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T. INTRODUCTION

This study addresses the problem of analyzing the spectral separability of
wheat from other small grains and developing fixed and/or segment-dependent
projections to aid in the identification and labeling of wheat as opposed to
other small grains in multispectral images acquired by the National Aeronau-
tics and Space Administration land observatory satellite (Landsat). Emphasis
is placed on the relation of unitemporal and multitemporal separability to
the number and timing of the acquisitions used. The most important tools
used in the present study are the Fisher plane, the eigenvector plane, and
the generalized discriminant plane.

Section 1.1 contains a brief description of the background to this study, and
section 1.2 presents an introduction to the On-Line Pattern Analysis and
Recognition System {OLPARS). Section 2 defines the data sets used in this
study; section 3 deals with the general results concerning separability of
wheat and small grains. Sections 4.1 and 4.2 describe the different projec-
" tions studied and the results in terms of proposed projections for wheat and
other small-grain idgntification and labeling. Section 5 presents the
conclusion reached in this study and the recommendations for future work.

1.1 BACKGROUND

In the 3 years in which the Large Area Crop Inventory Experiment {LACIE) has
been operational, it has become increasingly clear that in order to obtain

a sufficiently accurate wheat area estimate, particularly in the areas where
spring wheat is grown, it would be necessary to distinguish wheat from other
small grains such as barley and oats. Because the smalTl-grain crops are so
similar in their reflectance and development, it has been the practice in
LACIE Phase III to simply Tabel and classify small grains as a class. A
wheat estimate was then generated by developing a ratio of wheat to other
small grains based on historical and economical variables. Such a ratio was
developed for each stratum separately. The problem is that these ratios

are not constant from -year to year and are difficult to predict accurately.
In addition, it is not clear that the analyst-interpreters (AI's) are able
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to identify and label all of the small-grain signatures with the same confi-
dence with which they can label wheat. These related factors are believed
to have contributed to a persistent underestimate of wheat area in the
spring wheat areas of the United States.

Because of the difficulties encountered in areas where wheat and other smali
grains are grown together, it was decided that one of the goals for the LACIE
Transition Year would be the development of techniques and procedures for
labeling and classifying wheat directly. This document, which is a part of
the development effort, addresses the problems of acquisition selection for
maximum separability of wheat versus other smail grains and the develop-

ment of analyst labeling aids. The objective of this vresearch is to develop
techniques which will allow the analyst to reliably distinguish wheat from
other small grains in an operational setting.

1.2 THE ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM (OLPARS)

Sammon (ref. 1), Kanal (ref. 2), and Simmons (ref. 3), among others, have
proposed that no particular solution (among a choice of learning machines,
statistical approaches, spatial filtering, heuristic programming, or formal
linguistic approaches) has proven retevant to all pattern recognition pro-
blems. For several years, the Rome Air Development Center (RADC) conducted
an exploratory development program to establish techniques for digital sig-
nal processing and pattern recognition. They adopted an interactive approach
to the solution of pattern recognition problems, coupling a knowledgeable
human problem-solver with an interactive computer graphics system. The
general purpose computer contains a library of data analysis, digital signal
processing, and pattern classification algorithms. Using a graphics display
console, a human operator can analyze his data, and based onh what he sees
coupled with any prior knowledge he may possess, choose an appropriate
pattern classification procedure, observe the results, and continue to
iterate in this manner. Eventually, one of two things will happen: (1) he
achieves an acceptable 1evel of performance whereby the output of the com-
puter consists of the design parameters for a classifier which can be imple-
mented by means of special purpose software or (2) he reaches a point where
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no further improvement seems possible. Hopefully, the operator gained in-
sight as to why an acceptable level of performance was not achieved if further
improvement appears impossible.

OLPARS is resident on two systems at RADC. One version is on a Programned
Data Processor, Model 11/45 (PDP-11/45) computer under the Waveform Process-
ing System (WPS}. This is a single-user system employing high performance
interactive graphics, and as a module under WPS, provides for ease of inter-
action between the feature hypothesis mode .conducted under WPS and rapid
testing of these hypotheses under OLPARS.

A second version of OLPARS, the one used in the present study, is implemented
on a Honeywell HIS 6180 computer under the MULTICS operating system. MULTICS
is a time-sharing system that utilizes a virtual memory concept. Interactive
graphics capability is provided by a Tektron%x 4002A storage tube with alpha-
"numeric keyboard, joystick, and hardcbp& unit.

Both versidns of OLPARS include their own executive software, filing system,
display package, and software moduies for feature evaluation, vector data
structure analysis, measurement transformation, and classifier logic design
(ref. 4). In addition, OLPARS contains. quite an extensive collection of
routines. More on the topic of routines follows.

1.2.1 CLASSIFICATION LOGIC DESIGN AND EVALUATION

This subsection describes some of the classifier logic available in OLPARS.
These routines allow the user to tailor the decision logic design to the
structure of the class data. A brief description of some of the routines
used in this study follows:

¢ Fisher pairwise classifier Togic is conﬁtructed by computing optional
linear discriminants and thresholds to distinguish between every pair of
classes (subclasses) within a designated group. The linear discriminant
is the Fisher Tinear discriminant given by the following equation.

1-3



_ o]
iy = olizhis

where

Mg = mean vector of class (subclass) i

Ci = covariance matrix for class {(subclass) i

® Nearest mean vector (NMV) Togic implementation provides capabilities for
classification of data utilizing one of three metrics (Euclidean distance,
weighted vector distance, and Mahalanobis weighted distance). An unknown
vector, then, is assigned to the reference class for which the decision
metric is minimized.

@ Closed decision boundary logic creates an L-dimensional closed hyperregion
for each of the.selected data sets. An unknown vector is aésigned to a
class if, and only if, it Ties in the hyperregion associated with that
class and no other. If an unknown vector should fall into more than one
hyperregion, it may be rejected or placed in a new data tree for further
logic design at the user's discretion. Vectors which do npt tie within
any hyperregion are rejected. The three types of hyperregion available
are: hyperrectangular, hyperspherical, and hypereiiipscidal.

1.2.2 LINEAR AND NONLINEAR PROJECTIONS

The basic use of projections in the MULTICS: OLPARS Operating System (MOOS) is
to determine if the structure of the data for a particular class is unimodal
or multimodai. If it is multimodal, it is frequently better to subdivide the
class before attempting to design logic for distinguishing between classes.
This is partigu]ar1y true if the logic to be designed is statistically based.

A1l of the algorithms for structure analysis in MOOS involve projecting the
data onto a one- or two- space area, and allowing the analyst to draw a
partition or partitions of the space if multimodality is present. All of
the projections except one, nonlinear map (NLM}, are linear. The Tinear
projections may also be used as the basis for group Togic design.
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The Tinear and nonlinear projections are:

¢ The eigenvector plane (least squares) is defined by any two eigenvectors
of the covariance matrix. The plane defined by the first two eigenvectors
has been used extensively in this study. The rationale is that this plane
best fits the L-dimensional data in the least-squares sense.

¢ OLPARS offers the analyst another projection direction or plane. The two
classes, upon which the projection is based, may be composed of any two
classes of the data set, or they may be composed of any two groups of
classes which are lumped together for the purpose of determining the pro-
jection direction or directions. The entire current data set is projected
into the space defined by the Fisher discriminant Qq and a second vector,
dy, where d, is that direction which maximizes the projected between-class
scatter relative to the sum of the projected within-class scatter, under
the constraint that QQ be orthogonal to gq. In summary,

-1

d, = oaz{w“1 - (AT[W“]]ZA/AT[W‘]]%)[N']]Z}A

where

oy and a, are normalizing constants; A is theé difference between the class
mean vectors, ¥y - o3 and W is the sum of the within-class scatter mat-
rices. ‘

If the one-space option is chosen, the data are projected on gq; that is,
the Fisher direction only.

¢ Generalized discriminant projections offer the analyst the capability of
projecting data onto a discriminant direction or plane which has been opti-
mized to produce maximum discrimination for all classes. This is a gener-
alization of the Fisher discriminant projection described previously.

- The Fisher discriminant is obtained by solving for the unit vector d which
maximizes the following ratio:



where B is the between-class scatter matrix, and W is the sum of the
within-class scatter matrix.

To solve for the generalized Fisher discriminant directions, take the
vector derivative of the above ratio R with respect to d and set the
resultant equation to zero. The procedure generates the following
generalized eigenvector equation.

[B - AWld =
B - AI7 =

The generalized discriminant vectors are the eigenvectors of the nonsym-
metric matrix w—1B. The rank of the between-class scatter matrix for the
K-class discrimination problem is K - 1; therefore, no more than K - 1 non-
zero eigenvector solutions exist. Thus, the generalized discriminant
vector function produces K - 1 discriminant vectors, with the vectors which
correspond to the largest eigenvalues producing the maximum discrimination.

NLM is accomplished by using the OLPARS routine for multidimensional
scaling. This routine iteratively fits the data into a two or three
dimensional subspace such that the difference between interpoint distances
in the lower and higher dimensional spaces is as small as possible.

Measurement transformations are arbitrary transformations on the data
before any projections are formed. Two "built-in" transformations avail-
able are the normalization transformation and the eigenvector transforma-
tion. In addition, OLPARS has the capab111ty to perform any arbitrary
transformation specified by the user.
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2. THE DATA SET

The data set for this study consisted of grid intersection points labeled
according to ground-truth class for each of several -segments, including

20 segments from the 1976 crop year and 25 segments from the 1977 crop year,
For each segment, the grid intersection picture elements (pixels) were sorted
by ground-truth class into wheat, barley, rye, oats, flax and other. Each of
these classes was further divided into those pixels which were pure and those
which were on a boundary. Table 2-1 1ists the segments used, their location,
and the acquisitions available for each segment.

Not all of the segments in the data set were equally useful. Some contained
none or only a small amount of certain small grains. Since rye and flax were
not present in large amounts in any segment, it was decided to focus on the
separability of spring wheat from barley and oats. Even so, many segments
contained only a small amount of one or more of these grains. After an
initial exploratory analysis, it was aiso concluded that boundary pixels had
a very detrimental effect on discriminant analysis, eigenvector transforma-
tions, and classifier performance. Therefore, border pixels were not useq

in the study except in cases where very small sample size made their use ‘
mandatory.

Figure 2-1 shows a projection on the two Targest eigenvectors of the multi-
temporal data for segment 1512. Small letters on this figure indicate bound-
ary pixels, and large letters indicate pure pixels. Figure 2-2 shows a

Fisher discriminant plane plot for the same data, The results of an identical
analysis following removal of boundary pixels dre given in figures 2-3 and 2-4.
These examples illustrate the effect of boundary pixels in degrading the
separability of the pure small-grain pixels.
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TABLE 2-1.— SEGMENTS, LOCATION OF SEGMENTS, AND
ACQUISITION DATES USED IN THE DATA SET

(a) 1976 crop year segments

Location
Segment - Acquisitions
County State
1642 Cass North Dakota |127, 145, 146, 163, 182, 199, 200, 236
1645 Traill North Dakota |110, 128, 145, 146, 164, 181, 235, 236
1660 Logan North Dakota 110, 128, 129, 147, 164, 165, 219, 236
1686 Beadle South Dakota |91, 127, 145, 163, 182, 199, 217
1003 Logan Colorado 22, 143, 166, 184
1533 Daniels Montana 116, 152, 187, 205
1559 Wibaux Montana 150, 204, 240
1614 | Pierce North Dakota | 130, 183, 201, 219
1618 Grand Forks {North Dakota [ 127, 163, 199, 235
1624 Walsh North Dakota | 128, 146, 236, 254
1650 Hettinger °|[North Dakota {130, 148, 220, 238
1651 Slope North Dakota {150, 204, 221, 240
1655 1 Grant North Dakota | 130, 149, 202, 220
1667 ‘Harding | South Dakota | 131, 149, 203, 221
1677 Spink South Dakota i27, 163, 217, 235
1681 Roberts South Dakota [ 127, 162, 198, 234
. 1687 | Hand | South Dakota |92, 128, 182, 236
1725 Fiathead Montana 121, 129, 127, 230
1742 Cascade Montana (75) 304, 137, 191, 209
1965 Burke {North Dakota | 132, 221, 222




TABLE 2-1.— Concluded.

(b) 1977 crop year segments
Location
Segment Acquisitions
County State
1734 HiT1 Montana 95, 113, 203
1747 Judith Basin| Montana 112, 130, 184
1937 Pondera Montana 132, 168, 203
1663 Richland North Dakota {120, 121, 138, 139, 156, 157, 174, 175,
193, 211, 229

1667 Harding South Dakota | 71, 107, 125, 143, 161, 179, 197
1648 Bowman North Dakota | 107, 125, 143, 179
1903 Mercer North Dakota | 125, 179, 197, 233
1677 Spink South Dakota | 140, 176, 193, 230
1681 Roberts South Dakota | 120, 139, 175, 192
1512 Clay Minnesota 120, 156, 157, 193
1613 Kittson Minnesota 140, 157, 175, 193
1520 Big Stone‘ Minnesota 120, 156, 174, 192
1523 Wilkin Minnesota 120, 138, 156, 175
1531 Phillips Montana 112, 129, 184, 220
1556 Powder River | Montana 162, 180, 198, 235
1725 Flathead Montana 98, 152, 188, 224
1739 Teton Montana 114, 150, 168, 222
1742 Cascade, Montana 113, 167, 203
1830 Red Lake Minnesota 157, 175, 193, 211
1839 Swift | Mimesota | 120, 137, 156, 174
1849 Sibley Minnesota 100, 118, 136, 172
1873 Lincoln Minnesota 120, 138, 174, 192

_ 1929 Blaine Montana 112, 147, 184, 220
1930 Hettinger ‘North Dakota | 125, 143, 197, 215
1899 Walsh North Dakota | 122, 157, 175, 193
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3. SEPARABILITY ANALYSIS OF WHEAT AND OTHER SMALL GRAINS

3.1 SEPARABILITY AS A FUNCTION OF CROP CALENDAR

In order to assess the spectral separability of wheat from other small grains
as a function of crop calendar, two approaches were taken. First, each - .
acquisition for a segment was examined in the Fisher discriminant plane and
also in the plane associated with the first two eigenvectors of the pooled
covariance matrix for each class. These projections are described in

section 1.2. And second, after a visual inspection and comparison of the
various acquisitions in these two dimensional subspaces, each acquisition was
classified using the NMV classifier and the Fisher pairwise classifier. These
classifiers were trained using all of the data for each segment and were then
applied to the training data. The probability of correct classification
(pccC) reshlt{ng from these classifications provides numerical measures of

the separability of spring wheat from other small grains.

Figures 3-1 through 3-4 show the sequence of eigenvector projections for
segment 1830 (77) corresponding to acquisition dates of 157 (77}, 175 (77),
193 {77), and 211 (77). Figures 3-5 through 3-8 show the corresponding
Fisher discriminant plane projections. This seament was chosen for inclusion
in the report because it is representative of trends observed over many seg-
ments. These trends may be summarized as follows:

a. On a single-acquisition basis, barley is not separable from wheat except
at a certain critical time in the growing season which corresponds to a
Robertson biostage for wheat of approximately 5.0 to 5.9. It appears
that this separation occurs because barley turns cclor from green to
yellow earlier than wheat.

b. On a single-acquisition basis, oats are not significantly separable from
wheat at any time during the growing season.

Tabie 3-1 gives the PCC estimates calculated using NMV classification for
several of the 1977 crop year segments which contained significant amounts

3-1
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TABLE 3~1,- THE PCC FOR SPRING WHEAT

Robertson biostage for spring wheat
Segment
0 to1.9]2.0 to 2.9} 3.0 to 3.9 {4.0 to 4,9 |5.0 to 5.9 (6.0 to 7.0
1512 36.4 36.4 63.6
- 1830 53.9 67.7 58.5 40.0
1899 50.0 46,3 64.8 §1.5
1648 79.3 79.3 89.7
1742 30.0 ) 90.0 80.0
1929 | 87.9 ' 18.5 81.8 78.8
1681 | 57.1 71.4 © 67.9 42.9
1523 48.3 37.9 | 37.9 75.9
Average 51.6 56.3 59.3 73.2 71.4 60.4
Overall average l 62.0

3-2




£-€

ai

draZbndy
redren

S restruct
5 selimclas
index
seq
dboundry
scaleSza
. 5 scale3rt

cdispla
g 5 ) piay

S § clprint
S
£8 oy

L11]

vaclanave

VA 9004 10
& v "TNIDNO

= spring wheat

5

s = border spring wheat Current

A = oats Option:
A : sigv3aa2

a = border oats ¢

B

b

= barley Doteset:

border barley 15711830
LTS r 17Q

projected on meOS. i and- 2

»

scatter plot
Figure 3-1.— Eigenvector projection, segment 1830, day 157.



L\

y-€

spring wheat

border spring wheat
oats
border oats

barley
border bariey

Lw ol v e N < O 2
]

preojscted on Geas. i end 2 scatiey plot
Figure 3-2.— Eigenvector projection, segment 1830, day 175.

dyaShady
radrawx
rezstruct
elinclas
index
seq
dboundxy
scalelza
scale$rt
cdisplay
clprint

vaclisave

Current
Option?
eigv8sal

Dataset:
17511038
5031

r 17®



FY

G-¢

B SS9
hg
B CDE
S
B 9
B B Eg
§ S
5 " 5E
® S
=3 B ‘:‘SS s
o %sgh S g%
s ) B Q A A
s & fAs 592 s 8
A RS s °

§ = spring wheat

s = border spring wheat
A = patls

a = border oats

B = barley

b = border barley

projsciad on mans. i and 2 acettexy plot

Figure 3-3.— Eigenvector projection, segment 1830, day 193.

dradbdady
sodran
restruct
elimclaa
index
saq
dboundry
scalaSzam
scalelrt
cdisplay
clprint

vecisave

Current
Optiont
sigv8sa2

Datwmoat:
183¢1838
-] Fa

r 1868



bl

9-¢

B
S
B s aF s €% 3
S§b5§§§sb 8§ ¥
8 & 55§§5§S$
5 FDP§% g A
5 %
E
S
S = spring wheat B
s = border spring wheat
A = oats
a = border cats
B = barley
b = border barley
projacted on moes. ~1 and 2 scatter plot

Figure 3-4.— Efgenvector projection, segment 1830, day 211.

dxa%bndy
radyaw
raestruct
slinclas
index
s8q
dboundry
scaleSzm
scale¥rt
cdisplay
clprint

vecimave

Current
Option:
sigvise?

Dataset:
21131830
-3 §-1.



o

L-€

S
§ B
S S
A a
) S S
B atSs '
A s N
Sg ﬁ o B
5 B 3
s 3 & 5SS _ ®
A S > S
_ S
s B i a
B > s s
Sg
. 3 S
B 5 B S
§ S = spring wheat
AR s = border spring wheat
A = oats
a2 = border oats
B = barley
S b = border barley
A

scattar plot

draBbady
redran
ragtruct
eliecleasn
index
dboundry
scaleSzn
scaleSxt
edisplay
elprint

vecSsave

Curzent
Optaon:
axdgfsnl

Dataset:
1571830
L 3T ]

Figure 3-5.— Fisher discriminant projection, segment 1830, day 157.

r 1788

ALFIVAY ¥004d J0
ST EDVd TVNIOINO



©

8-€

s
S A
S §
A 8 S
S
s -’éégg
) () E% 5
Sf%“g,se s
B, oma® S
3 B
S £ -
&3
5
B“ "
A

§ = spring wheat

B s = border spring wheat
A = oats

P a = border oats
8 B = barley
b = border barley
8 -
: scattex plot

Figure 3-6.— Fisher discriminant projection,

dralbady
redrom
restruct
slimclas
index
dboundry
scaleSzm
scaleSxt
cdisplay
clprint

vweclisave

Current
Option:
ardgSsal

Datoset:
17541838
-§ 35 r 176

segnent 1830, day 175.



Y7

6-¢

]

e v e =T ~ S N ¥

= horder barley

spring wheat

border spring wheat

oats
border oats
barley

acatter plot

Figure 3-7.— Fisher discriminant projection, segment 1830, day 193.

drathndy
radren
restrucst
elimcles
index
dboundry
scale8zm
scoleSrt
cdisplay
clprint

veclsave

Curxant
Option:
exdg82a2

Datoost:
19341430
RANE

a0
40

O ¥ooq
TVNIDE

ALy
ST #9vg

1983



47

oL-€

o W o I own WL

spring wheat

border spring wheat

oats

border oats
barley

border barley

scuttaf plot

Figure 3-8.— Fisher discriminant projection, segment 1830, day 211.

dzalbady
redran
rastruct
climcles
index
dboundry
scalelznm
scaladrt
cdisplay
clprant

vecisave

Currant
Option:
axdg%=e2

Datasot:
21141830
e s shi



of spring wheat and either barley or oats. The PCC values reported 1in

table 3-1 are computed by taking the proportion of the spring wheat pixels
which were correctly classified for each acquisition of each segment. The
acquisitions have been grouped to correspond to Robertson biostage ranges for
spring wheat. Average PCC values are shown for each Robertson biostage range.
These results demonstrate that the maximum separability of spring wheat from
barley and oats occurs during Robertson biostage 4.0 to 5.9 for spring wheat.
The separability at other growth stages is quite poor.

Tables 3-2 and 3-3 give the corresponding PCC estimates for the class of
barley pixels and the class of oats pixels for each segment, respectively.
The average PCC values show that the best separation of barley .from spring
wheat and oats occurs during Robertson biostage 5.0 to 7.0 for spring wheat.
This overlaps with the period during which spring wheat showed the best sepa-
rability, the overlap being from Robertson biostage 5.0 to 5.9 for spring
wheat. ) : ’

Oats showed some separability from barley and spring wheat during Robertson
spring wheat biostages 0 to 1.9 and 5.0 to 5.9.

These observations drawn from the classification results confirm the analysis
made using Fisher and eigenvector projections. In the Tight of both anaiyses,
it is clear that an acquisition during Robertson biostage 5.0 to 5.9 for
spring wheat provides the best unitemporal separability of spring wheat,

oats, and barley. Visual analysis of the projected data revealed that barley
was typically separable from spring wheat and oats at this time; however,
using only a single acquisition, oats were not significantly separable from
spring wheat at this time, or any other time during the growing season.

3.2 MULTITEMPORAL SEPARABILITY

In order to investigate the multitemporal separability of wheat from other
small grains, projections of multitemporal data into the Fisher discriminant
plane and the plane associated with the two Targest eigenvectors of the pooled
covariance matrix were visually examined. It was found that mu1tj§gmpora1
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TABLE 3-2.- THE PCC FOR BARLEY

Robertson biostage for spring wheat

Segment
0 to 1.9 .[2.0 to 2.9 3.0 to 3.9 4.0 to 4.9 5.0 to 5.9 6.0 to 7.0
1512 28.6 64.3 78.6
1830 66.7 66.7 31.7 100.0
1899 67.7 88.7 75.8 90.3
1648 50.0 50.0 50.0
1742 92.3 84.6 100.0
1929 54.6 63.6 90.9 81.8
1681 14.3 14.3 71.4 71.4
1523 72.2 61.6 88.9 55.6
Average 55.0 47.6 73.8 63.9 87.% 88.3
Overall average 69.4
TABLE 3-3.- THE PCC FOR OATS
Robertson biostage for spring wheat
Seament
0 te 1.9 |2.0 to 2.9 3.0 to 3.9] 4.0 to 4.9 }5.0 to 5.9 |-6.0 to 7.0
1512 95.2 57.1 71.4
1830 64.3 50.0 71.4 50.0
1899
1648 83.3 50.0 33.3
1742
1929
1681 85.7 81.0 66.7 81.0
1563 46.7 46.7 60.0 53.3
Average 75.9 67.0 - 58.1 50.8 71.4 65.5
Overall average 64.8
3-12
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separability was better than that which would be obtained on any single date.
Other segment results were as follow:

a. If a single acquisition around the turning time for barley is available,
it generally contains most of the multitemporal spring wheat and barley
separability.

b. If a single acquisition around the turning time for barley is not avail-
able, there is still significant multitemporal spring wheat and barley
separability.

¢. Occassionally, oats show multitemporal separability from spring wheat
and barley.

Figures 3-9 and 3-10 show the Fisher discriminant plane projections for seg-
ment 1899 (77). Figure 3-9 shows a projection of multitemporal data includ-
ing acquisition dates 122 (77), 157 (77), 175 (77), and 193 (77), while
figure 3-10 shows a projection for unitemporal data from acquisition 193 (77).
The overall PCC values for NMV classification of these same two groups of
data are 93.1 percent for the multitemporal data and 86.2 percent for the
unitemporal data. Thus, most of the spring wheat and barley separability is
contained in. the single acquisition. This result is typical for those seg-
ments containing an acquisition near the critical time for barley.

Figure 3-11 shows a Fisher discriminant plane projection for multitemporal

data from segment 1929. These data consist of acquisitions 112 (77), 147 (77);
184 (77), and 220 (77). Although ncne of these acquisitions correspond to the
turning time for barley, there is evident separability, and the PCC for NMV
classification of these data is 100 percent. Figure 3-12 shows the Fisher
projection for day 184, which was the best of the four unitemporal projections.
The separation is obviously very poor, and the overall PCC from NMV classi-
fication of this unitemporal data is 84 percent.
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Figure 3-13 shows a generalized -Fisher discriminant plane projection for multi-
temporal data from segment 1681. There are samples from barley, oats, and
spring wheat in this segment; the acquisition dates are 127 (77), 162 (77),

198 (77), and 234 (77). Clearly, there is significant multitemporal
separability of all three classes in this case. Unfortunately, such
separability was not observed frequently enough in the data set to arrive at
any conclusions as to its origin.

Table 3-4 gives the 1ist of PCC estimates for the spring wheat,-oats, and
barley classes using the same segments which appear in tables 3-1, 3-2, and
3-3. By comparing table 3-4 with these previous tables, the conclusions
(a) and (b), stated brevious1y, may be verified.

TABLE 3;40- MULTITEMPORAL PCC'S BY CROP CLASS

Segment Spring wheat | Barley |0Oats |Overall
1512 100.00 92,9 190.5 ] 93.9
1830 100,00 100. 00 100.0
1899 - 87.0 98.4 | 93.1

1648 100.0 100.0 100.0
1742 100.0 100.0 100.0

31929 100.0 100.0 | 100.0
1681 78.6 100.0 1{76.2 | 80.4

31523 100.0 94.4 193.3| 96.8

4Do not have an acquisition in Robertson biostage
5.0 to 6.0,

3-18
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4. DEVELOPMENT OF ANALYST AIDS

4.1 SEGMENT DEPENDENT PRCJECTION RESULTS

For each segment available in the OLPARS data base, the multitemporal Fisher
discriminant plane was constructad (see section 1.2) with the acquisitions
available. AlT segments for the years of 1976 and 1977 which are used in
this study have at least three acquisitions. The multitemporal Fisher
discriminant plane exhibited excellent results when an acquisition on or
about julian date 193 was available, and it exhibited acceptable results if
an acquisition around the critical day (193) was not available (see

section 3.1). In order to define a Fisher plane, ground-truth data are _
needed for training; therefore, this approach could not be used operationally.

Other planes were studied by using the eigenvectors of the covariance matrix
with and without prior data transformation. The eigenvector planes without
prior data transformation were extensively analyzed. Notice that segments
with four acquisitions define 16 eigenvectors, and hence, 120 different eigen-
vector planes are possible.

A large number of these planes were observed for potential sources of visual
aids for the analyst. Unfortunately, the segment-dependent aigenvector

planes did not offer good possibilities for showing separation between spring
wheat and. barley. These projection planes were not consistent from segment

to segment. Also, for a giVen sagment, the eigenvector plane was very sensi-
tive to small changes in the data; i.e., the removal of an outlier made sub-
stantial changes to the eigenvector plane. This resuit is not surprising
{ref. 5) given the fact that the variance/covariance matrix is ill-conditionad
(see section 4.2).

4.2 FIXED PROJECTION RESULTS

Ideally, it is desirable to have a pair of vectors that define a projection
plane in such a way that the separability between spring wheat and barlay,
and possibly oats, is enhanced. Furthermore, we would hope that this plane
is adequate for all segments in the U.S. Great Plains.
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The first approach taken to obtain a projection plane that would meet the
above requirements was to compute an "average" Fisher plane. First, the
Fisher plane was constructed for each of the 1976 and 1977segments in the
OLPARS data base. MNext, a 20-day moving average curve of the Fisher vector
component values was computed. For a given point in time (julian date), the
curve represents the average Fisher component values, averaged over all the
segments having an acquisition within 20 days of the julian date. It was
hoped that by having a pair of curves as described above, an average Fisher
projection plane could be computed for any segment regardiess of its acqui-
sition dates. Unfortunately, the results obtained by using the above pro-
cedure are not satisfactory. Among all the possible reasons for the unsatis-
factory results obtained with the above approach, the most important one deals
with the condition number of the pooled convariance matrix. The condition
number of a matrix W is the ratio of the largest to the smallest singular
value of W, where the singular values are the positive square roots of the
eigenvalues of W. Let 2y < By < eee < gp be the eigenvalues of W and Vis Voo
vee, vp be their corresponding orthonormal eigenvectors. It can be shown
that for

V= [1’-1’ Vos **% xp]

and L = diag(ﬂi)

W can be expressed as {ref. 6):

p

-y’ = T
W=y = 2 AT
‘ i=1

Likewise,

i=1

Therefore, if the symmetric matrix W is near singular, i.e., ill-conditioned,
then the computation of N'a is highly unstable because some of the eigenvalues

4-2

34



zi are small. The instability can be shown with a simple numerical example.
To solve a system of equations suppose:

Xb = ¢

where X is a 2 x 2 matrix, and b and c are 2 x 1 vectors. Obviously, the
soTution vector is given by

=X

g{T—}(-T'ad:i X]_c_

[1.0 3.0 [1.0]
X =12.00001 6.00002] > &7 1|2.0

bl 1 6.00002 ~3.0] [1.0
= =0.00001 | 5 o001 1.0| |2.0
[-2.9]
b=1 1.0

Now, observe the change in the solution vector b if the matrix X is altered
sTightly. Let

Let

then-b is

[]_0 3.?]

= [1.99997 5.99990

so 1 [5.99990 -3.0] [1.0]

=" -0.0000T |y 99997 1.01{2.0
[10.0} _

b=1_3.0.

Notice that b has changed dramatically due to a change in the fifth decimal
place in two ‘entries of the X-matrix.

X

Then

Hence

To compute the Fisher plane, it is necessary to compute the inverse of the
pooled covariance matrix. Since the covariance matrix is i11-conditioned,
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the Fisher discriminant vectors are high]y.instable; a small perturbation in
the covariance matrix can cause a large change in the Fisher directions.
Therefore, the variance of the individual components is high. Hence, the
average of the components is highly unreliable. It is believed that this
numerical instability of the inverse of W contributed to the inadeguate
results obtained with the 20-day moving avérage Fisher plane.

The next approach taken was to select a small number of segments from a
stratum. These sgements were required to have acquisition dates that were
close among the segments. Only three segments met the above requirements.
The segments were from stratum 20, and they were 1512 {77), 1830 (77}, and .
189¢ (77). The acquisitions used were on julian dates 157 and 193. Data
from these three segments were pooled and then used to compute a Fisher h
plane. It was expected that this plane would be adequate for all segments
from stratum 20 for which acquisitions on or about days 157 and 193 were
available. These days correspond to Robertson biostéges between 4.0 to 4.9
and 5.0 to 5.9 (seé section 3). The vectors that define the above Fisher
plane, called the Two-day Fisher plane, are:

fsh2x = [-0.3135, -0.30116, -0.026563, 0.0034115,
-0.88881, -0.022443, -0.093723, -0.10508]

fsh2y = [-0.010688, -0.01539, -0.10796, 0.12693,
0.079135, -0.89856, -0.37923, ~0.12001]

It should be noted that oats and wheat were combined into one class in order
to find the Fisher plane.

In addition to the Fisher plane, the generalized discriminant projection
plane was computed from the pooled data. As mentioned previously, the Fisher
plane is defined by two classes or two groups of classes and the generalized
discriminant plane is defined by two or more classes or groups of classes.
Since the three segments used above contain three classes: wheat, oats, and
barley, these two planes are not necessarily the same.

4-4
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- The vectors that define the generalized discriminant plane are:

gndv2x = [0.68189, -0.55583, 0.09401, -0.20383,
0.34103, 0.16443, 0.092563, 0.15422]

gndv2y = [0.16339, -0.03512, .0.19668, -0.43773, .
-0.82202, 0.15419, -0.1147, 0.1728]

Figures 4-1 and 4-2 present typical results of using the generalized discrim-
inant plane and the Fisher plane, respectively. These two figures correspond
to the projection of segment 1513 (76). Figures 4-3 and 4-4 present similar
results for segment 1742 (76).

Foliowing the same rationale used in constructing the Two-day Fisher plane,

a One-day Fisher plane was constructed. In section 3, it is established that
there exists a best time for separation between wheat and barley. This time
corresponds to a Robertson biostage for spring wheat between 5.0 and 5.9

(or around julian date 193).

The data for acquisition 192 from segments 1512 (77), 1830 (77), and 1899 (77)
were pooled, and a Fisher plane was obtained. This plane is defined by the
vectors

3segx [-0.97127, -0.057665, -0.10266, -0.20682]
and

[-0.090201, -0.86413, -0.49131, 0.061208]

3segy

The results obtained by using this One-day Fisher plane, call it 192Fisher,
are very encouraging from a signature extension point of view. These projec-
tion results were compared with the greenness-brightness (GQB) projection
results. The G-B plane is defined by the vectors {(ref. 7):

Brightness = [0.433, 0.632, 0.586, 0.264]
Greenness = [-0.290, -0.562, 0.600, 0.491]

The rationale for using the G-B plane for comparison is that the G-B is pre-
sently being used by the €lassification and Mensuration Subsystem (CAMS) in

an operational mode.
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Figures 4-5 and 4-6 depict the 192Fisher and G-B projections of segment
1513 (77), acquisition date 193.

The PCC was computed for -both types of projections. Two different techniques
were used to compute the PCC's. One technique was the NMV classifier and

the other was the Fisher pairwise classifier. Table 4-1 presents the

value of the overall PCC's for five segments. Table 4-2 contains the mean
and standard deviation of the PCC values.



TABLE 4-1.— COMPARISON OF PCC'S FOR G-B AND 192FISHER PROJECTION

Projection
Evaluation Segment
G-B 192Fisher :
Fisher 57.14 57.14 - | 1681
NMY 48,21 51.79 Dats, barley, and
spring wheat

Fisher |{85.71 | 80.36 |[21681
NMV 91.07 78.57 Oats-spring wheat

_ and barley
Fisher | 93.57 92.86 1513
NMY 89.29 90,71 Barley and spring wheat
Fisher | 65.22 60.87 1742
NMV 91.30 65.22 Barley and spring wheat
Fisher | 61.36 70,46 1929
MNV 45,46 | 59,08 Barley and spring wheat
Fisher 64.10 87.18 1614
NMY 71.80 | 82.05 | Wheat and barley

80ats and wheat were combined into one class.
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TABLE 4-2.— MEAN AND STANDARD DEVIATIONS OF G-B AND 192FISHER PROJECTIONS

Evaluation Projections
G-B 192FISHER
Fisher Mean: 71.183 | Mean 74,812
Standard deviation: 14.776 | Standard deviation: 14.388
NMV Mean: 72.855 | Mean: 71.237
Standard deviation: 21.453 | Standard deviation: 14.914
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5.1

5. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The conclusions of this study are as follow:

a.

Barley shows significant separability from spring wheat, both multitem-
porally and on a single date chosen near the turning time for barley
(Robertson biostage 5.3 to 5.8 for spring wheat).

Oats show occasional multitemporal separability from barley and spring
wheat; however, the cause of this separability is not well understood.
Qats show no significant separability from spring wheat on any single

date during the growing season.

By pooling data from segments having an acquisition near the turning time
for barley, a fixed unitemporal projection for aiding in the labeling of
barley versus spring wheat and cats has been constructed. This projection
has about the same separability of barley from spring wheat and oats as
does the unitemporal greenness versus brightness plot. However. the

new fixed projection has the advantage that barley occurs consistently

in the same general location on the plot with respect to spring wheat and
oats.

Attempts to construct a fixed multitemporal or a segment-dependent multi-
temporal projection for aiding in the labeling of spring wheat versus
other small grains have been unsuccessful dué to segment variability and
the fact that each segment has a unique acquisifion history.

5.2 RECOMMENDATIONS

It is recommended that the fixed unitemporal projection developed during this
study be further evaluated in a semioperational setting for its utility in
aiding analyst labeling of barley versus spring wheat and oats. In addition,
the data set resident on the OLPARS should be expanded and updated to allow
more detailed study of wheat-oats separability and to aid in the development
of any multitemporal labeling aids.
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