gyro i

measurement 4-vector whose elements are mi , mi (T) at time T

measurement from sensor i at time T

estimated or predicted value of m, mi

number of data points (frames) in the isolation interval

number of data points (frames) in the fit interval

information matrix defined for the constrained fit

(1) phenomenological input vector (S2 or r); (2) order of a
polynomial; (3) subscript for "parity residual;" (4) sub-
script for "pseudosensor" solution

quantization in engineering units per bit in sensor output

quantization error in sensor i

random or unmodeled error in the output of sensor i

rms pseudosensor residual in the fit interval

scale factor and alignment compensation vector for sensor i

scale factor error

kp

M 

M, M 

mi , mi(T)

m, mi

N

n

p

p

q

qi

ri

r5

Si

s

T

t

superscript meaning "transposed"

(1) time; (2) subscript or superscript for "tetrad" frame

apparent time of failure

time of failure detection

fit reference time

transformation from body to tetrad coordinates

transformation from tetrad to body coordinates

matrices whose four columns are 
bui 

or 
tui 

for i = 1,
2, 3, 4

unit vector along the input axis of sensor i
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u i	 estimated value of ui

b u i t tui	 u 
	 expressed in the body (b) or tetrad (t) frame

Y	 measurement residual vector used in the constrained fit
formulation

a	 parity coefficient corresponding to sensor No. 1

°k ' U 	
parity coefficient of the apparently failed sensor

c	 p

B	 parity coefficient corresponding to sensor Nc. 2

Y	 parity coefficient corresponding to sensor No. 3

A	 measurement sampling interval or time corresponding to one
data frame

AV i (t)	 velocity increment measured by accelerometer i at time t

AO i (t) rotation increment measured by gyro 	 i	 at time	 t

6 i measurement residual of sensor 	 i	 used in the constrained-
fit strategy

Ei j sum of integers	 i	 raised to the power	 j

E(W j mk (i0) sum of weighted measurements in the constrained fit

E6 1 sum of the constrained-fit residuals for sensor 	 i	 across
the isolation interval

E6 sum of the apparently failed sensor's measurement residuals
Max

across the isolation interval

E6 second largest constrained-fit residual sumn1

EEi sum of the pseudosensor pentad parity residuals across the
isolation interval

EE 
in

sum of the apparently failed sensor's parity residual across
the isolation	 interval

EE_ second smallest parity residual sum in the isolationns

t interval

L i t 	 E 1 (r) tetrad parity residual excluding sensor 	 i	 in the pseudo-
pentad configuration
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parity residual which excludes the fifth (pseudo) sensor,e5
used for detection of failures

ss average value of	 a	 in the isolation interval

- n angle between the skewed sensor and each mutually orthogonal
sensor in the ortho-skew configuration

f X
i

threshold for confidence measure	 1

rms constrained fit residual in the fit intervalof

rms constrained fit residual in the isolation intervalai

- ap rms parity residual

` T (1) time relative to the fit reference time,	 to ; (2) time
variable for integration; 	 (3) generic time, as in m(T)

` time interval corresponding to the detection windowTd

time interval used in a polynomial fitT f

time interval for isolation

n angular velocity

Other Symbols:

{x}	 integer part of x

x	 estimated or predicted value of x

x	 error in estimating x
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A STUDY OF A REDUNDANCY MANAGEMENT STRATEGY

FOR TETRAD STRAP-DOWN INERTIAL SYSTEMS

Ronald J. Hruby, William S. Bjorkman,* Stanley F. Schmidt,*
and Ralph A. Carestia**

Ames Research Center

SUMMARY

A redundancy management strategy for a tetrad strap-down inertial system
is described. Algorithms are developed that attempt to identify which sensor
in a tetrad configuration has experienced a step failure. An algorithm is
also described that provides a measure of the confidence with which the cor-
rect identification has been made. Experimental results are presented from
real-time tests conducted on a three-axis motion facility utilizing an ortho-
skew tetrad strap-down inertial sensor package. The effects of prediction
errors and of quantization on correct failure identification are discussed
as well as an algorithm for detecting second failures through prediction.

INTRODUCTION

The use of skewed, redundant, strapped-down inertial sensors is a prom-
ising, cost-effective approach for gaining improved reliability for on-board
inertial sensing systems in aircraft (ref. 1). It is only recently, however,
that inertial sensors with adequate long-term calibration stability for these
strap-down applications have become available. For example, the ring laser
gyro, whose development started in the early 1960s, is available now in proto-
type production and has been extensively flight tested. For "single thread"
flight control, three-axis orthogonal (triad) sensing with such instruments
is required. By adding one more sensor whose axis is skewed with respect to
the orthogonal triad we obtain the potential for a fail-safe system in that
any three of the four sensors are adequate to provide the necessary triad
information. A system with four sensors will be called a "tetrad" system.
To have a fail-safe (FS) capability, we need a means for detecting that a
sensor has failed so that the whole system can be switched off-line. To have
a fail-operational (FO) system we need a means of not only detecting that a
failure has occurred, but also of isolating (i.e., identifying and removing
from calculational dependence) the failed sensor before it can cause delete-
rious effects in the flight control system.

The primary objective of this study effort was to investigate the feasi-
bility of identifying the failed sensor in a tetrad configured system. Pre-
vious work (see refs. 2-5) was directed at the failed sensor detection problem

*Analytical Mechanics Associates, Mountain View, California.
**University of Southern Colorado, Pueblo, Colorado.



for free-inertial navigation applications and did not consider the possibility
of identifying the failed sensor in a tetrad configuration. The material pre-
sented in this paper includes the description of a tetrad sensor failure.-
detection algorithm and dual algorithms for identifying the failed sensor. A
confidence algorithm whose purpose is to exclude erroneous identifications is
also described. The joint application of the detection, dual identification,
and confidence algorithms comprises the redundancy management strategy for a
tetrad sensor system that is analyzed in this report.

The experimental evaluation was limited to step-type failures. In this
type of failure, the output of the instrument jumps by some value at the time
of the failure and remains biased by this value thereafter. The step-fi.il.ure
model was adopted because of its simplicity. The ability of the algorithms
to detect and identify sensors which have undergone a step failure is a nec-
essary, but not sufficient, condition for their application to aircraft system
implementation.

The evaluation was limited to one particular tetrad configuration, the
ortho-skew configuration shown in figure 1. One of the sensor axes is skewed,
forming equal angles (about 54.735°) with each of the three othogonal axes.
Failure detection and identification results presented in this paper are
restricted to gyro failures. Accelerometer failure detection and isolation
is entirely analogous to that for gyros.

TETRAD FAILURE DETECTION, IDENTIFICATION, AND CONFIDENCE
ALGORITHMS

The failure-detection, identification, and confidence algorithms for the
tetrad strap-down inertial sensor system must detect that a sensor failure has
occurred, identify it without error, and remove it from the computational
stream. The general strap-down tetrad sensor package includes four gyros and
four accelerometers. The ortho-skew tetrad configuration used in this study
has three mutually orthogonal sensors and one skewed sensor whose input axis
is angularly equidistant from each of the mutually orthogonal sensor axes.
The ensuing explains details of the redundancy management strategy used for
the tetrad.

Symbol and Variable Conventions

The tetrad reference frame is orthonormal and corresponds physically to
the edges of the box containing the tetrad instrument package. The orthogonal
sensors' input axes are (neglecting misalignments) parallel to the axes of the
tetrad reference frame. The transformation of coordinates to the tetrad frame
from the current body reference frame, in which the tetrad instrument package
is mounted, will be denoted tTb.

Let ui represent a unit vector along the input axis direction of the
ith sensor. This vector will be denoted tui when it is expressed in
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tetrad-frame components and bui in the body frame ( bui - bTt tui). The
tetrad-frame components of the four sensor axes are denoted by the 3 x 4

matrix, tU.

	

1 0 0	 cos n

tU " ( tul tu2 tu3 tu4) 
' 0	 1	 0	 cos n	 (1)

0 0 1 cos n

The right-moat equality is true only for the ortho-skew configuration. The
angle n is the angle between the skewed sensor's (sensor No. 4) input axis
and the axes of each of the orthogonal sensors. The body-frame components of
the four sensor axes are:

	

bU = (but but b 
u 
3 b

u4 ) = bT t tU	 (2)

Any of the sensing-axis unit vectors can be written as a linear combination of
the other three. In particular,

u4 = au  + Su 2 + yu3 .	 (3)

Measurement Model

The sensors considered in this paper are of the integrating type so that
the output measurement is the integral of the sensed input over the sampling
time interval, A.

This output measurement is observed as counts where each count has the
value q. In this paper, the equivalent gyro quantization q is 3.136 arc-
seconds. Every measurement readout is an integer number of counts. A non-
destructive readout is assumed, so that any remaining fraction of a count is
not lost, but is added into the counts for the next time interval.

A gyro whose sensing axis is ui senses the component of angular velocity

0 which lies along ui . More generally, the gyro's measured output is a
scaled version of ui • S which includes bias, quantization, and other effects.
The gyro measurement model adopted for this paper is

t

Aei ( t) = 1 (bi + Si • a2 + Mi • F)dt + qi + ri	 ( 4)
IjA

A similar model for accelerometer measurements is

(t
Avi ( t) 

= l 

f (bi + Si • F)dT + qi + ii	 ( 5)
t-A

In these equations, the notation "0" means "integer part of," b i is

bias, S i is the product of u i and the sensor's scale factor, M i is a

3
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vector of mass-unbalance coefficients. F is specific force, q i is quantization

error, and r i is random error. The quantities bi, Si and M i are estimated
for each sensor by a calibration procedure described in the appendix. The

gyro measurements are used to estimate Q and accelerometer measurements are
used to estimate: F. The generic notation adopted for the input vector to be

estimated from the r3ensors is p; the generic notation adopted for the ith

sensor's output is mi.

The equation

mi = ui	
J 

pd T 	(6)

therefore illustrates, approximately, the relationship between the input, and
sensor's output, m.

Computation of Orthogonal Triad Equivalent Measurements

In order for aircraft sensor measurements to be useful in aircraft navi-
gation or control, they must first be transformed from the tetrad reference
frame into equivalent orthogonal triad measurements relative to the aircraft
body reference frame. When four sensors are thought to be operational (no

failures yet detected), a least-squares procedure is used to effect the trans-
formation. 1'rom equation (6) we have

ml

m 2 bUT
1pdt (1)b

ml

where the lower left subscript, h, moans "expressed in the hody frame." The
least-squares solution then becomes

	

m l	 ml

	

b pdT = (bUbUT)-1 

^.(M4

m2	

b`

Tt(tUtUT\-1 

t6(m4)

m2	 (8)
J	 m3	 J	 m3

Equation (8) holds for a general tetrad geometry. In the special geometry of

the ortho-skew configuration, the following simplification results.

T

	

.b	 -1	 ml

• tb p di = ( b l bu4)	 t ^T	
b

t

T bu41(m4
m2

	

b u 4	 /m3
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bTt m`"+ 2 b u4 Cm4 - cos n(m l + m2 + m 3 1 	(9)
mi

Combining

	

E5 ' 
m4 - cOs r) (m+ m 2 + m 3 )	 (10)

and

cos n

h 
u 4 - bTL Cos n	 (l.l)

cos n

into equaticn (9), the least-squares output vector may be written

M1 + ( E5 cos n)/2

	

b fP d1. = b"' t m2 + ( t 5 cos n)/2	 (12)

J	 m3 + (E 5 cos 0/2 )

When a sensor failure has been detected and isolated, the mapping excludes the
failed sensor. Denoting the unfailed sensor axes by u i , u i , uk and corre-
sponding measurements by m i , m j , mk, the general solution becomes

mi

bfp dT	 (bui bu j b il k ) m i

°1k

mi

bTt( t a i t"j t uk ) mJ

m 

bT t I t (uj h u k )m i + t (uk xu i )m
i 
+ t (u i x uj)mk J/(6 1 xu

j
 • uk )	 (13)

When the sensor geometry is restricted to the ortho-skew configuration and the
failed sensor is removed, then the following simplification of (13) results:

ml

	

bfp dT = bt t
m 2	(No. 4 failed)	 (14)

	

m;	
(skewed sensor)
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m4/cos n - m 2 - m.i

b fp dr - hT t 	 m2	 (No. 1 failed)	 (15)
/	

m.1

ml

h 'p dT	
bTt 

m4 /cos n - ml - m.j	(No. 2 failed)	 (16)

m3

ml

b rp dT - b i' t 	m2	 (No. 3 failed)	 (17)

Jl

	

m4/cos n - ml - ml

Failure Detection by P.Ir,Lty Residual Sum Divergence

A theoretical relationship exists for any tetrad configuration that
relates the measurements from the four like sensors:

m4 = rim  + fm2 + Ym 3 	(18)

Equation (18), which follows from equations (3) and (6), states that the out-
put of any sensor can be formulated as a linear combination of the outputs of
the other three sensors. This relationship is called parity. The coefficients
a, b, Y are called parity coefficients. They can be determined from the
tetrad's geometrical configuration. For the urtho-skew configuration,

a - a - Y=cos n-1/v'3- 	(19)

More generally,

C1H	 = ( u 1 u^ u 3 ) -1 u4	 (20)

Y

Equation (18) never strictly holds in practice, hence a tetrad parity
residual, E 5 , is defined as follows.

E 5	 m4 - am 1 - fm 2 - Ym 3 	(21)

Thus, E5 is the difference between the observed m4 and the m4 computed
in equation (18). For a perfect system, E 5 would always be zero in the
absence of failures. Normal instrument errors and output quantization cause
the parity residual to take on a small range of values in normal operation.
When a failure occurs, the parity residual exceeds its normal range. Thus,

6
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one can detect failures by monitoring e 5 . In this study, the parity residual
is summed over a specified number of sequential data frames in order to detect
small but persistent failures. These sequential data frames are called "accu-
mulation interval for detection" or "detection window" and denoted by Td.
The detection threshold d is the tolerance on the parity sum. A failure is
indicated when the magnitude of the parity sum exceeds the detection threshold.

Failure condition:	 !1; E5 I > d
Td

(22)

The detection threshold andthe length of the detection window determine the
level of step failure which can be detected.

Figure 2 illustrates the failure detection procedure. The parity resid-
ual is computed for each set of four sensor measurements and is summed over
the appropriate number of frames (T d) for comparison with the detection
threshold. Figure 2 shows a step change in the parity residual, such as
might result from a sensor failure. The change in the parity residual is the
product of the step-failure size and the parity coefficient corresponding to
the failed sensor. The parity residual sum increases the magnitude as a
result of the step change in the parity residual, then levels out because the
parity residual is summed over only the most recent Td data frames, if the
frllure is severe enough to cause the parity residual sum to exceed the detec-
tion threshold, the detection logic indicates a failure to the system.

The measurements mi used in the computation of the parity residual
must be appropriately compensated for biases, scale factors, and other known
effects, or else the parity residual sum will indicate false failures. The
effect of misalignment errors on the parity residual is to cause the parity
coefficients to be in error. The parity coefficients are computed from the
best estimates of the orientations of the sensors, but the measurements will
be made by the sensors in their actual orientations. The differences between
the estimated and actual orientations are misalignment errors. The coeffi-
cients, computed as in equation (19), depend on the orientations of all four
sensors even though the coefficients multiply only three measurements in the
parity residual. A bias-compensation error affects the parity residual in
proportion to the coefficient it multiplies. That is, a bias error in sensor
No. 4 contributes to the parity residual directly, while a bias error, 6, in
sensor No. 3 contributes -yb to the parity residual. Thus for the ortho-
skew configuration, a bias error of one unit in sensor No. 4 is equivalent to
a bias error of F3 units in any one of the other three sensors in its effect
on the parity residual. Of course, if a bias error is too large relative to
the detection threshold, it will cause a false failure indication. For
example, if the estimated scale factor of sensor No. 2 is in error by s, the
corresponding contribution to the parity residual will be -;$m 2 . As with
biases, scale factor compensation errors can cause false alarms. Random
measurement errors which have small means and variances relative to the quan-
tization level will not significantly affect the parity sum.

The detection of a failure in a tetrad inertial sensor unit is a simple
operation of calculation of the parity sum from accumulation of the parity
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residual. When the magnitude of the parity residual sum exceeds the preset
detection threshold, a failure is indicated. The minimum level of step error
that can be detected is determined by the number of points in the parity
residual sum and the size of the detection threshold.

Failed-Sensor Identification Algorithms

A tetrad strap-down inertial system inherently possesses fail-safe
capability by virtue of the failure-detection capability just discussed.
Extension to fail-operational, fail-safe capability requires the following:

1. A reliable algorithm for determining which instrument has failed
when the failure-detection scheme indicates a failure. (The failure can then
be removed from usage in subsequent calculations.)

2. An algorithm for detection of a failure in the three remaining
instruments.

3. A confidence algorithm to preclude the erroneous identification of
a good sensor rathr.• than the faulty sensor.

Two failed-censor identification algorithms have been investigated, each
using measurement prediction in their computations. These algorithms, called
the 4seudosensor (PS) algorithm and the constrained-fit (CF) algorithm, are
applied jointly to determine which sensor has failed.

Pseudosensor algorithm — If a fifth sensor of each type were available
(i.e., a pentad configuration) each of five parity residual equations could
combine the measurements of four sensors and exclude one sensor. Thus, extra
parity residual equations would be used to identify the faulty sensor. If ei

is the parity residual excluding mi , the parity residual equations would be
of the form:

E1 0 -a12 -a 13 -a 14 1 ml

E2 -a21 0 -a 23 -a 24 1 m2

E 3 -a 31 a32 0 -a 34
7, m3	 (23)

E4 -a 41 -a42 -a43 0 1 m4

f5 -a 51 -a52
-a 53 1 0 m5

The equation for e 5 excludes m5 and may be recognized as the tetrad parity
residual defined earlier in equation (21). Pentad (five-sensor) failure
identification utilizes the five parity residuals, e i . If sensor i fails,
ei will be smaller than any of the other parity residuals because mi, the
measurement which is in error due to the failure, enters each of the pentad
parity residual equations except the equation for e i . Sensor i is thus
identified as the failed sensor.

8
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In the pseudosensor algorithm a fifth sensor is assumed whose predicted
output, m5, is used in the first fo-r pentad parity residual equations to
identify the failed sensor. Correct identification is limited by the ability
to predict m 5 . The fifth parity residual is used only for detection because
it is the only parity residual computed from Independent sensor outputs.

In the absence of failures (i.e., prior to the detection of a failure in
the tetrad configuration), the pseudosensor's output, m5, may be computed
from the measurements of the four real sensors:

M 5	 hu5 • bfp d

= c 51 
In  + c 52 in + c 53 m3 + c 54 m4
	 (24)

Tha coefficients in equation (24) are defined by the geometry of the sensing;
axes of the real sensors and the sensing; axis (i.e., bu 5 ) chosen for the
pseudosensor.

-1
51 c 52 c 53 c 54) - b u 5(J b

UT' 
) b 

When a failure is detected, stored past values of m 5 are used in a least-
squares fit to obtain polynomial coefficients with which to predict m5.

m 5 (t) = b 5o + b 51 (t - t 0) + b 52 (t - t0 ) 2 + ... + b 5p (t - t 0 ) p	(26)

The least-squares fit should be based on recent data, but should not
Include data taken after the failure occurred. The exact time of the failure
is sometimes difficult cr impossible to ascertain. The apparent time of fail-
ure can be inferred by summing the parity residual backwards from the time of
failure detection until this sum exceeds a present tolerance level; the
most recent parity residual is added to the next most recent, etc. This
process requires either that the past individual parity residuals or past
sensor readings be stored in the computer. The number of points required for
the backward sum to exceed the preset threshold level indicates the apparent
time of failure relative to the point of detection. fhe interval of time be-
tween the apparent time of failure and the time of detection is the isclation
interval for identification, T i . The detection window T d is greater than or
equal to the number of points in the backward sum; otherwise, the failure
would not have been detected in T d . The length, Tf, of the fit interval and
the polynomial order of the fit were chosen experimentally for this paper tu
optimize failure isolation success.

Using data from the fit interval to predict the output of the pseudosen-
sor in the isolation interval Ti, the first four pentad parity residuals,
equation (23), are evaluated. These residuals are summed across Ti and the
smallest sum in magnitude is identified as corresponding to the failed sensor.
Figure 3 illustrates the pseudosensor algorithm.

(25)
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The situation shown in figure 3 is for a failure of sensor No. 3. The
failure is detected at time td. The apparent time of failure is shown as
four frames earlier, or t d -4A.   Pseudosensor fit coefficients are computed
in the fit interval Tf which includes the fit reference time, to. The four
pseudosensor parity residuals, ei, are summed across the isolation interval,
T i . The failure causes three of these sums to diverge more dramatically from
zero than does Ee3 ; Ee3 exhibits some divergence, primarily because of pre-
diction error. The rate of divergence of each of the other parity residual
sums is approximately proportional to the failure level times the parity coef-
ficient (eq. (23)) which multiplies m3. The prediction error enters each
parity residual sum equally, but may tend to reduce certain sums more than
others because of sign differences in failure-induced divergence.

In summary, the pseudosensor algorithm,

1. Sums the tetrad parity residual, e 5 , backward from the time of detec-
tion to determine the apparent point of failure and the length of the isola-
tion interval for identification, Ti

2. Uses stored m5 data computed from equation (24) to calculate
coefficients of a polynomial (26) for the estimated pseudosensor output for
use in the isolation interval

3. Extrapolates the polynomial to obtain predicted values of m5 to be
used in the pseudosensor parity residual sum equations (23) in the isolation

interval

4. Evaluates and integrates the pseudosensor parity residual sums, Eei,

(1 = 1, 2, 3, 4) over Ti identifying the failed sensor as the one whose
parity residual sum is smallest in absolute value

The ability of the pseudosensor algorithm to correctly identify the
failed sensor is limited by the ability to predict the output of the pseudo-
sensor across the isolation interval for identification, T21. The tendency
of prediction errors to grow restricts the length of Ti. Prediction errors
will cause the four pseudosensor parity sums, Ee l through Ee4, to diverge
from zero, even in the absence of failures, making faulted-sensor identifica-
tton difficult. If the prediction errors are adequately minimized, then one
of the parity residual sums (Ee3 in fig. 3) will not diverge as rapidly as
the others, thus making failed-sensor identification possible. The pseudo-
sensor parity coefficients, aij in equation (23), are geometry-dependent.
They are derived similarly to the tetrad parity coefficients, equation (20),
except that the pseudosensing axis, bus, enters their definition while one of
the actual tetrad axes is excluded. The pseudosensor's axis must not be
parallel to any tetrad axis or in the plane of any two tetrad axes. For
example, if the aircraft's yaw axis is chosen for the pseudosensor from con-
sideration of smoothness and predictability, the ortho-skew tetrad frame must
be rotated away from the body (i.e., aircraft) frame.

The numerical values of the pseudosensor parity coefficients depend on
the tetrad configuration as well as the relative orientation of the pseudosen-
sor. It is desirable that all the coefficients aij be approximately equal

10
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in magnitude (for equitable identification because of the dependence of parity
residual-sum divergence rate on these coefficients). An optimal orientation
of the ortho-skew tetrad frame (i.e., optimal bT t) was derived for which the
largest ratio of any two coefficients was about 3.3. The pseudosensor algo-
rithm is thnrefore unavoidably biased toward selecting some sensors as failed
over others because the parity residual-sum divergence rates differ for the
same failure level.

Constrained-fit algorithm — The basic idea behind the constrained-fit
algorithm is that the measurement residual (i.e., difference between a sensor's
observed and predicted measurements in the isolation interval, Ti, will be
greater for the failed sensor than for any of the unfailed sensors. This
strategy, therefore, also requires prediction of sensor output readings in
the isolation interval. Data points in the fit interval Tf are used in a
constrained polynomial fit for each sensor. The constraint imposed on the
polynomial fitting procedure is that the polynomials must obey the parity
equation (18) at all times. The fit constraint helps to smooth out noise and
quantization error in the individual sensor measurements which might corrupt
an unconstrained fit to the measurements. The fit constraint also tends to
outweigh the effects of failed data which may lie in the fit interval because
three unfailed sensors "out-vote" the failed sensor through the constraint.
The apparent point of failure and the isolation interval are determined by
summing the parity residual backward from the point of detection as in the
pseudosensor algorithm. . The fit interval ends at the point before the isola-
tion interval begins.

The predicted measurement of the ith sensor at time t is given by

mi (t) = bio + bii (t-t0) + b12 (t-t0 ) 2 +... + b ip (t-t0 ) P	(27)

where the coefficients b ij are evaluated from measured sensor data in the
fit interval. Equations for the bij will be presented later. Equation (27)
is used to predict each sensor's output in the isolation interval. The resid-
uals Si , which correspond to the difference between the actual sensor output
in the isolation interval and that predicted by the polynomial coefficients

d i = mi (t) - mi (t)	 (28)

are summed across Ti, leading co a largest (absolute) sum for one of the
sensors. The largest residual sum identifies the failed sensor.

Figure 4 illustrates the constrained-fit algorithm. The measurement
residual sums, Ed i, are shown as functions of time in the isolation interval,
Ti. Three of these sums wander away from zero as a result of prediction
errors. The fourth, that of sensor No. 3, is shown to diverge more rapidly
away from zero. As with the pseudosensor algorithm, prediction errors can
mask the divergence of relatively small failures and cause mistakes in iden-
tification of the failed sensor.
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The constrained fit is a least-squares polynomial fit for which the co-
efficients obey a linear constraint. The constrained polynomial obeys the
condition

m4(t) - nm l (t) + Si 
2
(t)+ Ym 3 (t)	 (29)

for t in the fit interval and in the isolation interval. Equation (29) is
the tetrad measurement parity equation. The factor y a, b and y are the
tetrad parity coefficients. Equation (29) conditions the coefficients of each
order as shown in equation (30).

b 4 - ab lj + bb 
2j+ Yb 3j	(30)

This condition reduces the problem to finding b ij for 1-1,2,3 rather than
for 1-1,2,3,4. Equation (27) may be written in matrix form as shown in equa-
tion (31),

where

m(T) - H(t)B	 (31)

171 1 (T)

In2(T)

m( T)	
m (T)	

(32)
3

111 4 ( T ) )

1	 0	 0	 T	 0	 0	 T2	 0	 0	 ...

0	 1	 0	 0	 T	 0	 0	 T2	 0	 ...
H(t) -	

0	 0	 1.	 0	 0	 t	 0	 0	 12	 ...	
(33)

A	 Q	 Y	 OtT	 6T	 1 T	 aT2	 ( T 2	 YT2

h10

b20

b 30

b11
f"

	

b21
B
	

b31
	 (34)

b12

b22

b 3,)

and where T = t - t0.
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The fit interval is divided Into n equal-length segments, each of
length A, (nA - Tf).	 Recent me asurements from _ie four sensors, having been
stored previously, are available for use in the fit. A four-vector, M(T),
whose elements are the four real measurements at T, is defined analogously
to equation (32). A measurement residual vector, Y. is defined by equa-
tion (35).

m(A) - m(A)	 m(A)	 H(A)

m(2A) - m(2A)	 m(2A)	 H(2A)

Y	 -	 B	 (35)

m(n,h.) - m(n,1)	 m(n;1)	 }f(nA)

where m(c) is the actual sensor output and m(T) is the estimated output com-
puted in the fit interval, Tf. A least-squares fit minimizes YTY by opti-
mizing in the fit interval, which is the objective of the constrained-fit
strategy. The matrix solution for 8 is

m(A i

m(2A)

B = ( G rG)
-1 G	

(36)

m(nA)

where

H(A)

H(2A)
G	 ( 37)

H(n

and H(T) was defined in equation (33).

The polynomial coefficients, B, computed by equation (36), are used in

equation (27) to predict the estimated sensor output, mi, in the isolation

interval, T1. The residual between the actual sensor output and the estimated
sensor output is computed as in equation (28), then summed across Ti.

The matrix, G, defined by equation (37), is a (4n x 3p) matrix, where p
is the order of the polynomial and n is the number of points in the fit

interval; GTG is a (3p x 3p) matrix which must be inverted to compute B. It

can be shown that the more convenient computational solution,

B = N-1 C	 (38)

holds, where P-1 is the inverse of the symmetric (p+l) x (p+l) matrix,

13
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AEi	 ...

A 2 ri 2	 A3E13	 A4Ei4

..	 ...	 ...	 ...

A2Ei2AEi

A 2Ei 2 A3E13
P (39)

i

in which the indicated summations are for i - 1,2,...,n. The vector, C. in

equation (38) is 3(p+l) - dimensional. Its elements, c j , are 3-dimensional
vectors defined by

Y(iA)jml(iA)	 a

c 3	F.(iA)jm2(iA)	 + 2 Z(iA) j t (iA) 8	 (40)

(iA) j m 3 (1A	 r

where ES(iA) is the tetrad parity residual at time iA relative to the fit
reference.

Detection of Second Failures

Once a failure has been detected and the failed sensor identified, there
are only three operational sensors remaining. Some mechanization is required
for detecting a failure in one of the remaining sensors if the once-failed
system is to be fail-safe. An adaptation of the pseudosensor algorithm
scheme can be used to fill this need. A pseudosensor measurement is gener-
ated from the measurements of the three unfailed sensors at each time-point
following detection and isolation of the first failure.

M = 
cm + c

5	
51 i	 5jII1_j + c5kmk

A recursive least-squares fit can be implemented to predict m5, using recent-
past data over a specified interval which does not include the current point,
in a manner similar to the generation of m5 with four good sensors.

M
5 

(T) = b5 0 + b5 1 T + b;2 T2 +... + bS pT P
	

(42)

The 65j are computed by a least-squares fit to recent-past values of m5. A
failure is indicated whan the magnitude of the pseudoresidual, 6 5 , defined by

6 5 -m5 -m 5	 (43)

exceeds a preset tolerance. If a second failure is not indicated, the current
measurements are used to update the polynomial coefficients b5j for the next
time frame. This algorithm can only be valid when the aircraft's motion is
smooth enough to be predictable in the near term.

14
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Confidence Algorithm

The operation of the pseudosensor and the constrained-fit identification
algorithms is subject to incorrect solution for small failures and for large
failures in conjunction with large amplitude high-frequency angular motion,
such as may occur in abrupt turns or in severe turbulence. For this reason,
a confidence algorithm was developed to test and reject these incorrect solu-
tions. It is better to only indicate the presence of a failure than to
identify a good sensor as a bad one and leave faulty data in the computational
process. That is, the effects of small failures in one sensor of a tetrad
inertial sensing unit are reduced (see eqs. (8) and (12)) in their influence
on the triad output by the three good sensors, but if good data are removed
by mistake, the faulty data have increased influence (see eqs. (13) through
(17)) on the output. The indication of an unidentified failed sensor can show
that the system's performance will be degraded. (The tetrad for these small
failures has only an FS capability.)

A confidence algorithm with 12 confidence measures was developed to judge
the validity of the faulty sensor identification solution. These measures
evaluate such questions as "How decisive is the solution, as judged by the
pseudosensor parity residual sums?", "How good is the fit as judged by the fit
residuals?" or "Do the pseudosensor and constrained-fit algorithm outputs
agree?". These confidence measures, which are somewhat empirical in origin
and derivation, often overlap each other in the nature of their tests. The
12 measures will be described, together with a mathematical statement of each
test. Definitions of variables used in the tests will be found in the nota-
tion section.

Confidence measure No. 1 - The isolation interval must be short. In
other words, detection must- be immediate. Not only are sharp failures more
likely to be correctly identified because of the implied failure size, but
short prediction intervals aid in successful identification as well.

N<Xl
	

(44)

Confidence measure No. 2 - The apparent failure level must be large.
Failure identification success improves when the failure is a high multiple
of the failure-free parity residual noise level.

E5/ap > A 2
	

(45)

Confidence measure No. 3 - The apparent failure level must be large in
comparison with the pseudosensor fit residual. Fit errors usually lead to
prediction errors, but are not critical to the solution if the failure is
sharp enough.

e5/ak 
P
/r5 > a 3	 (46)

Confidence measure No. 4 - The pseudosensor algorithm's outcome must be
decisive. The pseudosensor algorithm determination of failure is based on
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comparison among four parity residual sums. The smallest sum identifies the
faulty sensor, but in marginal cases, the smallest sum may not differ very
much from the next smallest sum. If the prediction error is small and the
failure level is large, however, the smallest pseudosensor parity residual
sum will be decisively smaller than the next smallest.

IFEns/FEminl > a4	(47)

Confidence measure No. 5 — Tile apparent failure level must be much larger
than the apparent pseudosensor prediction error. The apparent prediction
error is the value of the smallest parity residual in the isolation interval.

I E 5/akpl / ^ Frmin/ N I > 15
	

(48)

Confidence measure No. 6 — The rms pseudosensor fit residual must be
small. This measure is an absolute test of goodness-of-fit, normalized by the
rms parity residual but not compared against apparent failure size.

r 5/op < 16
	

(49)

Confidence measure No. 7 — The apparent failure must be large in compari-
son to the largest constrained-fit rms fit residual. This measure is analo-
gous to confidence measure No. 3, but for the constrained-fit strategy rather
than for the pseudosensor strategy.

e5/akcl/max(of) > X7
	

(50)

Confidence measure No. 8 — The constrained-fit outcome must be decisive.
This measure is analogous to measure No. 4.

H max/ F6all > i8
	

(51)

Confidence measure No. 9 — The maximum apparent constrained-fit predic-
tion error must be small compared to the apparent failure level. This measure
is analogous to measure No. 5.

Ie
5/akc /max(oi) > a9	 (52)

Confidence measure No. 10 — The apparently failed sensor's measurement
residual in the isolation interval must be large. This measure overlaps
measure No. 2 somewhat.

("max/N)2 - [max(n
i )

]

2/ op > x'10
	

(53)
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Confidence measure No. 11 — The rms constrained-fi residuals in the fit
interval must be small. This measure, like measure No. , is an absolute test
of goodness-of-fit, normalized but not compared with ap rent failure size.

max(o f)/op 4 all
	

(54)

yConfidence measure No. 12 — The answers obtained b the two identifica-
tion algorithms must agree.

kc	
k 
	 (55)
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Confidence measures No. 1 and No. 2 are independent of 	 a identification
algorithms. These measures assess the size of the fail a and the rapidity
by which it was apparently detected. (A ramp-type fail a is more difficult
to isolate.) Confidence measures Nos. 3 through 6 eval to how believable the
pseudosensor solution is. Confidence measures Nos. 7 t ough 11 evaluate the
reliability of the solution for the constrained-fit alg ithm. Confidence
measure No. 12 compares the results of the two algorith .
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If any of the confidence measures are not satisfie by the computational
tests, the identification solution is rejected and the stem reverts to a
fail-safe-only classification. The Xi must be determ ad for the particular
tetrad system under consideration, and determined such at no incorrect solu-
tions will be accepted while very few correct solutions re rejected.

TIASSESSMENT OF TETRAD FAILURE DETECTION, IDBN FICATION,
AND CONFIDENCE ALGORITHMS

Sensor Failures

ne
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The failure detection, identification, and confide a algorithms were
tested using prerecorded experimental data (appendix) c sisting of step
failures introduced in the sensor outputs. As stated 1. the introduction,
the ability of the identification algorithms to identif step failures is a
necessary, but not sufficient condition, for flight con of application. The
failure step size was varied between 367°/hr and 4900°/ . These step failures
were inserted in four different test data regions which eluded simultaneous
ramp and sinusoidal motion on different orthogonal axes These experimental
data are described in the appendix.

Sensor Response Prediction

pe
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nThe success of a possible tetrad FO-FS strategy de ds on accurate pre-
diction of the outputs of the individual sensors (const ined fit) and of the
fifth sensor (pseudosensor) in the isolation interval f	 sensor data col-
lected in the fit interval. Because of unpredictable a craft motions, the
predictions always contain errors. These errors can le to an erroneous
faulted sensor identification. The prediction error gen rally increases with
increasing lengths of isolation (prediction) interval.
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This error function is illustrated in figure 5, which shows the rms pre-
diction error of the fifth sensor (the pseudosensor) as a function of isola-
tion interval (i.e., prediction length). The figure displays the rms value
Of 80 samples of (m5 - m5) predicted one frame, two frames, ..., ten frames.
The 80 samples were obtained by fitting five points to a straight line, where
the fit reference point, to, was taken at each of 80 sequential points.

Practical judgments were required in setting the polynomial fit order and
length of the fit interval for this experimental evaluation. Thresholds for
failure detection and confidence measures must also be selected while con-
sidering the nature of the sensor data. Selection of fit order and the num-
ber of fit points depends on the frequency of the motion and the measurement
sampling frequency as well as on the sensor quantization and noise levels.
The experimental data were sampled every 0.128 sec (about 8 Hz). Gyro quan-
tization was 24.5 0 /hr per count (bit) per data frame. The rms parity residual
noise in the four regions varied from 1.5 to 2.0 counts per data frame. Ranges
of fit order and fit interval length were tested to determine optimum values
for this experimental evaluation. Fit orders 0, 1, and 2 were tried, along
with 3, 5, and 7 points in the fit interval.

Table 1 presents the number of successful faulted-sensor identifications
obtained from 2560 cases. The 2560 cases were made up of 80 time points, 8-
step failures at each time point and for four different sensors. The 8-step
failures ranged from 40 counts per data frame (980°/hr) to 180 counts per
data frame (4410°/hr). Table 1 indicates that fits of order 1 (i.e., straight
line) to three data points in the fit interval gave the best faulted-sensor
isolation success for the cases tested. Table 2 presents the information of
table 1 in percentages. Relative success of the straight-line fits to three
or five data points is explained by the vehicle motion in the evaluation.
Its frequency was higher than the measurement sampling frequency (8 samples/
second) so that only a few data frames (e.g., 3 or 5) could be used in the fit
interval. The motion was sufficiently time-variant that a zero-order fit was
inadequate. Quantization of the sensor output and sensor measurement noise
cause fitting mistakes for second-order and higher-order fits.

TABLE 1. — NUMBER OF SUCCESSFUL FAULTED-SENSOR
IDENTIFICATIONS vs FIT ORDER AND FIT INTERVAL

Data frames in
fit interval

Fit order
0 1 2

3 1728 2220 1792

5 3.553 2130 2032

7 1783 2053 2016
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TABLE 2. — PERCENT SUCCESSFUL FAULTED SENSOR
IDENTIFICATIONS vs FIT ORDER AND FIT INTERVAL

Data frames in
fit interval

Fit order
0 1 2

3 67.5% 86.7% 70.07

5 60.7% 83.2% 79.4%

7 54.0% 80.2% 78.8%

The necessity for a good fit decreases as the failure level increases
because the effect of fitting and prediction errors becomes relatively less
influential on the outcome of the isolation strategies. Results in tables 1
and 2 indicate trends. These trends were used to select the polynomial fit
order and the length of the fit interval for the detailed evaluation of the
strategies. The three-point fit interval and first-order fit were shown to
be the best fit (86.7% successful) for this case, but a five-point, first-
order fit (83.2% successful) was chosen for later studies because the confi-
dence measures for the five-point fit were slightly superior to those for the
three-point fit.

A failure is indicated when the moving-window sum of the parity residuals
equals or exceeds the threshold. For example, if the detection threshold was
set at 980 0 /hr, then a step failure of 245°/hr in sensor No. 4 would cause a
failure indication in four data frames (i.e., (4)(245°/hr) = 980°/hr). This
detection threshold must be high enough to exclude "false alarms" yet low
enough to trigger on minimum failures. Much smaller failures can be detected
than one could expect to correctly isolate (i.e., identify) in a tetrad instru-
ment package. Figure 6 indicates the number of frames required to exceed a
preset detection threshold of 980'/hr for various step-failure levels. The
data are presented for detection intervals from 1 to 10 data frames. Eighty
test cases were run for each step-failure level. For example (refer to
fig. 6), 80 different 200°/hr step failures were imposed on gyro No. 1 and a
detection of these simulated failures occurred 15 times in the seventh frame
following failure, 51 times in the eighth frame and 14 times in the ninth
frame (for a total of 80). Similar failures are detected more rapidly in
gyro No. 4 under the same conditions because of its larger coefficient (weight-
ing factor) in the parity residual.

Confidence Algorithms Constants

The identification confidence measures (CM) require numerical constants
in order to execute the algorithm for accepting or rejecting the decisions
made by the pseudosensor and constrained-fit algorithms. The numerical con-
stants are strongly related to the character of the experimental data.
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Considerable computer processing of different values for the numerical con-
stants (using the some experimental sensor data) was done to select the best
values to be used in this study. The primcry constraint used in selecting
the numerical constants was that no false identifications be accepted by the
confidence algorithm. Practical considerations led to the numerical values
(thresholds) used in the confidence measures and shown in table 3. These
values are not optimized, but represent the best performance that could be
obtained during the study.

TABLE 3. — CONFIDENCE THRESHOLDS, Xi

1 1i 1 ^i

1 4 7 4

2 20 8 2

3 6 9 3

4 2 10 30

5 4 11 3

6 3

Performance Summary

There are four possible outcomes of the two faulted-sensor identification
algorithms in connection with simulated failures. These four outcomes are:

(Y) Successful identification of the faulted sensor and acceptance of
the solution

(N) Unsuccessful identification of the faulteu sensor and rejection of
the solution

(R) Successful identification of the faulted sensor and rejection of
the solution

(U) Unsuccessful identification of the faulted sensor and acceptance of
the solution.

The objectives of the tetrad strategy are to maximize the number of
successful, accepted (Y) cases, minimize the number of unsuccessful (N) or
rejected (R) cases, and have no unsuccessful-but-accepted (U) cases. The
experimental results summarizing the performance are shown in table 4. These
results illustrate the experimental performance of the tetrad strategy for
simulated step failures. For step errors of 2940°/hr or greater, the isola-
tion interval is one and the (Y) percentage of total cases is greater than
80%. For step errors smaller than 2940°/hr the isolation intervals are often
greater than one data frame. The number of (N) and (R) cases also increases
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TAROS 4. - 1'RRFOWNC.F. SUMMARY OF THTHAII FO-FS REDUNDANCY mh,vrinr STIIATFGY

Gyro ND1° F02 FD3 two
error,
'Ic87hr Yb N° Rd	 lj e Y N H	 U Y	 N It	 0 Y	 N	 R	 U

367 0.0 1.9 11.0	 0.0 0.0	 18.4 4.7	 0.0 0.0	 55.6	 18.7	 0.0

490 .0 5.9 2.2 37.8 10.0 70,9	 11.1

612 0.0 0.0 0.3	 0.0 ..0 18.1 8.4 39.7 20.9 I	 6.6	 5.9	 I

735 .0 .0 1.6 .0 31.6 24.4 25.6 15.6
,11	 .9
	 11
	 1r

980 3.1 5.6 11.6 .9 30.3 40.3 4.7 3.4

1225 5.3 6.9 16.2 .0 11.2 51.6 2.5 .6

1470 13.1 9.7 25.6 7.5 I1.6 31.9 .6 .6

1715 21.9 8.7 60.6 .3 2.2 6.2

1960 lfi.9 11.6 49.4 1.2 .3 1.6

2450 60.1 3.7 35.6 .0 .0 .3

29:10 83.4 16 15.9

31,030 90.9 .6 8.4

1920 95.6 4.4

4410 99.1 .9

4900 100.0 10

Fill = ith tiara frame in innlation (ntorval

1•Y u successful and confidence measures accept decision (s; of 320 samples)

C  n unsuccessful and confidence measures reject decision (? of 320 samples)

` It o successful but confidence measures reject dectslon C- of 320 samples)

cl' - unsuccessful but confidence measures accept decision C:. of 320 samples)
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until, for failures smaller than 980°/hr, all cases are either (N) or (R).
The results from table 4 are presented graphically in figures 7 and 8. Fig-
ure 7 allows the percentage of successful isolations (Y+R outcomes) and the
percentage of successful-and-accepted isolations (Y outcomes only), versus
failure level, without regard for the number of frames required to detect the
failure. Figure 8 shows three histograms representing horizontal samples of
the data from table 4. Each histogram pertains to a particular failure level
(490°/hr, 980°/hr, and 1960 0 /hr are shown). A bar is shown for each frame.
The total height of the bar at each frame is the percentage of cases detected
in that frame. Each bar may contain "N", "R" and "Y" segments. In the histo-
gram for 1960°/hr step failures, for example, nearly 97% of the failures were
detectedin one frame and about 857 of these were successfully isolated,
although only about 367 were accepted. The other bars may be similarly inter-
preted. The tetrad strategy detected and accepted 1007 of all step-failures
larger than 4410°11ir and no unsuccessful solutions were accepted for the fit
order and fit intervals chosen for this detailed study.

It is significant that no cases of type (U) occur, even for small fail-
ures. The confidence algorithm precludes an error in failed-sensor identifi-
cation, but it also causes rejection of many successful isolations. These
are shown in table 4 as (R)-type cases. The penalty for excluding all (U)-type
cases is illustrated in figure 7, which shows the divergence between unquali-
fied successful identifications and successful identifications accepted by the
12 confidence-measure algorithms. Relaxing the confidence-measure thresholds
to accept more successful identifications will increase the likelihood of
accepting wrong identifications unless the confidence algorithms are improved.

The percentage of (Y) cases can be increased by decreasing the quantiza-
tion level, while increasing the quantization level degrades the isolation
performance. This is shown in figure 9, the input data for which was simu-
lated and noise-free. The practical value -)f the quantization level, q, is
approximately 1.6 aresec/count — a level currently available in laser gyros.
The 997 confidently identifiable step-type failure at a 1.6 aresec/count
quantization level is about 500°/hr.

CONCLUDING REMARKS

It has been shown that for step failures of a given magnitude, the faulty
sensor can be identified. For lower magnitude step failures the tetrad strat-
egy does not identify the faulted sensor properly; however, the confidence
algorithm indicates when the solution is suspect.

As has been shown in the development, four sensors are necessary for
detecting (by parity) a failure. Additional information is needed in order
to isolate which one of the four has failed. This study investigated the
feasibility of using prediction techniques for gaining the required informa-
tion for identifying sensor failures in the tetrad configuration.

An interesting by-product of this study was the problem of generating
clean parity signals for the detection algorithm from experimental data.

iy

r

G
f
L

22



Although the integrating rate gyro sensors were supposedly of inertial-grade
quality, considerable computational effort was required to obtain clean enough
signals for this study.

These problems suggest that using parity residuals for detection and
isolation in pentad and hexad inertial reference systems requires consider-
able care in the calibration of the units. The instrument's output also has
to be relatively free of noise with low quantization levels if party resid-
uals are to be useful in detecting small bias-offset-type failures with very
small probability of false alarms.
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APPENDIX

EXPERIMENTAL FACILITY AND DATA USED IN STUDY

The tetrad FO-FS strategy was tested with real sensor data generated on
the facility shown in figure 10.

Facility Description

This facility was developed at Ames Research Center for testing redun-
dancy management concepts applicable to strap-down inertial sensor systems.
The facility includes a three-axis gimbaled table; a laboratory strap-down,
variable angle, hexad inertial sensor assembly; a minicomputer; a digital
magnetic tape recorder; and a line printer and other peripherals required for
conveniently testing redundancy management concepts and strategies. The mini-
computer is used for time-division multiplexed data acquisition and for driving
the table.

The attitude table is an orthogonal three-axis, gimballed system controlled
by an electro-hydraulic servo whose attitude inputs can be derived from typical
V/STOL flight profiles prerecorded on magnetic tape, or by a function gener-
ator with sine wave, triangular wave, or ramp outputs at selected frequencies.
Monitoring of gimbal angles is accomplished with high resolution linear
Inductosyn digital shaft encoders whose angular resolution is 2.5 aresec.
The table is mounted on a concrete base 1.5 m (5 ft) in depth, which is in
turn supported by 30.5 m (100 ft) pilings.

The variable angle hexad strap-down inertial sensor assembly shown in
figure 11 is mounted on the attitude table in an ortho-skew tetrad configura-
tion, with three sensor (gyro and accelerometer) pairs orthogonal to each
other, and a fourth sensor pair skewed to a position which has equal angles
to the three orthogonal axes. The gyros are Hamilton Standard Model RI1139
single-degree-of-freedom, pulse-rebalanced, rate-integrating wheel type, and
the Singer-General Precision Model 2401 accelerometers are pulse-rebalanced,
single-axis, pendulous devices. All the sensors were surplused from the
Lunar Module Abort Guidance System of the NASA Apollo program.

The data acquisition system, schematically shown in figure 12, consists
of 14 time-division multiplexed channels which are used to transmit both in-
ertial sensor data and gimbal axis angular-position information from digital
shaft encoders to the minicomputer for reprocessing. The formatted data are
then transmitted to a digital magnetic-tape recorder and also to a line
printer. The data acquisition system includes both A-D converter and D-A
converter units for outputing to analog recorders or inputting from function
generators or conventional tape.

Sensor data and digital shaft encoder data are transmitted to the com-
puter via the multiplexer every 128 msec. The computer transmits these raw
data to the digital magnetic-tape transport unit for use with off-line
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redundancy management experiments, and also unpacks and scales the data for
use with four different analysis programs. The data analysis programs in
the minicomputer perform the following functions: parity-error computation,
sensor cumulative count average, gyro error detection and a comparison of
sensor and shaft encoder angular position information. The output of each
program can be displayed on a line printer for quick-Look analysis.

Inertial Sensor Calibration

Output signals of gyros and accelerometers must be compensated for non-
zero biases, non-unit scale factors, axis misalignments and other effects in
order to be made useful in either a flight control or navigation system.
Calibration was accomplished using static and dynamic methods. In a stat.ton-
ary condition, gyros measure Earth's rotation rate and accelerometers measure
gravitational reaction. Wheel gyro output is affected by gravity because of
wheel mass unbalance. The calibration procedure was formulated by a measure-
ment model which related the estimated input and measured sensor output
through the compensation parameters. Equations (Al) and (A2), which arse the
same as equations (4) and (5) but repeated here for the reader's convenience,
illustrate the measurement models:

Attitude gyro measurement model:

t

Aei (t) = f (bi + Si • 0 + Mi • r)dT + q i + ri
	 (Al)

t-A

Accelerometer measurement model:

r

t

Avi (t) _ t-A (bi + S i • P)dT + qi + ii	 (A2)

Compensation parameters are: biases (b i), scale factor and alignment-

vectors (Si) and, for the gyros, mass unbalance vectors (M i). Inertial
sensor outputs and three-axis table attitude angles are recorded for a number
of prescribed static orientations. A standard least-squares procedure is
used to determine those compensation parameter values which minimize the sum-
squared difference between estimated and observed sensor outputs. Measurement
noise and quantization effects are accommodated by averaging the sensor out-
puts over a 20-min interval at each static orientation.

The scale factor and alignment vectors, Si , for the gyros are determined
by a dynamic calibration procedure in which the attitude table is rotated
through a given angle about each gimbal axis in sequence. Gyro outputs are
approximately proportional to the component of rotation along the gyro's
input axis. This relationship permits calibration of S i using a finite
rotation sequence. The two methods are shown schematically in figure 13 and
the resultant calibrated compensation parameters are shown in table 5.
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TABLE 5.- SENSOR COMPENSATION PARAMETERS

Bias, b 

(counts)

Scale factor-alignment vector,
Si (counts/deg or counts/g)

Parity
coefficients

Gyro No. 1 (a) -0.36435 10.30 -0.61 -1117.97 - 0.66035

Gyro No. 2 (0) -.15447 40.40 1123.62 -1.02 - .63636

Gyro No. 3 (y) .01053 -1090.40 35.06 -92.47 + .6601

Gyro No. 4 (1) .13842 752.35 691.46 -667.86 1.0000

Accel No. 1 (a) 1.24 -5.40 2.02 -1290.55 - .57213

Accel No. 2 (a) -18.09 39.94 1311.82 -27.87 - .55180

Accel No. 3 (y) .54 1258.06 -33.17 -133.36 - .58508

Accel No. 4 (1) -7.96 755.01 705.61 -831.77 1.0000

Note: The gyro mass unbalance compensation parameters used in this paper were
zero.

The tetrad parity residual, t
5

, of equation (A3) is a direct measure of
the "goodness" of the calibration.

E5 = m4 - amt - am  - ym3
	 (A3)

If the estimated bias of any one sensor is in error, the average parity
residual will be proportionately offset from zero. The parity coefficients
a, S, and y, which are computed from the estimated scale factor and alignment
vectors Si , must be very accurate or the gyro parity residual will fluctuate
wildly in the presence of large angular rates. The parity residual bias error
determines the failure-detection sensitivity and the minimum isolatable failure
level. These derived parity coefficients are shown in table 5.

Tetrad Experimental Data

Figures 14-16 show the actual gyro data used to evaluate the tetrad
FO-FS algorithms. The gyros were mounted on the motion table which was com-
manded to undergo oscillatory angular motion about two axes-roll and pitch.
The gyro output shown in the figures represents digitized integrated angular
rate sensed as a result of this motion.
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The apparently continuous curves shown in the figures are really discrete
points connected artificially by the plotting routine. The discrete points
are sensed angular rate integrated over one data frame (0.128 sec) by each
gyro. Oscillatory angular motion was selected as a convenient way to intro-
duce variable, flight-similar angular rates to be measured by the gyros. The
period of the commanded oscillatory motion was chosen as 5-10 sec for roll and
100 sec for pitch. Amplitudes of the motion were chosen as 4° in roll and
20° in pitch. This motion was well within the capabilities of the table and, 	 ,.
though not a perfect simulation of aircraft motion, developed rates and rate
variations which might be encountered in aircraft flight. Irregularities in
the table drive system produced irregular rate variations, especially notice-
able in the pitch (outer gimbal) axis, which degraded performance of the
failure isolation algorithms. These irregular rate variations are believed
to pose a more severe test of the failure isolation algorithms than real air-
craft motion would pose.

Gyro data from four different regions (I, II, III, and IV) of the data
displayed in figures 14-16 were used to test the algorithms. Shown on each
figure is the parity residual computed from the raw sensor data and the sensor
compensation parameters from calibration. The parity residuals showed no
observable bias, a noise level of between 24.5°/hr and 49°/hr and a motion
dependency (e.g., scale factor misalignment or mass unbalance error) of about
1%.

Region I, shown in figure 14, represents a roll oscillation of 0.1 Hz and
no pitch or yaw motion. The pitch gyro, whose axis was not perfectly orthog-
onal to the roll axis, exhibits a small component of roll rate while the
skewed gyro exhibits a sizable component of roll rate. The rolling motion
includes both (commanded) and high (resultant) frequency components. The peak
roll was approximately 4000°/hr.

Region II, shown in figure 15, includes a rolling oscillation similar to
that of Region I, a pitch rate with high frequency jitter, and no yaw motion.
Region III, also shown in figure 15, includes low- and high-frequency varia-
tion in pitch and roll and no yaw motion. The maximum pitch rate was about
6400°/hr. Region IV, shown in figure 16, includes a linearly changing roll
rate from about +7800°/hr to -8300°/hr, a relatively constant pitch rate of
1900°/hr, and no yaw motion. Each region was about 3-sec long and provided
20 separate data frames.
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