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1. INTRODUCTION
 

This study addresses the problem of analyzing the spectral separability of
 

wheat from other small grains and developing fixed and/or segment-dependent
 

projections to aid in the identification and labeling of wheat as opposed to
 
other small grains in multispectral images acquired by the National Aeronau­

tics and Space Administration land observatory satellite (Landsat). Emphasis
 

is placed on the relation of unitemporal and multitemporal separability to
 

the number and timing of the acquisitions used. The most important tools
 

used in the present study are the Fisher plane, the eigenvector plane, and
 

the generalized discriminant plane.
 

Section 1.1 contains a brief description of the background to this study, and
 

section 1.2 presents an introduction to the On-Line Pattern Analysis and
 

Recognition System (OLPARS). Section 2 defines the data sets used in this
 

study; section 3 deals with the general results concerning separability of
 

wheat and small grains. Sections 4.1 and 4.2 describe the different projec­

tions studied and the results in terms of proposed projections for wheat and
 

other small-grain identification and labeling. Section 5 presents the
 
conclusion reached in this study and the recommendations for future work.
 

1.1 BACKGROUND
 

In the 3 years in which the Large Area Crop Inventory Experiment (LACIE) has
 

been operational, it has become increasingly clear that in order to obtain
 

a sufficiently accurate wheat area estimate, particularly in the areas where
 

spring wheat is grown, itwould be necessary to distinguish wheat from other
 
small grains such as barley and oats. Because the small-grain crops are so
 

similar in their reflectance and development, it has been the practice in
 
LACIE Phase III to simply label and classify small grains as a class. A
 

wheat estimate was then generated by developing a ratio of wheat to other
 

small grains based on historical and economical variables. Such a ratio was
 

developed for each stratum separately. The problem is that these ratios
 

are not constant from-year to year and are difficult to predict accurately.
 

Inaddition, it is not clear that the analyst-interpreters (Al's) are able
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to identify and label all of the small-grain signatures with the same confi­

dence with which they can label wheat. These related factors are believed
 

to have contributed to a persistent underestimate of wheat area in the
 

spring wheat areas of the United States.
 

Because of the difficulties encountered inareas where wheat and other small
 

grains are grown together, itwas decided that one of the goals for the LACIE
 

Transition Year would be the development of techniques and procedures for
 

labeling and classifying wheat directly. This document, which is a part of
 

the development effort, addresses the problems of acquisition selection for
 

maximum separability of wheat versus other small grains and the develop­

ment of analyst labeling aids. The objective of this research is to develop
 

techniques which will allow the analyst to reliably distinguish wheat from
 

other small grains in an operational setting.
 

1.2 THE ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM (OLPARS)
 

Sammon (ref. 1), Kanal (ref. 2), and Simmons (ref. 3), among others, have
 

proposed that no particular solution (among a choice of learning machines,
 
statistical approaches, spatial filtering, heuristic programming, or formal
 

linguistic approaches) has proven relevant to all pattern recognition pro­

blems. For several years, the Rome Air Development Center (RADC) conducted
 

an exploratory development program to establish techniques for digital sig­

nal processing and pattern recognition. They adopted an interactive approach
 

to the solution of pattern recognition problems, coupling a knowledgeable
 

human problem-solver with an interactive computer graphics system. The
 
general purpose computer contains a library of data analysis, digital signal
 

processing, and pattern classification algorithms. Using a graphics display
 

console, a human operator can analyze his data, and based on what he sees
 

coupled with any prior knowledge he may possess, choose an appropriate
 

pattern classification procedure, observe the results, and continue to
 

iterate in this manner. Eventually, one of two things will happen: (1) he
 

achieves an acceptable level of performance whereby the output of the com­

puter consists of the design parameters for a classifier which can be imple­

mented by means of special purpose software or (2)he reaches a point where
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no further improvement seems possible. Hopefully, the operator gained in­
sight as to why an acceptable level of performance was not achieved if further
 

improvement appears impossible.
 

OLPARS is resident on two systems at RADC. One version is on a Progranmed
 

Data Processor, Model 11/45 (PDP-ll/45) computer under the Waveform Process­

ing System (WPS). This is a single-user system employing high performance
 

interactive graphics, and as a module under WPS, provides for ease of inter­

action between the feature hypothesis mode .conducted under WPS and rapid
 

testing of these hypotheses under OLPARS.
 

A second version of OLPARS, the one used in the present study, is implemented
 

on a Honeywell HIS 6180 computer under the MULTICS operating system. MULTICS
 

is a time-sharing system that utilizes a virtual memory concept. Interactive
 

graphics capability is provided by a Tektronix 4002A storage tube with alpha­

numeric keyboard, joystick, and hardcbpy unit.
 

Both versions of OLPARS include their own executive software, filing system,
 

display package, and software modules for feature evaluation, vector data
 

structure analysis, measurement transformation, and classifier logic design
 

(ref. 4). In addition, OLPARS containsquite an extensive collection of
 

routines. More on the topic of routines follows.
 

1.2.1 CLASSIFICATION LOGIC DESIGN AND EVALUATION
 

This subsection describes some of the classifier logic available in OLPARS.
 

These routines allow the user to tailor the decision logic design to the
 

structure of the class data. A brief description of some of the routines
 

used in this study follows:
 

* 	Fisher pairwise classifier logic is constructed by computing optional
 

linear discriminants and thresholds to distinguish between every pair of
 

classes (subclasses) within a designated group. The linear discriminant
 

is the Fisher linear discriminant given by the following equation.
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J J1
ij a 

Aij : Vi - j; ij: (Ni - l)Ci + (N. - l)C. 

where
 

pi 	= mean vector of class (subclass) i
 

Ci 	= covariance matrix for class (subclass) i
 

* 	Nearest mean vector (NMV) logic implementation provides capabilities for
 
classification of data utilizing one of three metrics (Euclidean distance,
 
weighted vector distance, and Mahalanobis weighted distance). An unknown
 
vector, then, isassigned to the reference class for which the decision
 

metric isminimized.
 

e 	Closed decision boundary logic creates an L-dimensional closed hyperregion
 
for each of the.selected data sets. An unknown vector is assigned to a
 

class if,and only if, it lies inthe hyperregion associated with that
 
class and no other. Ifan unknown vector should fall into more than one
 
hyperregion, itmay be rejected or placed in a new data tree for further
 

logic design at the user's discretion. Vectors which do not lie within
 

any hyperregion are rejected. The three types of hyperregion available
 
are: hyperrectangular, hyperspherical, and hyperellipsoidal.
 

1.2.2 LINEAR AND NONLINEAR PROJECTIONS
 

The basic use of projections in the MULTICS:OLPARS Operating System (MOOS) is
 

to determine ifthe structure of the data for a particular class is unimodal
 

or multimodal. Ifit is multimodal, it is frequently better to subdivide the
 
class before attempting to design logic for distinguishing between classes.
 
This isparticularly true if the logic to be designed is statisticallybased.
 

All of the algorithms for structure analysis inMOOS involve projecting the
 

data onto a one- or two- space area, and allowing the analyst to draw a
 

partition or partitions of the space ifmultimodality is present. All of
 
the projections except one, nonlinear map (NLM), are linear. The linear
 

projections may also be used as the basis for group logic design.
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The linear and nonlinear projections are:
 

* 	The eigenvector plane (least squares) is defined by any two eigenvectors
 

of the covariance matrix. The plane defined by the first two eigenvectors
 

has been used extensively in this study. The rationale is that this plane
 

best fits the L-dimensional data in the least-squares sense.
 

* 	OLPARS offers the analyst another projection direction or plane. The two
 

classes, upon which the projection is based, may be composed of any two
 

classes of the data set, or they may be composed of any two groups of
 

classes which are lumped together for the purpose of determining the pro­

jection direction or directions. The entire current data set is projected
 

into the space defined by the Fisher discriminant d and a second vector,
 

A2, whereA2 is that direction which maximizes the projected between-class
 

scatter relative to the sum of the projected within-class scatter, under
 

the constraint that d2 be orthogonal to d1I Insummary,
 
iW - I A
d = 


-= 2{w - (AT[Wl 2A/ATWl3A)EwlJIA
 

where
 

a, and a2 are normalizing constants; A is the difference between the class
 

mean vectors, I -P2; and W is the sum of the.within-class scatter mat­

rices.
 

If the one-space option is chosen, the data are projected on d1 ; that is,
 

the Fisher direction only.
 

* 	Generalized discriminant projections offer the analyst the capability of
 
projecting data onto a discriminant direction or plane which has been opti­

mized to produce maximum discrimination for all classes. This is a gener­

alization of the Fisher discriminant projection described previously.
 

The Fisher discriminant is obtained by solving for the unit vector d which
 

maximizes the following ratio:
 

dTBd
 
R= dTWd
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where B is the between-class scatter matrix, and W is the sum of the
 

within-class scatter matrix.
 

To solve for the generalized Fisher discriminant directions, take the
 

vector derivative of the above ratio R with respect to d and s~t the
 

resultant equation to zero. The procedure generates the following
 

generalized eigenvector equation.
 

[B - XW]d = 0 

[W-B - Xl] = 0 

The generalized discriminant vectors are the eigenvectors of the nonsym­

metric matrix W-IB. The rank of the between-class scatter matrix for the 

K-class discrimination problem is K - 1; therefore, no more than K - 1 non­

zero eigenvector solutions exist. Thus, the generalized discriminant 

vector function produces K - 1 discriminant vectors, with the vectors which 

correspond to the largest eigenvalues producing the maximum discrimination. 

9 	NLM is accomplished by using the OLPARS routine for multidimensional
 

scaling. This routine iteratively fits the data into a two or three
 

dimensional subspace such that the difference between interpoint distances
 

in the lower and higher dimensional spaces is as small as possible.
 

* 	Measurement transformations are arbitrary transformations on the data
 

before any projections are formed. Two "built-in" transformations avail­

able are the normalization transformation and the eigenvector transforma­

tion. In addition, OLPARS has the capability to perform any arbitrary
 

transformation specified by the user.
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2. THE DATA SET
 

The data set for this study consisted of grid intersection points labeled
 

according to ground-truth class for each of several-segments, including
 

20 segments from the 1976 crop year and 25 segments from the 1977 crop year.
 

For each segment, the grid intersection picture elements (pixels) were sorted
 

by ground-truth class into wheat, barley, rye, oats, flax and other. Each of
 

these classes was further divided into those pixels which were pure and those
 

which were on a boundary. Table 2-1 lists the segments used, their location,
 

and the acquisitions available for each segment.
 

Not all of the segments in the data set were equally useful. Some contained
 

none or only a small amount of certain small grains. Since rye and flax were
 

not present in large amounts in any segment, it was decided to focus on the
 

separability of spring wheat from barley and oats. Even so, many segments
 

contained only a small amount of.one or more of these grains. After an
 

initial exploratory analysis, i-t was also concluded that boundary pixels had
 

a very detrimental effect on discriminant analysis, eigenvector transforma­

tions, and classifier performance. Therefore, border pixels were not used
 

in the study except in cases where very small sample size made their use
 

mandatory.
 

Figure 2-1 shows a projection on the two largest eigenvectors of the multi­

temporal data for segment 1512. Small letters on this figure indicate bound­

ary pixels, and large letters indicate pure pixels. Figure 2-2 shows a
 

Fisher discriminant plane plot for the same data. The results of an identical
 

analysis following removal of boundary pixels are given in figures 2-3 and 2-4.
 

These examples illustrate the effect of boundary pixels in degrading the
 

separability of the pure small-grain pixels.
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TABLE 2-1.- SEGMENTS, LOCATION OF SEGMENTS, AND
 
ACQUISITION DATES USED IN THE DATA SET
 

(a) 1976 crop year segments
 

Location
 
Segment 


County 


1642 Cass 


1645 Traill 


1660 Logan 


1686 Beadle 


1003 Logan 


1533 Daniels 


1559 Wibaux 


1614 'Pierce 


State
 

North Dakota 


North Dakota 


North Dakota 


South Dakota 


Colorado 


Montana 


Montana 


North Dakota 


1618 Grand Forks -North Dakota 

1624 Walsh North Dakota 

1650 Hettinger North Dakota 

1651 Slope 

1655 Grant 

1667 'Harding 

1677 Spink 

1681 Roberts 

1687 Hand 

1725 Flathead 

1742 Cascade 

1965 Burke 

North Dakota 


North Dakota 


South Dakota 


South Dakota 


South Dakota 


South Dakota 


Montana 


Montana 


NorthDakota 


Acquisitions
 

127, 145, 146, 163, 182, 199, 200, 236
 

110, 128, 145, 146, 164, 181, 235, 236
 

110, 128, 129, 147, 164, 165, 219, 236
 

91, 127, 145, 163, 182, 199, 217
 

22, 143, 166, 184
 

116, 152, 187, 205
 

150, 204, 240
 

130, 183, 201, 219
 

127, 163, 199, 235
 

128, 146, 236, 254
 

130, 148, 220, 238
 

150, 204, 221, 240
 

130, 149, 202, 220
 

131, 149, 203, 221
 

127, 163, 217, 235
 

127, 162, 198, 234
 

92, 128, 182, 236
 

1-21, 129, 127, 230
 

(75) 304, 137, 191, 209
 

132, 221, 222
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TABLE 2-1.- Concluded.
 

(b) 1977 crop year segments
 

Location
 
Segment 

County 

1734 Hill 

1747 Judith Basin 

1937 Pondera 

1663 Richland 

1667 Harding 

1648 Bowman 

1903 Mercer 

1677 Spink 

1681 Roberts 

1512 Clay 

1513 Kittson 

1520 Big Stone 

1523 Wilkin 

1531 Phillips 

1556 Powder River 

1725 Flathead 

1739 Teton 

1742 Cascade, 

1830 Red Lake 

1839 Swift 

1849 Sibley 

1873 Lincoln 

1929 Blaine 

1930 Hettinger 

1899 Walsh 

State
 

Montana 


Montana 


Montana 


North Dakota 


South Dakota 


North Dakota 


North Dakota 


South Dakota 


South Dakota 


Minnesota 


Minnesota 


Minnesota 


Minnesota 


Montana 


Montana 


Montana 


Montana 


Montana 


Minnesota 


Minnesota 


Minnesota 


Minnesota 


Montana 


North Dakota 


North Dakota 


Acquisitions
 

95, 113, 203
 

112, 130, 184
 

132, 168, 203
 

120, 121, 138, 139, 156, 157, 174, 175,
 

193, 211, 229
 

71, 107, 125, 143, 161, 179, 197
 

107, 125, 143, 179
 

125, 179, 197, 233
 

140, 176, 193, 230
 

120, 139, 175, 192
 

120, 156, 157, 193
 

140, 157, 175, 193
 

120, 156, 174, 192
 

120, 138, 156, 175
 

112, 129, 184, 220
 

162, 180, 198, 235
 

98, 152, 188, 224
 

114, 150, 168, 222
 

113, 167, 203
 

157, 175, 193, 211
 

120, 137, 156, 174
 

100, 118, 136, 172
 

120, 138, 174, 192
 

112, 147, 184, 220
 

125, 143, 197, 215
 

122, 157, 175, 193
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3. SEPARABILITY ANALYSIS OF WHEAT AND OTHER SMALL GRAINS
 

3.1 SEPARABILITY AS A FUNCTION OF CROP CALENDAR
 

In order to assess the spectral separability of wheat from other small grains 

as a function of crop calendar, two approaches were taken. First, each ­

acquisition for a segment was examined in the Fisher discriminant plane and 

also in the plane associated with the first two eigenvectors of the pooled 

covariance matrix for each class. These projections are described in 

section 1.2. And second, after a visual inspection and comparison of the 

various acquisitions in these two dimensional subspaces, each acquisition was 

classified using the NMV classifier and the Fisher pairwise classifier. These 

classifiers were trained using all of the data for each segment and were then
 

applied to the training data. The probability of correct classification
 

(PCC) resulting from these classifications provides numerical measures of
 

the separability of spring wheat from other small grains.
 

Figures 3-1 through 3-4 show the sequence of eigenvector projections for
 

segment 1830 (77) corresponding to acquisition dates of 157 (77), 175 (77),
 

193 (77), and 211 (77). Figures 3-5 through 3-8 show the corresponding
 

Fisher discriminant plane projections. This segment was chosen for inclusion
 

in the report because it is representative of trends observed over many seg­

ments. These trends may be summarized as follows:
 

a. 	On a single-acquisition basis, barley is not separable from wheat except
 

at a certain critical time in the growing season which corresponds to a
 

Robertson biostage for wheat of approximately 5.0 to 5.9. It appears
 

that this separation occurs because barley turns color from green to
 

yellow earlier than wheat.
 

b. On a single-acquisition basis, oats are not significantly separable from
 

wheat at any time during the growing season.
 

Table 3-1 gives the PCC estimates calculated using NMV classification for
 
several of the 1977 crop year segments which contained significant amounts
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Segment 
0 to 1.9 

1512 36.4 

1830 

1899 50.0 

1648 

1742 30.0 

1929 87.9 

1681 57.1 

1523 48.3 

Average 51.6 

Overall average 


TABLE 3-1.- THE PCC FOR SPRING WHEAT 

Robertson biostage for spring wheat 

2.0 to 2.9 3.0 to 3.9 4.0 to 4.9 5.0 to 5.9 6.0 to 7.0 

36.4 63.6 

53.9 67.7 58.5 40.0 

46.3 64.8 81.5 

79.3 79.3 89.7 

90.0 80.0 

48.5 81.8 78.8 

71.4 67.9 42.9 

37.9 37.9 75.9 

56.3 59.3 73.2 71.4 60.4 

62.0 
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of spring wheat and either barley or oats. The PCC values reported in
 

table 3-1 are computed by taking the proportion of the spring wheat pixels
 

which were correctly classified for each acquisition of each segment. The
 

acquisitions have been grouped to correspond to Robertson biostage ranges for
 

spring wheat. Average PCC values are shown for each Robertson biostage range.
 

These results demonstrate that the maximum separability of spring wheat from
 

barley and oats occurs during Robertson biostage 4.0 to 5.9 for spring wheat.
 

The separability at other growth stages is quite poor.
 

Tables 3-2 and 3-3 give the corresponding PCC estimates for the class of
 

barley pixels and the class of oats pixels for each segment, respectively.
 

The average PCC values show that the best separation of barley.from spring
 

wheat and oats occurs during Robertson biostage 5.0 to 7.0 for spring wheat.
 

This overlaps with the period during which spring wheat showed the best sepa­

rability, the overlap being from Robertson biostage 5.0 to 5.9 for spring
 

wheat.
 

Oats showed some separability from barley and spring wheat during Robertson
 

spring wheat biostages 0 to 1.9 and 5.0 to 5.9.
 

These observations drawn from the classification results confirm the analysis
 

made using Fisher and eigenvector projections. In the light of both analyses,
 

it is clear that an acquisition during Robertson biostage 5.0 to 5.9 for
 

spring wheat provides the best unitemporal separability of spring wheat,
 
oats, and barley. Visual analysis of the projected data revealed that barley
 

was typically separable from spring wheat and oats at this time; however,
 

using only a single acquisition, oats were not significantly separable from
 

spring wheat at this time, or any other time during the growing season.
 

3.2 MULTITEMPORAL SEPARABILITY
 

In order to investigate the multitemporal separability of wheat from other
 

small grains, projections of multitemporal data into the Fisher discriminant
 

plane and the plane associated with the two largest eigenvectors of the pooled
 

covariance matrix were visually examined. It was found that multitemporal
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TABLE 3-2.- THE PCC FOR BARLEY 

Segment 
0 to 1.9 

Robertson biostage for spring wheat 

2.0 to 2.9 3.0 to 3.9 4.0 to 4.9 5.0 to 5.9 6.0 to 7.0 

1512 28.6 64.3 78.6 

1830 66.7 66.7 31.7 100.0 

1899 67.7 88.7 75.8 90.3 

1648 50.0 50.0 50.0 

1742 92.3 84.6 100.0 

1929 54.6 63.6 90.9 81.8 

1681 14.3 14.3 71.4 71.4 

1523 72.2 61.6 88.9 55.6 

Average 55.0 47.6 73.8 63.9 87.9 88.3 

Overall average 69.4 

TABLE 3-3.- THE PCC FOR OATS 

Segment 0 to 1.9 
Robertson biostage for spring wheat 

2.0 to 2.9 3.0 to 3.9 4.0 to 4.9 5.0 to 5.9 -6.0 to 7.0 

1512 95.2 57.1 71.4 

1830 64.3 50.0 71.4 50.0 

1899 

1648 83.3 50.0 33.3 

1742 

1929 

1681 85.7 81.0 66.7 81.0 

1563 46.7 46.7 60.0 53.3 

Average 75.9 67.0 58.1 50.8 71.4 65.5 

Overall average 64.8 
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separability was better than that which would be obtained on any single date.
 

Other segment results were as follow:
 

a. 	If a single acquisition around the turning time for barley is available,
 

it generally contains most of the multitemporal spring wheat and barley
 

separability.
 

b. If a single acquisition around the turning time for barley is not avail­

able, there is still significant multitemporal spring wheat and barley
 

separability.
 

c. 	Occassionally, oats show multitemporal separability from spring wheat
 

and barley.
 

Figures 3-9 and 3-10 show the Fisher discriminant plane projections for seg­

ment 1899 (77). Figure 3-9 shows a projection of multitemporal data includ­

ing 	acquisition dates 122 (77), 157 (77), 175 (77), and 193 (77), while
 

figure 3-10 shows a projection for unitemporal data from acquisition 193 (77).
 

The overall PCC values for NMV classification of these same two groups of
 

data are 93.1 percent for the multitemporal data and 86.2 percent for the
 

unitemporal data. Thus, most of the spring wheat and barley separability is
 

contained in the single acquisition. This result is typical for those seg­

ments containing an acquisition near the critical time for barley.
 

Figure 3-11 shows a Fisher discriminant plane projection for multitemporal
 

data from segment 1929. These data consist of acquisitions 112 (77), 147 (77)i
 

184 (77), and 220 (77). Although none of these acquisitions correspond to the
 

turning time for barley, there is evident separability, and the PCC for NMV
 

classification of these data is 100 percent. Figure 3-12 shows the Fisher
 

projection for day 184, which was the best of the four unitemporal projections.
 

The separation is obviously very poor, and the overall PCC from NMV classi­

fication of this unitemporal data is 84 percent.
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Figure 3-13 shows a generalized-Fisher discriminant plane projection for multi­

temporal data from segment 1681. There are samples from barley, oats, and
 

spring wheat in this segment; the acquisition dates are 127 (77), 162 (77),
 

198 (77), and 234 (77). Clearly, there is significant multitemporal
 

separability of all three classes in this case. Unfortunately, such
 

separability was not observed frequently enough in the data set to arrive at
 

any conclusions as to its origin.
 

Table 3-4 gives the list of PCC estimates for the spring wheat,-oats, and
 

barley classes using the same segments which appear in tables 3-1, 3-2, and
 

3-3. By comparing table 3-4 with these previous tables, the conclusions
 

(a)and (b), stated previously, may be verified.
 

TABLE 3-4.- MULTITEMPORAL PCC'S BY CROP CLASS
 

Segment Spring wheat Barley Oats Overall 

1512 100.00 92.9 90.5 93.9 

1830 100.00 100.00 100.0 

1899 87.0 98.4 93.1 

a1648  100.0 100.0 100.0 

1742 100.0 100.0 100.0 

a1929  100.0 100.0 100.0 

1681 78.6 100.0 76.2 80.4 

a1523  100.0 94.4 193.3 96.8 

aDo not have an acquisition in Robertson biostage
 

5.0 to 6.0.
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4. DEVELOPMENT OF ANALYST AIDS
 

4.1 SEGMENT DEPENDENT PROJECTION RESULTS
 

For each segment available in the OLPARS data base, the'multitemporal Fisher
 

discriminant plane was constructed (see section 1.2) with the acquisitions
 

available. All segments for the years of 1976 and 1977 which are used in
 

this study have at least three acquisitions. The multitemporal Fisher
 

discriminant plane exhibited excellent results when an acquisition on or
 

about julian date 193 was available, and it exhibited acceptable results if
 

an acquisition around the critical day (193) was not available (see
 

section 3.1). In order to define a Fisher plane, ground-truth data are
 

needed for training; therefore, this approach could not be used operationally.
 

Other planes were studied by using the eigenvectors of the covariance matrix
 

with and without prior data transformation. The eigenvector planes without
 

prior data transformation were extensively analyzed. Notice that segments
 

with four acquisitions define 16 eigenvectors, and hence, 120 different eigen­

vector planes are possible.
 

A large number of these planes were observed for potential sources of visual
 

aids for the analyst. Unfortunately, the segment-dependent eigenvector
 

planes did not offer good possibilities for showing separation between spring
 

wheat and-barley. These projection planes were not consistent from segment
 

to segment. Also, for a given segment, the eigenvector plane was very sensi­

tive to small changes in the data; i.e., the removal of an outlier made sub­

stantial changes to the eigenvector plane. This result isnot surprising
 

(ref. 5) given the fact that the variance/covariance matrix is ill-conditioned
 

(see section 4.2).
 

4.2 FIXED PROJECTION RESULTS
 

Ideally, it is desirable to have a pair of vectors that define a projection
 

plane in such a way that the separability between spring wheat and barley,
 

and possibly oats, is enhanced. Furthermore, we would hope that this plane
 

is adequate for all segments in the U.S. Great Plains.
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The first approach taken to obtain a projection plane that would meet the 

above requirements was to compute an "average" Fisher plane. First, the 

Fisher plane was constructed for each of the 1976 and l977segments in the 

OLPARS data base. Next, a 20-day moving average curve of the Fisher vector 

component values was computed. For a given point in time (julian date), the 

curve represents the average Fisher component values, averaged over all the 

segments having an acquisition within 20 days of the julian date. Itwas 

hoped that by having a pair of curves as described above, an average Fisher 

projection plane could be computed for any segment regardless of its acqui­

sition dates. Unfortunately, the results obtained by using the above pro­

cedure are not satisfactory. Among all the possible reasons for the unsatis­

factory results obtained with the above approach, the most important one deals 

with the condition number of the pooled convariance matrix. The condition 

number of a matrix W is the ratio of the, largest to the smallest singular 

value of W, where the singular values are the positive square roots of the 

eigenvalues of W. Let £ < £2 < ... < Pp be the eigenvalues of W and vI, v2, 

*-Vp be their corresponding orthonormal eigenvectors. It can be shown 

that for 

y2, *.,vV=V [~1 ""-P 

and L = diag(Z i) 

W can be expressed as (ref. 6):
 

p 
W = VLVT=> Zv{ 

1=l 

Likewise,
 

p 

i =l 

Therefore, if the symmetric matrix W is near singular, i.e., ill-conditioned,
 

then the computation of W" is highly unstable because some of the eigenvalues
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i are small. The instability can be shown with a simple numerical example. 

To solve a system of equations suppose: 

Xb = c 

where X is a 2 x 2 matrix, and b and c are 2 x 1 vectors. Obviously, the 

solution vector is given by 

b = -c "J[l-iTadj]c 

Let
 

L 000 1 6.00002] 2=
L0
 

then-b is
 

1 [6.00002 -a.o] [3.0] 
-:000001 [-2.00001 1.0] [2.0]
 

Jz= [2.0[I.] 
Now, observe the change in the solution,vector b if the matrix X is altered
 

slightly. Let
 

[1.03.
1.[99
997 5.999901 
Then
 

b = 1 [5.99990 
- -0.00001 -3.0i [1.0]
1.99997 1.0 
 2.0
 

Hence
 

= -3.0]
 

Notice that b has changed dramatically due to a change in the fifth decimal
 

place in two'entries of the X-matrix.
 

To compute the Fisher plane, it is necessary to compute the inverse of the
 

pooled covariance matrix. Since the covariance matrix is ill-conditioned,
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the Fisher discriminant vectors are highly instable; a small perturbation in
 

the covariance matrix can cause a large change in the Fisher directions.
 

Therefore, the variance of the individual components is high. Hence, the
 

average of the components is highly unreliable. It is believed that this
 

numerical instability of the inverse of W contributed to the inadequate
 

results obtained with the 20-day moving average Fisher plane.
 

The next approach taken was to select a small number of segments from a
 

stratum. These sgements were required to have acquisition dates that were
 

close among the segments. Only three segments met the above requirements.
 

The segments were from stratum 20, and they were 1512 (77), 1830 (77), and
 

1899 (77). The acquisitions used were on julian dates 157 and 193. Data
 

from these three segments were pooled and then used to compute a Fisher
 

plane. Itwas expected that this plane would be adequate for all segments
 

from stratum 20 for which acquisitions on or about days 157 and 193 were
 

available. These days correspond to Robertson biostages between 4.0 to 4.9
 

and 5.0 to 5.9 (see section 3). The vectors that define the above Fisher
 

plane, called the Two-day Fisher plane, are:
 

fsh2x = 	[-0.3135, -0.30116, -0.026563, 0.0034115,
 

-0.88881, -0.022443, -0.093723, -0.10508]
 

fsh2y = 	[-0.010688, -0.01539, -0.10796, 0.12693,
 

0.079135, -0.89856, -0.37923, -0.12001]
 

It should be noted that oats and wheat were combined into one class in order
 

to find the Fisher plane.
 

In addition to the Fisher plane, the generalized discriminant projection
 

plane was computed from the pooled data. As mentioned previously, the Fisher
 

plane is defined by two classes or two groups of classes and the generalized
 

discriminant plane is defined by two or more classes or groups of classes.
 

Since the three segments used above contain three classes: wheat, oats, and
 

barley, these two planes are not necessarily the same.
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- The vectors that define the generalized discriminant plane are: 

=
gndv2x 	 [0.68189, -0.55583, 0.09401, -0.20383,
 

0.34103, 0.16443, 0.092563, 0.15422]
 

gndv2y = 	[0.16339, -0.03512,,0.19668, -0.43773,
 

-0.82202, 0.15419, -0.1147, 0.1728]
 

Figures 4-1 and 4-2 present typical results of using the generalized discrim­

inant plane and the Fisher plane, respectively. These two figures correspond
 

to the projection of segment 1513 (76). Figures 4-3 and 4-4 present similar
 

results for segment 1742 (76).
 

Following the same rationale used in constructing the Two-day Fisher plane,
 

a One-day Fisher plane was constructed. In section 3, it is established that
 

there exists a best time for separation between wheat and barley. This time
 

corresponds to a Robertson biostage for spring wheat between 5.0 and 5.9
 

(or around julian date 193).
 

The data for acquisition 192 from segments 1512 (77), 1830 (77), and 1899 (77)
 

were pooled, and a Fisher plane was obtained. This plane is defined by the
 

vectors
 

3segx = [-0.97127, -0.057665, -0.10266, -0.20682]
 

and
 

3segy = [-0.090201, -0.86413, -0.49131, 0.061208]
 

The results obtained by using this One-day Fisher plane, call it 192Fisher,
 

are very encouraging from a signature'extension point of view. These projec­

tion results were compared with the greenness-brightness (G-B) projection
 

results. The G-B plane is defined by the vectors (ref. 7):
 

Brightness = [0.433, 0.632, 0.586, 0.264] 

Greenness = [-0.290, -0.562, 0.600, 0.491] 

The rationale for using the G-B plane for comparison is that the G-B is pre­

sently being used by the Classification and Mensuration Subsystem (CAMS) in
 

an operational mode.
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Figures 4-5 and 4-6 depict the 192Fisher and G-B projections of segmeht
 

1513 (77), acquisition date 193.
 

The PCC was computed for ,both types of projections. Two different techniques
 

were used to compute the PCC's. One technique was the NMV classifier and
 

the other was the Fisher pairwise classifier. Table 4-I presents the 

value of the overall PCC's for five segments. Table 4-2 contains the mean 

and standard deviation of the PCC values. 
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TABLE 4-1.- COMPARISON OF PCC'S FOR G-B AND 192FISHER PROJECTION
 

Projection
 
Evaluation Segment 

G-B l92Fisher 

Fisher 57.14 57.14 1681 

NMV 48.21 51.79 Oats, barley, and 
spring wheat 

Fisher 85.71 80.36 a1681 

NMV 91.07 78.57 Oats-spring wheat 
and barley 

Fisher 93.57 92.86 1513 

NMV 89.29 90.71 Barley and spring wheat 

Fisher 65.22 60.87 1742 

NMV 91.30 65.22 Barley and spring wheat 

Fisher 61.36 70'46 1929 

MNV 45.46 59.08 Barley and spring wheat 

Fisher 64.10 87.18 1614 

NMV 71.80 82.05 Wheat and barley 

aoats and wheat were combined into one class.
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TABLE 4-2.- MEAN AND STANDARD DEVIATIONS OF G-B AND 192FISHER PROJECTIONS
 

Evaluation 
G-B 

Projections 

192FISHER 

Fisher Mean: 71.183 Mean 74.812 

Standard deviation: 14.776 Standard deviation: 14.388 

NMV Mean: 72.855 Mean: 71.237 

Standard deviation: 21.453 Standard deviation: 14.914 

''UQ'4 
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5. CONCLUSIONS AND RECOMMENDATIONS
 

5.1 CONCLUSIONS
 

The conclusions of this study are as follow:
 

a. 	Barley shows significant separability from spring wheat, both multitem­

porally and on a single date chosen near the turning time for barley
 

(Robertson biostage 5.3 to 5.8 for spring wheat).
 

b. Oats show occasional multitemporal separability from barley and spring
 

wheat; however, the cause of this separability is not well understood.
 

Oats show no significant separability from spring wheat on any single
 

date during the growing season.
 

c. 	By pooling data from segments having an acquisition near the turning time
 

for barley, a fixed unitemporal projection for aiding in the labeling of
 

barley versus spring wheat and oats has been constructed. This projection
 

has about the same separability of barley from spring wheat and oats as
 

does the-unitemporal greenness versus brightness plot. However, the
 

new fixed projection has the advantage that barley occurs consistently
 

in the same general location on the plot with respect to spring wheat and
 

oats.
 

d. 	Attempts to construct a fixed multitemporal or a segment-dependent multi­

temporal projection for aiding in the labeling of spring wheat versus
 

other small grains have been unsuccessful due to segment variability and
 

the fact that each segment has a unique acquisition history.
 

5.2 RECOMMENDATIONS
 

It is recommended that the fixed unitemporal projection developed during this
 

study be further evaluated in a semioperational setting for its utility in
 

aiding analyst labeling of barley versus spring wheat and oats. In addition,
 

the data set resident on the OLPARS should be expanded and updated to allow
 

more detailed study of wheat-oats separability and to aid in the development
 

of any multitemporal labeling aids.
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