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INTRODUCTION

This report summarizes a portion of the research performed under NASA

Grant NSG 5013 from October 1, 1978 - April 1, 1979. The report focuses on

the response of several demodulators used to encode video. The report con-

siders the effect of bit rate and error rate as well as the algorithm on the

picture response.

The following doctoral students M. Braff, S. Davidovici, R. Dhadasoogar,

'	 and N. Scheinberg. The report was prepared by N. Scheinberg and represents

'	 his Dactoral Dissertation submitted to the Faculty of the City College of New

York in January 1979.

Following a long history of cooperation between NASA and Dr. Schilling

and his graduate students, a DM system has been constructed for NASA

Goddard. Using this system will enable NASA and Dr. Schilling to determine

accurately the effects of ,interference on video signals which have been encoded

using elta modulation. The system has the capability of encoding 	 tg	 y	 p	 y	 g (and decoding)

voice as well as video information. The voice being transmitted on the horizon-

!:	 tal synch pulse.y 
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Abstract

This paper presents the results of a study on the use of the delta

modulator as a digital encoder of television signals. The study began

with the computer simulation of different delta modulators in order to

find a satisfactory delta modulator. After finding a suitable delta

modulator algorithm via, computer simulation, we analyzed the results,

and then implemented it in hardware to study its ability to encode real

time motion pictures from an NTSC format television camera.

We then investigated the effects of channel errors on the delta

modulated video signal and tested several error correction algorithms

via computer simulation. A very high speed delta modulator was built

(out of > CL logic), incorporating the most promising of the correction

schemes, so that it could be tested on real time motion pictures.

The final area of investigation concerned itself with finding delta

modulators which could achieve significant bandwidth reduction without

regard to complexity or speed. The first such scheme to be investigated
	 3

was a real time "frame to frame" encoding scheme which required the

assembly of fourteen, 131, 000 bit long shift registers as well as a high_

speed delta, modulator. The other schemes involveC,

two dimensional delta modulator algorithms.

V	
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7

2

'In N



I. THE DELTA MODULATION OF VIDEO
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CHAPTER I

Introduction

This study is concerned with the development of a practical and

cost effective digital	 alternative to existing	 analog television

transmission systems.	 At the present time television signals are sent

long distances in an analog fashion using vestigial 	 side band AM or by

using wide band FM.	 AM is used in both commercial 	 television broad-

casts and in cable transmission to our homes. 	 FM, on the other hand,

is used between ground stations and communication satellites as well

as on all of NASA's manned space flight missions, including the space

shuttle.	 Wide band FM is used for satellite and space TV transmission

because less power is needed with FM as compared to AM, and power is

at a premium on a transmitter placed in space.

{ If the analog FM system could be replaced by a digital system,

several	 advantages would result:

I.	 There is an improvement in signal-to-noise ratio.

II.	 Time-division multiplexing becomes simple.
r

III.	 Digital	 signals can be transmitted over long distances through

many repeater stations with less degradation than analog sig-

nals.

w IV.	 Scrambling for secrecy becomes straightforward.

The improvement in signal-to -noise ratio obtained by switching

I from an FM system to a digital one will, of course, depend on the type

of digital system used and on the criterion used to calculate the

f
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signal to noise ratio. If, for the sake of convenience, we assume the

digital system is PCM, and the RMS value of signal to noise ratio is

used, then it can be shown that about a 7 db improvement will result

from switching from FM to PCM. This result is derived in Appendix A.

It was stated earlier that digital systems can easily be time divi-

sion multiplexed making it possible for one satellite to handle several

users at one time. Normally, this advantage could be partially offset

by the ability to frequency division multiplex analog signals. Some of

our communication satellites, however, hard limit the incoming signal

and thus produce interference between frequency division multiplexed

channels. This fact, plus the savings in transmitter power, would appar-

ently make PCM the system of choice over FM.

Unfortunately PCM has a major drawback that has made it unusable

everywhere for standard, real time (30 frames/sec) TV transmission.

The problem lies in the fact that PCM expands the 4 11Hz, black and white,

base band, TV bandwidth by a factor of 6, to 24 MHz. This is equivalent

to a 48 mega-bit per second digital system. Very few transmission systems

can operate at 48 mega-bits per second or have 48 MHz of bandwidth to

dedicate to a single TV ch ,- nnel_. With an FM system the bandwidth can

be reduced at the expense of transmitter power, but with PCM the user
of

-	 must allot the required bandwidth (48 MHz) regardless of transmitter

power. Therefore, most users either do not send video information or

use FM, and either increase transmitter power or accept reduced quality

'	
pictures.
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CHAPTER II

Bandwidth Reduction Methods

To overcome the large bandwidth requirement of PCM, researchers

have used the statistical properties of pictures, as well as the psycho-

visual properties of the eye, to reduce the bandwidth requirement of

digital encoders.

2.1 Statistical Coding

Straight forward statistical encoding of a picture to reduce band-

width would proceed as follows (1 ). Assume the picture consists of a

512 by 512 array of picture elements which are quantized to 64 different

brightness levels. Then the total number of possible pictures than can

}	 be represented is
I	 2

(512)	 1,572,864	 500,000
(64)	 = 2	 = 10

Most of the 10500,000 possible pictures have a very low ;probability of

being sent. In fact, most of the pictures would not even be recognizable

to a human observer but would appear as random dots. This is because

real pictoral data contains significant structure, and structure is a

departure from randomness.

Now conceive of an encoder that has stored a unique code word for

each of the 10500,000 pictures. If we assign _short code words to the

more likely pictures and long code words to the least likely pictures,

-8



we can make the average number of bits required per picture close to

the entropy

500,000
10

p i log pi

where p i 'is the probability of the ith picture. Schriber (2) suggests

that the entropy of pictures is about I bit per pel;

Using pure statistical encoding, we can reduce the bandwidth of

digital TV from 48 MHz for PCM to 8 MHz for the statistical encoder.

Unfortunately such an encoder cannot be built since it would require

10500,000 words of memory. Even if each picture were broken up into

subpictures of only 4 x 4, the statistical encoding of a subpicture

would still require 1028 words of memory.

2.2 Psychovisual Coding

Psychovisual Coding acheives bandwidth reduction by removing that

information from a picture that will not be missed by a human observer.

By removing information from a picture, the picture is changed, i.e.

distorted, but some types of distortion cannot be perceived by a human

observer.

Schriber (2) and others have done extensive studies of the human

visual system , and have drawn the following conclusions.

1. Many pictures can be adequately represented with 64 brightness

levels, i.e. 6 bits per picture element (pel).

2. The shape of an object is more -important than its brightness.

OP

IL



Thus, it is more important to represent accurately the width

of the stripes on a shirt than to convey their true shade of

gray.

3. The frequency response of the eye falls off at both low and

high frequencies. Hence, the number of brightness levels

required for fine detail is less than that for moderate detail.

r P

i	
-

i

4. The eye cannot perceive fine detail on a moving object and it

takes about .6 seconds for the eye to adjust to a complete

scene change (3).

2.3 Transform Coding

Transform coding is a method for accomplishing some aspects of

both statistical and psychovisual coding. The first step in transform

coding requires that the picture be sampled and digitized to at least

6 bits. The samples, (gels), are then arranged in a matrix such that

the location of the pel in the picture corresponds to its location in

the matrix. We then transform the pictures, represented as an n x n

matrix, [XI, into a new n x n_matrix, [Y]. If the transformation is

chosen properly, some of the elements of [Y] can be discarded and others

s
quantized coarsely. The .resulting ['Yl* matrix could then be transmitted

to the receiver using fewer bits than would have been necessary if [Xl

the original picture was sent. At the receiver the [Y]* matrix is

inverse transformed back into a picture [X]*. If the transform was

chosen properly, and if no important elements of [Yl were discarded,

}	 .	 _ 10.



y	
then M *, the received picture, should look nearly the same as [XI,

the original picture.

'	 To illustrate how transform coding works on pictures, we will begin

with the familiar one dimensional discrete Fourier transform (DFT). The

basis vectors for this transform are harmonically related sinusoids.

To perform the transform we correlate our signal, x(n), n = 0, 1, 2...

N-1, with each sinusoid. The result of each correlation is a number,

or coefficient, Y(k). Mathematically we may write the correlation as:

N-1
-J2wkn/N

Y(k)

	

	 1	 e	 x(n)	 (2.3.1)
N n=0

k	 0, 1, 2, ...N-1

The exponential term is the sinusoid, k is the frequency, and x(o),

x(1) ... x(n-1) is the amplitude of the first, second and last sample of

the signal to be transformed.

We may rewrite equation 2.3.1 in matrix notation as:

Y = 1 -[FJ X	 (2.3.2)
N

where X is a vector whose elements could be the brightness levels of

the pels in a line of a picture. The vector, Y, is the transform of

X, acid [F] is an N x N matrix whose elements are given by 2.3.3

-j2Ni j/N
Fij	 e	 i, j = 0, 1, 2,,	 .N-1	 (2.3.3)

The amplitude of the elements of equation 2.3.2 are pictured in

i
Figure I.

i
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X may be recovered from Y by simply .multiplying each coefficient

of Y, y(k), k=0, 1, 2 ...N-1, by its corresponding sinusoid (basis

vector) and summing up the result. In matrix notation we would write

it as

[FI T Y = X	 (2.34)

(note [FI T = [F]
-
1 for this matrix)

At this point we have not saved any bandwidth sine there are as

many coefficients in the transform, Y, as there wFre samples in the

original line, X. Bandwidth can be saved, however, if we discard some

of the coefficients of Y and quantize others coarsely. It turns out
d

that the statistics of pictures are such, that many of the coefficients

are very small. Since these coefficients are small many of them can
`i

be discarded with little effect on the picture. From the psychophy-

sics of vision we find that the high frequency ,components can be quan-

tized coarsely since the eye is incapable of discerning fine shades of

gray on high spatial frequencies. The net effect is that some co.effi-

ci.ents'will require B bits to transnit, others few bits, and some can

be discarded altogether. Thus effecting a saving in bandwidth.

When the coefficients to be discarded aredetermined in advance it

is called zonal sampling. If the coefficients to be sent are adaptively

a^	 changed to optimize each picture then it is called adaptive transform

!
coding.

13
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It is relatively simple to extend the concept of a ono dimensional

transform which operates on a line of a picture, to a two dimensional

transform, which transforms the picture in both the 'horizontal and vPrti-

cal dimension. The motivation for doing so lies in the fact that elements

in a picture are correlated in every directi gn to the elements around

them.

With the picture to be transformed represented as an N x N matrix

[XI, the two dimensional transform can be carried out by correlating

M with N 2 orthogonal vectors, each N elements by N elements. These

orthogonal vectors [Flk,Q, k,yQ, = 0, 1, 2 ... N-1, comprise the basis

pictures of the transform. The result of each correlation is a coeffi-

cient, Y k R. Mathematically we may write the correlation as:

N-1 N-1
1

Y k k = NZ 
I Y_ FkQij Xij	 (2.3.5)
i=0 j=0

where Fkkij is the i,jth term of the k,Qth vector, and Xis is an element

of [XI, (see Figure 2) y

We may visualize equations 2.3.5 as an operation which places the

[X1 matrix over one of the [Fl
U
 vectors (basis pictures) say [F12,4.

The elements that touch each other are then multiplied together and

the result of the multiplications are then summed up. This yields

coefficient Y2 , 4- The next coefficient is found by using the next

[F1 k,,P vector.
i

We may recover the picture [XI, from the coefficients Y kk by

multiplying each coefficient, Y	 by its corresponding basis picture,

,14





IF1 kQ , and summing up the result. 	 Thus:

N-1	 N-1

Xij	 fijkQ	 Y kY 	 (2.3.6)
d. =0	 k=0

In general, the two dimensional transformation of an N x N picture

as given by equation 2.3.5, would require N 4 multiplications and addi-

tions,	 (MA's).	 Since the N4 multiplications processes N2 picture ele-

ments, and the sampling rate of the picture elements for standard TV is

125 ns/pel, we must perform N 2 MA's every 125 ns to transform real time

TV signals.	 If the transform technique is to be implemented in hardware,

N must be small, and the exponential 	 growth rate of MA's with N must be

avoided.

N can be made as small as we wish by dividing up the picture into

subpi'ctures, n x n each, and then transforming each n x n subpicture

separately.	 If n is made too small, the ability of the transform to

save us	 bandwidth will	 suffer.	 This is because all	 possible n x n sub--

pictures will	 become equally likely; therefore, they will	 correlate

equally, on the average, with all 	 the basis pictures, and all 	 the coef-

ficients of equation 2.3.5 will	 become equally important.	 Pratt	 (4)

conducted computer simulations with several different types of trans-

forms and his results, shown in Figure 3, suggest that n should be at

least equal to 8.	 The RMS coding error goes down only slightly for

n > 8 and goes up sharply for n < 8. 	 Even with N = n = 8, 64 MA's in

125 ns would still	 be unfeasable.

For certain transforms the n 2 growth rate of MA's can be reduced

16



5

Y

t

If, ^	 uAhf^GF	 RE^UCT /aN

2 ElTS f PE L

c'

2 d7t-
C

FOURI	 TPANQ"

1l^
 
AMA }? }	 q'^	 A A r

fir.- H A D   f 1 ^ !Z { C ^i/	 1 4̂^ /'^ r'^.,7

SLANT

? Y, Z	 4. XY	 Fx s	 1	 32 Y ^^ ^4 Y	 u 128x/1 K

13 L 0 C 	 VAI- I./

h

1

FIG 3 cODtA1G	 CP r,^-,i R 	(,[-0Cx	 -17 r	 F a M
d

SZVS A,AL	 T f A/V:'F06P7$

a

17	 FN ATT

I



P	 .

to 2n. These transforms are the one's that have the property that

their n2 basis pictures, n x n each, can be derived from n orthogonal

vectors of length n each. If as before, we let the k,Qth basis picture

be [Fl kv then [Fl k9. is formed front the orthogonal vectors Fk and T. by

equation 2.3.7.

[F]U = FkFi	 K,z = 0, 1, 2 ... n-1	 (2.3.7)

'	 As an example consider the following:

Fk = a	 FQ = c

	

b	 d

`a1

	

Fac ad

[FlkQ =	 J [c dl	 e bd

If the n orthogonal vectors, used to form the basis pictures, via

equation 2.3.7, are arranged to form the rows of a matrix [F], then the

two dimensional transform of equation 2.3.5 may be rewritten in matrix

notation as:3
4

[Yl	 = 1 2 [F] _[XI [F]T
	 {2.3.8)

n

As before M is the picture and [Y] is the matrix containing the

transform coefficient.

The inverse transform is given by:

[XI	 _ [F] T [Y] [F]	 (2.3.9)

The series representation for the transform and its inverse is

given by equation 2.3.10 and 2,.3.11

f
n-1 n-1

I
YkQ = n

	

	 Xi•
J 

Fki F• Q	(2.3.10)
J

I

L



n-1 n-1	 -
X ii = = = Yk9. Fik F

k	(2.3.11)
k=0 R=0

It should be obvious to the reader that any one dimensional trans-

form, (as given by equation 2.3.2) with any transform matrix [F], may

be expanded to a two dimensional transform via equation 2.3.8. However,

not all two dimensional transforms given by equation 2.3.5 can be reduced

to equation 2.3.8.

Computation of equation 2.3.10 requires only 2n 3 MA's. Thus a

real time digital encoder using a transform, which could be implemented

by equation 2.3.10 would require only 2n MA's every 125 ns. With n = 8

such an encoder would be feasabie but still very complicated. Fortun-

ately some of the transforms represented by equation 2.3.8 have trans-

form matrices, [F], that lend themselves to special, fast computationa'i

algorithms. The fast Fourier transform (FFT) is probably the best known

of these fast computational algorithms. Equation 2.3.10 could be com-

puted with only 2n2109 2n MA's using the FFT algorithm. The real time

encoder would then require 21092n multiplications every 125 ns. With

n	 8 there would be only 6 MA's every 125ns

There are four transforms which havefast computational algorithms

t
N	 that have been investigated for picture coding.. They are the _discretea	 ._

Fourier-transform, the Harr-transform, the Hadamard-transform, and the

-`	 slant-transform. From Figure 3 we see that the slant-transform is the
i

xm

	

	
best, in the mean square error sense. The slant-transform is the best

because several of its basis vectors look very much like a typical line

19
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of a picture. If several basis vectors correlate strongly with the

picture then the rest must correlate weakly since the vectors are ortho-

gonal. The weak ones can be discarded with little effect on the recon-

structed picture

The basis vectors of the slant-transform are shown in Figure 4.

The first vector is the constant valued vector. This vector correlates

most strongly with pictures because a large number of lines in a picture

are of constant grey level over a considerable length. Another typical

image line is one which increases or decreases in brightness in a linear

fashion (4) . Such a line would correlate well with the second basis

vector. The rest of the basis vectors correlate poorly with typical

a	 image lines. Figure 5 shows the number of bits allotted by Pratt (4)
to each element in the coefficient matrix. (Matrix [Y] in equation

2,3.8,)	 He reports excellent subjective gpality pictures using his

slant-transform at 1.5 bits/pel for his computer simulations.

	

	 j
i

After all is said and done about transform coding, it turns out	
a

that such encoders are very complex and not practical for most real time

applications. As of 1977 only one such encoder has ever been built,

and it used the Hadamard-transform. The Hada.mard-transform is particu-

larly attractive for real time operation because its basis vectors con-
-; ...r	

tain_ only plus and minus 1's. With ±l's as the elements of IFl, and a

fast computational algorithm as well, equation 2.3;8 can be computed with

I
	

2n21092n additions and no multiplications.

The Hadamard-transform matrix is shorn on the next page for n	 4
b

ti.
20
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!	 1	 1	 1	 1
H4 =	 1 -1	 1 -1	 (2.3.12)

1	 1 -1 -1
1 -1 -1	 1

In 1976 Linkabit Corporation implemented a real time Hadamard

transform scheme which reduced the number of bits per picture element

(pel) from 6 bits for PCM to 2 bits for the Hadamard-transform scheme (5).

The scheme used by Linkabit is approximately the same as the one des-

scribed below.

The Linkabit scheme subdivided a 512 by 512 sampled picture into

16,384 subpictures of 4 x 4 samples each. Each one of the subpictures

A

[XI was transformed into a 4 x 4 matrix [Y] via Equation 2.3.8 and

2.3.12, Of the 16 elements of [Y] shown below

Y11 Y 12 Y13 Y14

[Y]	
Y21 Y22 Y23 Y24	

(2.3.12)

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

Y
22	 23'

Y	
24'

Y	
32'

Y	
42	 44	 '

Y	 and Y	 were discarded i.e. set to zero. The

remaining elements of [Y] were quantized as follows;

Y 11 is quantized by 64 levels (i.e. 6 bits)

Y12 and Y2 1 are quantized by 8 levels (i.e. 3 bits)

22



Y 13 and 
Y31 

are quantized by 16 levels (i.e. 4 bits)

Y14 and Y41 are quantized by 9 levels (i.e. 3.2 bits)

Y33 and Y34 and Y43 are quantized by 5 levels (i.e. 2.3 bits)

Thus 33 bits were required to encode the [Y] matrix. This is about 2

bits per picture element. (By taking advantage of interframe redun-

dancy, the actual scheme used by Linkabit further reduced the number

of bits per pel to 1).

It is reported by Linkabit that the encoder produced good pictores

at the 2 bit per pel rate.

2.4 Predictive Encoding

Another class of encoders, called ,predictive encoders, is being

studied for use in compressing the bandwidth of digitized video signals.

A linear predictive encoder is defined by the following two

equations

Xo = a l S 1 + a 
2 

S 2 + ... a 
n 
S 
n
	 (2.4.1)

eo = S0	 X
0
	(2.4.2)

So , S I
, S2

1 ... S  are successive samples of the video signal.- S o is

23
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the current sample. Xo is the predictors estimate of S o , based upon

previous samples S l , S 2 , "' Sn , and e  (the error in the prediction)

is the signal sent to the receiver. a l , a 2 , ... a n are constants cho-

sen to minimize e o . If eo is small, i.e. X o is a good estima-"., e of So,

then bandwidth compression results because, fewer bits would be re--

quired to transmit e  than would be required to transmit S o . The recei-

ver can reconstruct the picture element, S o , by computing 
Xo + eo = So,.

The constants a l , a 2 , ... a n can be found from linear prediction

theory in a straightforward manner by assuming that minimizing the mean

square error between the original picture and the encoded picture is a

satisfactory measure of the quality of the picture. The mean square

error is given by

E[(So - Ko ) 2 1 = E[(So 	(a l S l + a
2 S 2

+	 an  )) 2 1	 (2.4.3)

q

where E[	 denotes expected value.

To find the minimum we take the partial derivatives of E[(S
o
	Xo)`1

with respect to each one of the a's and set them equal to zero

d E (S	 X) 2 _ 2 E (. S	 (a S+ a S_	 __
0	 0 3	 [ o. -	 l 1	 2 2	

anSn))Sj	 0[ 
dai

LAI

E(So,S i ) = a l E(S I ,S i ) + a 2 E(S 2 ,S i ) + ,. a n E(S n ,S j )	 (2.4.4)

f.

If we represent the covariance of S i and S^ by
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R i 	= USiSjl

w

j

then we can rewrite equation 2.4.4 as

R	
= a 1 R l	 + a 2R2i	 +	 ... + anRni

(2.4.5)

_Y

Y

Equation 2.4.5 defines a set of n simultaneous linear equations in the

n unknowns	 a i ,	 i	 1,2,	 ...,	 n, which can be found if the covariance RiJ

are known.

Equations 2.4.1	 and 2,4.2 are implemented by a recursive relation-

ship as shown in equations 2.4.6 and 2.4.7

Xk = a1Xk-1
	
+ a2Xk+	 ...-2 anXk-n + e

k (2.4.6)
3

ek+l	
= QUANT[S k+l	- Xk ]

(2.4,7)

- The function, QUANT[ 1, defines a non-linear quantizer. 	 An'implementa-

tion diagram for equation 2.4.6 and 2.4.7 is shown in Figure 6.

s; A number of investigations have been carried out to determine an

,N
optimal	 see: of a.'s	 for equation 2.4.5, and an opoptimal q uantizer for^

[ equation 2.4.7	 (6,7,8).	 It was first determined that.any given pel	 of

a picture is correlated only to the gels adjacent to it. With reference

to Figure 7, 	 labels the pets in the picture array, we can see that
r.

q}
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there are only four pels adjacent to X 
k 

which can be used in equation

2.4.6. In practice it has been found that the three pels, Xk-^,-11

X k-V	 k-1and X	 are sufficient, The set of a l 's that has been found to

give the best subjective results -is shown in equation 2.4.8.

X 
k	

75X 
k-1	

5X 
k-k-1 + .75X k-1	

(2.4.8)

From O'Neal's work (6 ) it can be determined that the optimum 8 level

quantizer (3 bits/pel) for a picture requiring 128 brightness levels

would have a transfer function as shown in Figure 8.

Figures 7 and 8 and equation 2.4.8 describe the best non-adaptive,

two dimensional, 3 bit per pel differential PCM, (DPCM), encoder devel-

oped. (It is non-adaptive because the quantizer levels are fixed and

it is two dimensional because it uses correlation in both the vertical

and horizontal directions.)

A comparison between the DPCM predictive encoder and the two-

dimensional transform encoder reveals that the DPCM encoder is less

complex than V,e transform encoder, but the DPCM encoder requires snore

bits per pel. I would estimate that the transform encoder would require

about one order of magnitude more IC's to implement as compared with the

DPCM encoder. blintz' reports that transform encoding at 2 bits per pel

results in pictures whose quality is similar to DPCM encoded pictures

at 3 bits per pel.
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2.5 Interframe Encoding

Except for sudden scene changes successive frames of a TV picture

are nearly identical. Studies done on broadcast TV signals reveal that

on the average only 10% of the picture elements change by more than 2%

between successive frames of a TV signal (9) . This high correlation

between successive frames, can be used to reduce the bandwidth of TV

signals using techniques similarto the techniques discussed previously.

Transform coding and predictive encoding are adapted to interframe

encoding by treating picture elements displaced along the time axis

(same pel but in successive frames) the same way as pels displaced along

the horizontal or vertical axis.

Another approach, unique to interframe encoders, uses the difference

signal between frames as the basic element in the interframe coder. In

this scheme the previous frame stored in a frame memory is compared sam-

ple by sample to the sample values of the present frame. If the dif-

ference between samples from successive frames exceeds a given thresh-

old that sample value is replenished by transmitting it and updating

the frame memory. It is also necessary to transmit the address of the

replenished sample. The number of replenished samples transmitted, to

the receiver is a function of the amount of motion in the scene. A

large buffer is required to average out the transmitted bit rate. For

picturephone application this technique can reduce the bit rate to 1 bit
i

per pel( 10 )	 Broadcast TV would require at least 2 bits per pel.

30



Transform coding, predictive encoding, or interframe encoding

can reduce the number of bits per pixel from 6 for PCM to 2 or 3 with

only slight degradation of the original picture.

It is not possible to say that one type of encoder is superior to

another for each can be made to seem the best (or worst) given the proper

tradeoffs. The simplest encoders to implement are the predictive encoders

while the most complex are the interframe encoders. Although the inter-

frame encoders are very complex, in thenear future they may become inex-

pensive because of the decreasing cost of the frame storage used in inter-

frame encoding.

u
A
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Ir
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CHAPTER III

A Delta Modulator for Encoding Video Signals

After studying the various encoding schemes mentioned in Chapter

II we decided to implement our video encoder using predictive encoding.

We further decided to restrict ourselves to the class of 'predictive

9

encoders known as adaptive delta modulators (ADM). 	 a

Figure 9 shows in block diagram form the evolution of the ADM from

the linear predictive encoder.. The linear predictive encoder of Figure	 ?

9a will generate an estimate signal, (Xk), that is a perfect replica of

any input signal, (Sk), provided that the number of bits used to repre-

sent the error signal is unrestricted. In the ADM of Figure 9b the error

signal passes through a hard limiter and is thus restricted to the values

±1. If the predictor box of Figure 9b could always predict the value

of the input (S k ) to within ±1 quantization level then the ADM would also

produce an estimate that is a perfect replica of the input signal. Fur
e

thermore, the ADM would have achieved a bandwidth compression of 6 to l

over 6 bit PCM since only one bit, (Ek 	 ±l), is sent to the receiver

for each sample of the input signal.
t

Our experience with delta modulators has shown that for sampling

o ^^	 rates that result in bandwidth savings the predictor will not predict

the input signal to within ±1 quantization level-; therefore, another

11
predictor, the step size generator, has been added to Figure 9c. The

s	 step size generator attempts to reconstruct the error signal from the

E k 's. The reconstructed error signal is called the step size (Yk).

32
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As of now, no general mathematical technique exists to- find't'he

optimum step size generator given the psychophysics of vision and the

statistics of video signals. Step size generators are chosen by a com-

bination of intuition, mathematics, and trial and error. In 1971 Song,

Schilling, and Garodnic proposed a video delta modulator based upon a

video signal .model that was first order Markov (11) . The rest of this

chapter gives the results of computer simulations of the ADM and the

results of a hardware implementation of the ADM.

3.1 The Delta Modulator

The delta modulator chosen to encode the pictures in this paper

is shown in Figure 10. The equations describing the operation of the

delta modulator are given below:

Ek+! = Sgn(S k+l - X k+l )	 (3.1.1)

X k+ l = X k 	+ Yk+l	 (3.1.2)

lyk(`—Ymax/l.5, E k = Ek
-1

( Y k 1 (aE
k 
+ bEk_l);	 lY k^ `Ymax	 Ek	 Ek-1	

(3.1.3a)

t
2Ymin `< 1Yk1

Yk+1 	 2YminEk	 Y1. <2Y i n	 (3.1.3b)

Y
max	 ^Yk1'Ymax/1 .5, Ek	 E k-1	 (3.1.3c)

i
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s

1k.

W

E 
	 Output of the encoder

5k = Input to the encoder
X  = The encoder's estimate of the input signal at the kth

instant of time; also, the decoder's output at the kth
instant of time

Y  = The step size of the delta modulator

Ymin' Y
max = Constants that determine the minimum and maximum

allowable value for Yk
a,b = Other constants

There are other delta modulator algorithms besides the one des-

scribed by equatic,ns 3.1.1, 3.1.2, 3.1.3. In general the differences

lie in equation 3.1.3, the way the step size is formed. In some delta

modulators IY k 1 is a constant. In others it increases or decreases

linearly. In our delta modulator the step size, Y k , changes exponen-

tially. It has been experimentally determined that an exponentially

changing step size type of delta modulator is more appropriate than

the other types of delta modulators at encoding a signal with large

step type changes in amplitude as found in video signals.

In order to test our delta modulator on video signals from actual

pictures, and to find good values for a, b, 
Ymin 

and Ymax we set up a

computer processor for pictures as shown in Figure 11. With the exper-

imental apparatus of f=igure 11 we were able to program the POP 8 com-

puter to simulate a delta modulator. By varying the values of a, b,

Ymin and Ymax in the computer program, and then comparing the resulting

pictures, we obta`i'ned values for a, b, Ymin and 
Ymax 

Which would pro-

duce satisfactory pictures.

In choosing the best set of values for a, b we also considered

the effects of different sets of values on a real time hardware
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implementation of the delta modulator. Since very high sampling rates

would be required for the real time processing of video signals, we

restricted our choice of values of a and b to those values that would

minimize the time required to perform the multiplications of I YkJ by

a and b. From the computer simulations we found that a	 1 and b	 .5

produce about the best pictures. Since these values are also powers

of 2 the multiplication by i and .5 are wired shift operations and

require no hardware_to implement nor any time to perform. Clearly,

a	 1 and b = .5 was an ideal choice for a and b and thus these values

were used in all our delta modulators .

To determine the effects OfYmin and Ymax on a delta modulated

encoded picture we examined the response of the delta modulator to a

Step like input. We chose a step like input because the edges of

objects in pictures produce step like changes in the video signal. From

{

	

	 Figure 12 we see that at first the delta modulator's output does not

rise as fast as the input signal. This effect gives rise to a type of

degradation called slope overload noise. After the delta modulator 	 1

catches up with the input signal it may overshoot. the input, ano then

after a period of time known as the settling time, the delta modulator

settles down to a repetitive four bit pattern that bounces around the

input signal. This last effect is 'a type of - degradation called the

granular noise. The amplitude of the granular noise determines the

I minimum voltage change of the input signal that can be resolved by

the delta modulator. Note also that when the step size,, Yk, increases,

f
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it increases by a factor of 1.5 until Ymax is reached. Anytime the

step size decreases, it will decrease by a factor of .5 or until Ymin
1

is reached	 This follows from equation 3.13 and a = 1, b = .5.

Table 1 summarizes the relationship between slope overload_ noise,

granular noise, overshoot, settling time and increasing or decreasing

the value of Ymin and Ymax. From Table 1 it is clear that a tradeoff

	

`	 exists between slope overload noise and granular noise when choosing

	

`	 a value for Ymin- For Ymaxthe tradeoff is between slope overload s

noise against settling time and overshoot amplitude. From our computer

simulations on real pictures we found that a value for Ymin equal to

1/64 the peak to peak video input signal produced the best pictures.

This result is not surprising since this value ofYmin will allow the

delta modulator to resolve 64 gray levels and it is well known that
di

at least 64 gray levels are required to produce satisfactory pictures.

It was also found that the quality of our pictures was not very sensi-

tive to the value of Ymax* It was observed that the value of Y k rarely

grew larger than 1/4 the peak to peak input signal and that large over,-

shoots and ringing usually produced out of band frequency components

that were eliminated by low pass filtering. After considering all fac-

tors we chose a value of 1/4 the peak to peak input signal for Ymax-

	

c	 In conclusion we found that the delta modulator worked best with

a	 1, b = 52 Ymin	 1/64 p-p input signal and Ymax	 1/4 p-p input

signal. These values were used in all subsequent computer simulations.

Li
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Increasing
Ymin

Decreases Increases No Change No Change

Decreasing
Ymin

Increases Decreases No Change No Change

Increasing Y
max

Decreases No Change Increases Increases

Decreasing Y
max it

Increases No Change* Decreases Decreases

TABLE I



3.2 Computer Simulation of delta Modulated Pictures

Using the experimental apparatus shown in Figure 11 we generated

the pictures shown in Figure 13, The delta modulated pictures were

taken with the optimum parameters given in section 3.1 and the PCM

encoded pictures were encoded with 6 bits per sample.

If we examine the PCM encoded pictures, we notice that as the num-

ber of bits per line decreases so does the resolution of the picture.

The top picture has 684 bits per line which means that at 6 bits per

sample this picture contains 114 samples per line. Thus the smallest

resolvable object or black to white transition must extend for 1/114

of a line length. The bottom PCM picture has only 68 samples per line;

hence, the smallest resolvable object is 5/3 times as large, and

black to white transitions are 5/3 times longer. Using standard

terminology we would say that one picture has 114 picture elements
a 

(pets/line) while the other has 68'pels/line. For comparison, a stan-

dard TV picture on a good studio monitor has about 500 pels/line.

The one to one relationship between the number of samples per line

and pels (which is measure of resolution) holds only if the video sig-

nal is sampled at the Nyquist rate. If the picture is sampled at the

K	 Nyquist rate (twice the highest frequency component) then each sample

is a pel. If the video signal is sampled above the Nyquist rate no

increase in resolution will result, rather one would have several sam-

ples of the same pel. Sampling below the Nyquist rate results in 'a

r

f.
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loss of resolution and the production of annoying Moire patterns.
l:

(Video equivalent to aliasing).

The PCM pictures of Figure 13 were always sampled at the Nyquist

rate. This was accomplished by low pass filtering the video signal

before it was sampled so that the sampling rate would always be the

pel (Nyquist) rate. The resulting samples were then low pass filtered

to construct a continuous picture from the sampled pictures.
,-	 l

The pictures on the left side of Figure 13 show the results of

delta modulating a picture at various bit rates. All three pictures

were filtered so that they had 114 pels per line before encoding. Since

a delta modulator transmits one bit per sample, the number of bits per

'line is also the number of samples per line. The number of bits per

pel is given by the number of bits per line divided by the number of

pels per line.

As the number of bits per line decreases, the delta modulated pic-

tures degrade in a manner quite different from the PCM picture. At 	
j

684 'bits/line, 6 bits/pel, the delta modulated picture looks the same

as the PCM picture. At 408 bits/line the PCM picture has blurred while

in the delta modulated picture edges begin to wiggle. We call this

edge busyness.

Edge busyness can be understood by referring to Figures 14 and 15`.

1	
Figure 14a shows a vertical edge before it is delta modulated and Fig-

ure 14b shows the same edge after it is delta modulated	 The w ggliness

of the edge can be understood by referring "Co Figure 15. The solid
F
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(a)	 (b)

l

i
i

Fig. 1 4i•. The effects of edge business on all edge
(a) Edge before delta mod encoding
(b) Eige after delta mod encoding
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'°	
a line in Figure 15 shows the response of the delta modulator to step

input S k .	 The dotted line shows the response of the same delta modu-

lator to the same step input but the delta modulator had different ini-

tial	 conditions at the start of the step.	 In the case of the solid

line the delta modulator acquired the amplitude of the step in ,7 sample

times while in the case of the dotted line it took only 5 sample times.

In a picture this would have the effect of delaying an edge at some

locations, but not at others.	 The resulting effect is to cause all

sharp edges at right angles to the direction of scan to wiggle. 	 This

effect is edge busyness.

3.3	 Results of the Computer Simulations

The computer simulations provided two important results. 	 First

it gave us the values of Y min	 Ymax	 a and b for an adaptive delta modu-

' lator which could be used to encode video signals. 	 The second result

was that it revealed that at low bit rates the delta modulator will

degrade pictures by producing edge busyness. 	 At 6 bits per pel 	 the

edge busyness	 is not noticable.	 At 3 bits per pel, edge busyness is

noticable but there is almost no loss 	 in resolution.	 This last result

was encouraging since the delta modulator would have to operate at

around 3 bias per pel	 to achieve a bandwidth compression factor equiva-

lent to the other bandwidth compression techniques described in Chapter

I'

r
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3.4 A Real Time Delta Modulator

Although computer simulations are useful they can often be mislead-

ing.	 A still picture 2 inches by 2 inches with a resolution of only

114 pets may not show up all 	 types of defects that would be visible on

a standard TV monitor displaying a motion picture. 	 To investigate the

behavior of the delta modulator on motion pictures displayed on a stan-

dard TV monitor it became necessary to build a high speed .delta modula-

tor which could encode pictures from an NTSC standard TV camera.

The block diagram for the high speed video delta modulator is

shown in Figure 16.	 This configuration was picked because it would max-

imize the sampling rate of the delta modulator when implemented with

standard Schotky TTL IC's.	 The operation of Figure 16 will 	 be explained

by tracing the processing of the video signal	 through each block with
1

reference to equations 3.1.1	 to 3.1.3.	 To implement the equation 3.1.1

the analog video signal 	 from the TV camera is applied to one input of

a comparitor.	 The estimate (X k+l )	 is at the other input.	 The compara-

tor takes the sign of the difference between the two signals and outputs

Ek+l .	 The two flip-flops on the top of the diagram store Ek and Ek-1-

The upper adder/subtractor implements the first part of equation 3.1.3. y i
a	

The inputs to the adder/subtractor are the step size, 	 IY k I	 and	 (Yk(
rd

y	 with each bit displaced one bit to the right. 	 Thus, when the adder/ s'

subtractor adds, the result is;

=	
^Yk^	 +	 I Y kl	 =	 1.51YklIY

k l	 2
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and when the adder/subtractor subtracts, the result is:

( Yk+l	 Yk - X--^Y kI	 .5IYkI

The output of the exclusive or gate signals the adder/subtractor

to add when E k and Ek-1 are of the same sign and to subtract when Ek

and Ek_1 are of different sign. This is equivalent to saying that the

absolute value of the new step size is increased by a factor 1.5 when-

ever two Ek's in a row are of the same sign and decreased by a factor

of .5 whenever two consecutive Ek's are of opposite sign.

The "nor" gate and multiplexor are used to implement the second

part of equation 3.1.3, the minimum step size test. The "nor" gate's

output goes to logic one if NJ becc!r,aes too small, i.e., falls below

the number 2. This signals the multiplexor to output V k+1l as the num-

ber 2. Otherwise, the multiplexor outputs 1Yk+l1 from the adder/sub

tractor.

The Power adder/subtractor implements equation 3.1.2. It adds or

subtracts the absolute value of the step size, lYk+11, to the estimate,

Xk. It adds when E k is +1 and subtracts when Ek is -1: It actually

performs the operation

Xk+l	 Xk + E k Yk+1^

but this is equivalent to equation 3.1.2 because the sign of-Yk+1 is

always the same as Ek'

50
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Several parameters that we used in the computer simulations

were changed in the hardware implementation of the delta modulator.

The number of quantization levels used to represent the estimate in Fig-

ure 16. is 128 (7 bits) whereas we used 64 quantization levels in the

computer simulations. It was felt that the extra quantization levels

would be necessary to accomodate the negative going sync pulses which

are part of the composite video signals coming from the TV camera. The

extra levels would also prevent the estimate register from overflowing

on very bright areas of the picture. We used 31 as the maximum step

size (5 bit arithmetic) with a provision to reduce it to.15 (4 bit

arithmetic) to see which would give better results. If the results

were the same, future delta modulators would be built with four bit

arithmetic in the step size section. The additional adder/subtractor

for the 5th bit slows down the delta modulator because it must wait for

the carry bit. The other four bits do not have to wait for a carry

because they are formed in a 4 bit adder/subtractor IC which has an

internal high speed carry look ahead circuit.

The complete circuit schematic for the high speed delta modulator

is shown in figure 17. The delta modulator contains 16 Schotky TLL

integrated circuits, high speed D/A converters, and a high speed com-

parator.

y

	

	 When constructing a very high speed digital and analog system such

as shown in Figurel7it is necessary to adhere to certain construction

practices or else "switching gliches", ringing, and oscillations may
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degrade the performance of the system. 	 Some of the construction prac-

tices we used are listed below:

1) Bread board the unit on a double sided copper clad board. 	 Use

the lower copper side as a ground plane along which all wires

are run.	 The upper copper side may be used as a power buss.

2) Put bypass capacitors between the power buss and the ground

'	 plane.	 Vii: may be necessa py to put bypass capacitors at every

IC.

3) Isolate the analog portion of the system (D/A converter and

comparator) from the switching noise of the digital section by

providing separate bypass capacitors for all analog devices'

power input pins.

4) High speed comparators love to oscillate as they pass through

their linear region of operation.	 To prevent this, keep the

input and output wires short, far apart, and if possible

g	
shielded.

1.

5) Keep all	 wires as short as possible to prevent stray inductance

and capacitance from causing ringing on the logic signals which

might cause retriggering of the logic gates.

The high speed delta modulator was tested using the experimental

setup shown in Figure 18. 	 The setup functioned in the following manner:

A scene from a slide was converted to a video signal by the 'TV camera.

The video signal was band limited by an adjustable cutoff low pass fil-
k

t

ter whose output provided the input to the delta modulator. 	 The delta
i

:73
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modulator was then clocked at its maximum rate of 10 MHz. The output

of the delta modulator feeds another adjustable low pass filter whose

cutoff is set to the same frequency as the previous filter. The pro-

cessed picture is then displayed on a monitor and photographed. A

switch is also provided so that a quick comparison can be made between

the delta modulated encoded video signal and the unencoded video signal.

The output from the delta modulator used in Figure 18 was the test

output marked on the diagrams of Figures 16 and 17. This output, in

the absence of channel errors is the same as the output of the delta

modulator receiver shown in Figure 10. This property made it unneces-

sary to build a receiver in order to test the delta modulator's ability

to encode a video signal in the absence of channel errors.

The pictures in Figure 1 9 are representative of the quality of the	 ;.
1

pictures that we obtained from the test setup of Figure 18. The pictures

on the left half of the page have been delta modulated while those on

the right are the originals. The fact that the pictures on the right

appear to be blurred is not due to bad photography, but is a consequence

of low pass filtering the video signal. The bandwidth of the pictures,

as determined by the settings on the filters of Figure 18, are given

as follows: upper row, 2 MHz; middle row, 1.5 MHz and lower row, 1

P1Hz

Since the pictures in Figure 19 have frozen a single frame from

the 30 frames per second TV camera and monitor, some effects of real

p	 time processing are not shown in the "frozen scenes" of Figure 19.. 1
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will therefore try to describe these effects. In Figure 19, upper left

hand corner, edge busyness can clearly be seen on the edges of vertical

'	 objects. The edge busyness appears as a slight horizontal displacementx

of each scanning line about the edge. Because some lines appear to be

displaced more than others, straight vertical edges become wiggled.

Now, imagine that successive frames of the same scene are flashed at the

eye and each frame has its own wiggle pattern, as is the case with the

real time processor, then the eye will see the edges flutter in time.

This fluttering appears as a shimmering on the edges of objects. Al-

though the shimmering is noticable it does not seem to cause a loss of

a:
resolution in the pictures and it is no more annoying than the edge

busyness seen in Figure 19.

Just as the effect of viewing successive frames of a still picture

cannot be seen in Figure 19, nor can the effect of the TV camera view-

ing a changing scene be determined from Figure 19. To determine the

effect of the delta modulator on the video signal from a moving scene,

we removed the slide projector from Figure 18 and aimed the camera at

a room full of people at a party. The delta modulator showed no new

kind of degradation for the moving scene. In fact, moving objects suf-

fered slightly less edge busyness than still objects because the eye

does not see moving objects very clearly.

If we assume that the pictures on the right in Figure 19 were

a	 encoded using 64 level PCM (sampling at the Nyquist rate) than we can
i

calculate and compare the bit rate, and the number of bits per pel for

,p
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the pictures on the right with those on the left of Figure 19 from the

following equations:

	

Bits/Pel	 Sampling Rate x Bits/Sample
2 x Picture Bandwidth

	

Bit Rate	 Sampling Rate x Bits/Sample

i
This yields:	 Table II-

	

Picture	 Delta Modulator	 PCM

bit	 bits per 	 bit	 bits per

rate i xel	 rate	 pixel	 z

TOP	 10 MHz	 2.5	 24 MHz	 6

	

MIDDLE	 10 MHz'	 3.3	 18 MHz	 6

r	 BOTTOM	 10 MHz	 _5.0	 12 MHz	 6

From the values in Table II, the pictures in Figure 19, as well

as motion picture observations, we have concluded that our real time-

`

	

	 delta modulator can compress the bit rate over PCM by a factor of 2 with

only a slight loss of detail. Although the loss of detail is minimal

it is clear that the pictures in the left column are degraded over

those in the right column of Figure 19. The degradation is most severe

for the top row where the bit rate compression is 2.5 and almost unno-

V	 ticable in the bottom row where the bit rate compression is 1.2.

For the most part, the real time delta modulator confirmed our

5
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' computer simulations with just two exceptions. To reduce the granular

noise (see Figure 12) to an imperceptible level and to provide; the full

range of gray levels seen in analog TV, 128 (not 64) quantization levels

are needed.	 It was also determined that Ymax 1/8 the p-p video sig-

nal gave the same quality picture as Ymax - 1/4 the p-p video signal.

59



V. ♦ 	 i -

1
r

CHAPTER IV

The Effect of Channel Errors on Delta Modulated Signals

When transmitting signals over a channel, channel errors will

occur. For a binary channel, a channel error occurs when a +1 is sent

and a -1 is received or a -1 is sent and a +1 is received. A communi-

cations. channel designed to carry video information would be expected

to have an error rate sufficiently low so that distortion due to chan-

nel errors would be barely perceptabl e in the received picture. This

would be ground -30 db distortion

It is desirable to achieve the -30 db distortion level with as

Tittle transmitter power as possible. The efficiency of a communica-

tions system is often judged by the amount of transmitted power it

needs. We will judge the efficiency of the delta modulated channel

	

against the PCM channel	 But first we will investigate the effects of

channel errors on the delta modulated video signal.

i

4.1 Qualitative Effects of Channel Errors

The response of the delta modulator decoder to a step input at

the encoder in the presence of a single channel error is shown in Fig-

ure 20. The solid lines represent the outppt',signal, Xk, of the deco-

der in the absence of channel errors, while the dashed lines represent

the output signal of the decoder in the presence of a single channel

error.
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Channel errors have two effects on the delta modulator. 	 The first

and most obvious effect that can be seen in Figure 20 is that channel

errors always cause a permanent, and usually large DC shift in the

received signal. 	 Less obvious is the fact that 	 single channel error
R,
f may cause an increase, decrease or have no effect at all on the step

§- size of the delta modulator encoder, and less obvious still, is the

fact that step size errors, when they occur, become self correcting

e within a few samples. 	 Because step size errors last for only a few

samples, and delta modulators typically sample at several 	 times the

Nyquist rate of the input signal, the disturbance caused by step size

i errors is usually less than three pixels long and is completely masked

by the disturbance caused by the large DC shift.

We have both quantitative results and experimental evidence to sup-

port the statements made in the preceding paragraph. 	 The quantitative	 j

E results were arrived at through the following process. 	 Observe from

Figure '?0 and Equations 3.1.1, 3.1.2 and 3.1.3 that the step size, 	 Yk,

will decrease while the delta modulator is tracking a constant DC level.	
j

If the constant signal	 level	 persists long enough the delta modulator

reaches the minimum step size, 
Ymin' 

whether or not a channel error

i
k	 has occurred. When the delta modulator reaches the minimum step size,

(	 the step size error has corrected itself, since both the corrupted sig-

nal and the error free signal would have the same step size namely Ymin ,	{'

f'	 the minimum step size.
'

►i	 The number of transmitted bits, N, that will reach the receiver
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Fig.20 The effects of a single channel error on
the output of the delta modulator
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after the occurrence of a channel error, but before the step size cor-

rects itself, has an upper bound for the delta modulator tracking a

constant DC level. This upper bound can be shown to be

N/2.75	
= Ymin/Yk+l

N = 2 In Y ^ Y

	

min k+l	 (4.1 .1)

In .75

N = the number of transmitted bits until step size correction
occurs

Y k+l

	

	 the step size one sample time after the occurrence of the
error

Ymin = the minimum allowable value for Yk.

3	 For the pictures in this paper the worst case parameters for Equa-

= 16 which yield a worst case N = 19. Ifti on 6 are Ymin = 1 and Yk+1 
i

the delta modulator samples at 3-times the Nyquist rate of the video

signal then the step size error should last for less than 6 pels if the

conditions imposed in derivingequation 4.1.1 hold for a real picture.

The series of pictures in Figure 21 were taken to confirm the

results of equation 4.1.1, i.e., step size errors quickly correct them-

selves, and to show that channel errors cause a large permanent shift

µ

	

	 in the DC level of the output of the delta modulator. Figure 21a shows

the original picture without any errors. In Figure 2 lb channel errors

I
were introduced at a rate of one error for every 2,500 transmitted bits.

From Figure 21b we see that each channel error 'caused a shift in the
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(c) wid (cl), i.e. stem size errors.

64



h,

1`.

n level	 of the decoders output signal. 	 This shift, seen as a streak,

lasts until the end of the scanning line where the effect of the error

is ended by resetting all the registers in the encoder and decoder to

a fixed predetermined value.	 In. Figure2 l c we have displayed the abso-

lute value of the step size without any channel errors and in Figure

21d we introduced channel errors.	 Figure 21e is the difference between

Figure 21c and Figure 21 d .

e From Figure 21e we can see,	 the effects of channel errors on the

step size.	 The uniform gray background in Figure 2 le represents zero

difference between Figure 2.1c and Figure 21d or equivently, no step

size error.	 The white and black dots are the regions where the differ-
7

ence between Figure 21c and Figure 2 ld was not zero or equivently, where 	 a

a step size error exists. 	 The short duration of the dots confirms the

` fact that step size errors become self correcting after a few samples.

r The conclusions that we have drawn from our studies of the effects
e

of channel	 errors on delta modulated video signals is that channel	 errors

have a significant effect only on the DC level of the estimate, X k , of

the delta modulator decoder and that step size errors quickly correct

themselves.

4.2- Quantitative Analysis of the Effects of Channel Errors

In section 3.2 the video delta modulator was compared with PCM

with regards to encoding efficiency. 	 In this section we will	 compare
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the two techniques with regards to picture distortion caused by Chan-

nel errors with respect to transmitter power.

For the delta modulator, channel errors cause distortion by

causing a DC shift in the video signal. The DC shift becomes constant

after the step size error corrects itself, and at the end of each scan-

ning line th y. DC shift is also corrected (see Figure 8). The mean

square value of the DC shift will be found by using, the assumption that

the DC shift is essentially constant within three transmitted Ek bits

after the channel error has occurred for all Ek patterns. This is

equivalent to assuming that the step size error corrects itself within

three sample times.

There are eight 4 bit E k patterns that produce no change in the

step size. For these patterns the above assumption is exactly true.

3

For the remaining eight patterns the assumption is almost true as

attested to by Figure 21e. Eight of the 16 possible 4 bit E k patterns

are listed below. The other eight patterns are just their complement.

3
7
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Let le n j be the DC shift caused by a channel error in the nth Ek

pattern. T"en l eni is given by:

	

lenl	 IX	 X^

where X is the correct estimate and X is the incorrect estimate for Ek
3

pattern "n".

Since the estimate is the sum of the step sizes, e n is given by:

M	 CO

l ent _ I fyi - 'EYi
i=G	 i=0

Y is equal to Y before the error at time k and it will be assumed

equal to Y again by k+3; therefore,

r	

le

I 	
= ^(Y	 + Y	 + y	 ) - (Y	 + Y	 + Y	 )1	 (4.2.1)	n 	 k+1	 k+2	 k+3	 k+l	 k+2	 k+3

To be consistent with equation 3.1.3, we choose an error in E k at time

k to cause the first step size error to appear in Yk+l.

Qy substituting equation 3.1.3 into 4.2.1 we can find ,en(YO11

the DC shift as a function of Y k . Equation 3.1..3 has three parts.

The part to b substituted into equation 4.2.1 depends on the step

size. If the magnitude of all the step sizes in equation 4.2.1 are

between 2Ymin and Ymax then equation 3.1.3a is used to find en(Yk).

Using equation 3.1.3a to find e n (Y k ) and letting E k be the incorrect
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e n (y k )	 IYO (Ek + 
12E k-1)

+ I I Yk I (E k + ,E	 (E
 I (Ek+1 + 32Ek)

+ IIIY kI (E k + `Ek-1 )I(Ek+1 * ZEk ) I (E k+2 + 2E k+1)

I YkI (Ek 	 !'+ Ek-1) 	 I I Y k I (Ek + 2Ek-1^ (Ek+l 	
ZEk)

- I II y kI (Ek + 2Ek-1)I(Ek+l + 2Ek)I (Ek+z + 2Ek+l)	 (4.2.2)

sx

Because E k is ±1 we can use the identity

I 	 + 2Ek-l )( - EkI YkI (Ek + ZE -)k1

r
to simplify equation 4._2.2. Doing so yields

(4.-2.2a)

A .`	 Equation 4.2.2a is accurate for values of NJ between-2Ym in and

Ymax/1.5. For values outside this range equation 4.2.1 must be evalu-

ated for each value of n using all three parts of equation 3.1.3.

Evaluating equation 4.2.1 for values of (YkI that lay outside

the range of equation 4.2.2a with Ymin = 1 and Ymax = 15 yields;
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FOR Y k = 1

1e l (1)l	 1(2 -1 -2)-(-2-34)1 =8

1 e2M1 = 1( -• 2 	 3+l)-(2-1 +3)1 	7

1e3 (1)I = 1(2 - 1 + 2) - (- 2 - 3 + 1)1 = 7

1 e4( 1 )1 = 1(- 2 - 3 - 4) - (2 - 1 	 2)( = 8
Y
{

{

FOR Yk =9

el(9), e2(9), e3(9), e4(9), e5(9), e6(9)	 Eq. 4.2.2a is valid

je7(9)1 _ 1e 8 (9)1 = 1(- 4 + 2 + 3)	 (13 + 15 + 15)1 = 42

FOR Yk = 10

el(10), e2 (10), e3 (10), ` e4 (10)	 Eq. 4.2.2a is valid

r	 (e5(10)1 = Je6(10)1 = 1(- 5 + 2 - 1)	 (15 + 15 - 7)1 = 27

1e7(10)1 = 1e8 (10)1	 1(	 5 + 2 + 3) - (15 + 15 + 15)1 = 45

FOR Yk=13

(Y k	 11, 12 and 14 does not exist)

el (13), e2 (13), e3(13), e 4 (13)	 Eq. 4.2.2a is valid

1e 5 (13)1 _ 1e 6 (13)1	 6 + 3 - 1) - (15 + 15 - 7)1 = 27

je 7 (13)j	 ( e8 (13)1	 6 + 3 + 4) - (15 + 15 + 15)1 = 44

I
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FOR Y=15

e l (15), e2 (15), e 3 (15), e4 (15)	 Eq. 4.2.2a is valid

le 5 (15)1 = Je6 (15)1 = 1(- 7 + 3 - 1) - (15 + 15 - 7)1 = 28

le7 (15)1	 le8(15)1 = 1(- 7 + 3 + 4)	 (15 + 15+ 15)) = 45

#!	 From the above results and equation 4.2.2a, e n (Y k ) for the eight

E k patterns is found to be

e l (Y k ) = e2 (Y k ) = e3 (Y k ) = e4(Yk) 

=17.5

2Yk	 1 < Yk < 15	 (4.2.3)

 Yk = 1

e5( yk ) _ e6 (Y k )	 =	 3Yk	1 < Yk < 9	 (4.2,4)
a

7	 Yk = 1

27	 Yk > 9

e 7 (Y k) = e8 (Y k )	 6.5Yk 1 < Yk < 8	 (4.2.5)

8	 Yk1

43	 Yk > 9

The mean square value of any one of the DC shifts, en(Yk),

-n = 1, 2, .	 8 is given by:	 -

i	 Ymax
f	

en =	 [en(Yk)]2 p(Yk/n)	 (4.2.6)

Yk=O
f
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P(Yk/n)	 Probability of Y k given that E k pattern n will occur.

The average mean square value of all the DC shifts is given by

8

2 = 5e 	 en pn (n)	 (4.2.7)
<.	 n=1

`	 Pn(n) = Probability of E k pattern n plus the compliment of n.

Assuming that Pny( Yk/ n ) = p(Yk) and combining equations 4.2.3 to

4.2.7 the expression for e 2 becomes:

15
_ [7.5 2 py (1) + Y(2Y k ) 2 p(Yk)] [Pn(l) + pn(2) + pn(3) + Pn(4

Yk=2

15	 8	
j

[2p,(,) +
	 272p ( Y k)	 (3Yk+	 )2p(Yk)] rpn( 5 ) + Pn(6)]

k
Y =9	 Yk=2	 L	 1

,. 

+ C2
	

15 2	 8	
2

8 py (1) + X43 p(Y k ) +> (6.5Y k ) P(Yk) [Pn(7) + Pn(8)
Y .g	 Y =2	 (4.2.8)k	 k

Define a l- 4 	NO) + p n (2) + pn (3) + pn(4)

a5-6	 P n (51 + rnkb)

Q	 N7_8	 p n (7) + pn(8)

Then we can rewrite, equation 4.2.8 as
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^	
e2 = ( 4a l-4 f 9m5_6 + 42m 7_8 )

	 Yk2p/Yk1
'	 !	 '	 Yk=2

 + /55m1_4 + 49m 5_6 f 64o7_8\ "/l\

+ ( 729a	 + l85Oa J	)	 p(Y )5-6
'^

The mean square value of the DC shift, e	 caused by a channel

error can be calculated from equation 4.2.8a if the step size statistics

and the statistics of the E k patterns are known.	 The real	 time delta

modulator was set up with special 	 counters so that these statistics

could be measured. 	 The sampling rate was three times the Nyquist rate

and the pictures used are shown in Figure 22. 	 The results are given

in Table	 III.

From Table III we can see that all 	 eight E k patterns are equally

probable to within a factor of 2.5.	 The range of probabilities on

the step sizes, however,	 is	 nearly 100 to 1.	 Because the step size

logic always truncates the step size to the nearest, smallest integer

the step size values 8, 11,	 12 and 14 never occur.	 In general	 the

probability of the step size decreases monotonically with increasing

step size.	 Exception to the monotonicity such as step size 5, results

because of the way the step size logic truncates.	 Step size 5 can be

7 2

|	 -
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reached only by halving step size 10, therefore, step size 5 must be

less probable than step size 10.

E:
From Table III and equation 4.2.8a e 2 is calculated to be

}	 BOY
i

e2 = 146 (4.2.9)

Knowing the value of e, we can determine the transmitter power

needed so that distortion caused by channel errors would be at least

-30 db below the picture power.	 For the determination of transmitter

power we assumed the presence of white gausian channel 	 noise and anti-

podal	 signals.	 The transmitter power was determined as follows:

De = picture distortion energy/error
Np = picture distortion energy/pel
N	 = number of transmitted bits/pel
1.	 = number of pels/line	 a

-	 Pe = probability of channel	 error/transmitted bit

When an error occurs it lasts until- the end of the scanning line.

Since it is equally likely for an error to occur anywhere along the

line, on the average an error will 	 lust for one-half of a line.	 There-

fore, the picture distortion energy/error is 	 a

t .f
De=Le

2	(4,2.10)	
2

2

a
Np is the distortion energy per pel	 averaged over all	 the pels in	 ]

the picture and is given by

Np = DePeN	 a

Substituting from equation 4.2.10
4

Np = Le2 PeN - distortion energy/pel 	 (4.2.11)
_.	 2	 73



TABLE III

BOY	 GIRLY

lyk1 P OO) n E k 's P(n) ( Y k J P ( I Y k l) n E k 's P(n)

1 .30 1 1,100 ,_21 1 .30 1 1100 .24

2 1	 .35 2 1	 1001 .15 2 .35 2 1001 .17

3 .20 3 1101 .09 3 .18 3 1101 .078

4 .081 4 1000 .14 4 .072 4 1000 .15

5 .0016 5 1010 .08 5 .00(G 5 1010 .063

6 .037 6 1110 .15 6 .037 16 11110 .15

7 .0043 7 1011 .09 7 .004 7 1011 .08

8 .0 8 1111 .09 8 .0 8 1111 .07

9 .016 9 .017

10 .002 10 .0021

11 .0 11 .0

12 ,0 12 .0

13 .0065 13 .0073

14 .0 14 .0

15 .0054 15 .0052

1

}

Note	 Pn (n) includes the pattern n plus its complement.

s

I	
z

Step size statistics and E k statistics for the Boy and Girl of

Figure 20 sampled by the delta modulator at 3 times the Nyquist rate.
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Defining:

Sp = picture energy/pel
Eb	energy/bit
No = power spectral density of channel noise
Rs	 number of transmitted bits/sec
ST	 transmitter power

If we assume.,that it is equally likely for each pel of the picture

to take on any one of q quantization levels and that the quantization

levels range from 0 to q then Sp is given by:

S p = 1 q x2 	 Z 
1 q X2^X

q	 q
x=0

Sp = g2	 picture energy/pel	 (4.2.12)
3

From equation 4.2.11 and 4.2.12 we can find Sp/Np and then we can

find Pe by letting the picture signal to noise ratio, S p/N p , equal

+30 db

Sp	
q/3 1000	 (4.2.13)

N
P
	Le2PeN/2

1
Letting q = 64 quantization levels

N = 3 transmitted bits/pel
L = 500 pels/line

I	 e2 = 146
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Then from equation 4.2.13

Pe = 1.2 x 10- 5 (4.2.14)

The transmitter power can be found by relating Pe to Eb/no and then

Eb/no
L

to ST .	 The energy per bit, E b , is related to Pe by the following

well known function:

Pe = Q (VE b/no )

which is plotted in Figure 23 .	 From Figure 23 we see that for

Pe 1.2 x 10-5

i

Eb/no = 9.5 db (4.2.15)
3

y

The transmitter power is related to E b through the bit rate, Rs by:

ST = Eb Rs (4.2;16)

Rs is given by the Nyquist sampling theorem as:

i
a

"
s- Rs = N(2fm) (4.2.17)

where fm is the picture bandwidth and N is the number of transmitted

f	
bits/pel.-

i
Substituting equation 4.2.17 into 4.2.16 yields:

)
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ST	 EbN ( 2fm )	 (2.4.18)

Substituting equation 4.2.15 into 4.2.18 and letting N=3 yields:

}

ST
17.4 db	 (4.2.19)

n0 fm

sr
Equation 4.2.19 gives us the transmitter power needed for a delta

modulated picture to bring the picture distortion due to channel errors

down to -30 db when the delta modulator samples at 3 bits/pel.

The transmitted power, 
ST , required by a PCM encoded channel to

achieve -30 db distortion due to channel errors for antipodal signaling

in the presence of white gausian channel noise can be found as follows: 3

r	
An error may occur with equal likelihood in any of the N bits in

3

a pel, and if an error in the least significant bit causes 1 quantiza-

tion level of distortion and an error in the Nth bit causes 2N-1 quanti-

zation levels of distortion then:

'r	 r

De = 1(E-F 2 2 + 42	 + (2N-1)2)

PJ

} De x 22N	
(4.2:20)	

9

3N.

i
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Also

Np _ (De)(Pe)(N)	 (4.2.21)

Substituting 4.2.20 into 4.2.21 yields:

Np = 2 2NPe	 (4.2.22)
3

From equation 4.2.12 the signal power is:

Sp = 22N	 (4.2.23)
3

since q2 = 22N for PCM.

From 4.2.240 and 4.2.23 we can find Sp/Np in terms of Pe and N and

then we can solve for Pe by letting the picture signal to noise ratio,

Sp/Np, equal +30 db.

= 22N/3	 _ +30 db
Np	 22NPe/3

SP	 1 = 1000	 (4.2.24)
Np _; Pe

i Pe	 10-3 _errors/bit	 (4.2.25)i
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Equation 4.2.24 states that the picture noise to signal ratio

from channel errors is equal to the probability of error for a PCM

transmission system.

The transmitter power can be found by relating Pe to E b and then
r

Eb to ST as was done for the delta modulated channel.

The energy per bit, Eb, is related to Pe by:

Pe = Q( 2E	 )	 (4.2.26)

From Figure23 we see that for Pe = 10'3

l

Eb/no = 7 db	 (4.2.27)

From equation 4.2.27 and 4.2.18

ST
7 db + 10 log 2N

nofm

A typical value for N for PCM is 6 bits/pel. Therefore,

T	 18 db	 (4.2.28)
nofm

a
h
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Equation 4.2.28 gives us the transmitter power for PCM needed to

bring the picture distortion due to channel errors down to -30 db.

4.3 Conclusions

In summarizing the results of section 4.2 we can make the follow-

ing observations:

1. The power of the distortion in a RCM channel caused by a sin-

gle channel error as given by equation 4.2.20 is similar to the power

of the distortion in the delta modulated channel as given by equation

4.2.9.

2. The energy per error for the delta modulated channel is over

200 times greater than for the PCM channel because the delta modulator's

error lasts for 250 pels on the average.

3. For a -30 db picture distortion level from channel errors,

the PCM channel requires a 10 -3 bit error rate whereas the delta modu-

lator requires a bit error rate as low as 10-5,

4. From equation 4.2.19 and 4.2.28 we see that both PCM and delta

modulation require the same transmitter power to achieve -30 db di_stor-

tion due to channel errors. This is because the delta modulator trans-

mits at one-half the PCM rate and can thus achieve a probability of

error more than two orders of magnitude lower than the PCM channel

with the same transmitter power as PCM.

r^ ♦

82

I



F

r

CHAPTER V

Error Correcting Algorithms

By incorporating error correcting algorithms into the delta modu-

lator design it is possible to reduce transmitter power and still main-

tain a picture signal to distortion ratio of 30 db. In this chapter,

three error correcting algorithms are explored.

t	 `

5.1 Direct Approach

It is possible to correct the DC level of the decoders estimate

by periodically sending the transmitters current estimate, X k , to the

receiver, The effect of this correction technique, shown in Figure

24, is to shorten the length of the error streaks. The more often

the transmitters estimate is sent 'to the receiver to correct the esti-

mate at the receiver the shorter the streaks become. Unfortunately

the more often we send the transmitters estimate, the more we must

increase the transmission rate to accomodate this extra information.

The equation that relates the several parameters that determine

the increase in transmission rate is given by equation 5.1.1.

R' s Rs 
-1 + Sb)

	

a	
8

IL

9	
..



where

P	

,

R' =-The bit rate with correction
R s = The bit rate without correction
s  a The number of times X  is sent to the receiver per line
b = The number of bits in each X  sent to the receiver
s - The number of E k 's transmitted per line

From equation 5.1.1 it is apparent that "c" and "b" should be as

small as possible. "c" is lower bounded by the desired degree of cor-

rection required in the picture since the length of the remaining error

streaks in the received picture are inversely proportional to c, and

b is lower bounded by the accuracy of the correction.

To understand the effect of "b" on the correction algorithm refer

to Figure 25. Figure 25 shows how the correction algorithm is imple-

mented. First the "b" most significant bits of the transmitter's esti-

mate are sent to the receiver via a PCM format, Upon receiving the

PCM word the receiver sets the "b" most significant bits in its esti-

mate equal to the transmitter'sestimate. Then both the transmitter

and receiver set their b + l most significant bit to 1 and all less

significant bits to zero. The total effect is to make the transmitter's

and receiver's estimate equal, and to introduce an inaccuracy in the

estimate of maximum value equal to 
2-b-1 

times the maximum amplitude

of the picture.

The inaccuracy in the estimates introduced by the correction algo-

rithm is shown in Figure 26. The shaded area is the error introduced

by the correction algorithm and is equal to the difference between

the transmitter's estimate without the correction algorithm (solid
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line) and the transmitter's estimate with correction (dashed line).

Notice also how the correction algorithm eliminated the DC shift in the

receiver's estimate (dotted line) and thus corrected for a channel

error.

Figure 27 shows the effect of using different values for "b" in

the correction algorithm. In Figure 27a the maximum value of the error

caused by the correction algorithm is 25°' of the peak topeak video

signal. Such a large error produces objectionable black bars as seen

from Figure 27a. For b = 4, the error is only 3.1% and is not notice-

able as attested to by Figure 27d.

In section 4.2 the transmitter power needed to achieve a -30 db

distortion'	 level without ,error correction was found.. In this section

we will calculate the transmitter power required to achieve a -30 db

-	 distortion level with error correction.

Proceeding as in section 4.2 we have

De

	

	 L	 e 2	distortion energy/error 	 (5.1.2)
2 c+1

where L/2(c+1,) is the average length of an error streak with "c cor-

rections per line,

vThe error correction algorithm increases the average number of

bits per pel given as N in section 4.2 by the amount be/L. Let
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A

Nc	 N + be/L be the number of bits per pel with correction, then from

section 4.2 and equation 5.1.2

Np = DePeNc

Np = Le t Pe(_N + be /L) = distortion energy/pel	 (5.1.3)

2(c+l)

Equation 5.1.3 has assumed that an error in the correction bits has

the same effect as an error in an 
Ek 

bit.

From equation 4.2.12 and 5.1.3 and the fact that Sp/Np is set

equal to 30 db we have

Sp	 q2/3	 = 1000
Np

Let Pe (.N + be /L)/2(c + 1)
s

Solving for Pe

Pe	 2(c + 1)q 2	(5.1.4)

Reg 10+3 (N + bc)
L

D
Using the parameter values of section 4.2 q 	 64, N = 3, L = 500,

e2	 146, and b = 4, Pe is found to be
I

E
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Pe = 1.2 x 10-5 r c + 1
t 1 + .0027c-0027c

s, r

(5.1.5)(5.1.5)

Pe is the probability of error as a function of the number of correc-

tions per line required to obtain a ,picture signal to distortion ratio

(due to channel errors) of 30 db.

Similarly from equation 4.2.18 and Nc	 N + be/L, ST is given by

S
T
 = EbNc(.2fm)

ST 	 = E  (_6 + .016c)	 (5.1.6)
nofm	 no

Figure 28 is a plot of ST/no fm vs c for b = 4 and 6. The plot

was constructed by choosing a value for "c", then solving equation

	

5.1.5 for Pe, and then using Figure 21 to obtain Eb/no for that value

	

	
aa

of Pe. Equation 5.1.6 was then used to calculate ST/no fm from Eb/no

and c.

From Figure 28 we can see that the optimum number of corrections

per line is about 50 and the savings in transmitted power is about

1.6 db. The price we would pay in using the this scheme to save 1.6 db

of transmitter power is a 16% increase in bandwidth and the addition

i	 of timing and synchronizing circuiting at the receiver needed to sepa-

rate the correction bits from the delta modulator bits.

P
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°	 5.2 Leaky Integrator

The effects of channel errors on delta modulated pictures can be

reduced by introducing leaky integrators to the feed back loop of the

delta modulator encoder and decoder. Leaky integration is achieved

by introducing the factor a, (a < 1), into equation 3.1.1 as shown in

equation 5.2.1

Xk+1 = aX k + Y
k+1	

(5.2.1)

In terms of hardware the delta modulator with leaky integration

is shown in block diagram form in Figure 29. Fi gure 29a shows the

delta modulator without the leaky integrator and in Figure 29b l eaky

integration is achieved by putting a multiply by a block in the path

of X k . If (.1 -a) can be represented as 1/2 n as can 1/64 then the multi
a

ply by a can be implemented with a substractor. The subtractor sub-

tracts X k from itself shifted an appropriate number of times.

When leaky integrators are used, the DC shift: in the decoder's

estimate caused by a channel error will "leak" away exponentially with

time. To understand how this happens refer to equation 5.2.1. The

leak factor a decreases the term aX k by the amount (1-a)Xk , as compared

with having no leak (a = 1). To compensate for this decrease, the step

'	 size term, Yk+l, will automatically on the average become slightlyr

a
larger so that Xk+1 remains unchanged. The increase in Yk+1 exactly

a

v,

I
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r

r	
cancels the "leak loss", (.l-a)X V Notice that the leak loss, (1- a)Xk9

depends on the amplitude of the estimate X	 If the decoder's esti-P	 p	 ^ k

mate became larger than the encoder's estimate the leak loss at the

decoder would be larger than the leak loss at the encoder and since

the step size at the encoder and decoder are the same the decoder's esti-

mate would decrease in amplitude until it equalled the encoder. Like-

wise, if the decoder's estimate became smaller than the encoder's esti-

mate the leak loss at the decoder would be less than the leak loss at

the encoder and thus the decoder's estimate would increase until it

equal'led the encoder.

Equation 5.2.1 can be soled recursively to determine the magni-

tude of the DC shift caused by a channel error as a function of time.

If a channel error causes the estimate, Xk, to become shifted by an

amount a at time k then at time k+1, k+2, 	 k+j, equation 5.2.1

^.	 becomes:

k

Xk+l	
a(X k + 

e) + Yk+1

Xk+2 	
a(a(X k + ej + 

Yk
+l): + Yk+2

Xk	 = a(a(QC0 + e  + Yk+1 ) + 
Y
k+2 ) + Yk+3

x	 .

X	 a^X + a e +	
aj-i Y
	 (5.2.2)

k+j	 k	
Y_1	

k+i
-

i

F

r

5
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From equation 5.2.2 we see that the error, e, will leak away by the

factor a, and after j sample times the amplitude of the error will be

aje.

Clearly, the smaller the value of a the sooner the error will dis-

appear. Small values of a will result in noticeably increasing the

-size of Y  which will result in increasing the granular noise of the
f

picture. From our computer simulations of leaky integrators shown in

Figure 30 we have concluded that a = .97 is the smallest leak factor
w^

that can be used without introducing annoying granularity into the

picture.	 a

We will now repeat the analysis of section 4.2 to determine the mean

square value of the DC shift caused by channel errors for a delta modula-

tor which uses a leaky integrator for error correction

The mean square value of iPwi thout the leaky integrator was found

in equations 4.2.6 to 4.2.8a. To find 2 with the leaky integrator we

must replace

	.:^	
en(Yk) 

by aJen(Yk)

in equation 4.2.6. Carrying this change through to equation 4.2.8a and

a

I	 calling the mean square error with leaky integration, eQ, we find that

e.2	 a2je2
e	 (5.2.3)

4
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where e2 is the error without the leaky integrator.	 Thus the mean square

error with a leaky integrator can be calculated from equation 4.2.8a and

5.2.3 given the step size statistics and E k pattern statistics for a

delta modulator with leaky integration,

The step size and E 	 pattern statistics for a delta modulator with

leaky integration is given in Table :IV. 	 From equation 4.2.8a,	 5.2.3 and

Table IV the mean square error is found to be

e2	-	 2j (179)	 (.5.2.4)Q

where "j" is the number of sample times after the occurrence of the chan-

nel error and a is the leak factor.

Proceeding as in section 4.2 the energy per error De is given by	 x

3

De 	=	 1	
CO

'	 a2i (179)	 (5.2.5)
N

iL=D.
j

where N is the number of samples per pel. 	 We multiply by 1/N so that

in converting power to energy the unit of time in equation 5.2.5 remains

the pel.	 This makes equation 5.2.5 consistent with the equations of

section	 4.2 and 5.1.

#	 Np, the distortion energy per pel, is given by

f

Np	 =	 DePeN

a
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TABLE IV

I Y kI	 P(lYki)	 n -	 E.k 's P(n)

1 .24 1 - 1100 .17

2 •.32 2 1001 .14
3 .23 3 -	 1101 .11'

4is .12 4 - 1000 .15

-	 5 .0016 5 - 1010 04

k	 .	 6
i

.05 6 - 1110 .15

7 .0038 7 -	 1011 .11

8 0 8 -	 1111 .12

i	 9 .01I

1Q. .0016

11 0

12 0

13 .0065
14 0

15
i

.0049.

Step size and Ek pattern statistics
for a delta modulator with leaky
integration

i
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Substituting from equation 5.2.5 yields

Np	 Pe(179)
	

(5.2.6)

1-a2

From equation 4.2.12 and 5.2.6 and the fact that Sp/Np is set equal

to 30 db we have

a

_ _	 /3	 = 1000	 (5.2.7)

N p	Pe(179)/(1-a2)

t	 Using the parameter values of section 4.2 and a	 .97, Pe is found from

equation 5.2.7 to be
a

P

Pe = 4.6 x 10_
4
	(5.2.8)

Pe is the probability of :•:'ror required to obtain a -30 db distor -

tion level due to channel errors. In comparing Pe from equation 5.2.8

with the Pe from equation 4.2.14 we see that we can tolerate 38 times

more channel errors when leaky integration is used as compared to the

delta modulator without leaky integration. 	
- ^
fl

From the probability of error we can find the transmitter power as

in section 4.2, which gives -30 db distortion with leaky integration.

Thus substituting into the following equations from section 4.2

101
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Pe = 4.6 x 10-4 = R( 2Eb
oo

E b/no = 7.5 db

ST = EbN(2fm)

yields

i

ST	 = 15.3 db	 (5.2.9)
n
0
 fm

Comparing equation 5,2.9 with 4.2.19 shows that the leaky integrator

can save 2 db of transmitter power compared with the delta modulator with-

out leaky integration.

5.3 Line to Line Correlation

Another kind of error correction is one which employs an algorithm

whereby the receiver can examine the received bit sequence and determine

the transmitted sequence i.nspite of channel errors in the received

sequence. Such.an algorithm can be found provided that the transmitted

bits are correlated to each other in some manner.

There is a great deal of Tine to Line correlation in ,pictures; that

is to say that any scanning line tends to be similar to the line above
i^

and below it over much of the line. Exceptions to this will occur when

u;
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a scanni .ng line coincides with a perfectly horizontal edge of a large

object. In such a case the line would be correlated only to the line

above it or below it but not both. Another exception would be a long

perfectly horizontal strip just one scanning line thick. In this case

the scanning line on the horizontal strip would be different from both

the line above and below it.. Both of these exceptions are relatively

rare in a picture, the latter case is so unlikely that it would not

even occur once in a typical picture.

When a channel error occurs the line containing the error becomes

uncorrelated with the line above and below it. This lack of correlation

appears as a streak as seen in Figure 21b. Thus when no channel errors

occur, the delta modulator's estimates, X V (and therefore E k ) are

highly correlated in the vertical direction, and when a channel error

occurs they become uncorrelated,

This situation is analogous to channel coding for error correction.

In channel coding kincorrelated information bits are correlated by adding

extra bits, in for example, a cyclic encoder. When a channel error

occurs the correlation is lost, and a sequence of bits is received that

the transmitter could never ha , .^ sent. A tree type decoder stores all

possible transmitter sequences and assigns a weight to each sequence

according to how unlikely it was for the transmitter to have transmitted

that sequence.	 Usually, the likelihood of a transmitter sequence is

based upon how many bit errors must be assumed in the received sequence



C	 ir.

decoder, at the end of the message, chooses the transmitter sequence

which required the smallest number of channel errors as the sequence

.actually transmitted, i.e., the sequence with the smallest weight is

chosen.

For the delta modulator, as in channel coding, a weight can be

assigned to each possible transmitter sequence of E k 's that is inversely

related to the probability of that sequence as calculated from the
^a

received sequence. The weight assigned to each transmitter sequence

has two parts. The first part depends upon how many channel errors we

must assume occurred in the received sequence to make it match a trans-

mitter sequence. Transmitter sequences that differ from the received

sequence in a few bits will have lower weight than transmitter sequences

that differ in many bits. Let us call this weight, W 	 the weight due

to bit differences between received and transmitter sequences.
i

,.	 The second part of the weighting function (call it Wc) derives	 j

its value from the amount of uncorrelation between the adjacent scanning

lines and each possible transmitter sequence. Thus a transmitter

sequence of E k 's that results in generating a line of estimates, Xk,

that are similar to the line of estimates above or below it will have

a small weight. Those transmitter sequences that result in generating

'	 a line of estimates that are dissimilar to the line of estimates above
4	 ^'

or below it will be assigned large weights.

e

The total weight assigned to a transmitter sequence is

a
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ca% w	 WT = W  + We	 (5.3,1)

If, as the received sequence is compared bit by bit with a transmitter

sequence we assign a weight l/Pe each time they disagree in a bit and

a weight 1/(l-Pe) each time they agree then Wb is given by:

W 
	 = n	 + Q-n	 (5.3.2)

Pe	 1-Pe

Q _ Number of bits in a sequence which is also the number of Ek
r	 bits per line

n E Number of bits in which the received sequence differs from
a transmitted sequence

Pe =- Probability of a channel. error

Notice that a Pe = 5 results in a value of Wb which is equal to 29

and independent of n and hence, the received sequence. At the other

extreme Pe = 0 results in an infinite weight being assigned to any trans-

mitter sequence that differs from the received sequence in any bit.

W  ranges in value from A to infinity.

The weight, W
c
, is found for each transmitter sequence by subtract-

ing each estimate of each transmitter sequence from the corresponding

estimate in the scanning line above and below it. The resulting dif-

ference signal, d, is given by;

	

IX k	 Xk -k

!	 d = ruin of	 or	 (5.3.3)

Ix  - Xk*J
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WC = 2	 1

q i =0 pd^i )

(5.3.4)

It is assumed that because of line to line correlati

will be nearly equal to 
Xk_a 

or Xk+R 
and d will be a

with a small variance. When a channel error occurs,

become large and assume a value of low probability.

density function of d, then a good choice for W e is

F
Dn the estimate Xk

random variable

however, d will

Let 
Pd 

(d) be the

where q is the number of quantization levels in the estimate.

Notice that if d had a uniform distribution the value of We would

be independent of d and equal to 2k, a situation analogous to equation

5.3.2 for Pe = .5. If perfect correlation existed between lines in a

picture thenpd (0) = 1, pd (d) = 0, d t 0 and any transmitter sequence

which had a d t 0 would have an infinite weight assigned to it. This

situation is analogous to Pe	 0 in equation 5.3.2.

If an error occurs near the end of a line the weight W e may be too

small to properly weight the correct sequence because only the last few

terms in the summation of equation 5.3.4 would have large values for

the received (but incorrect) sequence. To counter this problem a weight-

ing function g(i) might be introduced to ;give extra emphasis to di's
a

near the end of the line. Thus we might make g(i) equal to

I

	

	 _	 ^

ba dt	 g(i)	 (5.3.5)
A
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where a and b are constants (close to unity) whose value would determine

the amount of weight g(i) had on W
c
. Substituting equation 5.3.5 into

5.3.4 yields

K,
R

We = 
2b 
S	

ba y	(5.3.6)

G i =0 P

Combining equations 5.3.1, 5.3.2 and 5.3.6 yields:

Q
WT	 n + Q-n	 + Zb	 a^

Pe	 1-Pe	 q i=0 pd
(5.3.7)

Using equation 5.3.7 we can assign a weight to each transmitter

1500
sequence. Unfortunately there are 2 	 possible transmitter sequences

si p^e there are 1500 bits per line. If we use Viterbi's tree searching

algorithm then the number of possible sequences that the Viterbi decoder

will have to search is reduced to the number of states that the delta

modulator can assume. The delta modulator has 6 bits in the estimate,

4 bits in the step size and one bit for E k-1 , therefore, the number of

sequences to be searched is 2 11 or 2048 sequences. It is possible to

search 2048 sequences but it is not practical to do it in real time.

Since our objective is to design a practical real time video encoder

'	 we abandoned this approach for a much simpler approach to error correc-

tion'which uses the correlation between lines but does not use a tree

ti

i
i
a
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searching algorithm.

The technique that we employed detects the occurrance of an error

by assumi ,ng that horizontal streaks are errors. The visibility of the

error is reduced by replacing the DC level of the streak by the DC level

of the average of the line above and below it.

The technique is shown in Figure 31. Figure 31a shows three con-

a_
secutive scanning lines. The middle scanning line has an error and,

therefore, its DC level has shifted. N consecutive pels for each line

are then averaged as shown in Figure 31b so that the DC level for the

N pels can be determined. The amplitude of the mi ddl e line in Figure

;alb is compared with the line above and below it. If the amplitude

of the middle line differs from the line above it and below it by more

than a certain threshold an error streak is assumed to be present.

s
From the point at which an error is detected to the end of the line, 	 i

the DC value of the line with.the streak is replaced with the average

DC 'value of the line above and below it as determined by Figure 31b.

The result of doing this is shown in Figure 31d.

There are two parameters in theabove algorithm that must be ad-

justed, "N and the "threshold", to eliminate the error streaks. In

Figure 32 we can see the effects of "'N" and the "threshold on both

= t^	 the error streaks and the -quality'of the picture. Small values of "N"

and low thresholds eliminate the error streaks but they tend to degrade

the picture by eliminating thin objects such as the bottom of my glasses

as shown in Figure 32e. Large values of "N and high thresholds leave
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D C Shift

Part A. The Video Signal From 3 Consecutive Scanning Limes
a:
s

i
a
l'a

i
Part B. The Video Signal After Averaging 'N' Consecutive Pixels

.< .-

Error Detected Threshold --^

DC Shift

Part C. The Absolute Value of the Difference Between the Middle Wave i
Form and the Average of the Top and Bottom of Part B. is shown
in Part C.

1

p

Park D. The D C Shift of Part C. is Subtrti.eted from th Video Signal to Produce the
the Corrected Signal of Part D.

I

Fig. 31 A Line to Line Correlation Algorithm for Error Correction
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a
some error streaks undetected and parts of others uncorrected but they

do not degrade the picture. It is our opinion that Figure 32c represents

the best compromise between the degree of error correction necessary

and the amount of degradation that can be tolerated in the picture.

5.4 A Real Time Delta Modulator with Error Correction

a;

f

	

	 Of the three errorcorrection algorithms investigated the leaky

integrator error correction technique gave the best results and is also

the easiest to implement. -

We designed a real time delta modulator using a leaky integrator

for error correction. A block diagram is shown in Figure 33. The leak

factor a was chosen to be .968. If the estimate before the leak is

called X k and if the estimate after the leak is X k ( R ) then the equation
s

r	 defining the leaky integrator is given by:

X
k

	;968Xk + 2 -

Xk (R)	 Xk	 X + 2	 (5.4.1)

32

Since Xk assumes values between zero and 127, the addition of the

value of 2 to equation 5.4.1 causes X k to leak symmetrically about the
'	

midvalue 63.. As an example consider that when Xk equals zero, 1<kW
f
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will leak up to the value +2, when X  equals 127 Xk(R) will leak down

2 ) to the value +125, and when X  assumes the midvalue 63 X k W will

remain unchanged. The addition of the number 2 minimizes the distor-

tion caused by leaking X k while having no effect on the leaking away of

errors.

The implementation of the leaky integrator is shown in Figure 34.

i	 The subtraction of Xk/32 from X  is carried out in Figure 34 by shifting

Xk five places and subtracting it from X k . The addition of +2 in equa-

tion 5.4.1 is carried out by the same subtractor by using the inverted

value of the most significant bit of X  as the six most significant

bits of X k/32. Also notice that the 6 least significant bits leak before

the storage register and the 4 most significant bits leak after the

storage register. In order to split up the leaky integrator this way

it is necessary to store the carry out 
(Gout) 

from the subtractor that

Teaks the 6 least significant bits so that it will appear at the carry

in (of the subtractor that leaks the 4 most significant bits) at the

same time that the estimate appears at the subtractor's inputs.

The leaky integrator was split up this way (half the leak on Xk+l

and half on X
k
) to minimize the effect of the carry propagation delay

through the substractor on the sampling rate of tike ,delta modulator.

Before any storage register's can be clocked the Cout signal must be

present and (see Figures 34) the c pmparator's output must have settled

down. With only 6 bits to propagate through, the 
Cout 

signal will appear
7

before the comparator's output settles down; therefore, the subtractor
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to the left of the storage register is not part of the maximum delay

time path of the delta modulator and will not affect the sampling rate

of the delta modulator. If the subtracto lr to the right of the storage

register (in Figure 34) is to be part of the maximum delay time path,

the propagation delay of the subtractor would have to be greater than

that of the step size generator. This is not the case; hence, the

leaky integrator split up as in Figure 34 will not affect the sampling

rate of the delta modulator. If the leaky integrator was placed entirely

to the left or right of the storage register then the carry propagation

delay would be sufficient to reduce the maximum sampling rate of the

delta modulator.

'	 Because the leaky integrator has only 10 bits and not 12 the effects

of a channel- error may not leak away completely. Under worst case con-

ditions the estimate at the delta modulator decoder could remain 3 quanti-

zation levels greater than, or less than, the estimate at the encoder.

To remove the last vestige of channel errors the estimate at the encoder

and decoder are both forced to their minimum value of zero at the end

of each scanning 'line. Also, the step size is forced to its maximum

value of 15 and E k-1 is forced to -1 in both the encoder and decoder

at the end of each scanning line. This ensures that the encoder and

decoder begin each scanning line in the same state, free of any remaining

channel errors

The conditions described above are forced upon the delta modulator

in a very simple fashion. The negative going sync pulse on the composite
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video signal from the TV camera is set to a voltage more negative than

the most negative output of the DJA converter of Figure 33. When the

sync pulse occurs the estimate is dr 4 ven to the zero quantization

level and held there by the saturation logic. Since the sync pulse is

more negative than the zero quantization level the comparator of Figure

33 outputs a minus one E k duri .ng the sync time. The string of minus

one E k 's are fed back to the step size generator and causes the step

size to grow to its maximum value.

The complete circuit diagrams for the delta modulator encoder and

I:	 decoder are shown in Figures 35, 36, 37 and 38, Figure 35 shows the

input signal from the TV camera being band limited to 4 MHz, DC restored,

buffered, and then clamped to 1 volt peak to peak. The output of

Figure 35 is fed into the input of Figure 36. Figure 36 is the com-

plete circuit schematic of the delta modulator encoder with error cor-

rection. Figure 37 is the circuit schematic of the delta modulator

decoder. Figure 38 is the detailed schematic of the analog output of

the decoder. It shows the circuitry which restores the sync pulses to

the composite video signal	 The delta modulator was built out of ECL

10,000 series logic and it has _a maximum clock rate of 23 MHz.

.,	 A series of tests were made with the delta modulator. The results

of the first test are shown in Figure 39. Here we see 'the effects of

the delta modulation of the 4 MHz composite video signal at clock

rates of 6, 8, 16 and 23 MHz. The pictures are fairly good at 16 MHz

and almost of broadcast quality at 23 MHz_. For the second test we

CC:
f
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introduced errors at 10 -4 , 10- 3 and 10 -2 errors per bit. The pictures

of Figure 40 show the effects of errors. At 10 -4 errors per bit the

errors are almost unnoticeable. At 10 -3 the errors are noticeable but

not annoying. At 10-2 .errors per bit the picture information is stil

intelligible but the errors are very annoying.

5.5 Conclusions

r

The delta modulator described in section 5.4 .Fulfills the objec-

tives of this study. The delta modulator can digitize a video signal

while providing nearly error free pictures with bit error rates as

high as 10 -4 errors per bit. The delta modulator is also cost effec-

tive. It consists of only 21 IC's and consumes only 12 watts of power.

Its only shortcoming lies in the fact that its bandwidth compression

-	 is only 2:l for undistorted encoding of TV pictures`,1	 ^

a
'f

i
r. i

S
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CHAPTER VI.

Other Delta Modulators

To increase the bandwidth compression ratio of the delta modulator

while also decreasing the distortion caused by the delta modulator,, we

investigated several typesof delta modulators substantially more com-

plex than the one described in section 5.4. The first delta modulator

investigated was an interframe encoder.

6.1 Interframe Delta Modulation

From the previous work presented, it is apparent that the key to

producing high quality pictures at lour bit rater, with delta modulation,

lies in reducing edge business. In this section we explain an inter-

frame encoding technique employing a delta modulator which will reduce 'a

edge business in real time motion pictures.

Successive frames of a motion picture contain redundant information.

The amount of redundancy depends upon the degree of change in the scene

from frame to frame. Figure 41 shows the statistics on the ,amount-of

movement in broadcast television ( g) for playing children and conversa-

tion. An exponential distribution can be fit to the data of Figure 41

with a mean of 10.6%. This means that on the average only 10.6% of the

peis change from frame to frame. It is possible to design a delta mode

i
lator which will produce good pictures at low bit rates by taking advantage
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of the interframe redundancy of motion pictures.

Figure 42 shows the encoding scheme that the interframe delta modu-

lator will use.	 Each large square represents a ,successive frame of a

motion picture.	 Each dot on a frame represents a pel	 (picture element).

Note that each pel has associated with it a delta modulator (AMOD) that

I_
follows the same pel through sucessive frames.	 Thus the AMOD in the

1 upper most left hand corner always encodes the pel in the upper most

r
left hand corner for every frame.

The encoding of high quality pictures at _a low bit rate is achieved

in the following manner. 	 From previous studies of delta modulators it

has been observed that high sampling rates are required for a delta

modulator to accurately encode rapidly changing signals and low sampling

r	 ' rates may be used on slowly varying signals. 	 The usual method of encod-

ing a picture by sampling successive gels within the same frame results	 a
s

in rapidly changing signals which require a high delta modulator bit

rate.	 With the frame to frame encoding technique of Figure 41. each

delta modulator is associated with its own pel.	 On the average, 90% of

the pels will not .;hange value from frame to frame, allowing the delta

modulator to accurately encode the value of the pel at a low bit rate.

Of course, those pels that do change value will not be encoded accurately.

' Using this scheme motion pictures will	 be encoded at 1	 bit per pel.

At first thought, hardward implementation of Figure 42 may seem

f impossible since, at one delta modulator per pel, a typical	 250,000

pel/frame 4 MHz bandwidth TV system would have to contain 250,000 delta
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modulators each operating at a 30 Hz sampling rate. Fortunately only

one 3 MHz delta modulator need be used to implement Figure 42; however,

this single delta modulator will have to contain enough shift register

type memory to store an entire picture frame.

The reason that one delta modulator can replace all the delta modu-

lators of Figure 42 is simple. rf Figure 42 was implemented as shown

all 250,000 pels could be encoded, decoded and displayed in parallel,
i

but a real time television system requires only one pel at a time in

serial. The retention time of the eye and screen give the appearance

of a full picture. We may take advantage of this by starting a single

delta modulator at the upper most left hand corner of a frame, let it

encode that pel based upon its previous estimate of the pel from the

previous frame, transmit a bit (E k ), store its new estimate (Xk) for

that pel, and then repeat the process for the next adjacent pel in the

same frame, The delta modulator will continue to encode, and transmit

for each adjacent pel in turn, until the delta modulator has been multi-

plexed through the entire frame (typically 1/30 sec). Then the delta

modulator will return to the first pel and repeat the process for the

next frame.

Figure 43 shows the block diagram of the interframe'delta modulator.

This delta modulator is the same as the one shown in Figure 16 except`.	

for the addition of twelve 250,000 bit long shift registers. The shift

registers were assembled out of U dynamic random access memories.

The following paragragh gives a brief explanation of how the memories`
}

G	 .,
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were used as a shift register. Each memory IC has what is called a

read-modify-write-cycle. Ira this mode an address is first sent to
i

the memory (say address location one). The content of location one is

read out of the memory and then the first bit of data is written into	
i

location one. Next the content of location two is read out of the mem-

ory and the second data tit is writ-ten into location two. This process

would continue for N successive memory locations where N is the length

z

of the shift register to be simulated by the memory', After storing N

data bits and reading out N bits the memory returns to location one and

'

	

	 reads out the first data bit. Then the N + 1 data bit is written into

location one and the process is repeated again. Notice that the delay

time between first storing a data bit and reading out the data bit is

N read-modify-write-cyles of the memory. Thus the memory appears as a
1

serial input serial output shift register, N bits long and with. a clock

.^

	

	 time equal to one read-modify-write-cycle. Figure 44 shows U random

access memories cascaded to produce one longer shift register.

Since the read-modify-write-cycle of these memories takes l us, the-

maximum shift rate of the shift register is only 1 MHz. To achieve the

required 8 MHz shift rate, eight 24K shift registers were multiplexed

as shown in Figure 45 to produce one 200K bit long 8 MHz shift register.

., o
t Timing signals and synchronization were provided by the circuits shown

pp	 in Figures 46 and 47. Pictures of the circuit boards are shown in
6

Figure 48 and part of the assembled system is shown in Figure 44

r	 When the interframe delta modulator was used on real time motion

129
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C

picture TV signals the encoded pictures were as good asp^	 g	 p^	 g	 the original

` picture when there was no motion. 	 In those parts of the picture where

'
i`

motion occurs the picture severely degrades. 	 It requires about 1/3 of

a second for the picture to recover from movement. 	 Figure 50a shows

3
a still picture encoded with the interframe delta modulator. 	 In Figure

50b we can see how the picture breaks up when the camera pans a scene.

For comparison the regular delta modulator described in section 5.4 is

s shown in Figure 50c encoding a still picture at the same sampling rate

as the interframe delta modulator. 	 In Figure 50d the regular delta

modulator is shown encoding a motion picture under the same conditions

as in Figure 50b. 	 Figure 50 shows that the interframe delta modulator

out performs the regular delta modulator on still scenes but performs_

much worse on moving scenes.

It is our opinion that the interframe delta modulator in the form
1

described in this section will not produce satisfactory pictures 	 in

most applications.	 An exception to this would be the display of a

black board or other graphic material where there was no motion for

intervals of several	 seconds.	 In section 6.3 a modification of the

interframe delta modulator will 	 be described which will	 enable the inter-

frame delta modulator to produce satisfactory pictures.

6.2	 Two Dimensional Delta Modulation

g

By taking advantage of the fact that pictures are two dimensional

138
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arrays with each pel correlated to all ins pels around it, it is pos-

sible to design a delta modulator which. does not exhibit edge business.

In Figure 14 it is shown that vertical edges exhibit edge business but

horizontal edges do not. Vertical edges exhibit edge business because

;a
they are at right angles to the direction that the delta modulator

encodes whereas horizontal edges lie in the direction that the delta

modulator encodes. CA delta modulator normally encodes a =picture from

left to right because TV cameras scan from left to right.). Hence, verti-

cal edges present themselves to the delta modulator as a step like

change in the video signalg	 wherea s	 r_horizontal edges appeaas a DC level.

If a delta modulator could be designed to encode horizontally on hori-

zontal edges and encode vertically'on vertical edges then edge business

on horizontal and vertical edges could be eliminated.

Another way to express this idea would be to say that a pel along

a vertical edge is uncorrelated to the pels to its right but is corre-

lated to the pels directly below.. Li-kewise, a pel along a horizontal

}	 edge is uncorrelated to the pets below but is correlated to the peps

j	 directly to the right. If a delta modulator was designed to follow
i

an encoding path of maximum correlation between pels then edge business

would be minimized.

Such a delta modulator was designed and built to-encode-real time

b
TV pictures. It was called a "two dimensional delta modulator since

it encodes from both the horizontal or vertical direction. (The delta

modulator described fn section 5.4 is termed a one dimensional delta

139



modulator since it encodes only in the horizontal direction-.)

The operation of the two dimensional delta modulator can be under-

stood by referring to Figure 5(. Figure 51a shows that the two dimen-

sional delta modulator contains a horizontal predictor and a vertical
j,

predictor. It also contains decision circuitrywhich decides whether

the horizontal predictor or the vertical predictor is to be used to

form the next delta modulator's output (estimate, Xk+l^.' Figure 51b

shows the location in a picture of the estimate, step size, and Ek
f

stored in the horizontal and vertical predictors. X k+l is the current

sample to be formed by the delta modulator. Xk, Yk, E k are the esti-

mate, step size, and E in the horizontal predictor and X 	 Y
k	 k-^,+1	 k-k+1

are stored in the vertical predictor. Using Xk, Y k and E  the horizon-

tal predictor forms Xk+1• Likewise the vertical predictor forms Xk+1

from XY	 and E	 The predictors form X 	 and Xv
k-Q+1	 k-Q+l	 k-g+l	 k+l	 k+l

I	
according to equations 3.1.1, 3.1.2 and 3.1.3 which are the equations

that described the one dimensional delta modulator. Thus the horizon-

tal predictor is the same as the one dimensional delta modulator's pre-

dictor, and the vertical predictor is also the same as the one dimen-

sional delta modulator's predictor except for the fact that one scanning

line of storage is required to store XY 	 and E'	 because
k-Q+i	 k-z+1	 k-Q+1

these values were formed during the previous scanning line,

The decision circuitry decides whether the delta modulator will

let X	 and Y	 be equal to X H	 and Y H	 or X v	 and Yv	
H

k+l	 k+l	 k+1	 k+l	 k+1_	 k+1. If Xk+l

and Y 	 are chosen to be X	 and Y	 then X 	 and Y 	 are storedk+l	 k+l	 k+l	 k+1	 k+l
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in both the horizontal and vertical predictor for the next prediction,

and XV	 and YV	 are discarded.	 If XV	 and Y
V
	 were chosen then thek+l	 k+l	 k+1	 k+l

s; reverse would be true.	 The decision circuitry makes its decision by

comparing Xk and X k _
Q+1 

with the input signal	 SK+1'	 If S k+l	
is closer

in amplitude to X k than to X k _ Q+l , then the delta modulator will 	 encode,

1 horizontally, forming X	 from XH	 If S	 was closer to Xk+l	 k+l'	 k+l	 k-k+l

,. then the delta modulator would encode vertically and form Xk+1	 from

.'. Xk+l'	 An extra bit of information must be sent to the receiver to

inform the receiver as to which decision the decision logic makes. 	 Thus

' the two dimensional delta modulator, transmits two bits for each sample

of the video signal.

i The set of equations describing the two dimensional delta modulator

are given below:

.^ Let Dk and DK be defined as follows:

Dk
	

Is	 - Xk I	 and	 DVI s
	Xk-Q

k+1	 k +1 	 +1l''

Then

Ek+l	
Sgn	

CS k+1 - Xkj	 k	 Dk

a
f	 ;

L

H	 V
Ek+l	 -	

Sgn
[Sk+l - Xk.-R+1 ]	 D 	 ' D 
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_	 H	 H	 V
X k+l	 Xk + Yk+l
	

Dk < Dk

V	 H	 V
X k+l	 Xk-k+l + Yk+l	 Dk ' 

DV

^ Y ';kl (Ek+l	 + zEk)	 I%	 > 2
H

Yk+1
2Ek+l	 IYkI	 < 2

IYk- +zEkIYk2k+l
I(E

k+l	 -k+1 )	-ktl1

V
Yk_ +l

2E k+1	 lyk-k+lI 	< 2

The implementation of the decision circuitry of Figure 51

I

posed a

special	 problem because the decision must be made within 25ns if the

delta modulator is to work in real	 time.	 The solution to this problem	
E

is shown in Figure 52.	 The output of the exclusive or gate is zero if

the input signal	 is closer to X H , and one if the input signal is closer

to XV .

The circuit schematic of the delta modulator is shown in Figure 53.

The schematic does not include the one scanning line of memory used to

x store X
k_k+1 ,	Yk_k+l,, 

and 
Ek-k+1	

nor does	 it include the phase lock loop{

'. required to sync the delta modulator's, 8 MHz clock to the horizontal

{ sync signal.	 The total	 number of IC's used to implement the two dimen-

Y
sional delta modulator algorithm was about 50 IC's. 	 This makes the

l

l
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two dimensional delta modulator 2.5 times as complex as the one dimes-

sioval delta modulator.

When the delta modulator was tested on real time motion pictures

from an NTSC standard black and white TV camera the delta modulator

degraded in an unexpected way. Apparently each frame of the motion

picture (especially at the corners of objects and along diagonal lines

with positive slope) was encoded slightly differently. This caused

flickering at the corners of objects and along diagonal lines with posi-

tive slope. This phenomenon is caused by the fact that at a corner

neither Xk nor Xk-Q-+1 is a good estimate of Sk+l, the corner pel.

Therefore, several pels must go by before the delta modulator acquired

the value of the corner pel. An analogous situation exists for diagonal'

lines with positive slope. In effect, the delta modulator slope over-

loads on these signals. The slope overloading of the two dimensional

delta modulator is worse than for the one dimensional delta modulator

because the two dimensional delta modulator has only one half the num-

ber of samples per pel to achieve the same transmission bit rate as the

one dimensional delta modulator.

To improve the performance of the delta modulator on diagonal lines

with positive slope the delta modulator was modified so that instead of

encoding horizontally or vertically with X  or X k-z+l" the delta modu-

lator could encode horizontally or diagonally choosing X  or Xk - k+2.

Wq termed this new encoding scheme advanced encoding since X k-x+2 is

one pel ahead of X	 (see Figure 51b). A comparison of the two
k-z+1



F

.p

n

encoding schemes is shown in Figures 54a and b.	 Notice that in Figure

54a horizontal and vertical lines are encoded perfectly but diagonal

lines with positive slopes of around 45- are jagged. 	 In Figure 54b

with advanced encoding horizontal edges are perfect, vertical edges
i

are almost perfect and diagonal lines are substantially improved. 	 Over

all, advanced encoding produces better pictures than non-advanced en-

coding.

5 Subjective comparisons of the one and,two dimensional delta modu-

lators at 2 bits per pel	 (16 MHz transmission rate) has shown them to

produce pictures of nearly identical	 quality.	 Since the one dimensional

delta modulator is less complex than the two dimensional delta modulator

this author feels that for most applications the one dimensional delta 1

modulator would be preferred. 	 An exception to this would be the trans-

mi ssi on of a single frame because the flickering caused by the fact that

each frame is encoded differently would be absent.

6.3	 Interframe Two Dimensional Delta Modulation

The principle of two dimensional	 delta modulation can be a	 l i edp	 pp

-	 ^ to the interframe encoder. 	 The interframe encoder wa s modified so that
r:3

the current estimate could be formed from either the estimate exactly

one frame before, or one sample before. 'If the estimate in the previous

frame is chosen to form the current estimate then the encoding proce-

dure is the same as the interframe encoding of section 6.1. 	 If, however,

j
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w

the estimate on the same frame, one sample to the left is chosen to

form the current estimate, then the encoding procedure is the same as

the one dimensional delta modulator. 	 As with the two dimensional 	 delta

modulator of section 6.2, the choice as to which estimate is to be used

to form the current estimate is determined by which estimate is closer

in value to the current pel.	 Two bits are sent to the receiver for

each sample ofthe video signal. 	 The first bit is the delta modulator's

} output, E k , and the second bit informs the receiver as to which estimate

the transmitter chose to form the current estimate.

Figure 55 shows a block diagram of the encoder.	 The block diagram

of the two dimensional	 interframe encoder of Figure 55 is functionally

the same as the two dimensional encoder of Figure 51 except that the

vertical predictor with one line of memory has been replaced with a

frame to frame predictor with one frame of memory. 	 a

_ The result of using the interframe two dimensional delta modulator

on real time TV signals with a transmission rate of 16 Mb/S 	 is

shown in Figure 56.	 Figure 56a shows a resolution chart with no motion.

There is no degradation. 	 Figure 56d shows the effects of panning the

scene.	 When the camera pans the scene there is so much change in the

pels between frames that the delta modulator almost always chooses the

estimate to right within the same frame to encode the current estimate.

Therefore, on movement the delta modulator tends to encode as if it

were a one dimensional delta modulator operating at 8 Mb/S. 	 When there`

is no movement the delta modulator tends to encode as the interframe

F
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i
delta modulator of section 6.1.

For scenes with a moderate amount of motion the two dimensional

interframe delta modulator operating at 16 Mb/S produces better quality

pictures than any of the other delta modulation techniques. This delta

modulator is much more complex than the other delta modulators. It

required over 600 IC's to implement.
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	 APPENDIX A

The factor of 7 db was calculated under the following conditions

and constraints. It is well known from the psychophysics of vision that

satisfactory pictures can be made with only 64 different brightness

levels. Thus the number of bits (N) per PCM word required is 
1092 

64 or

N	 6 bits/sample	 (A.1)

The probability of the occurrence of a bit error (Pe) due to white

gaussian (1) noise is

q

Pe = Zerfc Es	 (A.2)

no

	

g	 where Es is the energy per bit and n
0 

is the power spectral density of
 3

r

the noise at the receiver's input. A typical Pe for a digital communi-

cations channel is Pe = 10-5 which, from Eq (1.2), yields

Es	 9db	 _ (A.3)
x	 n—	

^
o

	

•.	 1

Es can be related to the 'received power, Sp cm , by (1)

Es = S cm	 (A.4)

2 fr,.,N

153`

x



where fm is the highest frequency component in the baseband TV signals.

Combining Eq A.3 and Eq AA yields the value of signal-to-noise ratio

at the receiver's input required to achieve a probability of error of

10-5.

Spcm = 20 db
	

(A.5)
n o fin

r	 _

The signal-to-noise ratio at the output of the receiver (S o/No ) with

Pe	 10 `5 is given by: (Taub and Sch-illing, Prin. of Comm. Sys.)

So 
= 22n	 = 35 db	 (A.6)

No	 l+4Pe22n
l

i

'	 Eq A.6 includes both the effects of bit errors and quantization noise.

We will now compute the ratio of transmitted power ( S FM ) in the FM

system, to that of PCM (S pcm ), which will yield the same signal-to-noise,

ratio (So/No ) at the output of both systems. The comparison will be

made with the bandwidth of the FM system the same as that of the PCM

r.,r	 system. The bandwidth (BW) of the PCM system and, hence, also the FM

system is given by

B.W.	 fin  = 6 fm	 (A.7)

^k

1 "....
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From Carson's rule and Eq 1.7 we can find the modulation index, B, of

the FM signal

B. W.	 6 fn, = 2(B+l )fl,

B	 2	 (A.8)

Substituting from Eq A.6 and A.8 we can solve Eq A.9 for the signal-

to-noise ratio ( S FM/no fm) at the input to the FM receiver such that the

output signal-to-noise ratio (S0A0 is the same in both FM and PCM

N—° --2 62 S Fht	 (A.9)

o	 nof"n

S FM	 = 3162(3)(.2) 2 = 27 db	 (A.10)
nofm

i

Subtracting Eq A.5 from A.10 shows that the PCM system can achieve

k	 the same signal-to-noise ratio as the FM system with 7 db less power.

k
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