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ABSTRACT

The research objectives were to overlay ancillary map data onto a Landsat multispectral data base, create
and tost land-use change prediction models. and map land uses in the Denver Metropolitan Arca. Linear-
discriminant analysis was used to model spatially projected land-use changes and to classify the single-date
Landsat-1 image with ancillary data inputs.

A landscape model was constructed with 34 land-use, physiographic. socioeconomic, and transportation
maps. A simple Markov land-use trend model was constructed from observed rates of change and non-
change from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models
predicting 1970 spatial land-use changes achieved accuracies from 42 to S7 percent. A final modeling

strategy was designed, which combines both Markov trend and multivariate spatial projection processes.

Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/
insofation ratioing operations. Rectangular training-set selection gave biased and unreproducible results.
A new, systematic gtid-sampled point training-set approach proved to be useful when tested on the four
original MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten-
variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31
ancillary variables. Only three optimal ancillary variables added almost 12 of these 15 percentage points
of improvement. The maximum-likelihood ratio classifier was also established to be inferior to lincar-
discriminant analysis for land-use magping.

A land-use classification map was produced with an optimal ten-channel subset of four image bands and
six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/i973 U.S.
Geological Survey (USGS) lund-use map prepared with airphotos and the same classification scheme
showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.

The average direct development cost for this 24-class land-use mapping effort with the 48-variable over-
layed Landsat spectral/spatial map data was $0.0468 per hectare ($0.0189 per acre), or $704.19 per
1:24,000-scale USGS quadrangle, with the direct production cost using only the optimal ten-channel
spectral/spatial data set estimated at an average of $0.0317 per hectare ($0.0128 per acre), or $477.17 .
per 7.5 minute USGS quadrangle.

Recommendations for further evaluation study include densification of socioeconomic data, improved
digitization of topographic elevation, input of collateral soils data, multidate land-use change detection,
greater use of ancillary map data, and further information systems development.

*A portion of the work was performed while serving as a Seniot Post-doctora) Research Associate, Goddard Space Flight Center.
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CHAPTER 1 : |

INTRODUCTION

GENERAL
Planning is a process that systematically deals with the following (Reference 1):

®  Formulation of objectives and standards with which to specify future conditions

®  Collection and analysis of relevant data to accurately determine existing conditions and trends

®  Development of alternative plans to achieve the desired conditions

®  Sclection, adoption, and implementation of an “optimal™ plan from the available alternatives
Land-use planning, the name commonly applicd to the tasks of designing a unified developmeat plan, must
consider the spatial arrangements of all land uses. Such land-use plans range from the loc* on of transpor-
tation routes-to the location of public facilities such as airports, dams. open space, parks, power plants,
and schools.
The increasing size and complexity characterizing the modern, large-scale land-planning organization has
made the historical managerial functions of planning, organizing, and controlling the future spatial distri-
bution of land use much more difficult to achieve, At the same time, the successful application of these
functions has become increasingly essential to the orderly development and stability of today's urban and
rural comrhunitics,
Rapid growth pressures on the lands used for agriculture, mineral resources, open space, outdoor recreation,
water supply and storage, transportation, and wildlands requires substantial advances in the collection, classi-
fication, and availability of appropriate land inventory and planning data in general.
The required inventory and planning data are not generally available to land planners at any level, When
available, these data often lack completeness, quality, and timeliness. The availability of timely data in the
form of a detailed, quantitative inventory and planning data bank provides land planners with a dynamic
definition of the tradeofts involved in evaluating the following:

®  Alternative sites for the same type of development

®  Proposed alternative sites to be carmarked for development

®  Reciprocal effects between development/nondevelopment and activities in adjacent arcas
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Planning Process

Urban planning has traditionally emphiasized efficient functioning of cities in a purely economic and engi-
neering sense, with particular attention devoted to land-use activitics, transportation, and zoning, This
emphasis hus been termed “physical” planning arid seeks to achieve a viable and sound land-use pattern
(Reference 2). A stress on “current” planning permits only a land regulation-type of urban planning in
whicly subdivision codes, zoning, and parcel-oriented policy-making is paramount. **Advance” planning
addresses the longer range, but equally urgent, problems such as blight, obsolescence, suburbanization,

and sprawl and may be done both intermittently and incrementally. Physical planning works as an agent
of private development, rather than as a normative instrument for the public welfare. It does not challenge
the 19th century view of land as a speculative commodity (Reference 3), but merely imposes ground rules
under which speculation continues. ]

Promoted through the Housing Act and other recent federal legislation, social planning adopts a socioecono-
mic, political, and physical approach to the development and functioning of the urban community in an
effort to compensate for the past failures of physical planning and to address major issues and problems
confronting the hitherto ignored human and social elements. Historically. reconciliation of the two philos-
ophiés has been unsuccessful.

Regional growth has been accomplished through near-universal phenomena of air, land, and water pollution,
undesirable economic contingencies and land-use conversions, traffic congestion, and urban blight and sprawl.
Although urban land uses command the greatest value in monetary terms, the “value” of open, nonurban
areas remains uncontested and essential. This open space is being progressively preempted by other land uses
because of a myriad of factors inherent in the employment of current planning practices. Therefore, it is
both necessary and valuable to inventory large urban and urban fringe areas and to delimit land uses and
potentials.

It is essential to first develop an understanding of the landscape in terms of its cultural and natural components.
These are difficult to measure because of the complex interactions among air, water, land, biomass, and
cultural resources. In addition, these landscape elements are always in a dynamic state of succession, how-

ever slow or fast that successional rate may be.

Needed Technology Transfer

Local and regional planning agencies represent a large number of potential users of the evolving remote sens-
ing technology. Remote sensing may be defined as the noncontact colkection, analysis, and interpretation

of data from aerospace platforms. It should be realized that this remote sensing extends far beyond the

realm of conventional aerial photography, which is only a small, representative facet of the increasingly
expanding and sophisticated whole. Spatial remote sensing data uare available over large areas and can already
be cost-eftectively obtained relative to traditional ground methods. Remote sensing data can be collected,
interpreted for various purposes, stored for further use, and used as a historical record. 1t can also be cmployed
more casily, consistently, and objectively, and at lower unit-arca cost than most ground-based surveys.

Remote sensing offers considerable potential in advance planning procedures in which unique advantages
are realized in dealing with environmental issues in which policy-making must be based on both quantitative
and qualitative data. [t permits for the first time the practical establishment of standardized observations of’,




vnd criteria for, change. Observations at appropriate time intervals will reveal the precursors of change and
trends sufficiently carlier so that land planners can probe for basic causes and assess latent probabilities,
Continuous planning at regional scales becomes practical. Lastly, remote sensing presents a permanent
record of urban phenomena unbiased by the planner's experience.

These advantages of remote sensing suggest practical applications in a different form than is currently prac-
ticed. The rising tide of environmental concern popularly manifested in the 1970's is excerting great pres-

sure on **front-line” planning agencies to shed their historical burden of current administrative problems.
They must now assume greater responsibilities for the quality of life, environmental quality. and other long-
neglected urban problems. Because environmental deterioration and destruction can be traced to man's
interference, thiere are increasing pressures to monitor, measure, and evaluate his activities. Su rrogates for
environmental indicators have been proposed, including the analysis of disparate and preemptive land uses
(References 4 and §), changes in land value (Reference 6), and the quality and care of residential lawns
(Reference 7). While the greatest current demand on remote sensing is to generate land-use data, the technical
capability simultaneously exists to extract quantitative and qualitative data of which land usc is but a part.

Unfortunately, there has been relatively limited success as yet in incorporating remote sensing applications
into the routine operations of urban and regional planrers and decision-makers. The mechanics for accom-
plishing such a technology transfer are simply not known. The scarcity of such planning applications is not.
apparently related to either the quality or utility of remote sensing techniques, nor even simple ignorance,
One major obstacle in realizing the full potential of remote sensing is that its form has been incompatible

so far with the census tracts, blocks, and parcels and other land-use inventory schemes used by ploc o,
While remote sensing data can be interpreted to yield both spatial and statistical paramieters. these data must
also be aggregated and interfaced, for the time being, to the arcal units that are compatible with the planners’
normal geographical definitions of the city or region.

A sevond aspeet of the technology transfer problem is the necessity to create and maintain large geographic
data bases over extensive areas. The various available data input sources are rectified to a common geographic
base to meet social planning requirements. Basic social land-use planning concepts have not yet been widely
researched or implemented. However, recent developments in clectronic data processing have created the
possibility that the voluminous quantity of available social planning data may be manipulated more casily

and economically in the form of a geographic information system. Remote sensing can provide wide, regional
coverage of inaccessible or sparsely monitored geographic data. Thus, the computer-based geographic infor-
mation system can, in turn, effectively blend regional planning and remote sensing to simplify botl physical
and social planning data requirements and actions. Such data collection, retrieval, and analysis capabilitics
are essential for the monitoring, measurement, and evaluation of land-use changes before planners can
undertake environmental planning and thereby assume large-scale environmental management responsibilitics,
Currently. remote sensing and geographic information systems remain as intermittent, plecemeal grafts on

a persistently manual methiodology of operaticn. i land-use analysis that is largely cosmetic in nature.

STUDY OBJECTIVES

The objectives of this specific research were to overlay ancillary map data onto a Landsat multispectral data
base, create and test various models for the prediction of land-use change, and map land uses in the Denver
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Metropolitan Arca, Specific objectives included the following;:

®  Development of a landscape model with land-use, physiographic, socioeconomic, and trans-
portation components

®  Testing of a land-use trend model
®  Development and testing of a spatial land-use projection model
®  Overlaying of the Landsat image onto the landscape model

®  Optimization of the Landsat image classification algorithm when used with landscape or
ancillary variables

®  Optimal land-use mapping of the study area using Landsat and landscape variables
®  Display and verification of the machine-produced maps

®  Tabulation of computer, labor, and material cost/time for the land-use maps

SCOPE OF THE RESEARCH

The first Landsat, formerly Earth Resources Technology Satellite (ERTS-1 ), has provided unexcelled oppor-
tunities to explore the utility of acrospace remote sensing data for large-scale analyses of land ecosystems.
This research was specifically directed toward the extraction, use, and assessment of land-use inventory and
planning data derived from such remote sensing imagery, ancillary map data, and geographic information
systems. This endeavor sought to illustrate which features and characteristics of these data inputs and
systems are useful in planning processes.

The research was also structured to provide an analytical framework for modeling land-use changes and for
identifying the factors that were influential in controlling such changes. The results indicated the levels of
accuracy to be expected under operational conditions and also provided the recommended procedures,
data sources, and computational techniques.

GENERAL APPROACH

The digital landscape model organized and overlayed data from existing maps, census tables, and remote
sensing imagery into a computer framework (figure 1), This assemblage provided a multivariate, multi-
temporal mathematical model that represented the landscape much as a three-dimensional model of the
physical terrain is represented by a topographic map (Reference 8), Coupled with this composite of
data overlays was a collection of computer techniques that permitted meaningful simulations of the
spatial or map-like Behavior of this landscape to cither natural or man-induced alteration and control
(Reference 9). The thrust of land-use modeling was the prediction and display in map form of the future
landscape that would result from the continuation of current land-management practices or the lack

()
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FIGURE 1. SIMPLE SCHEMATIC REPRESENTATION OF THE LANDSCAPE MODELING CONCEPT.
Spatially referenced data from a variety of sources is overlaid in the landscape model. A symbiotic relation-
ship exists between landscape modeling and remote sensing image analysis. Current and projected landscape
scenarios previde new inputs to the land-use modeling and decision-making processes.

thereof. Success in this objective provided a basis for the proposal for the improvement of these

techniques
to predict how the landscape will evolve in a spatial sense to various scenarios of anticipated alte

rations,

Computer analysis of remote sensing imagery provided the important current and past land-use inputs to the
land:use modeling and was totally compatible with the modeling process. Symbiotically, the accuracy of the
computer interpretation of the remote sensing imagery was substantially improved by including landscape
variables such as topographic elevation. Thus, combining the available remote sensing imagery with map data
in the digital landscape model provided the basis for substantial improvements in both activities.
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The following basic selections were made to provide benchmark resources for testing the basic hypotheses
and for satisfying the stated objectives, Detailed interpretation of the mosi recent sets of low-altitude black-
and-white airphotos provided the maps of the land use on various dates, which were used as quantitative
measures of change. Landsat four-band imagery has been continuously obtained since July 1972, and the
excellent August 18, 1973, image was selected for analysis.* The U.S, Geological Survey (USGS) Circular
671 (Reference 10) hierarchical land-use classification scheme was adopted for uniform interpretations in
both manual and automated image analysis activities (table 1). Twenty-one second-order USGS land uses
were originally photointerpreted for landscape model construction and spatial land-use projection. However,
13 second-order and 11 third-order categories were used in the Landsat land-use classification to conform

to the classes used in 2 1972-1973 USGS Photointerpretation study of the Denver Metropolitan Area (Refer-
ence-11). Although USGS Circular 671 was revised by Professional Paper 964 (Reference 12), revision was

not made here because a large amount of intercorrelated data (e.g., photointerpretations, etc.) had already
been completed using the Circular 671 approach.

The Circular 671 system has required modification and redefinition because of more recent changes in remote.
sensing technology. However, the original classification system was sufficiently inclusive to have been pro-
posed in 1972 as a standardized framework for land-use surveys by remote sensing, The original system was
tested by the USGS Geographic Applications Program (GEOGAP) in several research programs that moni-
tored land-use changes using satellite and high-altitude aerial photographic data. Three regional projects

that used the scheme studied the Central Atlantic Regional Ecological Test Site (CARETS) (Reference 13),
the Ozarks region, and southern Arizona (Reference 14). The Anderson land-use classification system was
tested in each of these regions and was found to work satisfactorily, even when used with satellite imagery.

ANALYSIS PROCEDURES

This study made use of numerous sources of cultural and natural landscape data. These diverse sources and
quantities of input data were used in this study, but would have overburdened manual data collection and
analysis methodologies. It should be emphasized that large quantities of map and remote sensing data

¢an serve no practical purpose unless both a rationale and a capability exists for their rapid, objective proc-
essing. Therefore, the data analysis plan was prepared early during the research to outline the orderly
progression of steps needed for accomplishing the study objectives (figure 2). The following subsections
describe in more detail the data resources, analysis procedures, and computer programining called for by

this analysis plan, Specific inputs, operations, and outputs are cross-referenced to the data analysis plan by
the bracketed numbers (i.c., [1] in the text indicates the position on the diagram indicated by [1] (figure 2)).

Data Resources

The data used in the conceptual design of the land-use modeling effort was acquired from the literature,
ground surveys and maps, aircraf’t photography, and satellite line-scanner data (Reference 1). The initial
tasks in this area included the collection of pertinent graphic- and numeric-format land-use, cultural, and
physiographic data. Historical black-and-white, 1:20,000-scale panchromatic aerial photos of 1963 and
1:24,000-scale 1970 orthophotomaps [1] provided the multidate land-use “ground-truth™ data base, High-
altitude U-2 aircraft photos dated 1972-1973 were used by USGS to compile their published map [1]. Other

* he image processing research efforts were initiated in 1972, ond the selected 1973 image was the first available high-quality summer image
(Landsat scenc 13881 7131) for the Denver Metropolitan Area,
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TABLE 1
HIERARCHICAL. LAND-USE/LAND-COVER CLASSIFICATION SCHEME USED FOR THE DENVER METRO.
POLITAN AREA. The various levels of the USGS Circular 671 system are shown (Reference 10). This standardized
classification was used for manual airphoto interpretation and was modified by adding eleven third-order classes for
automated Landsat image analysis, The system was revised and reissued with minor changes as Professional Paper 964

(Reference 12),
F- Digital First-Order Land Use/Land Cover
ng o Second-Order
Third-Order .
| Urban and built-up land ¢
1 Residential
12 Commercial and services
121 Reaeational
13 Industria
14 Extractive
18 Transportation, communications, and utilities
151 o Utilities
16 Institutional
17 Sttip and clustered development
18 Mixed urban
19 Open and other urban
191 Solid-waste dump
192 Cemetery
2 Agricultural land
21 Cropland and pasture
21 Nonitrigated cropland
212 Irrigated cropland
213 Pasture
22 Orchards, groves, and other horticultural areas - - .-
23 Feeding operations i
24 Other agricultural land
3 Rangeland
31 Grass i
32¢ Savannas ]
33 Chaparral (taken as brushland)
34* Desert shrub
4 Fotest land
41 Deeiduous
411 Deciduous/intermittent crown
42 Evergreen (conifefous and other)
421 Coniferous/solid crown
422 Conifefous/intermittent crown
43¢ Mixed forest fand
H] Water
51 Streanis and waterways
52 Lakes
33 Rescrvoirs i
54¢ Bays and estuaries §
55 Other water ’
6 Nonforested wetland
61 Vegetated
62* - - Bare
7 Barren land
71+ Salt flats 1
72* Beaches
73 Sand other than beaches
74 Bare exposed rock
74 Hillslopes j
78 Other barren land 1
8¢ Tundra
81°¢ Tundra
9 Permanent snow and icefields !
91* Permanent snow and icefields !

*Land-use/land-cover type not found in the Denyer Metropolitan Area.
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cultural landscape data included census tract-aggregated socioeconomic data for 1970 [2] and a 197)
State Highway Department srreet/highway classification map with eight road categories [3].

Physiographic landscape data consisted of a USGS 1:62,500-scale surficial geology map [4], sixteen

1:24,000-scale topographic maps [5], and computer-generated slope (7], aspect [8], and insolation [10)
data plancs,

Landsat imagery resources [12] included the four basic multispectral scanner (MSS) images of a single-
date 1973 scene, the six MSS image-to-image ratios, and four MSS/insolation-normalized ratios [11],

Analysis Procedures

The modeling activity was structured to analyze the interactions between land-use changes and the regulating
physiographic, socioeconomic, and transportation components of the landscape. This involved the compila-
tion, rectification, and generation of spatially registered data planes for the various landscape elements.

Each landscape data plane represented a spatially distributed, single-variable map for the 39- by 39-km*
(24- by 24-statute mile) or 1491-km? (576-mi2) study area centered on the Denver Metropolitan Area. The
majority of these data planes were obtained by thematically sampling and computationally transforming the
available maps using a fixed 192-row by 192-column dot grid yielding 36,864 cells of 4 hectares (10 acres)
per plane. These planes, using the popular grid-cell technique, were accessed in overlaying operations that
combined single-variable data planes with conformable spatial dimensions.

lan McHarg's regional landscape analysis method is a welFknown manual method of such overlaying processes
(Reference 15). This approach physically overlays colored transparent acetat&-plotted variables to view
spatial correlations and juxtapositions as composite colors; however, as more variables are considered, the
display becomes confusing, and the approach becomes less useful. The overlay process used in this research
was carefully designed after a thorough review of the available systems (Reference 9). Implemented as a soft-

ware package for use on a digital computer, it permits the easy retrieval, manipulation, modeling, and display
of a large nurmber of landscape phenomena.

Linear discriminant analysis was selected as the computational vehicle for implementing the dual land-use
predictive modeling [14] and inventory mapping [15] capabilities. This dual use represented a new, multi-
variate statistical approach to land-use mapping. Discriminant analysis permitted each landscape cell to be
represented as a point in a multidimensional, statistical framework in which each observation was a measured
variable. The original observations of land use or change in land use were used to determine orthogonal

axes (discriminant functions) to a possible total of one less than the number of land-use variables represented.
Each new obsetvation can be plotted and identified by means of a single discriminant score,

The mapping with Landsat MSS data or modeling future land-use patterns with ancillary map-format data
required the computation of representative statistical sigriatures for each land use or land-use change of
interest. Subsequently, each unknown individual land use, land-use change element, or landscape cell was
classified according to the closest multivariate match with the nearest numeric signature subset or class,

*Throughout the text, Engliski measuroments given in parenthesis are precise, whereas their equivalents in the metric system are reasonable
approximations
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Similarly, a landscape cell within this inventory/modeling system consisted of a series of spectral responses
from MSS data and/or a statistical measure of several types of ancillary data from a given area within the
Denver study area. This response was a vector of size equal to the total number of spectral bands and trans-
formations and/or ancillary map variables, Both forms of data were interleaved to represent this vector on
digital tapes in proper geometric relationship. Thus, the mode of analysis could be specified by an appro-
priate sclection of image, land-use, sociocconomic, physiographic, or transportation variables,

Discriminant analysis was performed in a sticpwise fashion (i.c., by entering one additional variable or attri-
bute into the set of discriminating variables for cach successive iteration), The variable to be added, but not }
already included in a previous itcration, was selected for inclusion on the basis of greatest F-value, Thus,
the analysis operated in a “supervised” fashion on user-specified representative training sets of known land-
use composition to: (1) evaluate the statistical utility of each variable as hierarchically determined by dis-
criminant a1alysio, il (2) quantify the overall and.incremental land-use mapping/modeling acccuracies for

each variable entered. These analytical capabilities were perhaps the greatest advantages of a stepwise linear
discriminant analysis approach.

Utilization of Computer Program Modules

When possible, available operational computer software was used to bypass potential **programming bottle- i
necks” in handling the large quantities of imagery and map data associated with the study.

The TOPOMAP program (References 16 and 17) ¢1 -ated a digital terrain model [6] with the elevation data 1
to compute topographic slope {7] and aspect [8] data planes. These topographic slope and aspect data '
planes were input to a digital spectroirradiance model (program INSOL2) [9] to compute a near-instantaneous
incoming solar radiation or insolation data plane [10]. i ——————

Program TRANSF2 from the Colorado State Univetsity (CSU) Landsat mapping system (LMS) (Reference 18)
was used to create the six MSS ratios and four MSS/insolation ratios [11]. Other Landsat-1 preprocessing
operations performed by the LMS package included data reformatting and tape merging [12].

Program PLANMAP (Reference 1), a geographic information system, compared the 1963 and 1970 land-use
data planes and produced urbanization rates for the various land-use classes to drive a Markov chain suc-
cessional trend model [13].

Automated image classification with and without ancillary data access [15] was tested with the channel
selection feature of the EXTRACT and CLASSIFY linear discriminant analysis programs in LMS. CLASSIFY
represented an adaptation of the BMDPO7M stepwise multidiscriminant analysis routine in the bjomedical
design (BMD) program series (Reference 19). This stepwise approach also permitted the selection of an
optimal subset of image and map variables for a full-image classification [16].

The simple tabulation programs, CHECKER1 and CHECKER?2, were written to facilitate a point-to-point
comparison of the classification map file to the 1972-1973 USGS land=use reference plane for the multilevel
tabulation of land-use mapping accuracy [17].

Finally, extended development and interrelated use of these land-use inventory and modeling programs i
indicated that it was possible to develop even more sophisticated models to assess the limitations and impacts ‘
from, or response to, various land-use scenarios [18]. :
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DETAILED REPORT ORGANIZATION

Chapter 1, “Introduction,” describes the study and provides general comments on land-use planning, back-
ground, and rationale, objectives, scope, approach, and the analysis plan,

Chapter 2, *‘Landscape Model Construction,” presents the map sampling and compilation methodology
involved in constructing the land-use, physiographic, transportation, and socioeconomic map data plancs,

Chapter 3, “‘Spatial Land-Use Projection,” describes the spatial land-use projection modcls, testing, and

results, and outlines a revised spatial-change modeling strategy that combines both the Markov trend and
discriminant analysis models,

Chapter 4, “‘Landsat Land-Use Classification,” explains the Landsat land-use classification effort. It deals
with image rectification and resampling, ancillary map data overlaying, feature extraciion sampling methods
and verification, and classification algorithm selection and testing. It also gives the costs of developing the

data and optimal approach. Finally, this approach is applied to the total study area in a cost-effective format,
and displays and verifies the results achieved.

Chapter 5, ““Conclusions,” summarizes the basic endeavors, activities, and results.of the study. Applications
areas are identified, and various recommendations are made. The recommendations generally concern ancil-
lary data inputs and machine interpretation and processing.

Five appendixes support the main text:

®  Appendix A, “Multiple Discritinant Analysis,” presents a brief overview of the multivariate
statistical technique of linear-discriminant analysis, used in this study for both spatial land-use
projection and Landsat land-use classification,

® Appendix B, “Landsat Mapping System” (LMS). describes the set of programs making up the
Landsat Mapping System that has been implemented at Colorado State University.

®  Appendix C, “Machine Classification Error-Rate Estimation,” tabulates omission/commission rates
for the first- and composite second- and third-order USGS land-use classes.

®  Appendix D, “Maximum-Likelihood Ratio,” describes the widely used multivariate classification
algorithm tested against linear-discriminant analysis in this study.

®  Appendix E, “Correlation Matrices for Rectangular/Point-Sainpled Training Sets,” presents these
statistics,
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CHAPTER 2

LANDSCAPE MODEL CONSTRUCTION

INTRODUCTION

The evolution of land use in the United States is one of the most perplexing problems confronting our
society. It involves a tangled web of biological, economic, environmental, institutional, paysical. and poli-
tical interactions. The land conversions that result can be studied in terms of acsthetics, aging. birth rates,
climate, crowding, economics, industry, legislation, mineral extraction, mortality, public services, social
amenities, technology, topography. transportation, vegetation, water, and zoning.

1t was concluded that the most fruitful approach to understanding the evolution of urban land use was by
the construction and manipulation of a landscape model of the Greater Denver Metropolitan Arca. This
landscape model provided a better understanding of Denver's physical environment from a joint analysis
of the various remote sensing images, collateral landscape maps and data (e.g.. land-use, physiographic, socio-
economic, and transportation maps), and a literature survey for the historical period under study. These
collateral data stored in the landscape model provided the data base for the analysis necessary for understanding
the present and recent past patterns of land-use evolution in the Denver Metropolitan Arca. The analysis also
yielded insights into the biological, economic, environmental, and social driving forces that have induced the
rural-to-urban land-use conversions observed. Most important, these collateral data were indispensable as both
spatial and statistical geographic inputs to the evaluation, analysis, and presentation of a quantitative landscape
model for predicting future spatial changes in Deaverland use,

The cultural and natural landscape components of land use are not only undergoing a dynamic state of suc-
cession, but are also subject to quite varied and complex driving forces. Accordingly. the landscape model-
ing effort focused its time and resources on selecting ancillary data factors that were believed to be of
broad applicability, usefulness, and general availability for the intensively urbanized arcas of the United
States. Thus, in this undertaking, special emphasis was placed on validating and utilizing meaningiul and
widely available data input sources to the landscape modeling to allow replication by interested researchers ,
or planners for other metropolitan arcas.  Although some data sources will not be universally available |
throughout the country, it was anticipated that very close, it not identical, surrogates would exist in the |
majority of cases. Preference was always given to universally available data such as Department of Commerce
census data. USGS topographic and geologic maps, National Acronautics and Space Administration (NASA)
satellite imagery, and historical sequences of airphotos in contrast to equally usable but more localized and ‘

],

volatile data sources.  Fven these more universally available data have been collected with diverse techniques '
and map scales by a wide assortment of public and private organizations. The Landscape model provided
a depository for interrelating such diverse information in a common tormat. A model variable or data

plane is one overlay of spatially registered data in a common cellular network upon all other data planes
or variables in the landscape model (figure 3). j
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ORIGINAL PAGE I3
OF POOR QUALITY

N\,

j 7 LAND-USE SUBMODEL VARIABLES:
/¢ e 1863 Photo Land-Use
’ 1970 Photo Lend-Use T
1972 to 1973 USGS Photo Land-Use
Tvio 1963 to 1870 Land-Use Changes
Two 1863 to 1970 Alphanumeric Coded

Land-Uss Changis

9 PHYSIOGRAPHIC SUBMODEL VARIABLES:
g Topographic Elevation
Topographic Slope
Topographic Aspect
USGS Surficial Geology
Solar insolation for Landsat imagery
Four Landsat MSS -+ Insolation Ratios

6 TRANSPORTATION SUBMODEL VARIABLES:
X s Composite Minor-Road MD

D Composite Major-Road MD

e Freeway MD

Freeway Interchange MD

Built-Up Urban-Area MD

17 SOCIOECONOMIC SUBMODEL VARIABLES:
Four Population/Housing Densities
" Per Acre
Five Population/Family/Housing-
Unit Totals
1969 Mean Fomily income
Median Housing-Unit Rent/Value
One-/Two-/Three-Car Family Totals
Total Census Tract Acreage 1
Average Numbei of Cars Per Family :

h 10 LANDSAT IMAGE SUBMODEL VARIABLES: !
[ eSS4 (Visible Green) ‘1
MSS-5 (Visible Red)

MSS-6 {Solar Infrared)
MSS-7 (Sotar Infrared)

FIGURE 3. CONCEPTUAL DIAGRAM OF THE LANDSCAPE MODEL OF THE DENVER STUDY AREA.
Available maps, spatially referenced tabular data, and remote sensing imagery were assembled, interpreted, regis-
tered, and overlaid into a cellular landscape model with 48 image/map variables. This landscape model provided the
data base for understanding the present and recent past patterns of land-use evolution and their causal factors {(MD =
minimum distance)
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CONSTRUCTION OF A SPATIAL DATA PLANE

At the outset of the design of the landscape model, a complete inventory was prepared of all available
maps, spatially referenced tabular data, and remote sensing imagery, ranging from the carly low-altitude
black-and-white airphotos of the mid-1930's to current Landsat imagery (Reference 1), The data planes

to be input to the landscape model were selected from this thorough inventory. New data were continually
sought and evaluated as available data were found to be incomplete, incompatible, or inadequate for the
landscape model. Caution was taken to ensure that not too much money and energy were expended on
collecting and organizing modeling data so that adequate resources remained for constructive analysis and
synthesis of what it all meant. A marked tendency exists among those now using some form of landscape
modeling, especially in smaller planning agencies, to think that assembling data planes in composite
mapping systems constitutes planning and analysis, whereas it is in actuality only a necessary prerequisite,
These planners and experimenters are currently enamored with sophisticated processes for inputting huge
amounts of data into some cellular overlay framework. Some 95 percent of the thought goes into the input
of the data, whereas a mere S-percent, last-minute attempt is made to determine how to analyze it. This
effort has selected the simplest means possible for overlaying each data plane onto the landscape model and
has concentrated the bulk of its attention.on analyzing the data planes.

Map Sampling Procedure

Potential landscape modeling variables were evaluated for general availability and significance. Thirty-four
map variables were selected for inclusion in the landscape model and were divided into land-use, physio-
graphic, socioeconomic, and transportation submodels (table 2).

Some explanation of the two general types of variables that were overlaid on the model is in order here,
A categorical variable denotes the presence or absence of a category or class. An observation of this type
is mutually exclusive (that is. it can fall into only one distinct preselected class or category). Thus, cach
land-use data plane has 24 specific classes, whereas the surficial geology variable in the physiographic sub-
model has 13 specific classes. A numerical variable refers to a purely digital sequence or range of continu-
ously varying numbers. Observation values can be directly compared with one another in a mathematical

sense. Topographic elevation and the minimum distance to minor roads are examples of numerical variables,

The landscape model covered an area of 39 by 39 km (24 by 24 mi) or 1491 km? (576 mi?) centered on
the city of Denver (figure 4). Most of this study site has relatively low relief except for abowt § percertt of
the area along the southwestern edge, which includes the eastern foothills of the Rocky Mountains. The
Greater Denver Metropolitan Area is entirely contained within this area and includes Denver proper, which
is a rapidly expanding population center of approximately 1,500,000 people with future expectations tor
continued growth.

The 1491-km? (576-mi?) study arca was divided into 192 north-south rows and 192 cast-west columns for
a total of 36,864 4-hectare? (10-acre?) mapping cells. This cellularization permitted any spatially distributed
two- or three-dimensional landscape variable to be rectified, sumpled, encoded, stored. retrieved. and dis-
played by its implicit position in this predetermined computer-compatible grid network. Adopting this
landscape modeling approach made it practical and feasible to construct and overlay geographical data
planes of multiple landscape attributes for subsequent computer analysis, modeling, and land-use change
predictions,
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LIST OF SPATIAL LANDSCAPE MODELING
was modeled by 38 coliateral nonimage data
lary variables are arranged into four function
Presents map classes or categories with no implicit numerical
selected to represent them, A “numerical variable”
mathematical sense (i.e,, an elevation of 4000 feet is

TABLE 2

VARIABLES, The 24- by 24-mile De
planes with a 10-acre 8q
al submodels, A

nver Metropolitan Area
uare-cell element, These lists of ancil-
“categorical variable’ is a data plane that re-
relationship within the numbers or characters
represents a data plane that varies continuously in a
two times an elevation of 2000 feet),

Total tamilics

Total year-round housing units

Total vacant housing units

Total oceupicd housing units

1969 mean family income

Median housing-unit value

Median housing-unit rent

Total one-car Fannlies

Total two-car Fannlies

Total three-/three-plus car families

Total census tract acreage

Population density per acre

Averape number of cars per family

Average number of families per acre

Average number ol year-round housing
units per gere

Average number of vacant housing
units per acre

1:84,500-scale census
tract map

Computed
Computed
Computed
Computed
Computed

Computed

l:andacapc Landscape Variable Source of Data Variable
Submode! Type
Land use 1963 photo land use 1:20,000-scale B/W photos Categorical
1970 photo land use 1:24,000-scale orthophotos
1972-1973 USGS photo land-use 1:100,000-scale USGS map
1963 to 1970 land-use changes (from) 1963 to 1970 land-use data
planes
1963 to 1970 land-use changes (o)
1963 to 1970 alphanumeric land-use
changes (from)
1963 to 1970 alphanumeric land-use
changes (to) 1
Physiographic¢ Topographic elevation 1:24,000-s¢ale USGS Numerical
topographic maps
Topographic slope Computed from elevations Numerical
Topographic aspect Computed from elevations Numerical
Surficial geology 1:62,500-scale USGS map Categorical
Landsat image insolation Computed from slope/aspect Numerical
Landsat MSS/insolation ratios . Computed as MSS +insolation | Numerical
Transportation Compusite minor road minimum Computed from 1:45,000- Numerical
distance (MD) scale state highway map
Composite major road MD Numerical
Freeway MD Numerical
Freeway interchange MD Numerical
Built-up urban arcy MDD Numerical
Socioeconomic Total populition 1970 census reports and Numerical
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FIGURE 4. TOPOGRAPHIC MAP OF THE DENVER STUDY AREA. The outer boundary of the Denver study area is a square
of 24 by 24 miles enclosing the Denver Metropolitan Area.




As noted earlier, the simplest way of inputting each data plane into the landscape model was adopted. Gen-
erally, this required overlaying a dot pattern representing a selected cell size on the map (Reference 19),
Topographic elevation data, for example, is an essential part of any landscape model (figure 5). The input
value of each elevation cell was estimated from 1:24,000-scale topographic maps at the position of the sample
dot for each of the 36,864 cells that constitute the elevation data plane. Very careful procedures were used
to ensure that the common cell pattern overlaid by hand in this fashion on each new map or set of maps pro-
vided a data plane that registered exactly, cell-by-cell, on all existing data planes (figure 6). This hand tabula-
tion of all the map-format data for analysis was very laborious but was more accurate for these initial research
efforts in landscape modeling. When the basic principles of the approach are better understood, new landscape
modeling efforts can input the data with a variety of more sophisticated map digitizing procedures. Many
earlier studies of this nature dealt with more complex machine entry of map data into the computer and, as

a result, expended less effort on its constructive analysis.

A semitransparent multipurpose overlay data form (figure 7) was devised to combine both the coding and the
keypunch operations. This 1:24,000-scale data form overlaid a quadrant of a township consisting of nine
sections of land of 1.6- by 1.6-km (1- by 1-mi) squares, with 64 rectilinearly distributed sampling dots per
section representing the 4-ha (10-acre) square resolution sampling unit. A 4-ha (10-acre) square cell was
selected because it represented the smallest individual area that could be adequately sampled from the ma-
jority of the available 1:24,000-scale source maps. Data contained on each 1:24,000-scale map were cel-
lularized by overlaying the data form on the map to match the boundaries of the appropriate township
quadrant. The desired map information was next traced onto the overlay, and the category identification

was recorded in each area (figure 8). This overlay form was the direct input to the keypunch operation, and
no further transcription of the data was required.

Compilation of the Data Plane

Each horizontal row of dots on the semitransparent overlay form represented one punch card, and the key-
puncher generated a deck of 24 cards directly from each 23-km? (9-mi?) area of 24 by 24 cell elements
(figure 9). The effort of keypunching the data from these sheets was minimized by punching only the left-
most identity of a land-use change at the proper position on the card representing its column. The cell code
of identical row elerhents was identified with successive cells left blank until the left-hand boundary of a
different land-use category was reached, This process facilitated keypunching and subsequent verification
steps because fewer keystrokes were made, and the suppression of identical elements aided visual proof-
reading by comparing a line-printer display of the data deck with the original code form (figure 10a).
Auxillary computer programs were available to fill in the blank cells in a data deck (figure 10b), to assemble
and display each total data plane from a group of data decks (figure 11), and to display a selected group

of characteristics in a data plane (figure 12).

When each source map has been sampled and assembled, it constitutes a data plane of the landscape model.
Each of these data planes can be selectively displayed as a computer microfilm graphic (graymap) to illus-
trate the spatial distribution of one or more categories or numeric ranges. As an example of these high-
resolution computer graphics, a 1:250,000-scale graymap can illustrate all first-order urban and built-up
lands contained in the 1970 land-use data plane (figure 13). A second microfilm of the same data plane
empbhasizes all first-order agricultural land (figure 14),

19
to




I
I
l
GOLDEN : ARVADA
l
I

| : I : |
l | |
l

: LOUISVILLE I LAFAYETTE : EASTLAKE : BRIGHTON :
| l | | l
| | | I I
I e _ I I B
l l n |
| l ' |
| l ' |
l : COMMERCE CITY : SABLE :
|

| l : |
l | |
r

| | :
| | |
MORRISON l FT. LOGAN : ENGLEWOOD ' FITZSIMMONS
| ' |
| | |
| | |

HIGHLAND RANCH PARKER

———————h

'
1:24,000-SCALE MAP BOUNDARIES ! SITE BOUNDARY

Scale 1:250,000

FIGURE 5. TOPOGRAPHIC MAP INDEX OF THE DENVER STUDY AREA. Sixteen 1:24,000-scale, 7.5-minute
USGS topographic maps covered the Denver study area and were input into the elevation data plane.




N-S Code (card colummns 3 & 4)

01

03

05

06

07

08

01 02 03 04 05 06 07 08
1 r 4 1 4 1 4 1+ 4
01
24 21 24 21 2% 21 24 21
02
1 4 1 4 1 4 1 4
03
24 21 24 21 24 21 24 21
04
} .
1 4 1 4 1 [ . 4
05
24 21 24 21 24 21 24 21
G6
1 4 1 4 1 4 1 4
07
[ 21 2% 21 T 21 2% 21
08
01 2 03 04 05 06 07 08

E-W Code (card columns 6 & 7)
ownship Reference
4 <y

6

5

4

3

2

1

7.

8

9

10

11

12

18

17

16

15

14

13

19

20

21

22

23

2
s

30

29

28

27

26

25

31

32

33

34

35

-+

33#-

Each square above represents

9 square miles - one data sheet.

The section number of the

section which must oceur in
the upper left corner on the
data sheet is shown.

Scale 1:250,000

FIGURE 6. GEOGRAPHIC REFERENCE OVERLAY FOR DATA FORMS. The exact location and internal grid row apd
column identifiers for the data coding forms (figures 7 and 8) are shown relative to the USGS topographic map boundaries
(figure 6). Four data coding forms are used for the four quadrants of each township.
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pataptanecooe (][] oatasweercone [ ][] ][]

CARDCOLS —=1 2 CARDCOLS—~3_ 4 &6
DATA COMPILED BY (INITIALS) DATE o e
TRANSFERRED & EDITED BY {INITIALS) DATE
KEYPUNCHED BY (INITIALS) DATE
COMMENTS FiLL IN LEADING ZEROS IN
DATA FIELDS - ADJUSTY
HEADING AND DATA RIGHT
CARD NUMBER (CARD €OLS, 788) IN FIELDS
CARD COLUMNS -
33 35 37 39 41 43 458 47 49 Bt 53 65 67 69 61 63 65 67 69 11 33 B M7 N
34 36 38 40 42 44 486 48 B0 52 B4 56 50 60 62 G4 60 68 70 72 74 76 78 -2
N e o o o o o o oo o o . o e e o . . . e e ¢ o+ o fO0
02 o . . . . . . . . . . . . . . 3 . . . . . . . * jO2
03] o . . . ¢ . e o] o . . . . . ¢ . . . . . . . o J0O3
04] » . . . . 3 3 . . . . . . . . * f=e 3 . . . 3 . e 104
o5 o . . . . . . . . . . . . 3 . . . . . . . . . o |06
08] o . . . . . . » . 3 . . . . . . [} L o wr e . . . o 1068
071 o . . . . . . 3 . . . . . e . . . . . . . . . ¢ 107
o8] » . . . . . 3 . . . . . . . 3 . . . . . 3 . . s J0O8
9] o . . . . . . . 3 . 3 . . . . . . . . . . . . s 09
100 o . . . . . . . Py . . . . . . - . . . . . . - ¢« 110
1] ¢ o o ¢« e e o | e o * o o s o] e e L N I R )
1221 ] . . . . . . . 3 . . . . . 3 . . . . . . . o 112
131 - . . . . . . . . . 3 . . . . . . . . . . . . « 113
"] - . . . . . . . . . . » . . . . . . . . - . . e 114
4
%1 . . - . . - . . . . . . . . . Y . . . . . . « |15
16] - . . . . . . . . . . . . . 3 . . ) . ) . . . « 1168
171 . . . . . . . . . . . . . . . . . . . . . . . . 7
18f . . . . . . . . . . . . . . . . . . . . . . + |18
19] . . . . . . . . . . . . . . . . . . . . . . . 19
2] . . . . . . . . . . . . . . . . . . . . . . . . 20
27 . . . . . . . . . . . . . . . . . . . . . . . o« |21
u . * * L] . L d . - . * . L] L] . L] * . . * * . . L ] . 22
231 . . . . . . - . Iy . . . . . . . . . . . . . o« 23
4] . . . . . . . . . . . . . . . . . . . . . . o J2e
ﬁ 35 37 30 41 43 48 47 49 81 63 66 87 60 61 63 66 67 69 71 713 1 77 %
34 38 38 40 42 44 48 48 50 52 54 56 68 G0 62 64 66 88 70 72 4 7 18 80

FIGURE 7. OVERLAY DATA FORM USED FOR SAMPLING A 1:24,000-SCALE MAP. The nine
large squares in a three-by-three array overlay individual sections or square miles of land on the appro-
priate 1:24,000-scale map, The eight-by-eight array of dots in each of these nine sections represents a
sampling of each 10 acres, or 1/64 square mile per cell, The original form is printed on transparent
paper and can be drawn on while overlaying a particular source map. The form shown here has been
reduced to a scale of about two-thirds of its original 1:24,000 scale,
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paTAPLANE cone  [7] [T) patasHeercoe  [o] [1] [o] (3]
)
-

CARDCOLS —-1 2 CARDCOLS—3_ 4
E-W N-8
DATA COMPILED BY (INITIALS) CHY  DATE @28.73 CoLS  Rows
TRANSFERRED & EDITED BY (INITIALS) CHY  DATE 62573
KEYPUNCHED BY {INITIALS)- CHT  DATE 62873
COMMENTS FILL IN LEADING 2ER0S iN

DATA FIELDS - ADJUST
HEADING AND DATA RIGHT
—= CARD NUWBER (CARD COL S, %8) IN FIELDS
CARD COLUMNS T T e

33 38 a7 39 4143‘547496! 63%6759816385 67 @6 71 B m 77
3436384042“484860...5254595860628‘3838707274787830

ory. . . e ¢ e . . o . . . LY LA
. . . 3 . . . . . . . e 102
. o el e . . . e « . . . . LI * 4+ J03
. . . . . . . . . . . . . . . . . . s 104
21 2 4y
. . . . . . . . . . . . . . . . . . ¢ 106
. . . . . . 3 . . . . [ 3 . 3 3 . . e 108
. 3 . L . . . . . . ) . 3 . . . > . e 10?7
. . . . . . . . . . . . . . . 3 . . e JoO8
. . ol o . . . . . . . 1 . . . . . . 09
10 . . . . . . . . . . . . . ) . . . . . . . . 3 10
1My . . . . . . . . . . . . . . . . . . . . . . . « 11
2] - . . . . . . . . . . . ¢ 112
21
131 . . . . . . . . . . . . 13
14 . . . . . . . . . . . . . 114
7
%1 . . . . . . . . . . . . o 115
. . . . . . . . . . 18
- [ - —_—
. . . . . . . . . . 17
. . . . . . . . . . 18
. . - . . . . . . . 19
. . * . * . * *
21
. . . . . * L4 -
. . . . L4 - * .
23 L4 * . . L] 3 L] * . . *
2‘ . . * . - * * . . . . * . . * * l L] . . . . .

*
3323;37394!0345474’51535657 6136537697‘!7375

69
36384042““0850525458580062 686870727476

FIGURE 8, COMPLETE OVERLAY DATA FORM READY FOR KEYPUNCHING, Keypunching is
easily completed directly from the form as shown, The “DATA PLANE CODE = 7¢” {upper left
cor-r) indicates that the data results from the 1970 land-use maps. The “DATA SHEET CODES =
0: «.id 03" indicates the unique position of this block of 9 square miles of data, a township Quadrant,
with respect to the balance of the 578 square-mile Denver study area, as shown by this row and
column counter obtained from the reférence map of figure 6, Each of the 24 lines of dots represents
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FIGURE 9. A BLOCK OF PUNCHED CARDS REPRESENTING ONE OVERLAY DATA FORM. Reading from front to
back, these 24 cards represent exactly what is keypunched from the completed data form shown in figure 8. Note that only
a minimal amount of keypunching and visual verification is needed to represent and check the map boundaries. Simple com-
puter routines expand these data to fill every landscape cell.

CONSTRUCTION OF LAND-USE SUBMODEL : !

The 1970.1and-use data already illustrated was obtained from 1:24,000-scale orthophotomaps photointer- ;

preted for thematic land use with the remote sensing-based classification scheme of Anderson, Hardy, and i

Roach (Reference 10), transferred to the semitrdnsparent overlay data forms, and dot-sampled and assembled ‘

as described. When an unrepresentative classification was made on the basis of the dot designation alone in

areas of finely mixed land uses, the dominant land use was assigned with priority to the lower-valued cate- 1

gorical urban codes (versus the higher-valued categorical rural codes). : ‘
{

Selective display graymaps of this data plane show that recent developments in land use, such as clustered

development, occurred on the periphery of existing urban lands and placed new pressures on adjoining ﬁ i
open-space lands by providing nodes or springboards for additional urbanization (figures 15 and 16). s
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700103 DATA PLANE CODE 15 21 17 21
30016302 12 21 17 21

73 DATA FORM ROW 1521
7ﬁ£&n€ﬂf"“ 15 21
70870308 165215 21
70012%&&,—- DATA FORM COLUMN 15 52152
7¢017307 2115 21
70010304 CARD COUNTER 21 1521
70C10309 21 1421
7001C310 21 1421
70016311 21
70010312 21 17 21
79010213 DATA 1 1719 52 1721
70010314 Ezagﬁggn' 21 1719 171952 1721
7001C31% 21 17 21 17 21
70010316 CODE AT RIGHT 1 17 21
70010317 OF BOUNDARY -_‘\\éT \\ﬁT? 21
70010318 532121 17 2117 21
70010319 5321 17 21
7001632¢C 21 17 21
70010321 5221 17 le1721 52
70010322 21 17 21

(a)

70010301 151521212121212121211717171717172121212121212121
70010302 151521212121212121212117172121212121212121212121
70010303 152121212121212121212121212121212121212121212121
70010304 151521212121212121212121212121212121212121212121
70010305 155215152121212121212121212121212121212121212121
70010306 151552152121212121212121212121212121212121212121
70010307 211515152121212121212121212121212121212121212121
70010308 212121152121212121212121212121212121212121212121
70010309 212121212121212121212121211421212121212121212121
70010310 212121212121212121212121211421212121212121212121
70010311 212121212121212121212121212121212121212121212121
70010312 212121212121211717171717212121212121212121212121
70010313 212121212121211719191919525217212121212121212121
70010314 212121212121211719191719525217212121212121212121]
70010315 212121212121211717212121211717212121212121212121
70010316 212121212121212117172121212121212121212121212121
70010317 212121212121211717171717212121212121212121212121
70010318 532121212121171721171717212121212121212121212121
70010319 532121212121212121171717212121212121212121212121
70010320 212121212121212117171717212121212121212121212121
70010321 52212121212121¢117171617212121212121212121215252
70010322 2121212121212.2117171717212121212121212121212121

FIGURE 10. DISPLAY OF THE DATA ON ONE KEYP
the card deck shown in figure 9, (b) A computer listing
with the appropriate two-digit land-use code,

®)

UNCHED OVERLAY DATA FORM. (a) A direct, offline listing of
showing these data expanded to fill in the intermediate 10-acre cells
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FIGURE 11. A PORTION OF THE 1970 DENVER LAND-USE DATA PLANE. Each two-digit number pair represents a
second-order land-use code (table 1) for a 10-acre cell of approximately 660 by 660 feet, The computer has aggregated or
assembled together the eight by wight set of 64 data forms keypunched for each 9-square-mile area of the 576-square-mile
site. Each of these 64 data forms yields a data deck of 24 computer punch cards, and the 1636 punch cards thercfore
represent one data plane such as the portion of the 1970 land-use map represented here,
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FIGURE 12, A SELECTIVE "OPEN-SPACE" DISPLAY OF A PORTION OF THE 1970 DENVER LAND-USE DATA !
PLLANE. Two of the second-order land-use classitications, specifically 19 - Open and Other Urban, a subclass of Urban and ?
Built-Up Land, and 21 = Cropland and Pasture, a subclass of Agricultural Land, have been selectively displayed to represent a
rough categorization of open space, These two codes have been printed at the geometric position where they occur. The other
19 of the 21 existing second-order 1970 land-use codes have been suppressed and are not printed. |

30

NP



OR!GINAL !

OF POOR QU:..

.l,\A

[

260,000

.
.

Display scale 1

gh 19 inclusive)

BLACK = Ali urbanized land-use clssses (codes 11 throu

WHITE =

All other land uses

—

A PLANE EMPHASIZING ALL OF THE URBAN

pldy of each 10-acre square cell maps the 24

DISPLAY OF THE 1970 LAND-USE DAT.

AND BUILT-UP AREAS (in black). The microfilm dis

Denver Metropolitan Area.

3

FIGURE 1

by 24-mile

.

3




~ .- — i e v ——

+

-acre square cell maps the 24- by 24-mile Denver Metropolitan

— .

¢4 —
Tt o TR R 53, o353t o ]
o33 253st : Q2
. 3832 3asssses H A o
piss $13t8t AK-) gL &

131

b i @ c

£ 232 ™~ o

3 " 2

-

i = $0
e A
3 - =
8 <3
i o s o
533 0@ w e
oo 323 - R “
3333 2 2
Seesssssssres ‘- - O

feistind 8 =
qg ©
05
ssssssss : 32 9
g " : i 22
<3
.33% N N

>
H [/ -3
R g4 38
R o4
£222. &

-use classes (codes 21 through 24 inclusive)

o
3!% a N
&

38
o33 24
ssoe3s
33300330000 ssse
3 83
.
.
oo

o3 a0
200 822,

py

e S3sescrse

All agricultural fand
All other land uses

I
4
¢
3

BLACK
WHITE =

23333
$24

1331
2333

FIGURE 14. DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPH

CULTURAL LANDS (in black). These lands are orime candidates for

and parks. The microfilm display of each 10

Area.

1




ORIGINAJ, PAGE I8
OF POUR QUALITY

(YT
.....

.....
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BLACK = Single- and multiple-unit residential dwellings (code 11)

GRAY = Open and otlier urban land uses (code 19) and cropland and pasture
agriculitural land (code 21)

WHITE = Al other land uses -

FIGURE 16. DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPHASIZING SINGLE- AND
MULTIPLE-UNIT RESIDENTIAL AREAS (in black). The migcrofilm display of each 10-acre square cell
maps the 24- by 24-mile Denver Metropolitan Area.
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Display scale 1:250,000

BLACK = Strip and clustered development (code 17) )
GRAY = Urban and built-up areas (codes 11,12,13, 14, 15, and 16)
WHITE = All other land uses

FIGURE 16. DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPMASIZING THE LOCATION OF
STRIP AND CLUSTERED DEVELOPMENTS (in black) RELATIVE TO OTHER URBAN AND BUILT-UP

AREAS (in gray). The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metro-
politan Area.
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The 1963 land-use data reduction cfforts were structured to minimize coding and keypunching duplication

of the completed 1970 land-use data plane. This was accomplished by comparatively interpreting individual,
nonstereo 1963 aerial photos to the 1970 orthophotomaps for land-use changes. Only the areas of change
were coded and keypunched into a 1963 land-use change plane, on which the areas of change were punched

as solid geometric blocks and unchanged areas were left blank. The resultant change ddta plane was logically
merged with the 1970 land-use data plane to gencrate a complete i* 3 land-use data plane (figures 17 and 18).

The USGS land-use map of Denver (figure 19) was also manually sanv.pled from a 1:100,000-scale land-use
classification map (figure 20) encoded in the USGS Circular 671 system (Reference 11). This USGS map was ! !
compiled from 1:121,000-scale, high-altitude NASA U-2 color infrared aerial photos of 1972-1973, A 90- :
percent minimum accuracy value for this photointerpreted land use was claimed for this product although no
verification procedures were described. A 1:100,000-scale mylar copy of this map was obtained from the
USGS Public Inquiries Office in Denver. It was run through an ozalid blueprint machine in contact with a
matching dot sampling grid on mylar to produce a dot-overprinted paper map for the keypunching operation.
Both map and reduced transparent grid were carefully registered b~“~re printing. Six major first-order cate-
gories were defined, with 21 second- and third-order land uses defi.. s in the Denver study area.

CONSTRUCTION OF PHYSIOGRAPHIC SUBMODEL

Topographic elevation data was manually sampled from sixteen 1:24,000-scale USGS 7.5-minute quadrangle !
sheets (figure §) with the data overlay form (figure 7), The clevation of each cell was estimated to the nearest
3 meters (10 feet) and noted next to the appropriate sample dot. The 64 sheets of elevation valucs were
punched and assembled to provide a completely filled topographic elevation data plane (figure 21).

This basic elevation data plane was input to separate computer programs to generate additional “*derived”
topographic slope, topographic aspect, and image insolation (solar radiation) data planes. The TOPOMAP
program (References 16 and 17) computed both slope and aspect from the uniform grid of clevation points.
This was accomplished by fitting a regression surface to three-by-three arrays of cells of the clevation data '
plane and assigning the slope and aspect to the center cell of cach three-by-three array (Reference 20). The
repetition of this process cell by cell over the entire elevation data plane yiclded the slope (figures 22 and
23) and aspect (figure 24) data planes.

a4 i e s s e

Three-dimensional perspective graphics provide familiar oblique viewing angles and convey the spatial
concepts and relationships represented by the topographic data planes (figure 25). Additional computer
graphics permit the preparation of vertical contouring (figure 26) and perspective contouring (figure 27)
displays of the topographic elevation data. Physiographic relationships of landscape components to topo-
graphy may be visualized by perspective graymapping of a second data plane; for example, all 1970 urban
and built-up land (figure 13) on the oblique representation of thie topographic data piane (figure 28). ;

Potential incoming solar radiation (insolation) was computed by program INSOL2 (References 21 and 22)
for the Landsat-1 image to be subsequently introduced. This cell-by-cell computation was completed as a
function of time and date (solar altitude and azimuth), location Uatitude and longitude), and topographic
clevation for ancitlary data cells with a computed slope and aspect. This computation yiclded a measure

of both direct and indirect potential insolation tfor cach landscape cell. The caleulated flat-surface insolation
was ratioed by an actual flat-surface measurement from the Pawnee National Grasstands just northeast of

Jp—
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Display scale 1:260,000

16, and 16)

3,14

17)
1

(4

12

BLACK = Strip and clusterer development (code
GRAY = Urban and buiit-up areas (codes 11,

WHITE = All other land uses

FIGURE 18. DISPLAY OF THE 1963 LAND-USE DATA PLANE EMPHASIZING THE LOCATION OF
STRIP AND CLUSTERED DEVELOPMENTS (in black) RELATIVE TO OTHER URBAN AND BUILT-UP
AREAS (in gray). The n.icrofilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metro-

politan Area.
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FIGURE 19, DISPLAY OF THE ORIGINAL 1972-1973 USGS 1:100,000-SCALE LAND-USE SOURCE MAP.
This map provides a direct comparison with the cellular representation of this source map as a data plane ifn
figure 20. This map was compiled from high-altitude, NASA U-2 color infrared serial photos taken at a scale of

1:121,000. The USGS Circular 671 classification scheme was employed. A 80-percent minimum accuracy for
manual photointerpretation was claimed (Reference 11).

OF pOOAL Faga |
R Q174) ot




pesesasas
p3aessss:

psssses

se33s a3l

El'..
4%
s

ve.

333

3
i $eieeetrteees
L JIAALIR —

Pred

BLACK = Single- and multipls-unit residential dwellings (code 11)

GRAY = Open and other urban land uses (code 19), nonirrigated cropland (cods 211),
irrigated cropland (code 212), pasture (code 213), grass (code 31), and
chapparal (code 33)

WHITE = All rther land wses

FIGURE 20. DISPLAY OF THE 1972-1973 USGS LAND-USE DATA PLANE EMPHASIZING SINGLE-
AND MULTIPLE-UNIT RESIDENTIAL AREAS (in black). The microfilm display of each 10-acre square
cell maps the 24- by 24-mile Denver Metropolitan Area shown in the original map in figure 19,
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BLACK = Filat areas (0.4 percent and less)
GRAY = Intermediate slope areas (0.4 to 5.8 percent)
WHITE = Higher slope areas (6.8 percent and greater)

FIGURE 22, DISPLAY OF THE TOPOGRAPHIC SLOPE DATA PLANE EMPHASIZING SHALLOW 1
SLOPES (in black). Hand-coded elevations displayed in figure 21 were used to compute topographic slope

for each 10-acre cell. The microfiim display of each 10-acre square cell maps the 24- by 24-mile Denver ‘
Metropolitan Area,
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BLACK = Higher slope areas (5.8 percent and greater)
GRAY = Intermedicte slope areas (0.4 to 5.8 percent)
WHITE = Flat areas (0.4 percent and less)

FIGURE 23. DISPLAY OF THE TOPOGRAPHIC SLOPE DATA PLANE EMPHASIZING STEEP SLOPES
(in black). The graphic display values of figure 22 were simply reversed to emphasize different slope

components, The microfilm display of each 10-acre square cell maps the-24- by 24-mile LUsnver Metro-
politan Area,
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-BLACK = Northwest-facing areas
GRAY = Intermediate aspects
WHITE = Southeast-facing areas

FIGURE 24, DISPLAY OF THE TOPOGRAPHIC ASPECT DATA PLANE EMPHASIZING NORTHWEST- |
FACING AREAS (in black), Hand-coded elevations displayed in figure 21 were used to compute topographic |
aspect for each 10-acre cell. The reader should interpret the display as lluminated from the lower right-hand ‘
corner (i.e,, from the southeast) so that the terrain shadows fall away trom the observer, The micr ofilm display

of each 10-acre square cell maps the 24- by 24-mile Denver Metropolitan Area.
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FIGURE 26. THREE-DIMENSIONAL. PERSPECTIVE DISPLAY OF THE TOPOGRAPHIC ELEVATION
DATA PLANE LOOKING FROM THE SOUTHEAST. The data ingut consists of the elevation data plane.
The user defines the line of sight by specifying the viewing point and the point looked at. In the resulting
perspective plot, the hidden lines are removed. The 24- by 24-mile Denver Metropolitan Area is mapped by
alternate rows and columns of 10-acre square cells.

Fort Coliins, Colorado, at the time of the August 15, 1973, Landsat-1 overflight. This introduced an esti-
mate of the atmospheric attenuation in the area at the timie of the Landsat overflight. This attenuation
factor was applied to derive final ground insolation estimates for each 4-ha (10-acre) ground data cell 1
(figure 29). These collateral insolation data will be evaluated to determine if they can be used during
machine land-use classification efforts in topographically shaded areas where the lack of uniform illumi-
nation altered the spectroirradiance measured from otherwise identical land-cover types and/or surface
materials,

Generalized surficial geologic data was manvally sampled from a USGS map prepared in cooperation with
the Denver Board of Water Commissioners and the Colorado Water Conservation Board (Reference 23).
This 1:62,500-scale map was sampled with a reduced version of the original dot grid. Twelve categorical
geologic classes were originally defined on the map. Subsequently, a thirteenth class was added, consisting
of the prominent water bodies shown on the map (figure 30).
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Display scale 1:250,000

FIGURE 26. CONTOUR MAP OF THE TOPOGRAPHIC ELEVATION DATA PLANE, The 5400, 6200-,
and 7000-foot elevation contour lines are shown, These 800-foot elevation con
mn the conventional vertical map format. The 24- by 24-mite
tows and columns ot 10-acte square cells,

tours of figure 21 are viewed
Denver Metropolitan Area is mapped by alternate
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(a)  Terrain contour (b) .Terrain contour
display with display without
surface grid surface grid

FIGURE 27. THREE-DIMENSIONAL PERSPECTIVE DiSPLAY OF THE TOPOGRAPHIC ELEVATION DATA PLANE.
The 5400-, 6200-, and 7000-foot elevation contour lines are shown, (a} Topographic display with surface grid lines and con-

CONSTRUCTION OF TRANSPCRTATION SUBMODEL

A 1971 road-classification map for the Denver Metropolitan Area was obtained from the State Highway
Department that differentiated freeways, expressways, principals. majors, minors, collectors, and isolated
rural roads. This 1:45,000-scale map provided the point data plane for the computation of minimum
distance planes and was sampled with a reduced scale, point-sampling grid. The linear road classes were
assigned to the nearest-neighbor grid point to provide a continuous representation in cellular form. When
multiple road classes intersected or existed i the nearést-neighbor vicinity of a dot point, the decision was
made to choose the highest capacity road class,

These point and linear transportation features were transformed into area Planes and overlaid on the land-
scape model. The locations of freeway interchanges are an cxample of a typizal point feature that has an
important impact on specific changes in the land use surrounding them. The impact of the interchange is a
function of the distance away from the interchange and was best handled in the landscape model in terms
of a data plane representing minimum distances. The freeway interchanges were initially tabulated into a
point-type data plane that recorded their location in the nearest 4-ha (10-acre) cell (figure 31). This initial
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FIGUF.E 28 THREE-DIMENSIONAL PERSPECTIV.: DISPLAY OF THE TOPOGRAPHIC ELEVATION
DATA PLANE EMPHASIZING ALL URBAN BUILT- UP LANDS (in black). The display system generated

this plot by first defining the terrain as a statistical surface on which the urban land uses (code 11 through

19, inclusively) were then overlaid as graymapped cells. Like 3-D contouring (figure 27), perspective aray-
mapping is a useful graphic tool for visualizing the numeric and/or spatial relationships of landscape vari- -
ables. The 24- by 24-mile Denver Metropolitan Area is mapped by alternate rows and columns of 10-acre
square cells.

data plane was subjected to numeric computation so that the mmmimum distance in an east-west and/or north-
south sense was computed for cach cell in the data plane to the nearest cell occupied by a freeway interchange
(Reference 24),

The minimum distance computed in this fashion was recorded at the position of the selected cell, and the
computation was completed for each cell in the data plane. This transformed the original point plane into a
useful minimum-distance area plane, which was overtaid onto the landscape model (figure 32). Similarly, the
initial data planes representing lincar road features (figures 33a, 33¢, and 34a; were computationally converted
to arca planes for overlaying on the fandscape model (figures 33b, 33d, and 34b). An initial urban built-up
area classification was established in recognition of the area nature of the fully developed street network and
the established land-use patterns found in extensively developed urban arcas (figure 34¢). Again, an urban
built-up arca minimum-distance plane was numerically denved from this source data plane (figure 34d).
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Display

BLACK = Shadowsd northwestfacing areas (113.2 centilangleys and less)
GRAY = intermediate sunlit areas (113.2 to 121.4 centilangleys)
WHITE = Fully sunlit southeast-facing areas (121.4 centilangleys and greater)

FIGURE 29. DISPLAY OF THE INSOLATION DATA PLANE EMPHASIZING AREAS OF LOWEST
INCOMING SOLAR ENERGY (in black). Near-instantaneous solar radiation for the overflight time of
the Arrqust 15, 1973, Landsat-1 image was generated from the computed slope and aspect for each 10-acre
landscape cell. The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metro-

politan Area.
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Display scele 1:250,000

BLACK = Wind-deposited silt, sand, and cobbles on foothill slopes (Holocene
period)
DARKEST GRAY = Sand, gravel, silt, and clay (Plsistocene and Holocene period Post-Piney
Creek, Piney Creek, pre-Piney Creek, Broadway, and Louviers Alluviums)

FIGURE 30. DISPLAY OF THE SURFICIAL GEOLOGIC DATA PLANE EMPHASIZING AEOLIAN
DEPOSITS (in black). Thirteen generalized surficial geologic units were manually sampled from a

1:62,600-scale USGS map. The microfilm display of each 10-acre square cell maps the 24- by 24-mile
Denver Metropolitan Area.
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Display scale 1:250,000

FIGURE 31. DISPLAY OF THE 1971 ROAD TRANSPORTATION DATA PLANE SHOWING FREEWAY
INTERCHANGES. Eight other road access categories were also manually sampled from a 1:45,000-scale state
metropolitan road classification map, Some planners have speculated that freeway development is a powerful
inducement to land-use conversions. This hypothesis was statistically tested through the spatial landscape
modeling process. The microfilm display shows each 10-acre cell containing a freeway interchange in the 24-

by 24-mile Denver Metropolitan Area.
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(c) Major Roads (d) Minimum Distance to Major Roads
Display scale 1:500,000

BLACK = Minimum distance to road type of interest {3,300 feet or less)
GRAYS = intermediate to furthest distances (3,300 feet or greater)
WHITE = Road type of iriterest

FIGURE 33. DISPLAY OF THE 1971 FREEWAY AND MAJOR-ROAD TRANSPORTATION DATA
PLANES AND THEIR ASSOCIATED TRANSFORMED PLANES THAT EMPHASIZE MINIMUM DIS-
TANCES (in black). Freeways (a) and major roads (c) were manually sampled as linear features from a
1:46,000-scale road-classification map, These data were used to compute minimum diste-+n [(b) and (d)]
from each cell in the plane in a north-south and east-west traverse to the nearest cell con...Ning the given
road type. The microfilm display of each 10-acre cell maps the 24- by 24-mile Denver Metropolitan Area.
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(c) Built-Up Urban Areas ) (d) Minimum Distance to Buiit-Up Urban Areas

Display scale 1:500,000

BLACK = Minimum distance tc road type of interest (3,300 feet or less)
GRAYS = Intermediate to furthest distances {3,300 fest or greater)
WHITE = Road/area class of interest

FIGURE 34. DISPLAY OF THE 1971 MINOR-ROAD AND BUILT-UP URBAN AREA TRANSPORTATION
DATA PLANES AND THEIR ASSOCIATED TRANSFORMED PLANES THAT EMPHASIZE MINIMUM
DISTANCE (in black). These road-access data [(a) and (c)] were used to compute minimum distance ((b)
and (d)] from each cell in the plane in a north-south and east-west traverse to the nearest cell containing the

given road class. The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metro-
politan Area.
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CONSTRUCTION OF SOCIOECONOMIC SUBMODEL

Socioeconomic data for the United States is tabulated by census at 10-year intervals. These data are re-
ported in a tabular form referenced to maps of the census tracts or smaller tabulation units called enumera-
tion districts. These census-tract reference maps (figure 35) were sampled by a dot pattern so that each
4-ha (10=acre) cell was assigned to a specific census tract on the resulting data plane. This procedure per-
mitted the tabular statistics to be input in a list format and projected into area-type, sociocconomic data
planes of population, housing, income, car ownership, and census-tract acrcage as follows:

. . . Intermediate . ..
Socioeconomic Variable \
Processing

Total population None

Total families None

Total year-round housing units None

Total vacant housing units None

Total occupied housing units None

1969 mean family income None

Median housing-unit value None

Median housing-unit rent None

Total one-car families None

Total two-car families None

Total three-/three-plus car families None

Total census tract acreage None

Population density per acre Normalization
by census
tract acreage

Average number of families per acre Normalization
by census
tract acreage

Average number of year-round housing units Normalization

per acre by census

tract acreage

Average number of vacant housing units Notmalization

per acre by census

tract acreage

Average number of cars per family Average value
computed

Unfortunately, the size of the census tracts is far coarser than the 4-ha (10-acre) resolution of the landscape
model. Consequently, these sociocconomic data planes are not as highly resolved as desired in a spatial sense,
but they provide a reasonable approximation of the spatial variation of these census variables.
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FIGURE 35. CENSUS TRACT OVERLAY OF THE DEN-
VER METROPOLITAN AREA, The boundaries of each of
these census tracts as defined for the Denver Metropolitan
statistical area for 1970 were overlaid onto the 10-acre
cellular network. Socioeconomic census data were intro-

duced into the landscape model in this tashion,
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Seventeen socioeconomic data planes were generated for the 241 census tracts in the Denver study area,
Total number of families (figure 36), total families, total year-round housing units, total vacant housing ?F
units, total occupied housing units, 1969 mean family income (figure 37a), median housing unit value
(figure 37b), and median housing unit rent (figure 37c) were directly projected into the landscape model.
Census-tract acreage was computed from manual dot counts and used to normalize the population, family, l
and housing totals. Thus, a preliminary data plane of total population (figure 38a) for cach census tract :
was divided by that tract's acreage, and the resulting population density per acre (figure 38b) was projected {
into ull of that tract's cells, yiclding a meaningful population density data plane, Similarly, the initial data

planes representing the average number of families, year-round housing units, and vacant housing units per

acre were computed and projected into density-type, socioeconomic census data planes and were overlaid

onto the landscape model.

One- (figure 3a), two- (figure 39b), three-, and three-plus-car family totals (figure 39¢) per census tract were
also transcribed into initial data planes, summed, and divided by total number of families data plane on a cell-
by-cell basis to derive a data plane representing the average number of cars per family (figure 39d).

SUMMARY

Construction of a landscape model for the Denver Metropolitan Area involved 4-ha (10-acre) dot-grid sampling
of selected land-use, physiographic, socioeconomic, and transportation map variables to generate a total of 34
meaningful data planes. These map data planes were spatially registered to each other so that they could be
“stacked” or overlaid for subsequent computer analysis, modeling, and spatial/temporal prediction (figure 3).

The selection of collateral map data for inclusion in the landscape model was fundamental to the success of
this effort. The data employed were extensive, dispersed, and complex, and were obtained from many widely
varying sources, The variables ultimately chosen were selected for their suitability and availability.

These map variables were substantial in number and exhibited considerable diversity in the broad realms of |
cultural and physical landscape components, However, they were simply only a sample of all possible variables
pertinent to landscape modeling. Such aspects as utilities service, domestic water supply, land ownership and
parcel size, land values, soils, and zoning regulations were among the many variables considered, but not in-
cluded in this study (Reference 1). If, by some happenstance, one or more of these data were available for
inclusion, other data equally important to the study of land-use practices in the Denver Metropolitan Area . coce e eoe
would still be unavailable.

Because there were no immediate limitations to enlarging the set of variables, the underlying understanding of
land-use practices constituted a limitation in the determination of which mapping variables should be included
in the data set to fully inform the landscape analysis effort. Even if this considerable problem were resolved,
the most significant remaining limitation is the simple lack of data or “lack’ of data in any usable form. This
is particularly true in developing countries (Reference 25), but was no less the case in regional studies such as
this, in which extensive spatial data are required and generally believed to be readily available,

The simplest way of inputting each data plane into the landscape model was adopted. This ensured that the
majority of the resources and effort would be channeled into analytical endeavors, The thrust of carlier studics
involved more complex map data entry and computer data structures, resulting in curtailed analysis efforts.

56




-

PIreessattisy

bt oS4

pressgereds
fe T eteribeees
B33+ Lnebases

AL PAGE I8
OF POOR QUALITY

e ——————————————

Display scale 1:2560,000

BLACK = Maximum total families per census tract (2772 to 3080 families)
GRAYS = Minimum to intermediate total families per consus tract (7 to 2772
families)

FIGURE 36, DISPLAY OF THE 1970 SO:IOECONOMIC DATA EMPHASIZING THE HIGHEST TOTAL
NUMBER OF FAMILIES PER CENSUS TRACT (in black)., Eleven other socioeconomic parameters were
also manually sampled from 1:84,500-scale census maps, The microfilm display of each 10-acre square cell
maps the 24- by 24-mile Denver Metropolitan Arca,
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Display scale 1:500,000

(a) 1969 Mean Family Income Per Census Tract

BLACK = Maximum mean family
incorhe per census tract
(831,890 t0 $35,433 per
family)

GRAYS = Minimum to intermediate
mean family income per
census tract ($4,399 to
$31,890 per family)

These three sociceconomic summary statistics were manuall :
play of each 10-acre square cell maps the 24- by 24-mile Dem
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Display scale 1:500,000, = . . . - | Display sulov1:500.0m

{b) Median Housing-Unit Value Per Census Tract (c) Median Housing-Unit Rent Per Census Tract

BLACK = Maximum median housing-unit BLACK = Maximum median housing-unit
value per census tract ($45,000 rent per census tract ($270 to
to $60,000 per housing unit) $300 per month)

GRAYS = Minimum to intermediste median GRAYS = Minimum to intermediste median '
housing-unit value ($7,700 to housing-unit rent per census tract {
$45,000 per housing unit) (848 to $270 per month) ;

]
¢ sampled from 1:84,500-scale census maps. The microfilm dis- FIGURE 37. DISPLAY OF THE 1970 SOCIOECONOMIC
- er Metropolitan Area. DATA EMPHASIZING HIGHEST 1968 MEAN FAMILY IN-

COME, MEDIAN HOUSING-UNIT VALUE, AND MEDIAN
HOUSING:UNIT RENT (in black).
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5 \'»j . _ p;fmma)(ﬂ.mmo
oo 12,484 persons
" GRAYS.= Minimum to intermediate
total populations per censws
tract (39 to 11,240 persons)

Display scale 1:500,000
{a) Totsl Poputation Per Census-Tract

BLACK = Maximum populstion
density per census-tract
acre (62.9 to 58.8 persons
per acre)

GRAYS = Minimum to intermediate
population densities par !
census-tract acre {0.004 to
52.9 persons per acre)

Display scale 1:500,000 *
{b) Population Density Per Census-Tract Acre

FIGURE 35, DISPLAY OF THE 1970 SOCIOECONOMIC DATA EMPHASIZING HIGHEST POPULATION TOTALS AND
AVERAGES (in black). Totsl population (a) was manually sampled from 1:84,500-scale census maps. Thess totals were
divided by census-tract acréage to compute papulation density (b). The microfilm display of esch 10-acre square cell maps
the 24- tw 24-mile Oenver Metropolitan Area.
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Display scale 1:500,000

Display scale 1 :SOOf

(a) Total One-Car Families Per Census Tract (b) Total Two-Car Families Per Census Tract

BLACK = Maximum total one-car families BLACK = Maximum total two-car
per census tract (1735 to 1928 familigs per census tract (1584
families) to 1760 families)
GRAYS = Minimum to intermediate GRAYS = Minimum to intermediate
total one-car families per total two-car families per
:m:'? t;'act {6to 1735 census tract (11 to 1684 families)
milies

The one-, two-, and three-car ownership totals were manually sampled from 1:84,50¢
of cars per family was computed from the one-, two-, three- and three-plus-car dats
10-acre square cell maps the 24- by 24-mile Denver Metropolitan Area. v
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Display scale 1:500,00

(c) Total Three and Three-Plus-Car Families Per Census Tract

BLACK = Maximum total three-, and
three-plus-car families per
census tract (425 to 472
families)

GRAYS = Minimum to intermediate
total three-,and three-plus-car
families per census tract (5 to
425 families)

lscale census maps. The average number
planes. ‘The microfilm display of each
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Display scale 1:500,000

{d) Average Number of Cars Per Family

BLACK.-= Maximum average number
of cars per family (2.9 to 3.2
cars per family)
GRAYS = Minimum to intermediate
average number of cars per family
(0.7 to 2.9 cars per family)

FIGURE 39. DISPLAY OF THE 1970 SOCIOECONOMIC
DATA EMPHASIZING HIGHEST ONE-, TWO-, THREE.,
AND THREE-PLUS-CAR FAMILY OWNERSHIP AND AV-
ERAGE NUMBER OF CARS PER FAMILY (in black).
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The collateral data for the landscape model consisted of measurements on 34 map variables for 36,864
observations. These observations were point Jocations selected by a systematic 4-ha (10-acre) dot-grid sample.
An overlay data form was created to combine and simplify the map coding and keypunching functions for

1:24,000-scale maps, Simple computer routines also simplified the editing and creation of completed map
overlays or data planes,

The 34 map variables were grouped into four general land-use, physiographic, transportation, and socio-
economic submodels. The USGS Circular 671 classification system was used for manual photointerpreta-

tion of 1963 and 1970 photographic iﬁiagery. A 1972-1973 USGS land-use map was also dot-sampled and
overlaid onto the land-use submodel.

Topographic elevation—the basic data input to the topographic submodel—was encoded from 16 USGS quad-
rangles. Slope, aspect, and insolation data planes were computed with auxillary computer programs. Sur-
ficial geologic data were also added to the landscape model from a USGS map.

A 1971 road-classification map with eight defined road classes was the basic input to the transportation
submodel. The five original point data planes representing composite minor roads, composite major roads,
freeways, freeway interchanges, and urban built-up areas were transformed into minimum-distance area
planes by numeric computation to be overlaid in the landscape model.

Finally, the tabular socioeconomic data and maps of the 1970 Census were used to
data planes of population, housing, income, car ownership, and census-tract acreage. Population density per
acre, average number of families per acre, average number of year-round/vacant housing units per acre, and
average number of cars per family were computed and projected into five density-type data planes.

create twelve area-type
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CHAPTER 3

SPATIAL LAND-USE PROJECTION

INTRODUCTION

This chapter deals with the structure, testing, and.verification of the land-use projection models that were
developed and tested, The development of the full spatial projection model proceeded in three major steps.
First, an initial multivariate mode] was developed. The model was then refined by improving its logical
structure. Finally, the model was further refined on the basis of the results of spatial-change replications.

The development of the landscape modeling data set formed the nucleus of the initial spatial projection
model. Many potential variables weré eliminated from consideration for reasons of suitability and avail-
ability. The initial projection model therefore consisted of all land-use change. classes and landscape variables,
This model was used as a benchmark for further refinements and analyses.

Detailed examination of the initial model run showed flaws in its logical structure, especially the projection
of changes into infeasible combinations that ignored a priori knowledge of prior land use. Therefore, the
second phase of spatial-model development focused on improving the logical structure of the model to
restrict its projection to those changes that could actually occur, based on their current land use.

Modeling refinements were based on the testing of alternative formulations on the basic data set. The chief
criterion used for refining the spatial model was the ability to adequately replicate its own training or cali-
bration data. This was accomplished by using the model to pi'oject 1970 land-use changes on the basis of
statistics of the known 1963 to 1970 changes. The various spatial projections tested were evaluated by
examining the total number of changes that were correctly classified over the total number tested. Each
projection was made using the training set sample of known changes on a purely statistical basis, and only

afterward was the actual land-use change status of cach individual cell revealed in a classification accuracy
table.

DETERMINATION OF RECENT LAND-USE DYNAMICS

Projections for future land use in the Denver Metropolitan Area were based on observations of the changes
that occurred in the area in the recent past. This required the overlay onto the landscape model of accutate,
detailed current and near-past land-use patterns as described in Chapter 2. Remote sensing imagery with
accurate interpretation provided the data for the land-use modeling process. It will be subsequently shown
how thesc inputs can be obtained and overlaid in a timely and accurate fashion through- computer analysis
of Landsat multispectral digital imagery. However, the development and initial testing of the land-use
modeling process used carefully prepared. accurate land-use maps interpreted from low-altitude black-and-
white airphotos for both a current (1970)* and past (1963) dates. A uniform land-use classification scheme
covering 24 land uses was first adopted (table 1), As described earlier. a single photointerpreter analyzed

*WMnmﬁcﬂmt“MﬁuthWmMnml9n.Wﬂ?muuwnwﬂcwwmuhﬂmwdmuumhMu
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the iarge collection of airphotos for each date, annotating the location of each of the 24 land uses to a 4-ha
(10-acre) resolution. The two interpretations on the airphotos were then transferred to the sixteen 1:24,000-
scale map overlays covering the site, The 4-ha (10-acre) dot-grid patterns were imposed on these map overlays,
and the 24-class land-use maps werc tabulated and overlaid onto the digital landscape model (Reference 1),

Recent changes in land use were computed and displayed from the 1963 and 1970 land-use data plancs over-

laid in the model, This employed the cell-by-cell comparison of the 24 land uses interpreted for the two dif- §
ferent dates, which yielded a third data plane that recorded the changes in land use between the two dates, ’
A direct visual display of this new plane can illustrate its contents by highlighting the areas of gain or loss of .

each land use (figures 40 and 41). Summation of the cells that changed between the two dates for cach of

the 24 land uses provided a quick insight into those categorics that were rapidly changing during the T-ycar
interval (table 3),

The detailed cell-by-cell comparisons of the land-use type for each of the 36,864 cells on each date also pro-
vided a simple matrix that contained the number of 4-ha (10-acre) cells of each of the 24 land uses of the
earlier date (1963), which converted to another land use by the second date (1970) (table 4). This matrix
tabulation of recent changes in land use provided the basis for computing the tendency for additional change
in the near future. These measured tendencies were the essence of the initial land-use trend model when con-

verted into a probability transition matrix or a square two-dimensional array of probabilities of change arranged
in rows and columns.

The assumption that future changes in land use can be measured in terms of those that occurred in the recent
past permitted a simple projeetion of the future trends in land use (References 8 and 26). This 2esumption
does not truly represent the evolution of real-world land use, which is constantly subjected to new and often
unanticipated stimuli. However, assuming no change in practices from the past, the techniques for projecting
future land use must be perfected before the impact of new, unmeasured, and unobserved trends can be
incorporated into the process,

MARKOV LAND-USE TREND MODEL

)

The Denver Metropolitan Area was photointerpreted into a finite number of observable states or land classes
that could be numbered 1, 2, 3.....m. A given mapping cell originally classified as other barren land, for
example, might be considered as state i; state j might denote open and other urban land, and so forth, with
state m (perhaps wrban residential land use) representing the last state in the land-use model. In this study,
the total number of states (m) was equal to 34--the number of sccond-order land classification types in the
USGS Circular 671 system, Although only 21 classes were found in the Denver area during photointerpre- *
tation and 13 land-use classes were absent if a geographical sense (¢.g., tundra), the full 34 classes were r
retained for a full conceptual application elsewhere. 1

The probability transition matrix contains the average probability that each of the 34 land uses will remain
the same or change to some other land use over the time represented by the dates of the two input land-use

4
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Display scale 1:250.000

BLACK = 1963 urban open space {code 19) that was
converted to other land uses by 1970,
GRAY = 1863 cropland and pasture agricultural land
(code 21) that was converted to other land
uses by 1970,
WHITE = All other land uses,

FIGURE 40. DISPLAY OF THE LOSS IN OP
OPEN SPACE EMBEDDED IN THE URBAN AREA TH
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Display scale 1:250,000

BLACK = 1963 cropland and pasture agricultural land
(code 21) that was converted to other land
uses by 1870,

GRAY = 1863 urban opsn space (code 19) that was
converted to other land uses by 1970,
WHITE = All other land uses,

FIGURE 41. DISPLAY OF THE LOSS IN EMBEDDED OPEN SPACE BETWEEN 1963 AND 1970
EMPHASIZING THE AGRICULTURAL LAND THAT WAS CONVERTED INTO OTHER LAND USES
(in black). The amount and characteristics of the acreages converted can be found in tables 3 and 4.
The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metropolitan Area.
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TABLE 3
NET CHANGES IN 1963 DENVER LAND USE RELATIVE TO 1970, Specific net transitions, such as those illustrated in
figures 40 and 41, that occurred between various specific land-use classes are given here, Computer comparison of the land-
use data planes illustrated in figures 13 through 16 provided these simple comparisons.

Lund-Use Type 1963 1970 '(ZZ?Q:L(?;
Acreage Acreage or 10ss (<))
I e ey
Residential 64,210 70,500 + 0,290
Commercial and services 11,020 11.820 + 800
Industrial 8.870 10,010 + 1,740
Extractive 4,030 6.360 + 1,730
Transportation, communications, and utilitics 7.290 8.650 + 1.360
Institutional 31.250 31.590 + 340
Strip and clustered development 13.500 16.550 + 3.050
Mixed urban 40 0 -40
Open and other urban 37410 35.620 - 1.790
Urban subtotal 178,220 191,700 +13.480
Cropland and pasture 160.090 146,240 -13.850
Orchards, groves, and other horticultural areas 60 60 0
Livestock feeding operations 20 20 0
Other agricultural land 330 70 - 260
Agricultural subtotal 160,500 146.390 -14.110
Deciduous forest land 180 180 . 0
Streams and waterways 960 1.010 + 50
Lakes 5.930 6410 + 480
Reservoirs 1.580 1,750 + 170
Other water 50 50 0 f
Water subtotal 8,520 9.220 + 700
Vegetated nonforested wetland 1.710 . 1.710 [ 0
Sand other than beaches 640 520 - 120
Other barren lund 18.870 18,920 + 50
Barren subtotal 19.510 19440 - 70
Grand Total 368,040 368,640 116,060 ‘
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data planes,  These stochastic elements are summarized in a matrix of the form:

-
M P Py e Praa ]

Pag P2 Pay orv Praa

LPat Paaz Paay oo Pagsal

where p, , is the average probability that a given 4-ha (10<acre) cell in state i as of 1963 would evolve into
state j in 1970, Altemiately, a brieter form is

{o b fori= 12 omandj = L2 m

whcrc the braces indicate that p, b is a typical element of the stochastic matrix, P, the limits of i and j being
The clement, p, g is-called the i, j clement, and the first subscript refers to the element’s row and the
S ’ond subscript, to the element’s cotlumn,

The probability transition matrix, P = { r, } between 1903 and 1970 for the Deaver Mettopolitan Arca. is
reproduced with nonoceurring, or zero land-uw change, probabilities deleted for more convenient reference
(table §). The clements on the principal diagonal of the probability transition matrix. n, ;. are significant in
that they represent the proportion of the carlier (1963) kind use that renined in the same land use in the
later (1970) date.  Elements not on the principal diagonal are transition probabilitics (or proportions) fer a
given land use to change in the given time iuterval. Al rows i the matrix are stochastic vectors, that is, the
entries sum to one across any row, or it dot notation,

m

2 Py =1
it

The probability transition matsix was input to a Markov projection process that operated on the relative
amounts ot cach of the 21 land-uses present in the two most current tand-use data planes (1963 and 1970)
to project future trends in land use (figure 42). Fifteen 7-year simulation periods were run from 1963 to
2008 and yielded (table 6) rapid decreases in two functional open-space categorics-open and other urban
land (code 19) and cropland and pasture agricultural land (code 21) These two land uses in the Markov
model declined from 15,145 and 04,813 ha (37,410 and 160,090 acres), respectively, in 1963 to 1,280 and
7,753 ha (15,340 and 43,180 acres), respectively, in 2068, Urban residential land use (code 11) nearly
doubled, increasing from 26,000 ha (64,210 acres) in 1963 to 50,700 ha (121,600 acres) in 2008,

The Markov trend model was intended to augment the land manager’s knowledge and experience of the
future implications of current actions and to permit more thorough scarches for “*best™ ccomanagement 3
decisions, Although these current trends can be mathematically projected as far into the future as desired, ‘
only the first few time periods are reliable, A major limitation of all such models is the assumption of ‘
homeostasis in that the probability transition matrix of conversions, P = {p } of land from type i to
type jis invariant and constant during all future simulated time periods. A morc serious shortcoming is
the fact that it was simply a deseriptive trend model, and, although it indicated general trends over time,
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REGION OF POSSIBLE REALITY

OBSERVATION INTERVAL

60 - SINGLE-AND MULTIPLE-UNIT RESIDENTIAL .

0,88,0 849580400,

50 - s

LAND-USE AREA (thousands of acres)

2061 |
2068

1
:

1998 I
2005 |-
202 14
2019
2026 |
2033 Hi
2040 i
2047 -

TIME (yeas)

FIGURE 42. PREDICTION OF FUTURE TRENDS IN THE AMOUNT OF
OPEN SPACE AND COMPETING LAND USE IN THE DENVER METROPOLLI
TAN AREA. A constant matrix of uansters, P {pll , trom land use, 1, to
land use, j, was assumed. Acreages displayed relate to the or iginal area of 24- by
24-statute miles 576 square statute miles.

it did not provide spatial land-change information on a point-by-point basis. Finally, only gross interpretations
can be made of the long-term evolution of land use from this model. New and unanticipated controls on the
use of the land can quickly occur and impact future urban growth and attendant land-use pattems.

MULTIVARIATE LAND-USE SPATIAL PREDICTION MODEL

The land-use modeling effort was neat addressed to the design and structure of a spatial temporal land-use
change model that could be used for map predictions. The Markov chain process, in which the probability
ol transition from one state to another is the conditi *nal probability, p (jli), was a usetul point of departure,
However, its simplistic matrix multiplication of land-cover types was completely inappropriate for spatial
analysis and prediction. Like most regionalization problems, this next level of complenity must character-
istically be addressed to more numerous geographic observations where cach consists of measurcments on a
farge number of variables, 1t was theretore apparent that any spatial land-use modeling would be impossible
without commitment to a full multivariate statistical approach. This approach was largely a classification
exercise and employed the technigues of modern numerical taxonomy (Reference 27,
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Relationship of Land-Use Change to Landscape Variables

A particular land use can be considered as a class in a classification system, and, further, cach class is defined
by its similarity to other class members and some level of differentiation from nonclass members. Likewise,
cach type of land-use change that was observed between 1963 and 1970 was quantitatively defined by its
associated landscape parameters for the Denver Metropolitan Area, It was assumed that they exhibited some :
similarity to other cells in the change class and differentiation from nonchanged cells, 1§

The important assumption that cells of land use that have undergone similar changes in a particular period have
some common landscape features was intuitive. Intuition was borne out by the subsequent analysis and was
increased by visual display. Three histograms of the cells of agricultural land use (code 21) were generated as a
function of topographic elevation from the 1963 and 1970 land-use data planes (figures 17 and 15) and for the
cells converted out of this class between 1963 and 1970 from the change plane (figure 43). These graphics
were not scaled identically in the vertical plotting dimension and cannot be directly visually compared. Sta-
tistical values computed with these figures indicated that the average clevation of agricultural land use was !
1,692 and 1,693.4 meters (5,550 and 5,556 feet) for the 1963 and 1970 land use, respectively. The average

elevation of the agricultural land loss during this period was 1,670m (5,480 feet). A skewed frequency distrib-

ution in the histogram of the loss versus elevation (figure 43c¢) signified a higher likelihood or probability of

conversion for agricultural lands at lower elevations. The majority of the agricultural land transition bétween

1963 and 1970 was into urban land uses (table 4);5,414 of 5,607 total hectares (13,373 of 13,850 total acres)

were lost, predominantly at the lower. more suitable elevations. It was clear that the lower agricultural lands

adjacent to existing urban lands were more prone to suburbanization processes. Thus, a multivariate rationale

for quantifying the mathematical properties of land-use change types for all of their physiographic, socio-

economic, and transportation variables provided a basis for a spatial/temporal land-use projection model.

Spatial Modeting Concepts

One of the most widely used multivariate procedures is discriminant analysis (Appendix A). A priori data
in the form of selected samples of known identity are extracted fromt the entire sample space and are used
as training data to structure the discriminant function. This discriminant function is then used to classity
the remaining balance or unknown portion of the pattern space. The discriminant function is a powerful
statistical tool that can be applied completely free of statistical knowledge or assumptions. This overall
approach is commonly referred to as distribution-free or nonparametric classification (Reference 28). All
classification algorithms in discriminant-function analysis can be reduced te cither fixed or varying hyper-
planes of pattern or feature spaces. These hyperplane boundarics may or may not have been defined in the
context of known statistical distributions (Reference 29 )

A lincar discriminant function transforms an origindl set of sample measurements into 4 single discriminant
score. This score, or transformed variable, represents the sample’s position on the line defined by the lincar
discriminant function. C onsequently, the discriminant function can be visualized as a method of telescoping
a multivariate-problem into a univariate, lincarly ordered situation,

Discriminant-function ai.alysis seeks to find a transform that gives the minimum ratio of the difference
between a pair of class univariate means to the multivariate variance within the two classes in the simple
linear case. These two classes may be visualized as consisting of two swarms of data points in multivariate
gpace; the one opt'mum orientation is sought along which the two clusters have the greatest separation while
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simultaneously minimizing the spread or inflation of the distribution ¢ © cach cluster. An adequate separation
between groups A and B for the two-dimensional case cannot be made with cither variable X,orX , Uigure
44). However, it is feasible to find an orientation along which the two clusters are separated thie most and
inflated ihe least, with the coordinates of this axis of orientation being the linear discriminant function,

CLASSIFY was the modificd BUDO7M (Reference 18) stepwise linear discriminant-analysis program used in
this final phase of spatial land-use projection. Lincar discriminant functions were computed by entering
ancillary landséape variables with a largest Fevalue-to-enter criterion. Thea posteriori probabilitics of cach
land-usc case belonging to cach of the possible change combinations in land use between 1963 and 1970

were calculated using these functions and cither ¢ priori or equal (1/n) group probabilitics.  Additional pro-
gramming changes to provide tdpe input and output features, a more uscful classification matrix. and a timing
function to evaluate the cost-cffectiveness of cach additional stepwise variable resulted in the present
CLASSIFY program.

Initial Spatial Modeling Test

The data planes of the earlier (1963} and current (1970) land use and the derived 1963 to 1970 land-use
changes were overlaid in the landscape model with the 34 ancillary variables. The 2,039 of the 36.864 cells
in the model that were observed to have changed between the two land-use dates provided the basis for de-
termining how the landscape variables correlated with changes in land use in a multivariate sense. The 2.039 i
cells that made a transition trom one land use to another over the 7-year test period provided a group of ob- i
servations for each type of change that occurred. These observations were used as a statistical sample to
model how the changes in land use will proceed in the future based on physiographic, socioeconomic, and
transportation landscape variables.

The Denver Metropolitan Area was mapped with 21 land-use classes on both the initial (1963) and subsequent

(1970) dates. Thus, 212-21 or n(n-1) change combinations were possible. However, only 38 of these possible

420 changes actually occurred as the carlier probability transition matrix shows (table 5). Many kinds of

possible land-use changes either scldom or never oceur (e. £. the backward conversion from some higher state

of land use, such as industrialized land., back to 2 lower state, such as agricultural land). Al test cells that ;
had undergone a specific transition were assembled so that the 2,039 changes observed between the two dates '
were grouped into the 38 observed combinaticns. The statistical technique of discriminant analysis was

applied to these observations to form a simulation model by training it to recognize the range in a multi-

variate sense of each landscape variable associated with each of the 38 change combinations,

A single, simplificd test model will serve to clarify this approach. The first spatial land-use projection model ¥
used all 38 change combinations, together with the landscape variables and equal (1/n) class probabilitics, A

The seven land-use data variables of the 34 variables overlaid in the landscape model were exclude A from the
independent variables in this and all subsequent analyses so that they represented the results being modeled. {
Linear discriminant analysis combined the remaining 27 landscape variables for each change point by con- '
structing a linear discriminant function of the forn *

b= o n =9 j
Y Xy tayx, v, 4 a, X, (n=27)
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FIGURE 44. SIMPLE LINEAR BISCRIMINANT-FUNCTION DIAGRAM. This plot of
two bivariate distributions shows an overlap between groups A and B along both variables,
X, and X2. Discriminant-function analysis determines a transform that gives the mini-
mum-ratio of the difference between a ~air of group multivariate means to ths multi-
variate variance within the two groups, The orientation is computed along which the two
clusters are separated the most and inflated the least. The coordinates of this orientation
are the linear discriminant function, and the clusters become distinguishable by projecting
members of the two populations onto the discriminant function line (Reference 30),

where X X0 X were the landscape variable values, and 4.4
determine a value for Y, the lincar compound, that minimized misclassification of the 2,039 changed cells
into the 38 change combinations. The function was checked by sceing how well it classified its calibration
data set of 1963 to 1970 changed cells, The final discriminant analysis step printed a classification matrix
showing how the 2,039 changed cells were classified into their respective 38 change combinations. The
evaluation of this and cach subsequent model's vatue was based on a figure of merit (FOM), caleul
the sum of the correct change classification along the principal diagonal of the ¢l
by the total number of changed cells and expressed as a pereent,

20+ o0 4 were coefficients computed to

ated as
assitication matrix divided
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The FOM for the first model was 41.9 percent (table 7). Oveiall, it correctly identified the expected
change in land use of 854 of the 2,039 observed cells that had changed based upon the 27 landscape
variables (table 8), Because a choice was made from 38 different land-use change combinations, an
accuracy of 1/n = 38 groups times 100 percent = 2.6 percent wouid be expected from random assign-
ment of the 2,039 changed cells to 38 combinations, Although, by comgarison, the 41.9-percent figure-
of-merit was far from perfect, it clearly indicated the feasibility of this spatial land-use projection
approach,

The entry order of the change variables may be of some interest to planners. Examination of the order
of the “F-value to enter” also provides insight into the relative value of the landscape variables in pre-
dicting land-use change (table 9): The distance to freeways was found to be an influcntual factor and
was selected early by the classifier. However, the proximity to the periphery of the urban built-up

area was evefi more important. Average number of families per acre, population density per acre, and
topographic elevation were also important descriptors of change for the Denver Metropolitan Area.

Tests of Other Generic Spatial Models

An examination of the initial test classification matrix (table 7) showed that it failed to exploit the known
a priori 1963 land use of all change cells. Foreexample, the land-use change code 21 /19, representing 1963
cropland and pasture agricultural larid (code 21) changing to open and other urban land (code 19) in 1970,
could be classified in any of 37 other remaining land-change combinations. This specific change, in fact,
was predicted to occur in 27 other land-use change combinations, 15 of which were inconsistent with the
fact that the 1963 initial land use was cropland and pasture agriculture (code 21). Because the initial or
starting land use would always be known, the choice of a type of change must be made to be consistent
with the known, initial land use.

Six additional spatial land-use projection models incorporating the logic of a known, beginning land use
were tested with varying degrees of improvement over the initial model (table 10). The sccond and third
models were derivatives of the initial full 38-class niodel restricted to the 1963 cropland and pasturc agri-
cultural change cases, 1,437 cells, and represented 13 of the 38 change combinations under alternative a
priori and equal class occurrence probabilities.

The second model correctly reclassified 822 of the 1,437 agricultural change cases for a $7.2-percent FOM
(figure 45) with a priori class probabilitics (tables 11 and 12), a significant increase over the comparable 854
correct cases from among all 2,039 cells (41.9 percent) achieved in the initial model. The third model used
the same 1,437 agricultural change cells but differed in that it used equal (1/n = 13) class probabilities and
yielded 756 correct cases for a 52.6-percent FOM.

The only difference between the sccond and third models was the use of the a priori versus equal-class
occurrence probabilities, respectively, which yielded a slight classificational advantage to the second model.
Equal-class likelihood was used where the actual proportion of the modeled land-use (1970) changes was
unknown. Thea priori probabilities of the second model could be cither estimated by remote sensing or
extrapolated from mathematical simulation models, such as the Markov trend model. Here, the a priori
probabilities were simply derived as the ratio of the total cases of each change class to the grand total of
change cascs,

i
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INITIAL 38-CLASS 1963 TO 1970 LAND-USE CHANGE MODEL-CLASSIFICATION MAT!
hined physiographic, sacioeconomie, and transportation characteristics of the 2,039 changed
ta linear discriminant analysis, and 864 cells were carrectly classified for an average 42-perce
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TABLE 7

A% The 27 com- Land-use data were not used, except for identifying the cells that had changed. On the axes, the numerator is the
|15 were subjected 1963 land use, and the denominatar is the 1970 land use. Numeric land-use codes are idantified in table 1,
accuracy.
10-Acre Cells Classified Into 38 Second-Order Land-Use Combinations
(19 (19 @1 @ @ @ @1 @ (@ (@ @ @ @ (21 21 4 24 (24 (24 (4 4 (13 (T3 (3
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TABLE 8
ACCURACY OF PREDICTION BY THE INITIAL MODEL OF FUTURE CHANGES IN LAND USE ON A
CELL-TO-CELL OR SPATIAL BASIS FOR THE DENVER METROPOLITAN AREA, This table is based on
predicting the change in land use from 1963 t0 1970 for the 2,039 colls in the initial landscapo model that under- 1
went a change during this pmiod. The change was predictod by discriminamt analysis from the landscape vari- i

B

ables,  The accuracy was based on the number of cells whose tuture or-1970 land use was correctly prodicted

(table 7).

Total lotat Prediction
ol Lamd Use Predictod to Change (o 1970 1 and Use Sample Cells Accuraey
Cells Cortevt (percent)
attactine
Resdential R} N o0,
Ao Industral N s 100
¢ Cropland aud pastine 3 3 VAN
Lakes N 4 SO0
Institutional
Ato] Lakes 18 15 o
Mined uthan
Ato | Stup and clustered developient 4 4 1000
Open and other wrban
Restdential ARY 40 1.3
Commercial and senvices bR} lo R0
Industnat 48 2 BRI
Patractive KR} 18 S48
Transpottation, vommunications, and utihities s 19 R
At | Institutional N 14 AR
Stop and clustered dey clopment 39 23 AV
Cropland and pasture 43 8 IS0
Streams and w Herwan s 1 1 1000
Lakes N 4 S0
Cropland and pastuse
Reswdential RE M 2N M
Conenerctal and sevices N * AR
Industnal 123 L RIOR]
Eattactine (XD AKX R
Vianspottation, vommintcations, and utibities N as 48 0
tostitutional 23 1 4N
Ato | Stopand clustered development ol 13 RUR]
Open and other urban 344 s KK
Other agnicwltural land N N o
Strcanms and Waterwans 4 3 RV
Lakes n 9 Jov
Reservoun 1 L LEVARY
Othiet barien land s R } o0
Other agncaltunal Lind
Resdential | | [TV
Eattacting N b} [T
Fansportation, venununeations, and utilities 14 ' AR
Nto L Open and other urban * N LYY
Cropland and pastine i [TULRY
Lakes 1 | HVANY
Sand other than beaehes
tndustial | | [TUARY
RYIUN B RN RTINS Y t R
Open amd other uthan ' : Lint g
Total NIRD] Sat Y
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LAMOSCAPE VARIABLE ENTRY ORDER OF TH
numerical utitity of the landscape variables

TABLE 9
E INITIAL SPATIAL LAND.

as determined in the initial land-use ch
descending ordor. The F-values reported were determined during the stepwise

USE PROJECTION MODEL. The
ange model {table 10) s given in
pot tion of the discriminant analysis,

N:l::::t‘l‘ Ancillary Landscape Variable Entered t'«:\l{‘::t‘::
| Average number of families peracre 48,3188
2 Built-up urban-greg minimum distances 311547
3 Population density per acre 20,2000
4 Topographic clevation 19,0477
N Yreeway minimum distances 17.8388
) Median housing-unit rent 11,5008
7 Composite minor-road minimum distances 11,3720
8 Average number of year-round housing units per acre 10,1748
9 Median housing-unit value 8.9827
10 Total occupied housing units 8,033
11 Average number of housing units per acre 0.58551
12 Total onc-car familics 7.0151
13 Topographic slope 0.3450
14 Freeway interchunge minimum distances 38250
15 Landsat-1 image insolation S
lo Total three-car families 39773
17 Total year-round housing units 9.3203
18 Total census-tract acreage 98018
10 Total two-car familios 0.4901
20 Total vacant housing units 0, 2008
A Total familics 5.0273
n Average number of cars per family 4.4001
AR Composite major-road minimum distances RAVARS
M Topographic aspect 3.5009
28 Surficial geology 3.3950
2o Total population 18531
27 1909 Mean family income 0.8823




TABLE 10
COMPARISON OF SEVEN TEST LAND- USE MODELS OF SPATIAL CHANGE IN THE DENVER METROPOLITAN
AREA, 1963 TO 1870, This table is hased on predicting the change in land use tor the cells that had undergone a change
during the test period, The change was predicted by discriminant analysis from the landscape variables, The JECURACY Was
based on the number of cells whose tuture o1 1970 land use was cor rectly predicted,

Total Total Average
Maodel . R .
Number Maodel Description Sample Colls Accuracy
c > . Y
Cells Correct (pereent)
| Full 38-change class model with 1970 cqual- 2029 854 419
change probabilities
(Subportion of thirteen cropland and (143N (033) <+
pasture agricultural changes)
2 Sccond composite 38-change class model 2,039 1,208 KARY
with 1970 g priori change probabilities
(Subportion of thitteen cropland and (1437 (81N (37.0
pasture agritiltural changes)
3 Thirteen cropland and pasture agricubtural 1437 750 So
changes of 38 total change classes with 1970
cqualk-change probabilities
4 Pure 13 cropland and pasture agricultural 1.437 709 SS0
change classes with 1970 priovi-change
probabilities
N Pure 13 cropland and pasture agricultural 1437 747 5.0
change classes with 197 cqual-change
probabilities
0 Fourteen cropland and pasture agricultural 2347 L2241 AR
change nonchange classes with 1970 cqual-
change probabilities
° Fourteen cropland and pasture agricultural 2347 118 48,1
change nonchange classes with 1970 ¢ priori-
change probabilities

Phe fourth and 1ifth models were similar o the second
same L4237 agricultural change cases representing thirte
class occurrence probabilities, respectively. Unlike the second and third models, however, the sample case
files contained only the 13 agricultural change cases, whereas the three previous models derived their dis-
crintinant tunctions from the full 38-class change combinations.

and third models, respectively, in that they used the
en 1970 change combinations with o priori uud equal-

The fourth model correctly reclassiticd =90 agricultural ch

ange cases fora S5.0-pereent FOM (figure 45y,
which was somewhat loss than the 37,02 pereent FOM (822 correct cases) achieved in the comparable second
model.
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(c) Thirteen agricultural change classes pre :
dicted to have changed from agricultur.
land as of 1970 (second model)
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(d)--Thirteen agricultural change classes pre-
dicted to have chiing>d from agricultural
land as of 1970 (fourth model)

o)} Fourteen agricultural change classes pre-
dicted to have changed from agricultural
tand as of 1970 (sixth model)

(a) Ground-truth map derived from the 1970 aerial photointerpretation showing only the first-order agriculturel land use,
(b) Change detection map derived from a point-to-point comparison of the 1963 and 1970 land-use data planes. fc, d and e)
Landscape-modeled maps showing only these cells predicted to evolve from agricultural land use as of 1970.

FIGURE 46. COMPARATIVE DISPLAYS OF THE SPATIAL
PREDICTIONS OF THREE LAND-USE MODELS EMPHA-
SIZING ALL CHANGES FROM AGRICULTURAL LANDS

(in black).
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The initial model was partitioned into seven runs, corresponding to each of the basic 1.
classes, Blank entries indicate unfeasible change combinations; dashes indicate that no cell: ;
the feasible combinations. Land-use data were not used except to select the change cells.
identified in table 1. '

1

Number
Change

Code (14 (04 (4 (4 (6 (18 (19 (19 A9 (9 (9 (19 (9 (19
NN [13) 21) /s /52) Ny /11y [12) [/13) [14) [15) [16) 117)- 21)

asnnY| (2. 1 - -

(14/13) -\s

Y

\ ~ | O from 1963 extractive land use
(14/21) e (code 14)

(14/52)J - -\4 .

16/52) 15-

817 \4

19/11)) \'184 6 13 8 - 2 2
19/12) 16\20 2 5 - 2 1

19/13) 2 33y 2 1 -
L i14) 2 1 27

~3 W = W ®

€ I15) ﬁ’sgm 1:363129? ) 2 1 4 12 0 -
an U

asno oerwbenwndue § 0 O\, L]
as/2n 10 3 - 6 3 - 5\13\
(9/51) - - -

(19/52) - - -4 - |
Q1N ,
1/12)
(21/13)
1/14) AL ¥
1/15) R QUEL ”
@1/16) oF 20O 3

QI Qs from 1963 cropland and pastw
@1/19) (code 21)

(21/24) | MM

(21/51) -
(21/52)
(21/53)
@1/75)
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(24/15)
(24/19)
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(13/14) ‘
(13/19) i
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TABLE 11

3 to 1970 change SECOND COMPOSITE 38-CLASS 1963 TO 1870 | AND-USE CHANGE MODEL CLASSIFICATION MATRIX.
1-w/ere classified into The restriction of change predictions to feasible 1963 classes increased the classification accuracy from 41,9
—and-use codes are (tables 8 and 10) to 52.9 percent, using the same 27 combined physiouraphic, socioeconomic, and transportation

variables of the initial model,

10-Acte Cells Classified Into 38 Second-Order Land-Use Combinations

<19 (19 Q1 QP @1 Q1 @1 @1 Q1 @1 @ (21 (21 Q1 (4 (24 (24 (24 (24 (4 (24 (13 (13 (13
31)_[52) D 12y /13y [14) /15) /16) 1) [19) [24) [S1) [S2) [53) [15) 1) [14) [18) [19) [21) [§2) [13) /14) /19)

~ 184 Y
-~ 20
- 24
- 7
320
>
-~ 7
124
313 ﬂmm
1 &
_\4J
<
(314 2 3 2 - 2 4 - - -
96\——-3— 8 - - 1 - -
6 1 42_ 22 - 1 1 46 - 3 1 - - ORIGINALPAGEIS
s - 1-9-86-\---1 - 3 7 - 6 4 1 1 O’POORQUAEW"(
12-2536\—2 5 - 5 11
83-—4—2\23—1——-
dve d - 8 3 - 3 m - - - -\
2 - 3 12 - 5 42719 1 - 3 - 1
- - - - . - - - 2\_ - - -
- - - - 4 4 - 3 1 - -
ST S T
- - - = - - - - - - __\17 -
(- - - - - - - 11-_-\3‘<
?\l _ - - - =Y
_\5 S D R
- 3\9 S |
&' from 1963 other agricuitural land use ¢ NN >
(code 24) - - = 2 - -
- - - _\3 -
- 1\_
T <
‘ - -
s from 1963 and other than beaches land use \s 6
(code 73) -

93

e e el . & e erim i kit ek e



94

itiniiaianhral®ih uh § oo
e

This Page Intentionally Left Blank

- A e el e — e e e e e



ACCURACY OF PREDICTION OF FUTURE CHANGES IN LAND U

BASIS FOR THE DENVER METROPOLITAN AREA. This tahle is

from 1963 to 1970 for the 2,039 cells in the second landscape mode
poriod, The change was predicted by discriminant ar
initial (1963) land use,

ractly predicted (table 11).

The accuracy was based on the numbe

SE ON A CELL-TO-CELL OR SPATIAL
based on predicting the change in land use
| that underwent a change during the test
«alysis from the landscape varlables with reference to the
r of colts whose future (1870) land use was cor-

Total Total Prediction
1963 Land-Use Predicted to Change to 1970 Land-Use Sample Culls Accuiracy
Cells correct (pereent)
Extrictive
Residential 3 h 00,7
Ato Industrial § 5 100.0
Cropland and pasture 3 3 100,0
Lakes h 4 80.0
Institutional
Ato | Lakes 15 15 100.0
Minad Urban
Ato | Strip and clustered deselopment 4 4 100.0
Open and other urban
Restdential 231 184 7.7
Contercial and services 83 20 377
Industrial 48 A ) §3.3
Eatractive 3 ) 81.8
Ato Fransportation, communications. and utilities St 0 192
Institutional ) 7 0.9
Strip and clustered deselopment 39 24 6l.s
Cropland and pasture 43 13 30.2
Streams and waterways | 1 100.0
Lakes S 4 80.0
Cropland and pasture '
Rusidential 39” 34 79.1
Commercial and senices 27 6 222
Industnal 123 42 RETN
Fatractive 139 86 ol .8
Transportation, communications, and utilities 72 36 50.0
Institutionat AK] 2 8.7
Ato | Strip and clustered development BN 108 418
Open and other urban 344 199 §7.9
Other agricultural land 2 2 100.0
Streanms and waterways 4 3 75.0
Fakes » 4 18.2
Reservoin 17 17 100.0
Other barren Lind s 3 0.0
Other agricaltural tand
Resudential | | 1000
Fatractive N s [T
Ato Fransportation, communications, and utilitics 13 4 092
Open and other land 2 2 100.0
Cropland amd pasture K] 3 1000
Strcams and waterwass | 0 0.0
Sand other than beaches
Industrial | | 1000
At Eatractine 0] 0 o6
Open and other urban 2 2 100.0
Total 2030 1,208 29
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The 1ifth model correctly reclassified 747 cases for g §2
the 52.6-pereent FOM (756 correct cases) achieved in the comparable third model

0-percent FOM, which was also somewhat less than

Two additional types of models were tested to determine if it were possible to include an additional class
representing those cells rhat did not change, The 1963 to 1970 land -use change plane contained 14,624
cells of cropiand and pastnre that remained unchanged, but 1,437 cells changed 1o 13 other land uses by
1970, A 910-¢ell sample of the 14,624 unchanged cells was taken for ceonomy and consisted of every |y
row and column in the 1963 to 1970 land-use change plane that represente:! the-agriculcaral class, 1hese
910 cells, representing a nonchange class, together with the 1,437 colls in 13 change classes were combined
into a composite test file of 14 classes and 2,347 cells, The sixth and seventh spatial land-use projection
models used this composite file and 14 agricultural land-use change/nonchange classes with ¢ priori and
cquut-class occurrence probabilities. respectively,

The sixth spatial model correctly reclassified 1,241 cases for a §2. 9-percent FOM (figure 45), Only 437 of the
known agricuitural change cases were correctly reclassified for a 30.4-percent accuracy, whereas 804 of the
sampled nonchange agricultural cases were correctly classified as unchanged for a su bstant! 1 ®R.4-pere nt
aceuracy using d priori class probabilities, Unfortunately, this error of 11.6 percent appeared | olerable

first glance, but, when extended to the original population of 14,624 unchanged agricultural  2lls, jrq - .-
sented 1,638 nnchanged cells erroncously predicted to undergo some change. This numberwasl: .- un
the 1437 known changes ebserved for cropland and pasture agricultural land.

Using equal (1/n = 1/14) cluss probabilities, the last model correctly st sa 1,178 cases for a 48.1-pereent
FOM. Only 663 change cases were correctly classified tor a 46. 1 “pereent acearacy, and 465 nonchange ca.es
were correctly modeled for a 51.1-percent FOM that must be interpreted as for the sixtn mode).

Proposed Advanced Spatial M~del

A proposed spatial land-use projection strategy (figure 46) emerged as a synthesis of the Markov trend model
and the discriminant-analysis model. The most logical and successful discriminant model (model 2 of table 1)
is first applicd to all 36,864 cells in the landscape model to predict the next most likely change in land use for
all 36,864 4-ha (10-acre) cells. The earlier Markov trend model provides the number of these cells that will
convert to a different land use in a given futufe time increment.  After the discriinant model predicts the
next change in land use and its posterior probability for each cell in the landscape, the actual changes in a
future time period can be determined by assembiling all changes of each given type from the 36,8604 predictions
constituting the entire landscape. The group of cells representing cach type of change can be ordered by

their posterior probability of occurrence, The correct number of transitions supplicd by the Markov trend
model can be selected on the basis of the highest posterior probability at the top of cach of the ordered list

of change types. Cells not selected can be assumed to be unchanged and can be noted as such. The exact
spatial location of cach cell is preserved by carrying along their respective rows and columns. The sorte
cells can be reassembled by row und column, and a predicted map of the future distribution ot cach land use
for a particular date can be displuyed, The total modeling process can be iteratively performed to vield a
time succession of spatial projections of future land-use nutps,

d
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1963 PHOTO 1970 PHOTO
INTERPRETED INTERPRETED
LAND-USE LAND-USE
DATA PLANE DATA PLANE

1963 7O 1970
LAND-USE -
CHANGE PLANE
MARKOV TRAINING SET
LAND-USE —t FILE FOR
TREND MODEL ALL CHANGES
Y l
CHANGE T
BY LAND USE LINEAR
; DISCRIMINANT
brageda CHANGEMODEL | ~~
TIME PERIOD
LAND-USE CHANGE
PROBABILITIES
FOR EACH CELL
NUMERICAL SORT
OF CHANGE
PROBABILITIES
SELECTION OF
| CORRECT NUMBER [
OF HIGHEST
PROBABILITIES

l

PREDICTED
1977 LAND-
USE MAP

FIGURE 46. PROPOSED COMBINATION MARKOV AND LINEAR DISCRIMINANT MODELS FOR IM-
PROVED SPATIAL-CHANGE PREDICTION. The Markov trend model provides the correct number of
change cells by type. These can be selected from a sorted list of discriminant-computed posterior probebili-
ties of change. The selected cells can be assembled into a map of future land use. Spatially registered Land-
sat digital imagery can serve as tuture land-use inputs in lieu of the 1963 to 1970 aerial photography.
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CHAPTER 4

LANDSAT LAND-USE CLASSIFICATION

INTRODUCTION PRECEDING PAGK BLANE Neil owoilhd

The first pair of Farth Resources Technology Satellites, designated Landsat-1 and -2.* are providing unex-
celled opportunities to explore the utility of spacecraft remote sensing data for regional land-use mapping
and analysis. Remote sensing is the detectior. and evaluation of objects without any direct contact. A
number of devices collectively known as remote sensors have been developed for collecting and recording
the clectromagnetic (EM) energy emitted, reflected, and scattered from terrestrial objects at a number of
different angles, frequencies, and polarizations.

The level of energy emitted, reflected, and scatteted from objects of terrain varies with wavelength through-
out the EM spectrum.  The spectral signature of an object by which it is both detected and recognized is
governed by the amount of energy transmitted to the remote sensor in the EM region in which that sensor
operates. Therefore, an identifying spectral signature can often be developed if the spectral energy observed
is partitioned into carefully selected bands for analysis. Complementary electromagnetic sensors operating
in adjacent spectral regions are commonly used for this purposc (Reference 1),

Whether by man, machine, or intecactive man/machine symbiosis, remote sensing data analysis involves pat-
tern recognition, which categorizes phenomena into classes of interest froni a sct of measurements. The
recognition of patterns and the delineation of boundaries on an image are tasks that a photointerpreter doces

quite well on a single image. Different land-cover and land-use types and their patterns are recognized through

the use of numerous contextual and inferential clues. These include the spatial relationships of tone. texture.
and size, shape, and geometry of objects, as well as spectral information obtained by given aerial film/filter
combinations,

Convensely, a collection of images of varying spectroradiance can be in put to digital computers to adaptively
improve their numerical pattern recognition/classification efforts using cither supervised or unsupervised
“learning™ algorithms, Consequeritly, the output from cither man or machine is a series of decisions yiclding
a map on the nature and probabilistic relation of unknown patterns to known or learned patterns,

Although an all-inclusive automated remote sensing daca-analysis system will not be possible for some time.
digital computers can perform a number of specialized tasks with a large degree of success. Although these
processing functions are relatively simple in a machine sense, they are not trivial in a manual interpretation
sense. When aninterpretation problem demands the simultancous com parison of multiple statistical patterns,
as in multispectral remote sensing, the human analyst’s capability is severely limited. whereas the computer
does this without difticulty. Some specific justifications for devetoping automated image processing tech-
niques in remote sensing are:

* Originally designated FR 1S-1 and -2,

1ol

bt aa ot &

P




The demand for remote sensing inputs to real-time resource management decision-making is
rapidly growing

The rapid changes caused by population growth and technological development necessitates change
detection at short intervals, especially in swiftly urbanizing areas,

®  The derivation of usable information from remote sensing data is increasingly needed,

®  Weather and resource satellite programs are generating an overwhelming volume of data.

®  Short supplies of skilled image-analyst manpower obviate against conventional manual image
processing

®

Simple human functions can be duplicated by digital computers to achieve higher input/throughput
rates, higher degrees of objectivity, and higher accuracies.

®  The liberation of human analysts from routine work through the use of computers makes them
available for more challenging tasks.

®  Computers can easily manipulate digital input data of high dimensionality, thereby extending the
realm of image processing beyond limited human capabilities.

Pattern recognition is concerned with the classification of input data provided in the forin of measurements.
In a remote sensing context, pattern recognition deals with the classification of pictorial/numeric data de-
scribing terrestrial phenomena and consists of five principal steps:

1. Input of the measured patterns (e.g., multispectral imagery)

19

Pattern preprocessing (e.g., calibration and geometric restitution)

Y]
b

Feature extraction (e.g.. training set selection)
4. Decision/classification (c.g., identification of land use)
5. Classification output (e.g, map display)

Only the first and fifth pattern recognition steps are reasonably discrete. Steps 2, 3, und 4 overlap to a
greater or kesser extent, depending on the processing problem and the specific procedures used. However,
the sequence of these steps is generally the proper otder of the analytical phases,

A dramatic new dimension for terrestrial remote sensing and autonatic image analysis was added with the
launch of Landsat-1 on July 23, 1972, and was further enhanced with the addition of Landsat-2 on
Junuary 23, 1975, Both Landsats are in 920-km (572-mi) altitude Sun-synchronous polar orbits where they
complete a full observational cycle of the Earth between 81 degrees north and 81 degrees south latitude
every 9 days. The former 18-day repetitive Landsat-1 cycle was halved when Landsat-2 was launched into
a 180-degree diametrically opposite orbit. Both satellites sarry a similar payload of multispectral sensors




and return-beam vidicon (RBV) cameras for recording visible and solar infrared reflectance data to monitor
and inventory agricultural, atmospheric, geologic, hydrologic, and oceanic FeSOUrCes,

Landsat multispectral scanner (MSS) data are simultancously sensed and recorded in four spectral bands:

® 0.5to 0.6 um (micrometer bandwidth of MSS band 4 representing visible green)

® 0.61t00.7um (MSS-S representing visible red)

® 0.7to00.8 um (MSS-6 representing solar infrared)

® 0.8to!l.l um(MSS-7 representing solar infrared)
RBV data are recorded in three spectral bands as follows:

® - 0.475t0 0.575 um (visible bluc-green interval)

®  0.580 to 0.680 um (visible red interval)

® 0.690 to 0.830 um (solar infrared interval)

Unfortunately, Landsat-1's RBV sensor system malfunctioned after only 1 month in orbit, and this device
on Landsat-2 has provided only limited coverage,

The Landsat MSS is a line-scanning device that uses an oscillating mirror to continuously scan an east-west
track perpendicular to the spacecraft’s north-to-south motion (Reference 31). Six lines are simultancously
scanned in each of the four MSS bands for each mirror sweep, with the vehicle's forward movement providing
the along-track progression of the siX scanning lines, Subsequently, during NASA's image data conversion,
this continuous-strip imagery is transformed into framed images with a 10-percent overlap between consee-
utive frames, As framed, cach Landsat image covers a 185- by 185-km (100- by 100-n. mi.) square and
consists of 2340 cast-west scan lines of data representing 3240 north-south ¢
7,581,000 picture elements for the four-band image, which, with four spe
million data values per 34,225-km? (10,000-n. mi.?) image,
prints and transparencies,

olumns of data. This provides
ctral bands, yields more than 30
Landsat images are also available as photographic

Each digital Landsat image is disseminated as a set of four 730-m (2400-ft) computer-compatible tapes
(CCT’s) that segment the scene into four vertical sections of 810 columns of data 46 km (25 n. mi. wide)

and 2340 scan lines of data representing 185 km (100 n. mi.) for all four image channels or spectral bands, The
analysis of Landsat imagery in this study was extensively structured around machine classification of this dig-
ital MSS data. Little direct photointerpretation of the photographic form of Landsat imagery was performed,

exeept in a support role to the computer analysis activities, such as supervised training-site selection and
general geographic reference.
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OVERLAYING LANDSAT IMAGES ON THE LANDSCAPE MODEL

Computer analysis 6f remote sensing imagefy is symbiotic with the process of landscape modeling described
previously. It provides the important current and past land-cover inputs to the landscape model. The accu-
racy of the computer interpretation of the remote sensing imagery can then be improved by including land-
scape variables, such as topographic elevation. Combining the available remote sensing imagery with map
information in the landscape model provides a basis for improvements in both activities, Coincident spatially
registered overlays of readily available map information on the Landsat multispectral imagery provides a
basis for improving the accuracy of machine-interpreted land-use or land-cover maps. These improved auto-
matically interpreted m: . - of land use or land cover also “feed back” directly into the landscape model to
provide a timely measure of past and present dynamic tendencies for change in the land use or land cover.

Review of Image Processing

Image preprocessing may be defined as ore or more transformations used to sample, calibrate, restructure,
or reformat the basic analog/digital scene so that it acquires new properties that facilitate subsequent man
or machine interpretation. These transformations can be either image-enhancement or image-restoration

operations. The former emphasizes certain features of the image’s radiometric content: the latter compen-

sates for image-degradation factors. Ten general sources of image degradation and attendant factors have
been identified as follows (Reference 32):

®  llumination (luminance, terrain features, and viewing geometry)
®  Terrain (geometry, height profile, Earth curvature, and viewing perspective)
®  Atmosphere (absorption, refraction, and background illuminance)
®  Spacecraft motion (orbit rates, attitude, and attitude rates)
®  Sensor optics (lens, aberrations, mean time before failure, and boresighting)
®  Scnsor clectronics (nonlinear sweep, scene-induced distortions, and detector response)
®  Spucecraft recording (signalk-to-noise ratio (SNR), nonlincar tape dynamics, and timing signals)
Data links (SNR, transmitter/recciver, modulation, and signal noise)
®  Ground recording (SN Ry nonlinear tape dynamics, and timing signals)
®  Image processing (recording/playback, storage, and image transformation)
Image transformation operations may be cither analog or digital. Although analog operations often achieve
speed-increasing parallelism, they have a limited number of processing options and tend to sacrifice aceuracy.
Digital preprocessing, on the other hand, has advantages in near-total flexibility and higher subsequent

aceuracy but is usually more time-consuming as currently executed on conventional serial-processing
computers,
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Image smoothing and image sharpening are two local image-enhancing operations. The former reduces the
high-frequency content of an image, thus eliminating noise. Conversely, the latter suppresses low frequencies
for edge or boundary enhancement, Digital, electronic analog, electro-optical, nencoherent optical, and
photographic media are all used to implement these operations in the spatial domain by convolving the
image-enhancing function with the untransformed scene, The frequency domain can also be used for spatial
filtering operations by using digital- Fourier transforms to generate the image’s frequency spectrum and then
reconstructing an image after selective suppressiori of undesired frequency spectrum components. These

concepts of image-enhancing operations can be generalized to any form of bandpass filtering to include inter-
mediate frequencies as well, ’

Image-restoring point operations seek to remove radiometric errors. Analog or digital corrections can be

applied if the errors are systematic and the causative factors, such as luminance, terrain features, and viewing
geometry are known (Reference 32),

Although these preprocessing techniques are effective in reducing the effects of image radiometric and deg-
radation factors, they were not used because the principal thrust of this study was to test a specific hypothesis.

However, to the extent that they could potentially improve land-use classification résults, these techniques
should be kept in mind for future application.

Preprocessing for Geometric Rectification

The primary image preprocessing used in this study was geometric image transformation whereby a set of
picture elements collected on a geometrically distorted grid were converted to samples on another precisely
rectified grid (figure 47), This method was necessary because the digital CCT’s of the Landsat images were
not geometrically corrected, and their utility for mensuration, precise location, and spati.l/temporal regis-
tration was therefore limited, The correction of geometric errors was imperative because this study required

Landsat digital imagery that spatially matched ancillary landscape data planes derived from multivariate
maps of the Denver Metropolitan Area,

The following major sources of Lahdsat geometric errors have been cited (Reference 33):
®  Rectangular picture element
®  Spacecraft altitude variations
®  Spaccecraft attitude variations
®  Earth rotation skew
®  Orbital velocity changes

®  Linc-scanner time skew
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o Original Landsat Data Input X-Grid
A New Transformed Output Y-Grid

FIGURE 47. GEOMETRIC RELATIONSHIP OF ORIGINAL AND NEAREST-NEIGHBOR
TRANSFORMED LANDSAT IMAGE CELLS. The new or output grid represents a counter
clockwise rotation and rescaling of the original input grid. ey is the total Euclideari error
distance introduced by the nearest-neighbor resampling technique (from Reference 34).

®  Nonlinear line-scanner sweep
®  Line-scanner viewing geometry
@  Non-north-oriented image.

Resampling techniques for geometric image transformation include the bilinear and cubic convolution, nearest
neiglibor (NN), and various truncated versions of sine x/x. 1t has been shown (Reference 32) that the cubic
convolution function gave substantially higher-quality images for typically encountered scenes. Nonetheless,
for economy in the use of computer resources, it was decided to proceed with an NN resampling of the un-
rectified digital scene. Little geometric error is introduced by using this process when the scene content
changes slowly or when the interpolated value lies close to an initial X-grid point (figure 47). Further, errors
induced by NN resampling should be regarded as residual geometric errors rather than as intensity errors.
Lastly, initial efforts at developing an NN resampling computer program had already produced a rudimentary
but workable and economical piece of software.

The NN resampling program was improved to accommodate the full four-channel, 600- by 600-clement image
needed to cover the Greater Denver Metropolitan Area. These alterations also provided for square resampling
units of any specified acreage or rectangular sampling units representing the correct geometry for both six
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¢ o




or eight vertical lines per inch displays at any given scale (figure 48). The improved software (ROTATE2)
operated in an “‘open-loop” geometric correction mode without feedback from any ground control peints,
However, this initial rectification (figure 49) of three corrections (scale adjustment, Earth rotation skew, and
image rotation) was further improved with the addition of the nonlinear line-scanner sweep correction,

Landsat image height and width dimensions we adjusted to match pictorial detail on | :24,000-scale rectified
displays to the corresponding control mosaic of four by four 7.5-minute USGS topographic map sheets
(figure 5). The rectilinear road network appeared dark on MSS-7 solar infrared graymaps, and was the chief
geometric registration factor. Major roads were located over the entire base-map mosaic to appraise the image
height and width parameters, Spot checks of the geometric fit on the extensive network of lakes, reservoirs,
and parks were also made on these distinctive features. A spatial registrat on between the rotated MSS-7
graymaps and the base-map mosaic was finally achieved, matching the desired number of picture elements

to within one cell over the 39-km (24-mi) image height and widih,

Each of the four basis MSS bands was rectified for square 0.4-ha (1.11 l-acre) picture elements yielding nine
Landsat-1 cells in a three-by-three array exactly equal to the 4-ha (1uU-acre) landscape data cell. This was
done one band at a time, because a somewhat larger scene was transformed to ensure that the desired study
area was enclosed, and the entire core capacity of the computer was occupied in the 600- by 600-element
rectification. Hence, four MSS single-channel files, 615 lines by 654 columns, were generated, subsequently
manipulated to produce a composite overlay of the four-band fils, and then trimmed to yield the exact study
area of 576 lines by 576 columns (figures 50 and 51).
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FIGURE 48. RESAMPLING EFFICIENCIES OF THE IMAGE GEOMETRIC TRANS
FORMATION. The application of the nearest-neighbor approach in resampling to a
square grid transfers percentages of the samples shown from the input grid (X-grid)
to the output grid (Y-grid) as shown in figure 47,
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(a) Unrectified red image (b) Unrectitiod solar IR image
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(c) Rectified red image (d) Rectified solar IR image
(MSS band 6 = 0.6 to 0.7um). (MSS band 7= 0.8 to 1.1 um).

FIGURE 49. COMPARATIVE DISPLAY OF THE ORIGINAL UNRECTIFIED ANu THE TRANSFORMED
(RECTIFIED/RESAMPLED) MULTISPECTRAL LANDSAT IMAGERY OF THE DENVER METROPOLITAN
AREA. The raw or unrectified Landsat Picture elements, (a) and (b), are 192- by 269-foot inclined rectangles.
The resampled picture elements are rectified 210-foot north-south squares, (c) and (d), that are displayed trom
computer-compatible tapes as microfilm graymaps with a cellular resolution of exactly nine picture elements per
10 acres, or approximately 1.1 acres per picture element. The display scale of (c) and (d) is nominally 1:173,600.
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FIGURE 61, LANDSAT-1 MSS BAND 7SOLAR
AREA. Graymap of the August 16, 1973 image s
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Praprocessing to Form MSS-Band Ratias

Ratioing has been advocated as a means of effectively reducing random fluctuations of MSS reflectance

values caused by source variations and changing atmospheric conditions (References 34 and 35). Ratioing

is simply the division of the digital radiance value of one MSS bund by that of another on a cell-to-cell basis.

A ratio of the near-infrared and chlorophyll absorption bands proved to be well correlated with the functioning
green biomass in grasslands (Reference 30). The ratio of MSS band 7 to hand § enhanced the effect of bio-
mass changes (Reference 37), The main advantage of band ratios in vegetation classification is an improved
signal-to-noise ratio (Reference 37).

Twelve possible ratios can be computed for the four primary MSS bands taken two at a time: however. six
of these are merely the inverse of the other six.  Because the spatial variation in the ratio of any two spectral
bands is the same as the ratio of the inverse of the two bands. exceptin ar inverse sense, the inverse ratios
provided no unique d'fferences and were therefore omitted. Six ratios between the four original MSS bands
were thus computed and interspliced back into the multichannel image/landscape variable file using the LMS
programs. Each picture clement in this file was represented by ten image values, one cach for MSS bands
4,5, 6, and 7 and for ratios 5/4, 6/4, 7/4, 5/6, 7/5, and 7/6.

Merging of Landsat and Landscape Data Planes

Digital Landsat imagery was geometrically corrected and resampled to overlay the landscape model with a
square cell resoiution of 0.4-ha (1.111 acre) that nested a three-by-three array of Landsat cells exactly into
4-ha (10 ucres). It was next necessary to transform each of the 36.864 data cells in cach of the 34 landscape
planes , the assembly of which was described in Chapter 2, into a three-by-three array of 0.4-ha (1.11 1-acre)
cells with the original 4-ha (10-acre) value duplicated in all nine cells. This zoom-like transformation pre-
served the spatial regi:: “ation because the Landsat image data planes were three times larger in height/width
elements than the landscape data planes—576 picture elements to 192 landscape cells. This expansion
function was performed on the 34 landscape variables with an auxiliary program (ANCILLARY). The
resultant expanded or zoomed landscape ptancs appeareu to be somewhat blocky in comparison to their
original form (figure 52), but they were now in perfect one-to-one registration with the Landsat imagery

at the 0.4-ha (1. 111-acre) resolution representing 331,776 cells. Subsequently, the 10-variable Landsat
imagery and the zoomed or expanded 34-variable landscape data were merged into a composite 44-variable
data file (figure 53). These 44 variables were embedded in a standardized packed Binary format of the
landscape-modeling/image-processing system for analysis.

Preprocessing to Remove Terrain Effects

Normalizing is proposed as a preprocessing technique for specifically removing terrain effects. Normalizing
is simply the division of the digital radiance of an MSS band by the computed Landsat overflight insolation
on a cell-to-cell basis. Although normalizing is mathematically similar to ratioing, the denominator is an
ancillary variable, and the resultant quotient is also .n ancillary landscape variable,

Identical surface-cover materials may have been imaged at diff rent radiance values in a given MSS band
because they occurred on varying terrain (i.ce., dif! fering slope, wspect, or topographically shaded arcas),
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FIGURE 52. DISPLAY OF THE EFFECT OF THE EXPANSION OF THE ANCILLARY MAP DATA PLANES
IN THE LANDSCAPE MODEL FOR OVERLAY ON LANDSAT IMAGE DATA PLANES. Nonimage map data
cells representing 10 acres each were duplicated in a three-by-three picture-element array to exactly spatially over-
lay the higher-resolution (1.111-acre) rectified/resampled Landsat picture elements (figure 50). Unexpanded an-
cillary data disp'~vs, (a) and (b), scale 1:600,000. Expanded ancillary data displays, (c} and (d), show theex-
panded center one-ninth of {a) and (b) at a nominal scale of 1:173,600.
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FIGURE 53. DISPLAY ILLUSTRATING THE OVERLAY OF SELECTED PHYSIOGRAPHIC MAP DATA ON
THE LANDSAT MULTISPECTRAL IMAGERY OF THE DENVER METROPOLITAN AREA. Thirty-eight
ancillary land-use, physiographic, socioeconomic. transportation, and four of MSS/insolat’on ratic datx planes
were thus combined with the basic four Landsat multispectral channels ana six 1mage transformations (i.e.,
channel ratios) into @ composité 48-channel Landsat image/ancillary data tile tor automated image processing.
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If these illumination effects are praportionally constant for both the MSS bund and insolation value, the
ratio of the two parameters will negate the terrain effect because it appears in both the numerator and
denominator,

The LMS programs (Appendix B) were used to create (TRANSF2) four MSS/insolation normalized bands
and to intersplice (COMBINE) them back into the composite image/landscape data file as the last four an-
cillary landscape variables. Therefore, the complete 48-variable data file was composed of the four original
MSS bands, six MSS band ratios, and 38 land-use, physiographic, socioeconomic, transportation access, and
MSS!insolation normalized ancillary landscape variables (figure 3),

MULTIVARIATE CLASSIFICATION WITH RECTANGULAR TRAINING SETS

Feature selection with multispectral scanner data commonly uses training sets, A training set is a subsample
whose identification is known to an acceptable level of accuracy. The training set is used to generate subpopu-
lation statistics for efficiently implementing decision rules in the following classification phase. Overall utility
of the feature extraction process is ntingent on the quality of samples selected to serve as a training set (i.e..
sample size, spacal distribution, and efficiency). The basic problem is the identification and selection of
samples with the correct probability distributions in n-dimensional space, where n is the number of variables
of the multispectral imagery. These probability distributions are then used to construct decision rules that

can be used to represent the prediction sample set,

A nuwsoer of data displays are used with MSS data to facilitate feature selection, such as histograms for cach
class and data plane or spectral overlay, as well as correlation and covariance matrices between classes. Para-
metric discriminants, such as Bayesian probabilities or maximum likelihood functions, are usualiy used with
training-set data to develop the classification algorithms. Here, linear-discriminant analysis was used as in
Chapter 3 to reduce a multivariate problem to a univariate situation.

Others have tested many alternative procedures because of the great amount of computational time required
for the maximum-likelihood ratio. For example, it is possible to reduce the number of data through sampling
and to save time with the decision rule itself (Reference 38). The decision rule commonly used is founded

on two assumptions: (1) that the data are Gaussian or normally distributed ; and (2) that the training data for
cach class adequately represents the entire class, Under these assumptions, the maximum-likelihood decision
rule becomes a quadratic rule. This rule requires many multiplications for cach decision. especially when
many channcls of data and many desired identification classes are used. The lincar-decision rule also compared
favorably in accuracy and was 50 times faster than the maximum-likelihood function (Reference 38).

Very fast nonparametric procedures have been developed (Reference 29). These linear-discriminant functions
achieved satistuctory results with multiclass, multispectral data as long as the order of class separability was
observed during the classitication process. Their algorithm took S minutes for one arca, #s compared to 70
minutes for six channels and § hours for 12 channels with the maximum-likelihood algorithm. Economies
like these will be important in making the computer more available (and acceptable) for future machine
processing of multispectral imagery.

Other nonparametric classitication studies that either cited increased speed or satisfactory predictions used
acomposite sequential clustering algorithm (Reference 40), an elliptical boundary condition model (Reference
1), and a lookup table procedure that was 30 times faster than the maximum-likelihood Latio and generally
as accurate (Reference 420,
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Initial feature-extraction activities in this study included careful selection of 72 rectangular training sets
totaling 2,413 picture elements, or three rectangles each to represent the 24 second- and third-order USGS
land-usc classes to be mapped. Geometrically rectified and resampled MSS-$ and -7 graymaps overlaid on
the 1:24,000-scale topographic/land-use maps facilitated the entire process of selection and identification.

Stepwise linear-discriminant analysis was again used to test machine recognition and mapping of the 24 land-
use categories,

The initial or baseline rectangular training-set classification used only the original four MSS channels and

no other information to correctly reclassify 65,2 percent of the t, «ining sample back into their correct land
use (table 13). This peroentage (FOM) will be referred to hereafter as training-set accuracy. An overall FOM
or training-set accuracy is defined as the total number of cells correctly classified, divided by the total number
of cells, times 100 to obtain a percentage (Reference 34), A second baseline classification used the original
four MSS bands plus the six transformed image channels consisting of the ratios of the basic four bands to
yield an improvement of 2,1 percentage points to an overall average training-set accuracy of 67.3 percent.

This indicated that the six ratios of the basic four spectral bands contributed little to this particular land-use
classification (table 14).

Next, the 31 landscape data planes, exclusive of any categorical-type land-use data planes, were included with
the ten image bands, raising the accuracy of the correct training-set identification to 99,7 percent for the 24
classes (table 15). Therefore, 99,7 percent of the 2,413 test image cells could be correctly assigned to their
known land-use category, The random assignment of these cells to the 24 land-use categories would have
yielded 1/n = 24 classes times 100 percent = 4.1-percent accuracy. Thus, this represented a significant in-
crease in the accuracy of automatically interpreted Landsat imagery with the symbiotic inclusion of spatially
overlaid ancillary map information. Only 40 variables were included in the final model because total year-
round housing units failed the stepwise tolerance test for inclusion in the function at step 23.

TABLE 13
TRAINING-SET ACCURACY OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL MSS BANDS OF A

LANDSAT IMAGE (August 16, 1973) OF THE DENVER METROPOLITAN AREA. This table is based on identitying 24
land uses (table 1) with three rectangular training sets per land use that also provided the test sample of 2,413 picture ele-

ments. The Landsat-1 image variables were added in a free stepwise fashion and were classified using linear-discriminant
analysis,

Training-Set Correct Points/C-P
Classification o-p* Second Expended
Step Landsat Pl:::i (1:322‘3 l‘\f“?\‘ od Ste Average F-Value
Number Variable Entered (free) . ’ X Apence P erage to Enter
Correct “N (seconds)
| MSS-7 tsolar infrared) 1.208 50.00 874 138,22 138,22 1.640.13
2 MSS-5 (visible red) 1.518 02,91 9,68 156.82 147,99 562,87
3 MSS-4 (visible green) 1.585 65.69 10.48 1504 149,17 115,90
4 MSS-6 (solar IR) 1.573 65.19 24,78 63.48 109.61 10.07

*C-P = central processor,
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TABLE 14
“TRAINING-SET ACCURACY OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL LANDSAT MSS BANDS
«AND SIX RATIOS OF A SINGLE-DATE LANDSAT IMAGE (August 15, 1973) OF THE DENVER METROPOLITAN
-AREA. This table is based on identifying 24 land uses (table 1) with three rectangular training sets per land use that also pro-

= ided the test sample of 2,413 picture elements, The Landsat-1 image variables were added in a free stepwise fashion and were
aC| assified using linear-discriminant analysis,

Truining-Set Correct Points/C-P

Clussification C-p* Second Expended
Step La{ntdsut . l"::::: (l:::ttst lix‘:;i'::;cd Step Average F-Value
Number Variable Entered (Free) Correct ¢ (seconds) to Enter
1 MSS-7 (solar infrared) 1,208 50.00 11.49 105.13 105.13 1.640.13
2 MSS-5/MSS-4 ratio 1,479 61,29 12,12 121.93 113.70 5§73.23
3 MSS-7/MSS-0 ratio 1,822 03.08 12.83 118.63 115.47 227,78
4 MSS-5 (visible red) 1,552 64.32 13.03 113.87 115.04 93.89
5 MSS-4 (visible green) 1,007 66.60 14.42 111.44 114.23 192,63
T MSS-6/MSS-4 ratio 1621 07.18 - 15.30 105.95 112.64 108.88
7 MSS-7/MSS-4 ratio 1,623 67.26 l6.22 100.06 110.19 54.00
8 MSS-5/MSS-6 ratio Lol1s 66.93 16.93 95.39 108,28 28.90
9 MSS-6 (solar infrared) 1624 67.30 17.45 93.07 106.22 10.18
10 MSS-7/MSS-5 ratio 1024 "67.30 34.30 47.35 93.90 6.05

="-P = central processor,

“he stepwise linear-discriminant analysis algorithm automatically added each landscape variable in the order
=1 which it added the most to the land-use classification accuracy achieved at that step. Clearly, the addition
= many of the less sensitive landscape variables did not measurably increase the final accuracy achieved, but
agnificantly increased the total cost and decreased the cost-ef ficiency of the test classification (figure 54).
hese accuracy and cost-performance values were used as the basis for sclecting three optimal MSS spectral
~ands and four landscape variables from the 41 initial variables for a final test of a more efficient and economic
rocedure. These seven optimal variables served to correctly assign all 24 land uses with an average training-
—taccuracy of 96,6 percent (table 16), as compared with the 99, 7-percent accuracy achieved with 40 variables

7t almost two times the cost in central-processor time,

“he utility of the landscape data planes overlaid on the Eandsat spectral data base was evident in
zition tests. However, a potential time bias problem was inherent in most of the ancillary data plancs. Spe-
= fically, it was felt that the time-related cultural data (i.c., 1970 Ce
Astriminant functions toward the historical date represented by th

ew of their high F-values, Therefore, it was considered appropriate to statistically foree

andsat imagery variables in their free order before the totally free stepwise
«cduce the

[§]

Wt

all classifi-

nsus data) might unduly influence the
ese landscape variables, particularly in

in the current (1973)
entry of ancillary variables to
ancillary data time bias and to generate a more representative land-use map,
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TABLE 18
IMPROVEMENT IN THE TRAINING-SET ACCU RACY OF AUTOMATED INTERPRETATION OF A SINGLE-DATE
LANDSAT-1 IMAGE OF THE DENVER METROPOLITAN AREA BY ADDING 30 ANCILLARY VARIABLES. This table
is based on identifying 24 land uses (table 1) with three rectangular training sets per Iand use that a‘so provided the test sample
of 2,413 picture elements. The Landsat-1 image variables were forced in the predetermined order (table 14) and the landscape
variables were added in a free stepwise fashrion arid were classified using linear-discriminant analysis,

Training-Set Correct Points/C-P
Classification Lpe Second Expended
Step o Total Correct Timé F-Value
Number Variable Fatered . Points Points Expended Step Average e
Comect | (1) | (seconds) to Enter
Landsat (forced)
| MSS-7 (solar infrared) 1,208 $0.06 24,22 49,88 49.88 1,640,13
2 MSS-7/MSS-4 ratio 1,479 61,29 24,98 59,21 54.01 5§73.23
3 MSS-7/MSS-6 ratio 1522 63,08 28,70 §9.08 $6.18 227,718
4 MSS-$ (visible red) 1,582 04,32 26.51 58.54 56.78 93.89
H MSS-4 (visible green) 1.607 66.60 nn §8.93 5723 192,63
6 MSS-6/MSS-4 ratio 1621 67.18 28.01 57.87 §7.38 108.88
7 MSS-7/MSS-4 ratio 1,623 67.2 29.00 §5.97 §7.13 54,06
8 MSS-5/MSS-6 ratio 1618 66,93 29,82 §4.10 56.72 28.90
9 MSS-6 (solar infrared) 164 67.30 30.30 53.49 56.32 10.18
10 MSS-7/MSS-S ratio v v mmed 16024 01.30 KINT s215 §5.88 6,08
Landscape (free)
1 Total census-truct acreage 2036 84.38 ALn 64.19 $6.71 133,372.71
12 Built-up urban area MDY 2162 89,60 3249 66.54 5§7.04 1,204.12
13 Topogsaphic elevation 23m 9441 KXR ¥ 68,68 58.02 1.0600.76
14 Freeway interchange MD 2343 97.10 34.00 68.91 59.48 349.27
15 Freeway MD 2383 97,51 34,73 07.75 60.13 626,06
to Median housing-unit rent 2349 9°.38 35.81 66,18 60.57 349,58
17 Composite major-road MD 2383 97,1 Ao 27 o487 00.88 221.08
18 Median housingunit value 237 48,20 30,98 od.12 o109 224.90
19 Total vacant housing units 2380 98.03 RY i 63.08 61,22 18263
20 Average number of cars per family 237 9R.47 I8.50 ol 61.24 19,81
M1 Average number of vacant housing 2387 9g.02 2023 60.09 01.21 110.39
units per acre
n Population density per acre 2382 98,72 3986 59,70 ol.13 a1.27
23 Total population 2383 98. 70 40.04 SR.08 61.00 9. 18
23 1969 mean family income 2379 98.59 4134 §7.58 60.82 163.80
25 Total two-car families 2384 98,80 4208 50.08 60.60 138.20
26 Total three-car families 2,390 99 08 421 S5.88 60.37 102.20
» Total year-round housing units 2390 99 30 4573 §2.39 59,98 105,41
P} Average number of year-round housing 2403 99.59 4517 830 59,00 97,37
units per acre i
i Total familices 2398 499,38 45.10 EXN .37 10218
20 Total one-car famities 2398 99,28 45,77 §2.33 59.00 142.24
k1] Average number of families per acre 2,398 99,24 46.84 S1.13 SR8 9183
3 Landsat-1 image insolation 2399 99.42 47.58 $0.45 $8.39 927
33 Topographic slope 2,408 99,07 48.10 50.00 SX.08 100.84
4 Surficial geology 2408 99,67 48.69 49.39 §1.71 38,38
as Composite minor-road MD 2408 9,067 49,00 48,49 $7.36 2828
3o Landsat-1 MSS-S/insolation ratio 2408 w67 htRY] 47.80 $7.00 2,45
k¥ Landsat-1 MSS-4 insolation ratio 2408 9 67 S1.0t 4718 S6.04 M7
a8 Landsat-1 MSS- 7 insolation ratio 2408 .67 S 46,40 So.28 8.0
39 Tupographic aspect 2408 99,67 $0.84 45877 s8.91 743
40 Landsat-1 MSS-0, 1nsolation ratio 2408 9,07 §3.38 45,08 S8 84 Ve

*C-P = central provessor,
tMD = minimum distonce,
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FIGURE 54, TRAINING-SET ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE LANDSAT
IMAGERY OF THE DENVER METROPOLITAN AREA WITH 30 ANCILLARY LANDSCAPE VARIABLES,

is fi (table 1) with three rectangular training sets per land use that also
provided the test sample of 2,413 picture elements. The Landsat-1 image variables representing the first ten variables
were forced in the predetermined order {table 14), and the ancillary variables were next added in a free stepwise

fashion and were classified using linear-discriminant analysis. The variable numbers shown coincide with step
numbers and data-plane identities in table 16,
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TABLE 16
HIGH TRAINING-SET ACCURACIES AND ECONOMY ACHIEVED BY AUTOMATED INTERPRETATION OF A SELEC-
TION OF THREE MSS BANDS OF A SINGLE-DATE LANDSAT IMAGE (August 15, 1973) OF THE DENVER METRO-
POLITAN AREA WITH OVERLAYS OF FOUR LANDSCAPE VARIABLES. This table is based on identifying 24 land uses
(table 1) with three rectangular training sets per land use that also provided the test sample of 2,413 picture elements. The
Landsat variables were forced in the predetermined order (table 13), and the ancillary landscape variables were added in a free
stepwise fashion and were classified using linear-discriminant analysis.

Training-Set Correct Points/C-P
Classification C-p* Second Expended
Total Correct Time
N::::Eer Variable Entered Points Points Expended Step Average :;‘é:;i
Correct (“0) (seconds)
Landsat (forced)
1 MSS-7 (solar infrared) 1,208 50.06 10,17 118.78 118.78 1,640.13
2 MSS-S (visible red) 1,518 62,91 11.04 137.50 128.52 562.87
3 MSS-4 (visible green) 1.585 65.69 1L70 .| 13547 130.99 . 11596
Landscape (free)
4 Total census-tract acreage 1,992 82.55 12.32 161.69 132.35 113,029.23
) Built-up urban area mpt 2,143 88.81 13.19 162.47 146.96 1,332.26
6 Topographic elevation 2,242 92,91 13.77 162.82 149.98 2,007.72
7 Freeway interchange MD 2332 96.64 27.57 84.58 131.91 356.92

*C-P = central processor.
t MD = minimum distance.

It has been carefully observed that, by the use of the term “training-set accuracy,” these classification tests
indicated only the rectangular training-set accuracy for the use of Landsat and landscape or ancillary data
variables for mapping land use, Further testing was done to determine how accurately these feature extraction
procedures extended to the mapping of the entire Denver study site—the *“verification” accuracy. The verifi-
cation test was performed by classifying the 36,864 cells of a larger one-ninth sample image with the discrim-
inant function developed from the 72 rectangular training sets for each varidable added in the stepwise fashion
previously determined (table 15). This one-ninth training set was generated by rectilinearly sampling every
third row and third column for a total sample of 192 rows and 192 columns from the full 576- by 576-picture
element composite image. The accuracy of each successive map produced by this function in the step-by-step
fashion was then verified on a cell-by-cell basis by comparison with the known 1972-1973 USGS land-use
map stored in the landscape model (figure 55). The cost of computing and comparing a total classification
map at each step prevented the continuation of this process for all 40 steps. The averdge image-verification
accuracy was a surprisingly low 24.1 percent at the addition of the 28" step (figure 56 and table 17), as
compared to the predicted training-set accuracy of 99.6 percent at the same step (table 15). The rectangular
training sets, carefully selected to statistically represent the 24 land-use classes by 2,413 points, were clearly
inadequate samples to represent the total sampled image of 36,864 points. Apparently, a fortuitous choice
of training-set samples gave extremely high training-set accuracies in this restricted pattern space. However,
the training sets were statistically insufficient descriptors for classifying the larger image sample and, for that
matter, the full image because the one-ninth sample image statistically represented the full image.
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This exercise clearly indicated that extreme care must be used in interpreting the many examples of training-
set accuracy in the technical literature, Similarly, this caution extends to test-set accuracy when the test fields
are selected in much the same way as the training sets and do not represent a truly random sample of the image
that will be subsequently classified. Judicious selection of training sets can be used to manipulate the final
training-set accuracy to be anywhere from very poor to very good, depending on the desired results, Better
methods must be developed for selecting training sets if the most accurate end product is desired, and a true
verification test on randomly sampled points must be included with the map produced.

MULTIVARIATE CLASSIFICATION WITH GRID-SAMPLED TRAINING SETS

multivariate data set centered on the 1972-1973 USGS land-use data plane that identified the same 24 land-use
classes already tested. Proper use of this data plane provided control of training-set selection and gave d repre-
sentative sampling of all multivariate variables from the entire image for each of the 24 land uses,

At first glance, it may appear that using a map that represented a sample of the final desired output of the
classification effort was self-defeating in that the “answer”’ was necessary for solving the problem. The col-
lection of training-set data for Landsat image processing has invariably been the one step that the ultimate

user of the classification maps undertakes: it is not the skilled image interpreter who completes this task.

It is just as easy, if not easier, to instruct the user to prepare a sample map of one or more subportions of

the total areas to be classified. He can prepare this map with conventional ground and airphoto methods with
which he is usually familiar. He can prepare it to represent the type of final product desired, conditioned by
what is reasonable to expect from Landsat image classification. These sample miaps might be two or three USGS
7.5-minute quadrangles that are representative of the materials that occur in 2600- to 5200-km2 (1000- to
2000-mi? ) area to be mapped. It is claimed that this procedure is more clearly understood and completed than

if the image analysts are not certain of the exact nature of the training sets desired or their subsequent impact
on the classification accuracy of the final map products sought.

The test of the hypothesis employed a grid-sampled point training set that was created by resampling every
third row and third column of the one-ninth sample image, This yiclded a one-ninth times one-ninth (1/81-
sampled) image of 4,100 training points of known land use by reference to the overlay of 1972-1973 USGS

while providing uniform coverage of the study atea. Further, the system.atic sample chose land-use sample
points in proportion to their representation in the entire image, Hence, the probability of the selection of
points was proportional to land-use type frequency. This assumed, of course, that the user was proportionally
intercsted in all final classes roughly in proportion to the amount of their occurrence in the sample map.
Specific interest in locating a given surface cover or covers in the context of all other materials constituting

a background would require the reexamination of this sampling approach,

Machine recognition and mapping of the 24 land-use classes was again tested by stepwise linear-discriminant
analysis. The 4,100 grid-sampled points were grouped into a training set to represent the 24 of 1972-1973
USGS mapped land uses. The first classification with this training data employed the four basic MSS bands
with no other information. The 4,100 samples grouped in the tra aing set were used to compute the dis
criminant function in a stepwise fashion. The samples were then test-classified using the same function and
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FIGURE 65. VERIFICATION OF THE MAP AC-
CURACY FOR THE DENVER METROPOLITAN
AREA FOR ALL 1972-1973 USGS LAND-USE
CLASSES (August 16, 1873 Landsat-1 image). A
point was plotted in black if the individual cell
was correctly classified when checked against the
corresponding cell on the digital 1972-1973 USGS
land-use reference map, The linear-discriminant al-
gorithm developed from the rectangular training
sets was used to classify this one-ninth rectilinearly
sampled image, it used the first 20 variables and cor-
rectly classified 9,740 points into 24 second- and
third-order classés for a 26.4-percent accuracy.

step order. A total of 1,554 points were correctly classified after the four steps, yielding an FOM,* or

overall accuracy of 37.9 percent (figure 57 and table 18). Since the one-ainth by one-ninth rectilinear-point
training-set sample of 4,100 points constituted a statistical sample of the points in the final map, this accuracy
closely represented the final map accuracy that might be expected. It therefore directly represented map or
verification accuracy in lieu of the training-set accuracy usually achieved by this type of activity. The repre-
sentative nature of the verification accuracy achieved here with the 1/81-sample relative to the final, total

accuracy achieved by using the same discriminant function will subsequently be clearly established.

The second test made use of the ten-band combination of four original MSS bands and six transformation
ratios and achieved a slightly improved 38.4-percent verification accuracy. Again, the six MSS ratios contrib-

uted little to the improv merit of the classification (figure 58 and table 19).

The full array of landscape variables, less the land-use data planes, were next included with the ten image

bands. Verification accuracy was raised 16 percentage points to 53.9 percent by using these 31 nonland-use

*The FOM- the average classification accuracy~is defined as the total number of correctly classified cells, divided by the total number of cells

times 100 to obtain a percentage value,
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FIGURE 56. LOW VERIFIED LAND-USE ACCURACY FOR AUTOMATED INTERPRETATION USING REC-
TANGULAR TRAINING-SET STATISTICS. The discriminant function was derived from the three rectangular
training sets of each land use representing a 2,413-point sample. It was applied in the same stepwise fashion as pre-
viously determined (table 15) to classify a rectilinearly sampled one-ninth image of 36,864 points. This sample image-
classification accuracy was only 24, 1-percent correct, based on a Point-to-point comparison to the 1972-1973 USGS
land-use reference map, whereas 99.6-percent accuracy was achieved on the rectangular training-set sample at step
number 28. The potential bias of manual training-set selection was clearly evident in this case, The variable numbers

coincide with step numbers in table 185, Intermediate variables were included in the classification, but their accur-
acies were not checked.
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TABLE 17
LOW VERIFIED LAND-USE ACCURACY FOR AUTOMATED INTERPRETATION USING RECTANGULAR TRAINING-

SET STATISTICS (August 18, 1973, image), The fortuitous selection of rectangular training areas yielded unrepresentative
statistics that could sharply separate the sample blocks (table 16), but that were inapplicable to the rectilinearly sampled
image (figures 556 and 66), This table is bused on Identifying 24 land uses (table 1) of 36,864 picture elements on a point-to-
point comparison with the digital 1972-1973 USGS land-use reference map, The variables were added in the predetermined
order of table 15, using the discriminant function developed from the 2,413-point sample rectangular training set. The image

accuracy was a disappointing 24.1 percent after 28 variables added versus a predicted £9.6 percent. Intermediate variables
were included, but their accuracies were not checked in the classification.

Training-Set C.p* Correct Pomnts/C-P
Classification Second Expended
Step Variable Entered Time F-Value
Number Total | Correct | Expended to Enter
Points Points (Seconds) Step Average
Correct (%)
Landsat (forced)
2 MSS-5/MSS4 ratio 11,185 30.34 378.81 29.53 29.53 §73.23
4 MSS-5 (visible red) 10,708 29.05 403.74 26.52 2798 93.89
6 MSS-6/MSS4 ratio 10.598 28.75 426.92 24,82 26.86 108.88
8 MSS-5/MSS-6 ratio 10,365 28.12 461.85 22,44 25.64 28.90
10 MSS-7/MSS-S ratio 10,369 28.13 478.69 21.66 24,76 6.05
Landscape (free)
12 Built-up urban area MD# 12,075 32.76 499.9} 24.15 24.64 1,294.12
14 Freeway interchange MD 11425 30.99 527.16 21.67 24,15 349,27
16 Median housing-unit rent 11.445 31.05 554.67 20.63 23.63 349.55
18 Median housing-unit value 10417 28.26 580.60 17.94 22.86 224,90
20 Average number of cars per family 9,740 26.42 §99.09 16.26 22.06 119.81
24 1969 mean family income 9.162 24,85 638.01 14.36 2117 163.80
28 Average number of year-round 8870 24.06 682.75 12,99 20.28 97.37
housing units per acre

*C-P = central processor.
+MD = minimum distance.

landscape variables to classify the 24 land uses sought. Although not as spectacular as the increase in training-
set accuracy achieved when using the rectangular training sets, the 53.9-percent verification accuracy was
realistically representative of larger-scale image-classification results (figure 59 and table 20).

Verification

The discriminant function for each step was saved from the 41-variable discriminant analysis of the 4,100
grid-sampled point-training set for verification testing on the one-ninth sampled image. The classification
resuits and resultant step-by-step display maps confirmed the utility of the 1/81-grid-sampled training set
as a valid and representative sampling of the larger image and illustrated a successful display product of the
new systematic, point-feature extraction process. The 52.9-percent verification accuracy for this one-ninth
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FIGURE 67. VERIFICATION ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE (August 15, 1973)
LANDSAT IMAGERY OF THE DENVER METROPOL ITAN AREA WITH FOUR MSS BANDS. This figure is based
on identifying the 24 land uses {table 1) with 4,100 grid-sampled picture elements and the 1972-1973 USGS land use

data plane, The Landsat channels were added in a free stepwise fashion, The variable numbers coincide with the step
numbers in table 18,
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TABLE 18
VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL MSS BANDS OF AN
IMAGE (August 16, 1973) GF THE DENVER METROPOLITAN AREA. This table is based on identifying 24 land uses
(table 1) with a test sample of 4,100 picture elements, These elements wera systematically sampled from the center of each
nine-by-nine array of picture elements and Identified and grouped by the land-use codes specified by the 1872-1973 USGS

land-use data plane, The Landsat-1 image variables wero added in a free stepwise fashion and classified using linear.
discriminant analysis,

Training-Set Correet Points/C-P
Classification o.pe Second Expended
Step Landsat I’To(:::;; Cl:::lr:::it l"xT:‘t::l‘ ] Ste Average F-Value
Number Variable Entered (free) . " -xpence niep Crane to Enter
Correct (1) (seconds)
1 MSS-7 (solar infrared) 1,290 31.46 14.79 87.22 87.22 68,50
2 MSS-4 (visible green) 1,356 33.07 16,32 83.09 85,05 3321
3 MSS-$ (visible red) 1,554 37.90 18.54 83.82 84,59 3541
4 MSS-6 (solur infrared) 1,554 37.90 19.95 77.89 82,67 123

*C-P = central processor,

sampled image after the 415 step was substantially the same as the 53.9-percent verification accuracy achieved
with the 1/81 point-sampled training set (figure 60 and table 21).

Classification maps of the onc-ninth sampled image were preserved for each of the variables tested as they
were entered in the predetermined stepwise order (table 19) into the discriminant function. The accuracy

of each successive map produced in this stepwise fashion was verified on a point-to-point basis (36,864
points) by comparison with the known six first-order USGS classes* (figure 61) and 24 second- and third-
order USGS classes (figure 62), These verified classification maps displayed urban, agricultural, and combined
agricultural/urban land-use themes for every fourth variable added. The incremental verified accuracy con-
tributed by the stepwise-added variables (table 21), together with its spatial distribution, can be visually
assessed in this fashion relative to the 1972-1973 USGS reference theme maps (figures 61 and 62).

Finally, two additional verified classification maps were displayed for the last or 41 step results for the one-
ninth sample image, The average composite second- and third-order verified accuracy was 53.9 percent for
the 19482 correctly classified points (figure 63a). The average first order® verified accuracy was 78,3
percent for the 28,871 correctly classified points ( figure 63b) out of a population of 36,8064 picture clements,

MAXIMUM-LIKELIHOOD CLASSIFICATION WITH GRID-SAMPLED TRAINING SETS

The solution of the feature-extraction probl.m provided an opportunity- to compare parametric versus non-
parametric classification algorithms for both accuracy and time using the maximum-likelihood ratio and the
lincar-discriminant function respectively,

*Classified at the second- or third-order USGS categories, but checked or verified apainst the correct first order of six-gross land uses onl.
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FIGURE 58. VERIFICATION OF ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE {August 15,
1973) LANDSAT IMAGERY OF THE DENVER METROPOLITAN AREA WITH THE FOUR PRIMARY AND SiX
MSS-BAND RATIOS. This figure is based on identifying the 24 land uses (table 1) with 4,100 grid-sampled picwure
elements and the 1972-1973 USGS land-use data plane, The Landsat variables were added in a free stepwise fashion.
The variable numbers coincide with the step numbers and MSS-band/ratio identities in table 19,
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TABLE 19
VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL MSS BANDS AND
THEIR SIX RATIOS FOR A SINGLE-DATE LANDSAT IMAGE (August 16, 1973) OF THE DENVER METROPOLITAN
AREA, This table is based on identifying the 24 land uses (table 1) with a test sample 4,100 picture elerhents, These cle.
ments were systematically sampled from the center of each nine-by-nine array of picture elements and identified and grouped
by the land-use codes specified by the 1972-1973 USGS land-use data plane, The Landsat-1 image variables were added in a
free stepwise fashion and were classified using linear-discriminant analysis,

Training-Set Correct Poiats/C-P
Classification op* Second Expended
Total Correct Time R
N:t(t:l‘;r V'arhlwlc[i;;:::l::d (free) !’oin(s l’ojm:c Fxpended Step Average :o\l":::.‘r
Correct () {seconds)

i MSS-7 (solar infrared) 1,290 340 19,14 67.40 0740 608,50
2 MSS-5/MSS-4 ratio 1417 34,50 20.50 o912 08.20 302
3 MSS-7/MSS-5 ratio 1495 30.40 M. 70 68.70 0844 38.01
4 MSS-4 (visible green) 1.5851 A7.83 23.18 67.00 08.04 2540
N MSS-§ (visible red) 1570 38.29 2441 64,32 01.21 §2.50
o MSS-7/MSS-4 ratio 1,562 as.t0 25,78 60,00 65,96 10.54
7 MSS-5/MSS-6 ratio 1562 38,10 2080 58,18 0d.00 910
8 MSS-7/MSS-6 ratio 1,870 28.29 28.00 §5.89 03,30 334
9 MSS-0 (solar infrared) 1.578 38.41 9,39 §3.59 62,08 LOR
10 MSS-0/MSS-4 ratio 1,578 3841 30.77 5119 00.71 .28

*C-P = central processor,

he same 4,100 entities of the 1/81 grid-sampled point-training set were used to generate the mean and
covariance matrices for classifying the onc-ninth sampled image by maximum-liklihood ratioing with four.

six, and 22 variables. The fourvariable combination was the basic four MSS bands. The six-variable set included
MSS-4, MSS-7, MSS-7/MSS-5 ratio, MSS-5/MSS-4 ratio, topographic elevation, and urban built-up minimum
distances. The 22-variable run contained the maximum number of the 41 variables that could be used (that

is, those variables with nonzero variance in all classes and therefore capable of matrix inversion). These were

the four basic MSS bands, six MSS ratios, four MSS/insolation ratios, topographic clevation and aspect, in-
solation, and five transportation minimum-distance variables.

These three combinations were applicd to the one-ninth sample image using maximum-likelihood ratioing and
were checked for first- and composite second-/third-order aceu racy on a point-to-point basis for the 360,804
points against the 1972-1973 USGS land-use data plane. These map-verification accuracies checked and dis-
playcd to the first order were §3.0, 68,1, and 01,5 pereent, respectively, tor four, six, and 22 variables
(figure 04), whereas the composite second- and third-order accuracies were 4.3, 15,4, and 2.4 pereent,
respectively (figure 65),

The 1/81 grid-sampled-point data set was classificd by stepwise discriminant analysis for the same combi-
nation of variables to provide comparative results at both the first- and compasite second- and third-order
levels for the nonparametric comparison (table 22). Although these lincar-discriminant analyses were run
onasmaller data set than that of the maximum-likelihood ratio tests, the close correspondence of the 1/81
data set to the one-ninth sample-image results has alr qady been documented.
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The poor performance of the maximumelikelihood ratio, especially for the second- and third-order classes,
was surprising. A detailed explanation for this occurrence is not currently possible, However, the fact that
the first-order accuracies were comparatively high relative to the composite seeond- and third-order accuracices
may provide a clue. It is believed that the capability for specifying a priori class probabilities for discriminant
analysis materially improved all its classifications. No such capability existed in the maximum-ikelihood
algorithm used. Henee, it could achieve comparable results to discriminant analysis for only six first-order
classes; however, the statistical similarity of 24 second- and third-order USGS land-use classes proved too
much for it to handle,

A prerequisite for the use of the maximum-likelihood ratio algorithm is that the data are multivariate nor-
mally distributed (Appendix D). The non-Gaussian distributions of the 4,100 grid-sampled training-set points
could have conceivably accounted for the poor performance of the maximum-likelihood ratio in classifying
the 24 land-use classes of the one-ninth image sample. However, the central limit theorum essentially states
that the distribution of either the sums of averages of n measurements drawn from any population tend to
possess, approximately, a normal distribution in repeated sampling when n is large (Referenec 43). The

exact form of the distribution of the grid-sampled points is not now known, but the normal approximation
was justifiable in the four- and six-variable combinations in which the Landsat image bands were numerically
dominant.

This presented the perennial problem of equal versus weighted probabilities for predicting from a training
set to an unknown image scene. The use of equal a priori class probabilities presumes cqual likelihood of
cach land use in the larger scene, whereas weighted probabilities presume that the image analysis has “a
priori” knowledge of the approximate amount of each land use within the classification set. Some knowl-
edge of the amount of cach land use in the scene is invariably available or could be achieved by a cursory
inspection of Landsat imagery in the photographic form. The 1/81 point-sampled training set represented
a probability sampling proportional to total land-use area in the larger sampled image. Thesc a priori class
probabilitics were used tor both training-set and image-classification efforts. The statistical benefits of
inputing this a priori knowledge to the lincar-discriminant analysis, versus the assumption of equal proba-
bilities, was also tested and verified here for the different combinations and at both the first- and composite
second- and third-order levels (table 22).

Finally a clear economic advantage was also illustrated irrespective of classification accuragicy as the
maximumelikelihood ratio algorithm took 321.2, §83.7, and 1,574.6 scconds, respectively, for the

four-, six-, and 22-variable combinations. A computational time advantage emerged for the linear-discriminant
analysis function, which took 417.6, 441.4, and 624.0 seconds, respectively, for five-, seven-, and 22-variable
combinations (table 21). Clearly, the lincar-discriminant function was much less sensitive to the increasing
number of channels. A turther cost advantage eracrges if cost is weighted by classificational accuracies for

a comparative analysis.

PRODUCTION OF LAND-USE MAPS

Atter the feature-extraction step is completed, the fourth step in the pattern-recognition process is that of
decision and classification. Al cells of interest are tested against all features selected for representation in

the feature-extraction step, A probabilistic decision is then made to determine into which class cach cell is
placed.
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FIGURE 569. VERIFICATION ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE (August 16, 1973)
LANDSAT IMAGERY OF THE DENVER METROPOLITAN AREA WITH TEN MSS-BAND/RATIO VARIABLES
AND 31 ANCILLARY LANDSCAPE VARIABLES. This figure is based on identifying the 24 land uses (table 1)
with 4,100 grid-sampled picture elements and the 1972-1973 USGS land-use data plane, The Landsat image variables
were forced in a predetermined order (table 19), and the landscape variables were added in a free stepwise fashion.
The variable numbers coincide with the step numbers and MSS-band and data-plane identities in table 20.
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TABLE 20

IMPROVEMENT IN THE VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION BY THE ADDITION
OF 31 ANCILLARY VARIABLES FOR A SINGLE-DATE (August 15, 1973) LANDSAT IMAGE OF THE DENVER
METROPOLITAN AREA, This table is based orn identifying 24 land uses (table 1) with a test sample of 4,100 picture ele-
ments. These elements were systematically sampled from the center of each nine-by-nine array of picture elements and identi-
fied and grouped by the land-use codes specified by the 1972-1873 USGS land-use data plane, The Landsat-1 variables were
forced in a predeterniined order (table 19), and the landscape variables were added in a free.stepwise fashion and were clas-
sified using linear-discriminant analysis,

Traming-Set Cutrect Pointy/C-p
Classification o.pe Second Expended (1)
Total Correct Time N
N:;:.I?cr Variable Lntered !’omts l’ux.m\ Fxpended Step Average :o‘;:::i
Correet (] {seconds)
Landsat (forced)
| MSS-7 tsolar infrared) 1.290 .40 4245 30.39 30.39 68.56
2 MSS-5:MSS-4 ratio 1417 34,56 4384 3232 31.37 37,02
3 MSS-7.MSS-S ratio 1498 306.40 42,28 35.38 32.09 38.601
4 MSS-4 tvisible greent 1.55¢ 37.83 46.52 33.34 3806 25.46
5 MSS-5 tvisible red) 1.570 2%.29 4748 3307 AT 5256
6 MSS-7:MSS-4 ratio 1.562 38.10 4848 32 327 10.5¢
7 MSS-5/MSS-6 ratio 1.502 310 49,27 304 12.61 9.10
X MSS-7°MSS-0 ratio L5 3R,29 S0.52 3108 240 .44
9 MSS-6 (solar infrared) 1575 %41 51.28 30.73 3%40 1.08
10 MSS-0;MSS-4 ratio 1.878 %41 S.00 29.94 31.98 228
Landscape tireet
1" Tapographic clevation 12 43.71 SAKK 320 22,08 259.46
12 Average number of can per tamily 1017 46,70 8524 KEN ] 3233 4,34
13 Built-up urban area MDY 2080 s0.18 Sn.82 26,38 RAX) 65,53
14 Topographic slope 2040 49,70 ™07 RARY) 32.91 S6.07
15 Average number of lamilies per acre 120 1.7 L AL 35.90 3318 32,39
lo 1969 medn lanuly income 2R SLon n1" 38,20 33.30 2511
1?7 Median housing-umt value 2427 S1K% 6144 02 3339 30.21
1% Surficial geology 2018 81,59 (IR ER R 2341 J0.00
19 Composate minor-road MD 2R SLG 63490 3.2 2340 16,50
20 Landsat-1 image tnsolation 2136 10 66,23 228 33.33 14.20
M Freeway interchange MD AR} Sus [ RY] i 3.0 1126
22 Freeway MD 2100 413" 6X.00 n.a? 307 f3.09
h&} Median housing-umt rent 2017 N K7L 64,21 0.5 394 10.49
M Landsat- 1 MSS-5 insolation tatio B $).%0 7). 49 EIRI] a2 B2
25 Total twercar lamibies 2128 Stx3 TN K1 1.4 %14
o Landsat-1 MSS-4 insolation ratio Y B | 31T R[] ag RRE ) 048
i Totdl one-car tanulies 2140 |20 ~4.50 I L 6,45
28 Total population 2184 8283 K33 2180 2200 .00}
29 Fotal tamilies 2182 24 TR it ) i K4 793
k1] Total three-car families AT SL7 CA0 2701 3Lon K00
i} Total constis-tract avteape pA ) 4290 K004 0 .40 5,82
2 Composite magor-road M1) 2ed R} Al RS NIYTH . 20 X
KX} Total occupied housng units 2.1t S8 8ol 24K Lol 450
kL) Ascerape aumber of vgoant housing b st NS BATRY LITEN LK}
wmts por acre
8 Fotal vacant housng amts JINS AR LI AR ] 0 61 (R
in Topagraphie aspect tad AR | AT AN RY LR g
Rl Fotal seat-tound housing umits AT ERETEY Nn LN ) LTI tur
K Lamndsat 1 MSS 6 insolation tatns M EERNT! IR RN wm AR
i Avcrape number of st tound housny t Stas et i U] AU 18
wnits pot acre
40 Population density pet ane Y Y LR ar ARRIR} Ml 1
41 Fandsat 1 MSS " insalation tatio ATH SN aroN T MUY 1 on
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FIGURE 60. MAP-VERIFICATION ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE LANDSAT
IMAGERY OF THE DENVER METROPOLITAN AREA WITH TEN MSS-BAND/RATIO VARIABLES AND 31

ANCILLARY LANDSCAPE VARIABLES. This figure is based on iden
grid-sampled picture elements representing the 1972-1973 land-use

tifying 24 land uses (table 1) for 36,864
data plane, The Landsat image variables were

forced in a predetermined order (table 19) and the landscape variables were added in a free stepwise fashion and

were classified using linear-discriminant analysis. The variable number:

band and data-plane identities in table 21.
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TABLE 21
MAP-VERIFICATION ACCURACY ACHIEVED WITH THE GRID-SAMPLING APPROACH TO ASSEMBLING TRAINING.
SET STATISTICS (August 15, 1973, image). The one-ninth map accuracy of the sample image classification detailed below

used the 4,100-point sample statistics and was in close agieement with the 41-varigble training-set resuits (table 20), This
table is based on identifying the 24 land uses (table 1) with a sample of 36,864 picture elements systematically selected as the
center of each three-by-three array of picture elements and checked by direct cell-by-cell comparison with the 1972-1973
USGS land-use data plane. The 41 variables were entered in exactly the sarhe stepwise order as determined by the grid-sampled

training set (table 20),

Training-Set Correct Points/C-P
Classification C-p* Second Expended
Total Correct Time
N:tt:ger Variatile Entered Points Po‘ints Expended Step Average :: ‘g:;i
Correct (%) (seconds)
Landsat (forced)
1 MSS-7 (solar infrared) 11,246 30.31 368.55 30.51 30.51 68.56
3 MSS-7/MSS-$ ratio 12,939 35.10 395.10 3275 3107 38.61
5 MSS-$ (visible red) 13,687 3713 417.55 32,78 32.06 5256
7 MSS-5/MSS=6 ratio 13,652 37.03 441,35 30.93 31.75 9.10
9 MSS-6 (solar infrared) 13,645 37.01 467.69 29,18 31.18 1.08
Landscape (free)
11 Topographic elevation 16,027 43.48 499.18 32% 3148 259.46
13 Built-up urban area MD' 18,161 49.26 514.49 35.30 3211 65.53
15 Average number of families per acre 18,664 50.63 530.46 35.18 3256 32.39
17 Median housing-unit value 18,786 50.96 552.37 34.01 32,75 30.21
19 Composite minor-road MD. 18,920 51.32 576.98 3279 32.79 16.50
23 Median housing-unit rent 18,849 51.13 623.99 30.1 3246 10.49
27 Total one-car families 18,986 51.50 672,05 2825 31.99 6.45
31 Total census-tract acreage 19,210 $2.11 72117 26.64 31.42 5.52
36 Topographic aspect 19,408 52.64 772,18 25,13 30.78 3.02
41 Landsat-1 MSS-7/insolation ratio 19,482 52.85 825.90 23.59 30,07 0.96

*C-P = central processor,
™MD = minimum distance,

Selection of Optimal Mapping Variabiles

Before the full 576 by §76-cell image/landscape scene was actually classified, a search was made for an
efficient subset of the 41 possible classification variables, This optimization was made necessary by the
combination of the large number of variables and the size of the image. It was predetermined that a number
of image variables would be included in this subset so that the resultant classification map would not be
unduly influenced by the ancillary landscape variables mapped 2 to 3 years earlier.

Examination of results achieved with the 1/81 grid-sampled point-training set were also useful in this
capacity (figures 57, 58, and 59). Only four bands (MSS-7, MSS-5/MSS-4 ratio, MSS-7/MSS-5 ratio, and
MSS-4) accounted for practically all of the accuracy in the ten-image channel test (figure 58 and table 19).
Likewise, the first six to ten ancillary variables contributed the greatest accuracy gains to the 41-channel
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Qlariable 1 Added Val’iable 5 Added Variable 9 Added 'Vanable 13 Added !
—turat (gray) and urban (black) land use veritied at the first order ‘

gray point was plotted on the display if the individual cell was correctly classified for the variable added. The

=>orrectness was made against the corresponding cell on the 1972-1973 USGS land-use data plane. The classification

for the 24 second- and third-order land-use classes and was then checked at the six first-order categories only,
~hich were used in the classification are identitied in table 21. Display scale is 1:650,000.
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FIGURE 61, STEP-BY-STEP CLASSIFICATION OF THE
LAND USE OF THE DENVER METROPOLITAN AREA
VERIFIED AT THE FIRST ORDER (August 15, 1973,
Landsat-1 image).
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or gray point was plotted on the display if the individual cell was correctly classified for the variable added, The
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=d in the classification are identified in table 21. Display scale is ~ 1:650,000. 1‘
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FIGURE 62. STEP-BY-STEP CLASSIFICATION OF THE,
LAND USE OF THE DENVER METROPOLITAN AREA,
VERIFIED AT THE SECOND AND THIRD ORDERS
(August 16, 1973, Landsat-1 image), {
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Display scale 1:600,000 o Display scale 1:600,000

(a) Original 24 Second- and {b) Composite Six First-Order I
Third-Order USGS Classes USGS Classes "

FIGURE 63, VERIFIED MAP ACCURACY FOR THE DENVER METROPOLITAN AREA FOR ALL USGS
LAND-USE CLASSES AT THE 4'* STEP (August 18, 1973, Landsat-1 image). The iinear-discriminant classi- 1
fication tested here employed the 41-image/map variables exclusive of land use, A point was plotted in black
if the individual cell was correctly classified when checked against the corresponding cell on the 1972-1973

USGS land-use data plane, This image (b) represents the same 24 classes but was checked for correctness at the
six first-order classes only,

training-set test (figure 59 and table 20). Five test runs with no forced variables were made on the 1 /81
training set with the four image bands and the six, seven, eight, nine, and ten landscape variables, progres- :
sively adding anot.ier landscape variable for each successive test. The ten-channel combination using six
landscape variables proved to be the most accurate, correctly classifying 2,091 points for a S1-percent J
verified accuracy (figure 66 and table 23), |

The use of the ten channels achieved 94 percent of the maximum accuracy that could have been obtained

with all 41 variables. However, it represented an expenditure of only 34 percent of the processing time j
that would have been needed. !

ORIG
First-Order Theme Map OF Pg‘logl'qlt’ﬁ(i%s |

Eachi of the following first-order classification displays that resulted is composed of three thematic maps: i
(1) the 1972-1973 USGS land-use data plane for reference; (2) the verified discriminant-classified map

showing only correctly mapped 0.4-ha (1.111-acre) picture elements; and (3) the actual discriminant- ‘
classified map. Unfortunately, the lack of an appropriate color-display device necessitated the cumber- .
some display of each separate first-order theme map in black-and-white. Using this general approach, the
six aggregate first-order categories were displayed for the zoomed USGS reference data plane, the verified ‘
classification map, and the machine-processed land-use map (figure 67). ;
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TABLE 22

COMPARATIVE ACCURACIES OF MAXIMUM:-LIKELIHOOD AND LINEAR-DISCRIMINANT IMAGE-CLASSIFICATION 1
ALGORITHMS. The accuracy of each of these two automated image classifications was checked point-by-peint at a first and
composite second and third order against the digital 1972-1973 USGS land-use data plane for three different combinations of
Landsat-1 image and/or anciliary map variables, The maximum-likelihood classification was performed on the sampled image
of 36,864 points, and for economy, the linear-discriminant tests were run on the 4,100 systematically sampled points only,

First-Order Verification (percent) Second-Order Verification {percent)
Number | Maximum- | LinearDiscriminant Analysis Maximum- Linear-Discriminant Analysis
of Likelihood Equal A Priori Likelihood Equal A Priori

Variables Ratio Probabilities | Probabilities Ratio Probabilities | Probabilities 1’ }

. i
: 4

Four* 53.6 50.9 65.2 4.3 19.1 37.9 :
sixt 68.1 70.6 73.1 15.4° . -. 32.3 46.3 ' i
Twenty- .

Two 61.5 73.1 . 75.6 2.4 37.2 48.3 !

*Four original Landsat-1 MSS.bands,

*six channels: MSS-4, MSS-7, MSS-7/MSS-5 ratio, MSS-5/MSS-4 ratio,
built-up urban-area minimum distance,

*Twenty-two channels: four original Landsat-1 MSS bands, six Landsat-1 band ratios, four Landsat-1
MSS/insolation ratios, Landsat-1 image insolation, topographic aspect, topographic elevation, composite

minor-road MD, composite major-road MD, freeway MD, freeway interchange MD, and built-up urban-
area MD (MD = minimum distance),

topographic elevation, and

Second- and Third-Order Theme Maps

The eleven second- and third-order urban land-use classes were displayed for the USGS land-use reference

data plane, the point-verified discriminant~classified land-use map, and the actual discriminant- classification
map (figure 68).

The three third-order agricultural land-use classes were displayed for the USGS land-use reference data plane,

the point-verified disctiminant-classified land-use map, and the actual discriminant-classification map (figure
69).

The three second-order water land-use classes were displayed for tt.e USGS land-use reference data plane,

‘he point-verified discriminant-classified land-use map, and the actual discriminant-classification land-use
map (figure 70).

The two second-order range land-use classes were displayed for the USGS land-use reference data plane, the

point-verified discriminant-classified land-use map, and the actual discriminant-classification land-use map i
(figure 71). :
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FIGURE 66. TEST OF FINAL TEN-CHANNEL COMBINATION OF LANDSAT AND LANDSCAPE VARIABLES
FOR THE FULL IMAGE CLASSIFICATION. This figure is based on identifying 24 land uses (table 1) with 4,100
grid-sampled picture elements. This ten-variable combination was selected as an optimal subset of the 41 available
imege/ancillary variables, It realized over 94 percent of the maximum accuracy that could have been obtained with
all 41 variables, but represented an expenditure of only 34 percent of the processing time, All variables were added in
a free stepwise fashion and were classified using linear-discriminant analysis.
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TABLE 23
TEST OF FINAL TEN-CHANNEL COMBINATION OF LANDSAT AiWD LANDSCAPE VARIABLES FOR FULL IMAGE
CLASSIFICATION (August 165, 1973 image), This table is based on identifying 24 land uses (table 1) with 4,100 grid-
sampled picture elements, This ten-variable subset retained over 94 percent of the full 41-variable training-set accuracy
while expending only 34 percent of the computer time, All variables were added In a free stepwise fashion and were clas-
sified using linear-discriminant analysis,

Training-Set Coirect Points/C-P
Classification C-p* Sceond Expended (5)
Ste Luandsat and Landscape Total Cor.r eet , Time F-Value
Numger Variables Entered P (,'::_?;z P:;;TS :"::‘::;:ﬂz;‘ Step Average to l‘;‘ntcr
| Topographic elevation 1428 34.83 19,51 73.19 73.19 318,73
2 Built-up urban-area MDY 1,701 41.49 20.92 81.31 77.39 88.79
3 Average number of familics per acre 1,892 46.15 226 85.00 80.09 75.06
4 Landsat-1 MSS-7 (solar infrared) 1,921 46.85 23.76 80.85 80.30 61.53
s Toposgraphic slope 1,911 46,61 25.66 74.47 78.97 §7.42
6 Average number of year-round housing 2,038 49.71 25,95 78.54 78.89 40.50
units per acre
7 Landsat-1 MSS-5/MSS-4 ratio 2,035 49,63 27.16 74.93 78.24 29,75
8 Median housing-unit value 3059 50.22 28.26 72.86 77.45 26,33
9 Landsat-1 MSS-7/MSS-5 ratio 2,063 50.32 29,55 69.81 76.44 20.44
10 Landsat-! MSS-4 (visible green) 2,091 51.00 3166 66.05 75.15 .77

*C-P = central processor,
tMD= minimum distance,

The second- and third-order barren land-use classes were displayed for the USGS land-use reference data plane,

the point-verified discriminant-classified land-use map, and the actual discriminant-classfiication land-use map
(figure 72).

The three third-order forest land-use classes were displayed for the USGS land-use reference data plane, the

point-verified discriminant-classified land-use map, and the actual discriminant-classification land-use map
(figure 73).

Verification

The verification of classification results in this study was a highly structured procedure.  An advantage of the
quantitative orientation taken throughout this endeavor was the explicit quantitative verification of results,
The great utility of the computer lay not only in the capability of massive data manipulation, but also in the
face-to«face confrontation of the uncertainties in the results and in a conscientious examination of the various
sources of possible errors.
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Display scale 1:260,000

(b) Verification map of the six first-order classifications (c) where points are plotted
only if they check with USGS map (a).

BLACK = All water areas (62.0% correct)
DARKEST GRAY = All range areas (56.3% correct)
DARK GRAY = All agricultural areas (66.7% correct)
GRAY = All forest areas (66.3% correct)
LIGHT GRAY = All barren areas (35.0% correct)
LIGHTEST GRAY = All urban areas (89.3% correct)
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Display scale 1:260,000

(c) Six first-order land-use classes identified using discriminant analysis with
four image and six ancillary variables.

BLACK = All water areas

DARKEST GRAY = All range areas
DARK GRAY = All agricultural areas

GRAY = All forest areas

LIGHT GRAY = All barren areas

LIGHTEST GRAY = All urban areas

FIGURE 67. COMPARATIVE DISPLAYS OF THE DIS-
CRIMINANT CLASSIFICATION, A VERIFICATION OF
THAT CLASSIFICATION, AND THE USGS MAP OF THE
SIX FIRST-ORDER LAND-USES OF THE DENVER AREA.
Scale 1:260,000.
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(a) Eleven second- and third-order urban larid-use classes identified by USGS airphoto interpretation.
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{b) Verification map of the eleven second- and third-order urban land:use classifications (c)
where points are plotted only if they check with USGS map (a).

BLACK = Industrial/transportation {42.1% correct)
DARK GRAY = Cemetery/recreational/open land (0.1% correct)
MEDIUM GRAY = Utility/public and institutional (49.2% correct)
GRAY = Solid-waste dump/extraction (0.0% correct)
LIGHT GRAY = Residential/commercial and services (78.0% correct)
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(c) Eleven second- and third-order urban land-use classes identified using discriminant
analysis with four image and six ancillary variables.

BLACK = Industrial/transportation
DARK GRAY = Gametery/recreational/open land
MEDIUM GRAY = Utility/public and institutional

GRAY = $Soiid-waste dump/extraction «NAL PAGE 13
ORI QUALITY

LIGHT GRAY = Residential/commercial and services OF POOR QU

FIGURE 68, COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASS FICATION, AND THE USGS MAP OF THE URBAN
LAND USES OF THE DENVER AREA. Scale 1:250,000.
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Display scale 1:250,000
(a) Three second-order agricultural land-use classes identified by USGS airphoto interpretation.

BLACK - {rrigated cropland
DARK GRAY = Pasture

LIGHT-GRAY = Nonirrigated cropland .. .. ... oo e e e e e e
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(b) Verification map of the three second-order agricultural land-use classifications (c)
where points are plotted only if they check with USGS map (a),

BLACK = Irrigated cropland (65.4% correct)
DARK GRAY = Pasture (28.5% correct)

LIGHT GRAY = Nonirrigated cropland (38.8% corract)
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(c) Three second-order agricultural land-use classes identified using discriminant
analysis with four image and six ancillary variables.

BLACK = lrrigated cropland
DARK GRAY = Pasture
LIGHT GRAY.- =..Nonirrigated.cropland___. ___

FIGURE 69. COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGS MAP OF THE AGR/-
CULTURAL LAND-USES OF THE DENVER AREA, Scale

1:260,000,
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(a) Three second-order water-type classes identified by USGS airphoto interpretation.
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(b) Verification map of the three second-order water-type classifications (c)
where points are plotted only if they check with USGS map (a).

BLACK = Streams and waterways (0.35% correct)
DARK GRAY = Lakes (58.0% correct)
LIGHT GRAY.=.Reservoirs (68.1% correct)
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{c) Three second-order water-type classes identified using discriminant
analysis with four image and six ancillary variables.

BLACK = Streams and waterways
DARK GRAY = Lakes

LIGHT GRAY = Reservoirs ORIGINAL PAGE IS

OB POOR QUALITY

FIGURE 70. COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, ANT THE USGS MAP OF THE WATER-
TYPE CLASSES OF THE DENVER AREA. Scale 1:260,000.
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BLACK = Chapparal (taken as brushland)
DARK GRAY = Grassland

| FOLDOUT FRAMK
JKIGINAL PAGE IS
P POOR QUALITY!

I3

i :
TR
T \.l;. B
i
Ol
—hin

Display scale 1:236,000
(a) Two second-order rangeland classes identitied by USGS airphoto interpretation.
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(b) Verification map of the two second-order rangeland classifications {c)
where points are plotted only if they cneck with USGS map (a).

BLACK = Chapparal (taken as brushland) (40.9% correct)
DARK GRAY = Grassland (64.9% correct)
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(c) Two second-order rangeland classes identified using discriminant
analysis with four image and six ancillary variables.

BLACK = Chapparal (taken as brushland)  qaranvat PAGE IS
DARK GRAY = Grassland OF POOR QUALITY

FIGURE 71, COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGS MAP OF THE RANGE-
LANDS OF THE DENVER AREA. Scale 1:250,000.
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(a) . Two secondsorder barrenland classes identified by USGS airphoto interpretation. ;
BLACK = Exposed rock |
DARK GRAY =. Hillslopes i
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(b) Verification map of the two second-order barreniand classifications (c)
where points are plotted only if they check with USGS map ().

BLACK = Exposed rock (8.7% correct)
DARK GRAY = Hillsiopes (38.6% correct)
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(¢) Two second-order barrenland classes identified using discriminant |
analysis with four image and six ancillary variables.

BLACK = Exposed rock
DARK.GRAY-= .Hillslopes._ . ._....

FIGURE 72. COMPARATIVE DISPLAYS OF THE DISCRIM- |
INANT CLASSIFICATION, A VERIFICATION OF THATJ
CLASSIFICATION, AND THE USGS MAP OF THE BAR- .
RENLANDS OF THE DENVER AREA. Scale 1:260 000.1
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{a) Thres second-order forestland classes identified by USGS airphoto interpretation.

BLACK = Deciduous/intermediate crown
DARK GRAY = Céniferous/intermediate crown
LIGHT GRAY = Coniferous/solid crown
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(b) Verification map of the three second-order forestiand classifications (c)
where points are plotted only if they check with USGS map (a).
BLACK = Deciduous/intarmediate crown (0.0% correct)
DARK GRAY = Coniferous/intermediate crown (2.8% correct)
LIGHT GRAY = Coniferous/solid crown (81.3% correct)
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-8 (c) (c) Two second-order foréstland classes identified using discriminant
analysis with four image and six ancillary variables.

BLACK = Deciduous/intermediate crown
DARK GRAY = Coniferous/intermediate crown .
LIGHT GRAY = Coniferous/solid crown ORIGINAL PAGtH:

~INAL PAGE - OF POOR QUALI!-

T)' :
1 QUALY: |
?OOB FIGURE 73, COMPARATIVE DISPLAYS OF THE DISCRIM-

INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGS MAP OF THE FOREST-
LANDS OF THE DENVER AREA. Scale 1:250,000.
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The final ten-channel discriminant function-classified land-use map was checked cell-by-cell against the ex-
panded 1972-1973 USGS reference map (Appendix C), The average verification accuracy for all second-

and third-order land uses was 50, | percent, whereas the average verification accuracy for all first-order land
uses was 76,3 percent (table 24). The 50.1=percent final verification accuracy was in close agreement with

the 51.0-percent verification accuracy achieved with the 1/81-grid sumple of 4,100 points during the de-
velopment of the discriminant function (table 23),

The first-order classification results were, in order of decreasing accuracy:
®  Urban land use (89.3 percent)
®  Forest lund use (66,3 percent)
®  Water land use (62.0 percent)
®  Agriculture land use (56.7 percent)
®  Rangeland use (56.3 percent)

®  Barren land use (35.0 percent)

The second-order classification results were, in order of decreasing aceuracy: {
®  Residential (84.9 percent)
®  Reservoirs (58.1 percent)
®  Lakes (56.0 percent)
®  Grassland (54.9 percent)
®  Institutional (51.1 percent)
®  Transportation (45.3 percent) |
¢  Chapparal (taken as brushland) (40.9 percent)
®  Industrial (40.5 percent)
®  Commercial and services (25.3 percent)
®  Bare exposed rock (8.7 percent) '

®  Open and other urban (7.4 percent)

®  Streams and waterways (0.4 percent) ]

®  Extractive (0.1 percent)
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TABLE 24
FINAL TEN-CHANNEL LINEAR-DISCRIMINANT CLASSIFICATION RESULTS USING FOUR
LANDSAT AND SIX ANCILLARY LANDSCAPE VARIABLES. The verification accuracy of the
machirie-processed single-date Landsat-1 image (figures 87 through 73) are given. The tabulations
waore based on checking 24 land uses on a point-to-paint comparison with the 1872-1973 USGS land-
use data plane, The compasite second- and third-order average classification aceuracy of 60,1 percont
substantially agreed with the §1,0-percent value pradicted by the 4,100-point grid-sampting tralning.

set sample (table 23),

First-Order Land Use/Land Cover Total Total Classification
Second-Order Land Use/Land Cover UsGs Cells Accuracy
Third-Order Land Use/Land Cover Colls Corrovt {pereent)
Urban and Built-Up Land
Residential 98,070 83,701 84,88
Commeseial and services 12,828 3238 28,28
Reereationul 13,113 2073 15.81
Industrial 13,330 4,997 40,83
Extractive 4,824 0 .12
Transportation §,922 2088 45,34
Utitities Lato 0 0.060
Institutional 2313 14,908 §1.00
Open and other urban 22,239 1,042 7.38
Solid-waste dump 234 0 0:00
Cemetery 1Lu71 0 0.00
Subtotal/ Average 202,863 180,781 89,28
Subtotal/ Average 180,129 111,297 §9.80
Subtotal/ Average lod434 2,073 12.01
Agricultural Land
Nonirrigated cropland 460,920 18,228 38,84
Ierigated ceopland 70 477 65,43
Pasture 34,542 9,880 28.82
Subtotal! Average 82197 40,019 5072
Subtotal: Average 82,197 28,888 A4 74
Rangeland
Grassland 28,281 13,870 54.89
Chapparal 2703 1,129 40.80
Subtotal/ Average AR,044 15,788 56,30
Subtotal, Avetipe 28,044 15,008 §3.50
Forest Lund
Deciduous’intermittent crown K10 0 0.00
Conilerous. solid crown 4,008 3.300 R1.34
Coniferous’intemmittent crown 144 4 LIR
Subtotal, Average 5,022 3,328 66,27
Subtotal Averuge s.022 3313 05.97
Water
Streams and waterways 288 i 0.3
Lakes 4,950 213 S0.02
Resenoins 1,821 883 §8.05
Subtotal; Average 6,759 4,190 61,99
Subtotal Average 0,759 3.087 54,11
Barren Land
Bare exposed roch 1.710 149 R
tHillslopes 5,481 2112 REBR
Subtotal’ Average L19i 2513 408
Subtotal Average Lo 149 8.7
Subtotal, Average S.481 2112 38,53
Aggregate Grand Total Average AL 77 283,219 w32
Aggregate Grand Fotal! Averape RARNE M 130,108 S8.44
Aggregate Grand Total Average 109,134 10,0583 3304
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The third-order classification results were, in order of decreasing accuracy:

®  Coniferous/solid crown (81.3 percent)

®  Irrigated cropland (65.4 percent)

®  Nonirrigated cropland ¢38.8 pereent)

®  Hillslopes (38.5 percent)

®  Pasturc (28.5 percent)

®  Recreational (15.8 percent)

®  Coniferous/intermittent crown (2.8 percent)
e  Cemetery (0.0 percent)

®  Deciduous/intermittent crown (0.0 percent)
®  Solid-waste dump (0.0 percent)

o  Utilities (0.0 pereent)

Several problem areas influenced the potential classification accuracy. One substantial dirficulty was finding

an image or ancitlary landscape variable to adequately represent some of the USGS land uses as land-cover
types.

Another major problem involved the dual use of the 1972-1973 USGS land-use reference data plane for both
training-set feature selection and classification verif ication, Itshould be recognized that this Mmap was not
100-percent correct. The stated 90-percent minimum accuracy of the map may be true for the first-order
classes, but it was nnt verified for any level and therefore is doubtful, A 90-percent accurate USGS reference
map checked point-Uy-point against an equally accurate classification map would yield an 81-percent accurate
output may; this hypothetical 81-percent verification value is close to the actual first-order verified classifics-
tion accuracy of 76.3 percent. A random-point field check of the final classification maps is the only sure
verification technique; in using the USGS map solely as a training data source, a 10- or 20-percent error ma
be statistically forgiven by the statistical nature of the classification procedure, but it cannot be overcome

in a final point-to-point comparison,

However, the most serious question about the 1972-1973 USGS map accuracy arose from a companion
USGS study in which a 1:100,000-scale land-use map was similarly prepared from 1:120,000-scale high-
altitude color-infrared imagery. Land use was subsequently verified by observation from a low-flying air-
craft, and the average photoclassification accuracy was found to be 77.4 percent for !8 second-order classes
of the USGS Circular 671 system (Reference 44),
Total classification time for the ten-variable discriminant function was 2,517.97 central-processor (C-P)
seconds to map the 331,776 picture elements into 24 USGS land-use classes, which averaged ~ 132 points
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processed per - second, An accuracy-weighted classification rate would be ~ 52 correct second-order
points per C-P second ior the 130,108 second-order points correctly classified, Similarly, a rate of ~ 101
carrect first-order points per C-P second was realized for the 253,219 points correctly classified at the first
order,

Direct Cost/Tinwe Analysis

A-detailed anal? sis was performed to assess the various direct computer, labor, and material costs and times
(tuble 25). These parameters wece broken down by submodel and task area as accurately as possible. Direct
computing cosi.; repivsented 85,509,085 of the total $6,981.55, or almost 79 percent of the entire direct-
analysis costs, Only §1,472,50 (21 percent) was expended for direct labor and materials. More important,
the equivalent average cost per unit area for 48-variable multivariate image classification, verification. and
display was calewated as ¢ither 1,9 cents per acre, 4.7 cents per hectare, $12.12 per square statute mile, or
S704,19 per 1:24,000-scale USGS quadrangle,

It was not consid- - 2 appropriate to allocate direct or indirect labor costs other than those reflected because
of the extensive iterative nature of any rescarch effort. The time consumed in searching for, examining, and
disearding potential imagery or maps, for example, was considerable, as was the computer program coding,
debugginrg, and development. A production fand-use mapping mode using these estimates would assume
thiat all input date were on hand and that the computer software was fully implemented.

These costs al, - potentially represent the developmeat, assembly, and testing of a very large data base on one
or ntore limited map areas in order to optimize the selection of specific Landsat/landscape data planes. The
extensim o this classification to a larger area involves the smaller costs represented by analysis of the ten
variables tinally classified here. Total costs for the classification used can be assembled for the same area

as & subset of developinent costs (table 25), These parameters are also broken down by submodel and task
arca and represent direet computer, labor, and material costs and times (table 26). The cquivalent average
cost per unit arca for ten-variable multivariate image classification, verification, and display was calculated

as cither 1.2 cents per acre, 3.2 cents per hectare, $8.21 per square statute mile, or $477.17 per 1:24,000-
scale USGS quadrangle.

SUMMARY

The focus of this phase of the research investigation was the automated identification and mapping of the
various land-use/land-cover types that make up the Denver, Colorado landscape. This endeavor used digital
Landsat imagery and ancillary landscape variables to test different feature-extraction procedures and machine-
classification algorithms on a 48-vasiable data base, The grid-sampled-point feature-selection process made use
of an existing ground-truth referenee map and proved to be superior to the conventional rectangular super-
vised field selection procedure.

A nonparmectrie classiticziion technique. lincar-discriminant analysis with a priori class probabilitics, clearly
proved to be superior to the maximum-likelihood ratio method in common use today. These two algorithms
were tested for identical combinations of four, six, and 22 variables. The 4,100-point 1/81 grid-sampling
image was used as the statistical training set Tor both approaches,

The incrementat contribution of ancillary spatial landscape variables to the classification of Landsat spec-
tral data was quantified with a stepwise linear-discriminant function. A ten-channel combination of Landsat
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TABLE 26
OST/TIME TABULATION FOR SINGLE DATE 48-VARIABLE LANDSAT ANCILLARY LAND
SCAPE VARIABLE CLASSIFICATION OF THE DENVER METROPOLITAN AREA. These frgures

.

are based on the Conttol Data Con poration G400 computer and system used at Colorado State

University at the basic campus esedrch tate ot $290 per machine hour and an houtly wotk ratio ot $6
per man hour, Quoted figuies represent only direct computer, labor, and matetial costs times, They
aceaunt tor one-time costs only and do not represent redoing anything. Many of the computer pro
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TABLE 26

COST/TIME TABULATION FOR SINGLE.-DATE, TEN-VARIABLE LANDSAT/ANCILLARY LANDSCAPE
VARIABLE CLASSIFICATION OF THE DENVER METROPOLITAN AREA. These tigutes are based on the
Control Data Corpotation 8400 computer and system used at Colorado State University at the basic campus re-
searclt tate of $290 per machine houwr and an hourly work rate of $6 per man-hour, Quoted figures represent only :
diteet computer, labor, and material costs/times, They account tor one-time costs only and do not represent redoing 5 1
anything. Only the steps that would actually be employed in extending the concepts learned with the 48-vatiable
tests were costed, For case of comparison, the area analyzed.here was assumed to be the same size.
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basic bands and ratios produced an average verification accura
ancillary variables (topographic clevation, average number of

minimum distance) increased thi. verif
use spatial variables raised the final dverage accuracy to only §3.9 percent,

¢y of 38,4 percent. The addition of three
ars per family, and built-up urban-area
cation accuracy to over 50 pereent, but the successive 28 nonland-

An optimal ten-channel combination of four Landsat image
used to classify the full §76- by S7o-clement image into 241
with the 1972-1973 USGS land-use reference data plane
siX aggregate first-order classes, Average accuracy for th
33.0 percent, respectively, but three urban and one for
classifications,

bands and six ancillary landscape variables was
and-use categories, Poin t-by-point comparison
showed an overall aceuracy of 70,3 percent for the
¢ 24 seeond- and thirdorder classes wis §8.4 and
est third-order categories received no correct

A detailed cost/time tabulation for the multivariate data compilation,. registration, classitication. verification,
and display showed the average cost of developing the model to be 1.9 cents per acre, 4,7 cents per heetare,
$12.12 per square mile, or $704.19 per 7.5-minute USGS quadrangle. Actual production application of the
selected optimal channels and signatures yiclded costs of 1.3 cents peracre, 3.2 cents per heetare, $8.21

Per square statute mile, or $477,17 per 7,5-minute USGS quad rangle,
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CHAPTER §

CONCLUSIONS

SUMMARY

Significant findings were made in the related study of spatial land-use projection and Landsat image classifi-
cation, The first line of investigation was an attempt to estimate land-use changes using multivariate map
variables and known points of change from aerial photointerpretation, Statistical relationships were developed

for both change and nonchange land-use types with 27 physiographic, socioeconomic, and transportation
variables,

The general land-use change model was formulated as a linear-discriminant function using 4-ha (10-acre)

square cells as prediction units, Map-derived independent variables were numerically related in the multi-
variate structure of this model to known imagery-derived cells of change,

Seven models were tested for focusing upon cropland and pasture agricultural land—the primary 1963
land-use change class, Change prediction accuracies ranged from 42 to 57 percent. Although these results
were encouraging, they were difficult to assess because of the scarcity of similar studies, Although the cur-
rent analysis was tentative and exploratory, nonctheless it indicated the feasibility of developing spatial

land-use projeciion models. Clearly, their application could be of considerable utility in future improved
land-use planning activities.

The parallel application of linear-discriminant analysis for Landsat multivariate image classification has con-
firmed the value of this flexible statistical ter ique, Various feature-extraction methods and supervised
machine-classification algorithms were tested o1 a sin c-date Landsat image augmented by 38 additional
channels of ancillary map data spatially registered to the spectral-image data base. The overall objective

was to systematically test these factors in producing a land-classification map, using a current USGS
land-use map as a reference,

The comparison of two sampling methods for statistical feature extraction indicated a wide variation in
trial classification test results and applicability to image processing (Appendix E): The conventional
rectangular training field selection process resulted in a very high test-classification accuracy, but was
invalidated after poor classification results on a larger one-nirith image sample. However, the systematic
point-grid sampling gave highly repeatable results. This 1/81-image sample provided not only sample
points distributed over the entire image, but also useful a priori land-use probabilities,

These a priori class probabilities enabled the linear-discriminant function to far outclassify the widely
used maximum-likelihood ratio algorithm, Both procedures were compared on three test sets of image and
ancillary landscape variables using the same point-training set developed earlier,

Verification of the §76- by 576-point Landsat image classification with the USGS reference map showe.
an average accuracy of over 76 percent at the generalized first-order categories, The ten-variable discrim-
inant function used also classified the 24 second- and third-order classes at accuracies of 58.4 and 33.0
percent respectively,
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A significant achievement of this study was the creation of a composite Landsat image file consisting of
ten spectral bands and ratios ¢ rlaid by 38 map-derived ancillary land-use, nhysiographic, sociocconomic,
transportation, and MSS/insolativa ratio variables, Statistical testing showed these collateral variables
(excluding land-use data variables) increased classification accuracy by over 40 percent: however, just
three selected additional ancillary variables added over 30 percent of the increased aceuracy.

The USGS Circular 671 scheme, developed for high-altitude aircraft and satellite data inputs, worked
reasonably well as a hicrarchical classification system at both the first- and second-order levels in this
supervised machine-interpretation effort, However, it appeared that much more detailed ancillary data
will be needed for accurately interpreting the third-order urban classes. The inherent remaining problem
in urban settings is the repetitive use of manmade building materials in a diversity of urban land uses.
Fortunately, the USGS land-use classification system is predominately land-cover oriented and is therefore
useful for remote sensing discrimination, The ancillary data compensated, in large part, for the land-use
versus land-cover confusion factor in the seven secorid-order urban classes but did not do well for the four
third-order urban classes. Average classification accuracy .was 59.8 percent for the second-order urban
classes but only 12,6 percent for the third-order urban classes. Lastly, the fixed a priori classes of the
USGS system tt  2nable the results of its application to be intercompared from area to area pose a
potential problem for the unsupervised clustering algorithms coming into general use (Reference 45).

The average direct cost for the optimized model for 24-class land-use mapping of the Landsat scanner
imagery and associated ancillary map overlays was $0.0468 per hectare ($0.0189 per acre). Based on these
costs, the mapping of a 7.5-minute USGS quadrangle would be $704.19, These unit-area costs included
extensive geometric correction preprocessing, ancillary data registration, feature extraction, classification.
verification, and display operations, The production costs of cmploying this approach were $0.0128 per
acre, $0,0317 per hectare, $8,21 per square statute mile, or $477.17 per 7.5-minute USGS quadrangle,
Computer time was billed at $290 per hour, and personnel wages were set at $5 per man-hour.

RELATED APPLICATIONS AREAS

A considerable quantity of landscape data was assembled during this study. An increasingly important
facet of land-use planning is facilities siting, perticularly fossil fuel, hydroelectric, geothermal, and nuclear-
power plants, Thus, a new, comprehensive, land-use planning data base must encompass even more
ecological, environmental, hydrological, land-use, dnd natural resource data.

These long-term construction projects are enormously costly, heavily regulated by governmental agencies,
scrutinized by citizen watchdog groups, and vulnerible to location errors. Inadequate dats may result in
structures of the wrong size or scope with consequent losses from destruction or damage, failure to take
advantage of economic potential, or excess capacity (Reference 25). Consequently, these engineering
projects are planned with consummate knowledge and care, and they provide an even more logical place
to apply the landscape assessment and modeling methods developed here,

More appropriate planning data and modeling of this type could be used to avoid agricultural investment

where the climate is inappropriate or in designing dams, bridges, and irrigation works more in accord with
the true characteristics of the site (Reference 25).
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Most important, however, these comprehensive data bases will permit full development of the computer
modeling techniques necessary for predicting how the landscape will spatially evolve in response to various
seenarios of anticipated alternatives (References 8 and 40). The seenarios simulated and evaluated could
include diverse objectives, such as the control of shifting cultivation in underdeveloped countries, new
soning boundaries for urban land planning, alternate sites for a new power plant, or the environmental
impact of siting a new dam,  Land management in general, and land-use planning in particular, would be
substantially improved it the future spatial impacts ot a contemplated action could he aceurately modeled
before any commitment to a long-term, rigid course of action,

RECOMMENDATIONS

When this S-year study was completed. six recommendations appeared to be appropriate, The first three
deal with ancillary data inputs, and the remainder Jdeal with machine interpretation and processing, Al six
recommendations impact on the landscape modeling approach to land-use planning outlined in this study.

Socioeconomic Census Data Densification

The use of census tracts in preparing socioeconomic data planes produced reasonable results in both the
spatial land-use projection modeling and the Landsat land-use/land-cover classitication efforts. Unfortunately,
although a 4-ha (10-acre) ancillary data mapping cell was superimposed, these data planes were not as highly
resolved in a spatial sense as desired for urban planning applications. The use of the smaller enumeration
districts for enumerating densely populated urban areas would improve the data resolution three- to five-

fold.

Topographic Elevation Data Digitization

Fopographic elevation has been shown to be primary constituent of the landscape model. Derivative

data planes included topographic slope, topographic aspect, and solar radiation or insolation. I xXperimenta-
tion with Defense Mapping Ageney (DMA) digital terrain tapes showed glaring deficiencies in the i Jter-
polated 61-m (200-11) contours (Reference 10), Thus, the only alternative was to tediously hand-
cellularize the topographic maps for the precise elevation data needed tor this study, Considerable savings
in both time and money can be realized it the digital terrain models created by the USGS in construe-

ting the 1:24,000-s¢ale, 7.5-minute topographic maps were saved on magnetic tape,

Coliateral Soils Data Inguts

A sail survey is i detailed physical inventory of the soil, showimng its depth, texture, structure, drainage,
stoniness, slope, erosion, and other land features that are helpful in determini -« its use and capability. he
highly usetul data were notavailable for the Densor study arca, Soil type is certainly one of the principal
determinants of land use (Reference 250, s inclusion in the data base would be a usetul addition to the
ancillary piiysiographic submaodel for predicting spatial land-use changes under given circumstances and

for improving the andsat image-cla sification results,

S
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Multidate Land-Use Change Detection

Luand-use change detection involves the comparison of remote sensing imagery or other inventory data for
two different points in times Change detection on a spatial basis provides important planning data in
managing the various landscape components. The use of high-altitude or orbital remote sensing data
provides a near-ortiographic view with attendant synoptic large-arca overview. These images must be in
point gcometric congruence if multiple images are to be processed in a digital computer and point clas-
sifications are to be m: e using statistical pattern recognition techniques, Thus, a principal advantage of
Landsat digital imagery is that time-differing scenes can be transtormed to usable congruence much casier
and at less cost per unit area than any type of aircraft imagery. It is therefore recommended that continucd
effort be expended to supply geometrically corrected data at various selected cell sizes, Because this need
is common to all users, it should be centrally addressed for all data distributed.

Symbiotic Use of Ancillary Map Data

The use of remote sensing images in generating change-detection data can provide metropolitan areas with
the necessary information for structuring viable planes for the guidance and development of the evolution
of these areas, However, for maximizing potential utility, remote sensing should be used with ancillary
data sources. Although svectral Landsat data alone has worked well on natural cover types, spatial map
data has proved its value in urban settings in which a single land use encompassed a plethora of artificial
cover materials. 1t appears, therefore, that any reliable machine interpretation system will have to embody
spectral, spatial, and temporal discriminants to function well for all anticipated urban land uses and con-
ditions. The basic input to these automatic techniques is, and will continue to be, spectral data. However,
both spatial and multitemporal map data must be incorporated into the spectral data base on an increas-
ingly larger basis fo: turther improvement in classification accuracy.

Future Info mation Systems Develepment
Proper use of available data, as well as new methods of data collection and analysis, are required for defining
and quantifying the capabilities and limitations of the landscape components for local or regional level
control and management, Electronic data processing (EDP) provides extensive computational power for
storing, manipulating, retrieving, displaying. and updating resource data (Reference 9). Automated resource
information systems, which spatially identify resource data, increasingly appear to be the most feasible
means of providing complete, objective, and consistent information and analyses (Reference 47), These
systems will provide the basis for enlightened land-management decisions relative to the following questions:

®  What is the current land use?

®  How is the land use defined and evaluated?

®  What are its characteristics, dynamics, and limitations?

® How much single- versus multiple-purpose land use is there?

®  What are the evolving socioeconomic spatial patterns”?
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How much open space exists and how is it preserved?

®  How can land-use data be efficiently collected and used?

A common nawural-resource inventory data system is noede
system for keepig the inventory current, Inve
for improving land planning include

Climate

Demography

Economics

Geology

Land Use

Minerals

Population

Recreation

Soils

Topography

Vegetation

Water

Wildlife
The need for more timely and higher quality land-use data for evaluating, managing,
natural resources is clear. The perfection and application of automated re
needed for interfacing the multiple sources of physiographic, remote se
portation data into a coherent analytical machine
be used to store, manipulate, display, and update the
effective transfer of spatial landscape models and re
resource-management decisions,

d. as well as an automated resource-information
ntory and benchmark data components for suc
map and other spatial data to srecify the following (Re

h a system
ference 1):

and planning shrinking

source-information systems is
nsing, socioeconomic. and trans-
structure. The computational power thus achieved can
resulting resource information and to enable the
lated operations rescarch methods into improved land
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APPENDIX A

MULTIPLE DISCRIMINANT ANALYSIS

Multiple discriminant analysis finds the transform that yields the minimum ratio of the difference between :
group multivariate means to the multivariate variance within the groups. The statistical algorithm embodied J
in program CLASSIFY* (Appendix B) computes a discriminant function for each of the land-use classes by
selecting the independent variables—the 48 Landsat image and ancillary map variables—in a stepwise fashion. 1
The new variable entered at cach step is selected on the basis of largest F-value to enter. An original set of
observations on a picture element or cell, for example, is transformed into a single discriminant score by the
discriminant function. The score represents the position of the picture element along the line defined by
the linear-discriminant function. It is seen, then, that the discriminant function reduces a multivariate
problem down into a univariate situation,

The discriminant function is found by solving an equation of the form

[3] - m =

where [sf,] is an m-by-m matrix of pooled variances and covariances of the m variables. The co-fficients
of the discriminant function are represented by a column vector of the unknown lambdas. Lowercase Greek
lambdas (X’s) are used by convention to represent the coefficients of the discriminant function. These arc
exactly the same as the betas (’s) also used by convention in regression equations. These should not be con-
fused with the lambdas used to represent eigenvalues in principal components or factor analyses, nor the
lambdas used to represent wavelength in a remote sensing sense.

The right-hand side of the equation consists of the column vector of m differences between the means of i
the two groups in the simple discriminant-analysis case. The equation caxn be solved by inversion and multi-
plication, such as

-1
= 2 .
= [2]"-
or by use of a simultaneous equation solution,

The various entries in the matrix equation must be determined in order to compute the discriminant function. 4
The mean differences are simply found as

A nh
I A, T B,
- - i=1 =
D= A -8 = . il !
nn nh

*CLASSIFY occuts in the LMS package and is the modified version of BMDO7M, which is part of the UCLA biomedical statistical package i
available on most major computers (Reference 1), The stepwise linear-discriminant analysis remains unmodified; however, the input/output
and internal control code was modified to handle the much larger data bases of remote sensing imagery,
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In this notation, Aij is the i observation of variable j in group A; A is the mean of variable j in group A, or
the average of n observations, Similarly, these conventions apply to group B, The multivariate means of
groups A and B can be regarded as forming two vectors, The difference between these multivariate means,
therefore, also forms the vector

“)jl - IA‘I < lle
A matrix of sums of squares and cross-products of all variables in group A, as well as a similar matrix for

group B, is computed in order to construct the matrix of pooled variances and covariances. This is done by
conventional means for group A as

Here, A, denotes the i observation of variable j in group A as before, and A,, denotes the i observation
of variable k in the same group. Whenever j = K, this quantity becomes the sum of squares of variable K.
Similarly, a matrix of sums of squares and cross-products is found for group B as

uh n
ny l’%lBu ig-lBik
= ¥ -
SPBy = ¥ (BB .

The sums of products matrix from group A is denoted as [ SPAY, and that from group B as [SPB]. The
matrix of pooled variance is now found as

[s;] - |SPA] + l.S:’B]
b

"u +n
This equation for pooled variance is exactly the same as that used in T-tests for the equality of multivariate
means. Although the number of caleulations involved in deriving the cocfficients of a discriminant function
appear to be large, they are less formidable than at first glance, The set of X cocfticients are entries in the
discriminant-function equation of the form

- ] PR
R")‘nc’|+7‘:vz+ +xmwm
This is a lincar function whose terms are summed to yield a single number, the discriminant score, In this

two-dimensional example, the discriminant function can be plotted as a line on the scatter diagram ot the
two original variables (figure 44 of the main text), Itis a line through the plot whose slope, « is

a= 7\:/)\l
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Substitution of the midpoint between the two group means in this equation yields the discriminant index,
R,. Specifically, for cach value of w,. the following terms are inserted

vy = AjB2

The discriminant index, R,. is the point along the discriminant-function line that is exactly haltway between
the center of group A and the center of group B, Next, the multivariate mean of group A can be substituted
into the equation to obtain R 4 (thatis, wi = 1-\1). and the mean of group B to obtain RB §V i= B}). These
define the centers of the two original groups along the discriminant function for group A,

Ry = A A +2
and for group B,

R, = A, B, +2

The members of group A that are located on the group B side of R, and the members of group B that are
located on the group A side of R0 are misclassified by the discriminant function.

The significance of the separation between the two groups can be tested if certain assumptions are made
regarding the nature of the data used in the discriminant function, These five basic test assumptions are:

(1) The observations in cach group are randomly chosen.

(2) The probability of an unknown observation belonging to either group is cqual,
(3)  The variables are normally distributed within cach group.

(4) The variance-covariance matrices of the groups are cqual in size,

(5) None of the observations used to calculate the function were misclassified,

The most difficult assumptions to justify are (2), (3), and (4). Hewever, the function is not seriously affected
by limited departures from normality or by limited incquality of variances. The justification of (2) depends
on an a priori assessment of the relative abundance of the groups under examination (Reference 2).

A test for the significance of the discriminant function is developed from the T-statistic mentioned cardier.
A “distance™ measure between the two multivariate means can be caleulated by simply subtracting R A from
Ry. This is cquivalent to substituting the vector of differences between the two group means into the dis-
criminant equation, or setting the individual values of v j equal to l)j. This distance measure is called
“Mahalanobis’ distance,” or generalized distance, D2, Itis a measure of the separation between the two

multivariate mceans expressed in units of the pooled variance, The T-test of this distance has the form

nu nh

T2 = D2

lln + “h
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The T-test can be transformed into an F-test, becoming

" (n, +n,-m-1) n, n,

3
Mytnp-2Im  n +n

b

with m and ( ng4ny.m-1) degrees of freedom. The

null hypothesis tested by this statistic is that the two
multivariate means aic equal or that the distanc

e between them is zero; that is,
Hy: [Dj] =0

against

H,: [D,] >0

The utility of this as a test of a discriminant function should
very close together, it will be difficult to separate them,

the other hand, if the two means are well-separated and
is relatively easy.

be clear. If the means of the two groups are
especially if both groups have large variances. On
scatter around the means is small, discrimination

Not all of the variables included in the discriminant fi i

from another. Those variables that are not particularly useful can be isolated and eliminated from future

analyses. Because discriminant analysis is so closely related to multiple regression, most of the procedures
for selecting the most effective sct of predictors can also be used to find the most effective set of discrim-
inators. For example, the relative contribution of variable j to the distance between the two group means
may be measured by a quantity, Ej

P = 2

l:j }\’.DJID
where Dj is the difference between the J™ means of the two groups. This is only one measure of the direct
contribution of the varjable J» and it does not consider interactions between variables. If two or more of the
variables in the discriminant function are not independent, their interactions may contribute toD? toa

greater extent than the value of Ej suggests. This measure serves roughly the same purpose as standardized

partial-regression coefficients in multiple regression, Values of Ej may be simply converted to percentages
by multiplying by 100,

REFERENCES

I. Dixon, W, J., BMD Biomedical Programs, Publications in Autematic Computation 2, University of
California Press, Berkeley, 1967, pp, 214a-214s,

2. Davis, John C., Statistics and Data Analysis in Geology, John Wile
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APPENDIX B

LANDSAT MAPPING SYSTEM

The Landsat Mapping System (LMS) represents a total rewrite of the RECOG or RECOGnition Mapping
System (References 1 through 3).* RECOG was intended principally for instruction at Colorade state Univer-
sity, and the new LMS software is compatible with it. However, the new system is specifically structured for
both Landsat imagery inputs and composite mapping. Advantages cited for LMS include economy of opera-
tion, flexibility, exportability to other CDC computers, and high-volume production (Reference 4).

The LMS software is subdivided into four major image-processing steps. The first step prepares geometrically
rectified digital scenes in a given scale or picture-element ground area with Landsat computer-compatible
tape inputs (figure B-1). The second step intericaves multitemporal Landsat images, with the added option
of overlaying multiple ancillary data planes derived from maps onto the multidate/multitemporal spectral
data base (figure B-2). The third phase performs feature extraction computation and optimization of the
mapping materials’ statistical signatures (figure B-3), The fourth and final step maps the spatial distribution
of each desired material as rectified and scaled displays (figure B-4),

The computer cost of LMS for preparing a single classification map of a 1:24,000-scale quadrangle was es-
timated at $200. (See table B-1.) The LMS cost example involved three multidate images (twelve bands
of multispectral data), but no ancillary data was involved. Significant additional economies of scale were
realized in the application of many of these LMS modules to the larger-scale Denver land-use/land-cover
inventory effort reported here. Forty-eight Landsat image and ancillary map variables were overlayed,
classified, and displayed for an average cost of $704.19 per 7.5-minute USGS quadrangle.

REFERENCES

1. Smith, J. A., L. D. Miller, and T. D. Ells, Pattern Recognition Routines for Graduate Training in the
Automatic Analysis of Remote Sensing Imagery-- RECOG, Science Series 3A, Department of Watershed
Sciences, Colorado State University, Fort Collins, 1972, 86 pp.

2. Ells, T., L. D. Miller, and J. A. Smith, User's Manual for RECOG (Pattern RECOGnition Programs).
Scierice Series 3B, Department of Watershed Sciences, Colorado State University, Fort Collins, 1972a,
85 pp.

3. Ells, T, L. D. Miller, and J, A, Smith, Programmer's Manual for RECOG (Pattern RECOGnition Programs),
Science Series 3C, Department of Watershed Sciences, Colorado State University, Fort Collins, 1972b,
216 pp.

*The LMS software package was a Joint effort of L. D. Miller, E. L. Maxwell, and R, L. Riggs at Colorado Stute University.
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UP TO 4 TAPES, REPRESENTING ~ 25 MILE
E-W SEGMENTS OF A GIVEN LANDSAT IMAGE,
MAY BE INPUT SIMULTANEOUSLY,

I X W4

; “CONVERTS"” THE LANDSAT FORMA.7" TAPE(S) INTO THE
4 INTERNAL, SINGLE RECOG TAPE. ON.Y THE PORTION

CONVERT OF THE IMAGE NEEDED TO OVERLAY THE SELECTED .

MAP IS CONVERTED AND POOLED TOGETHER.

[/
L/
“ROTATE'’ RESAMPLES THE ORIGINAL IMAGE CELLS TO
24

” 9 REPRESENT ANY SIZE RECTANGULAR OR SQUARE CELL
”] ROTATE AS SELECTED BY THE USER. ADJUSTS FOR ORIGINAL
> 7 % IMAGE DISTORTIONS. SCALES IMAGE.TO MAP SCALE. ...
// 7 (E.G., 1:24,000). i
/A
% 4 1
| FILTER [ “FILTERS” THE IMAGE.
) ) |
47
/ 1
7 - ﬂ “DISPLAYS" 1,2,3 ... OR ALL OF THE INDIVIDUAL !
' DISPLAY ﬂ SPECTRAL BANDS IN THE ORIGINAL OR MAP OVERLAY :
7 2 FORMAT. DISPLAY OPTIONS INCLUDE LINEPRINTER
‘ PS.
/// G AIITI) AND MICROFILM GRAYMAPS

0,020:0:0°0:00-0-0-0-07¢
0 00000202020 0200 020

KRS GRAYMAP:

!
i
:
4
2000707000, 20007020 % %% ;
1
1

0.0.0.0.0.6.0.0.0.00.0
’0“.000.0.0.0...’.0‘0.0_0
>

“LANDSAT"” COMPUTER COMPATIBLE TAPE (CCT) AS SUPPLIED BY EROS .
DATA CENTER. |

“RECOG" FORMATTED TAPE (OR DISK) FILE - AS STANDARD FORMAT TAPE i
USED THROUGHOUT THE IMAGE PROCESSING ACTIVITY. (n =1 to 4)

FIGURE B-1. STEP 1: IMAGE PREPARATION/MAP OVERLAY. )
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% UP TO 10 RECOG FORMATTED TAPES
R, i) OF A VARYING NUMBER OF SPECTRAL
i/ BANDS ARE INPUT,

“TRIMS"” EACH RECOG FORMATTED TAPE
M (OR FILE) TO A SELECTED NUMBER

& OF LINES AND COLUMNS DESIGNATED
BY THE USER, USUALLY THOSE
NEEDED TO COVER MAP SELECTED.
LINES AND COLUMNS ARE RENUM-
BERED, BEGINNING AT 1, 1.

“COMBINES"” RECOG FORMATTED DATA FROM THE 1
COMBINE % TO 10 SEPARATE INPUT TAPES (FILES) INTO 1 ;
41 COMPOSITE RECOG TAPE (FILE) REPRESENTING
% A MULTIDATE, MULTISPECTRAL IMAGE.

“DISPLAYS" 1, 2,3 ... OR ALL OF THE IN- ]
DIVIDUAL SPECTRAL BANDS IN COMBINED

DISPLAY g IMAGE. DISPLAY OPTIONS INCLUDE LINE-
2,

PRINTER AND MICROFILM GRAYMAPS.

GRAYMAP M\

(i + j are any integers)

—

CELLULAR
MAPS

STEP 2. AUXILIARY PROGRAMS.

"ANCILLARY" CREATES RECOG FORMATTED DATA FROM \
CELLULARIZED MAP DATA PLANES INPUT IN CARD OR

MAGNETIC TAPE FORMAT. MAP CELLS MUST BE THE ANCILLARY
SAME SIZE OR SOME INTEGER MULTIPLE OF THE CELLS

ON THE RECOG FORMATTED DATA WITH WHICH THE
ANCILLARY DATA WILL BE COMBINED.

FIGURE B-2. STEP 2: INTERLEAVES IMAGES FROM VARIOUS DATES,
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+

!

“EXTRACTS' THE TRAINING FIELD DATA. IDENTIFIED
BY THE USER (RECTANGLES, IRREGULAR AREAS,
AND POINTS} FROM THE RECOG IMAGE FORMAT,

“TRANSFORMS' THE TRAINING FIELD DATA. FORMS
RATIOS OF SPECIFIED SPECTRAL BANDS, USES
ELEVATION OVERLAYS TO ADJUST SPECTRAL
BANDS FOR TERRAIN SHADOWING, E7C.

“CLEANS' OUT TRAINING FIELD DATA POINTS WITH
LOW PROBABILITY OF BEING THE SELECTED
MATERIAL OR HIGH PROBABILITY OF BEING
SOME OTHER MATERIAL, ETC. .

“GROUPS’ TRAINING SETS TOGETHER WHICH WERE
ORIGINALLY SELECTED IN EXTRACT TO REP-
RESENT SEPARATE MATERIALS BUT ARE NOW
DETERMINED TO BE STATISTICALLY SIMILAR. Cme

“CLASSIFIES THE TRAINING FIELDS USING
MAXIMUM-LIKELIHOOD APPROACH (STEP-
WISE DISCRIMINANT ANALYSIS). OTHER
DECISION RULES CAN BE SUBSTITUTED HERE.

> “OVERLAYS" ANY VARIABLE
& OR RESULT IN POINT FILE

- INTO A RECOG FORMAT FOR
overLay /] SteNA % PRINT/ [/

EXTRACT

TRANS-
FORM

CLEAN

GROUP

CLASSIFY

ALEARA AR NANARRURRRNRRANRRRRN LGN

TURES PUNCH DISPLAY AND MAP OVERLAY.

_/A' “SIGNATURES'' COMPUTES STA-
TISTICAL REPRESENTATION GOF
EACH MATERIAL SPECIFIED BY

NN

DISPLAY

/4 THE USER FOR USE IN MAPPING
/4 THESE MATERIALS ON ANY
: DATA TAKEN FROM THE SAME
— ORIGINAL IMAGE.
SIGNATURE CELL “PRINTS” OR “PUNCHES"” ouT
MATRICES VARIABLES ANY VARIABLE(S) IN THE

POINT FILE FOR FURTHER
ANALYSIS IN ADDITIONAL
PROGRAMS WRITTEN BY
THE USER.

“POINT" BY POINT TAPE (OR DISK) FILE. - AN INTERNAL TAPE, DISK, AND/OR
CARD FILE FORMAT WHICH CONTAINS ONLY THE EXTRACTED TRAINING
FIELD DATA AND DOES NOT MAINTAIN TS CORRECT MAP OVERLAY
POSITION.

(i is any integer)

FIGURE B-3, STEP 3: COMPUTES STATISTICAL “SIGNATURES" OF
MATERIALS TO BE MAPPED.
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“TRANSFORMS" DATA FOR EACH IMAGE CELL AS
TESTED AND SELECTED IN STEP 3,

,,
@)
D
=

DANANN

“MAPS" OUT THE DISTRIBUTION OF EACH SURFACE
MATERIAL SPECIFIED BY THE USER.

“DISPLAYS" THE SELECTED IDENTIFICATION OF EACH
: Z IMAGE CELL AND/OR PROBABILITY THAT IT IS THE
] DISPLAY 2 MATERIAL DESIGNATED. DISPLAY OPTIONS INCLUDE
7 7 LINEPRINTER AND MICROFILM GRAYMAPS AND
4 LINGRRINTER COLOR SYMBOL MAPS, :

/

(ori+tk+2)

b:0:0:0:0:0;0:0:0;0;0:0'0
O

S

1000020 %% e e % %%

LIS
oqegese’e

4% 20 %%

O

(i and k are any integers)

STEP 4. AUXILIARY PROGRAM.

“ZOOMS"” OR ENLARGES THE RECOG FORMATTED
TAPE (OR FILE) BY ECHOING EACH IMAGE CELL ZOOM
“N” TIMES ON A LINE AND REPEATING EACH
LIN : "M TIMES.

FIGURE B-4. STEP4: MAPS DISTRIBUTION OF EACH MATERIAL.
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TABLE B-1
COST ESTIMATES FOR OPERATING THE LANDSAT MAPPING.SYSTEM

e e e ot otk B o stae T B o s m b,

Item Cost Estimate*
CONVERT $5/date
RUTATE $7/date
FILTER $6/date
DISPLAY $1/band/date X 2 bands = $2/date

Step 1 $20/date

Assuming three dates involved gives $20/date X 3 = $60
TRIM $3/date
COMBINE 3 dates combined == $1
DISPLAY $1/band/date X 1 band = $1
ANCILLARY optional
Step 2
Assuming three dstes gives $3/date X 3 dates + $1 + §i = $11
EXTRACT $10 (approx.)
TRANSFORM $5 (approx.)
CLEAN $2/iteration X 3 iterations = $6 (approx.)
CLASSIFY $8/iteration X 3 iterations = $24 (approx.)
SIGNATURES $2 (approx.)
OVERLAY optional
GROUP optional
PRINT/PUNCH optional
Step 3
Based on 2,000 points = $50 (approx.)
TRANSFORM $5 (approx.)
MAP Based on mapping 30 $73 (approx.)
material types
DISPLAY Black-and-white lineprinter $1 (approx.)
s'.nbol map =
ZOOM optional
Step 4
Based on 30 classes mapped = $79 (approx.)
STEP TOTAL*

$200 (approx.)

*Estimated computer costs for 1 of 1:24,000 quad map with ~ l-acre cells, three dates (12 spectral
bands), 2,000 cells defining training fields, 30 material types, and black-and-white lineprinter display.
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APPENDIX C

MACHINE CLASSIFICATION ERROR-RATE ESTIMATION

evaluate its performance relative to other classifiers; the other is to verify the utility of the classifier. Both
rationals have been explored in this endeavor,

One approach to error-rate estimation is to compute it from an assumed parametric model, However, this
approach presents three problems (Reference 1), First, error-rate estimates of this nature are almost always
overoptimistic because characteristics that make the design samples peculiar or unrepresentative will not be
revealed. Second, the validity of an assumed P . ametric model is always suspect. Lastly, it is difficult to
compute the error rate ex act’, even if the probabilistic structure is completely known,

that are misclassified as an estimate of the ertor rate, The use of the 1972-1973 USGS land-use data plane
as a ground-truth surrogate permitted error-rate estimation to be performed on the full Landsat-1 image
itself in this endeavor,

The linear-discriminant approach used throughout this study converts an n-dimensional problem to a more
manageable. one-dimensional problem. This many-to-one mapping, at least in theory, cannot reduce the
minimum achievable error rate. However, in general, some of the theoretically attainable accuracy can be
sacrificed for the advantages of working solely in one dimension,

called type I and type Il errors, respectively. More commonly, they are referred to as omission and commission
crrors, respectively, in pattern-recognition literature, The two states for the category (that is, true or false)

in a multiclass situation, along with the two decisions that the classifier can make, are indicated in a two-way
decision table (table C-1 ).

TABLE C-1
MACHINE CLASSIFICATION DECISION TABLE. The outcomes for given machine actions in a two-
choice decision probiem are outlined. (After Reference 2),

Test Hypothesis
Detision True False
Reject Omission (type I) error Correct Decision
Accept Correct decision Commission (type II)
error
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TABLE C-2
FIRST-ORDER LAND-USE CLASSIFICATION MATRIX USING FINAL TEN-VARIABLE LINEAR-DISCRIMINANT
ANALYSIS. The verified omission/commission errors of the machine-processed single-date Landsat-1 image are given, The
tabulations are based on identifying 24 second- and third-order land uses, and checking only at the first order on a point-to-
point comparison with the 1972-1973 USGS land-use data plane. Land-use codes are identified in table 1 of the main text,
Correctly classified class totals are italicized. Verification accuracies are summarized in table 24 of the main text,

Omission Commission
Number of Picture Elements Esrors ( type 1) Errors
) yp (type H)
USGS
Land-Use Urban | Agriculture Range Forest | Water Barren Total Total Percent Total Rescont
Classes
Urban 180,781 13.563 6,187 178 1,292 468 202,503 21,782 10.7§ | 35,383 16,37
Agriculture 29,299 | 46,619 §.290 0 826 157 82,197 35,578 | 43,28 | 20,603 30,71
Range - 4,005 5,968 15,788 307 { - -§3-=—f,023 28,044 12,156 | 43.70 { 16.683 51.38
Forest 246 462 780 | 3,328 2 204 §.022 1,694 | 33.73 906 21.40
Water 1,830 6067 72 C | 4190 0 6,759 2,569 | 38.01 2173 34.15
Barren 3 3 4,248 424 0 2513 7191 4,678 | 65.05 2749 §2.24
Total 2te, 164 | 67,282 32471 | 4,234 | 6.363 5,202 | 331,77 78,557 | 23.08 | 78,557 23.68
Elements

Classification matrices for the ten-variable image analysis of the 576- by “76-clement August 15,1973,

Landsat scene of the Denver Metropolitan Area were generated for the six first-order classes (table C-2) and
for the 24 second- and third-order categories (table C-3).
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COMPOSITE SECOND- AND THIRD-
LINEAR-DISCRIMINANT ANALYSIS
Landsat-1 image are given, The tabulat
comparison with the 1972-1973 USGS
rectly..classified .class totals are italiciz

USGS Number of
Land-Use ;
Classes [ 11 12 121 13 14 15 151 16 19 191 192 2|
11 | 8376/ 2,140 1428 1,670 25 783 0 378 2102 3 0 I,
12 | 68913238 S0 1,544 7 132 0 299 49 1 0
121 | 6129 181 2073 156 24 36 0 185 58 0 O
13 | 3797 949 374997 12 606 O 610 35 6 0 |
14 | 1,529 119 34 l,119\6\ 9 0 13 209 2 0 |
15 442 199 7 405 30 2685 0 950 4 10 0 !
151 48 35 3 177 1 133\0\ 87 35 1 0 |
16 | 8316 498 19 646 12 36 0 [49%8 279 0 0 |
19 [ 15027 266 327 971 9 792 0 585 1642 0 O !
191 61 6 0 37 1 0 0 0 o o 0 i
192 | 1,092 3 357 16 0 0 0 0 46 o\o\;
211 8637 45 1,665 657 14 2151 0 1,160 1,896 2 0 I8
212 20 0 25 0 o 00 0O o0 0 0 |
23 | 7,841 17 910 148 26 1,854 0 1278 959 0 0 64
31 1,630 21 170 7 10 84 0 1,107 276 0 O
33 15 0 2 12 00 0 o0 0 o
411 141 0 19 21 0 00 54 11 0 o0
421 0 o0 o0 0 o 00 0 o0 0 0
422 0 o0 o 0 0 00 0 0 0 o
51 78 3 1 8 0 00 11 0 0 0
52 780 66 64 239 10 9 0 151 29 0 0
53 153 2 1 0 16 00 8 23 0 0
74 3 0 o0 0 o 00 0 0 0 o
741 0 o0 o 0 o 00 0 0 0 O
Elz;‘j‘;ts 146929 7,815 7,269 12,894 205 10,090 0 21,920 8997 45 0 30,
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TABLE C-3
ORDER LAND-USE CLASSIFICATION MATRIX USING FINAL TEN-VARIABLE
+ The verified omission/commission errors of the machine-processed, single-date
ons are based on identifying 24 second- and third-order land uses on a point-to-point
land-use data plane, Land-use codes are identified in table 1 of the main text. Cor-
ed. Verification accuracies are summarized in table 24 of the main text,

- w Rt ot -,

Picture Elements Total Errg}?i(s'ls‘?;c ) Erfg;u(t‘?li‘ ;sli)znll)
P22 213 31 33 411 421 422 51 52 53 74 741 |Elements Total | Percent| Total |Percent
101 0 3337 1100 117 0 8 0 26 235 21 51 11| 98676 | 14915 15.12 63,168 42.99
1 0 109 8 0 0 00 8 24 7 0 0] 12825]| 9587 7475| 4.577| 58.57

356 8 2348 364 154 0 46 0 2 176 S8 119 112| 13113 11,040 84.19( 5,196| 71.48
511 0 155 98 18. 0 0 0 1 65 1 8 9| 12330 7,333 5947 7.597| 61.25
500 3 372 480 45 0 42 0 8 177 st 9 37| a8 4818] 99.88 199| 97.07
282 0 702 140 17 0 0 0 11 10 9 19 o 5922| 3,237| 5466| 7,405| 73.39
51 (] 30 36 0 0 00 0 41 0 of 1,116 1,116]100.00 0| 0.0

155 0 788 3058 108 O 0 0 102 74 328 26| 21,920 14,345| 4894 6952| 31.72
41 0 1,145 343 9 0 0 0 10 125 11 35 1| 22,239 | 20597| 9262| 7,555| 81.75
5 5 1 117 0 o 00 o 1 0 0 o 234 234/ 100,00 45100.00

89 0 158 75 0 o0 0 0 ~0 34 1 0 0] 1971].1971]100.00 of 0.0
2284327 6436 1266 18 0 0 0 88 294 48 0 0| 46,926| 28,698| 61.16| 11,796 39.29
207 4770 0 0 o0 00 o 0 o0 o6 o 729 252| 34.57| 4,984( 91.27
159 635 9850--3862 150 0O 0 0 28 305 63 157 0| 34,542 24,692 71.48] 21,947 69.02
321 0 5.646\13,876 307 o0 0 0 0 27 26 562 531| 25281 11.405| 45.11| 13,618 49.53
0 0 1 4% 1,129 0 307 0 0 0 0 204 626 2,763 | 1.634| 59.14| 3,848| 77.32

121 6 335 100 Y 00 o 2 0 0 0 810 810} 100.00 0| 0.0
0 0 2 572 0\3.309 0 o 4} 0 12 153 4,068 759| 18.66 917| 21.70

0 0 0 8 0 15\4 0 0 0 0 0 144 140| 97.22 4} 50.00

69 0 0 0 0 o0 00 \1\ 15 0 0 0 288 287| 99.65 286 99.65
162 0 337 66 0 o0 0 0 22773 262 0 0] 4950 2,177| 4398 1,859| 40.13
55 0 44 6 0 o0 0 0 0 254 883 0 o| 1,521 638| 4194 S61| 38.85
0 0 3 633 729 0 641 o0 g 0 149 128] 1,710 1.561] 91.29] 1,328 89.91

0 0 0 1368 1518 0 356 3 0 o 0 124 2112] 5481 3369 6147 1,673| 44.20
D24 Sdol 31,797 27494 4977 0 4226 8 287 4,632 1,444 1477 3,785| 331,776 [ 165,615] 49.92|165,615| 49,92
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APPENDIX D
MAXIMUM-LIKELIHOOD RATIO
The maximum-likelihood ratio classifier, such as the classification subroutine GLIKE in CSU's RECOG system , 15

(Reference 1), assumes that the data are multivariate normally distributed. It utilizes a Bayesian decision
rule of the form

i
p(Xli) =

e (x-apt vt (xeap
LA PR

where
p(Xl) = thelikelihood of occurrence of the feature vector. X. if it belongs to the i class
b = the covariance matrix for the i class j
1=, = the determinant of X,
P = theinverse of ¥,
A, = the mean feature vector £or the i class

These conditional probabilities for classes are taken two at a time, ratioed. and evaluated to assign cach picture-
element vector to the class for which the likelihood., p (X1i). of the unknown vector is the highest. or

g (X) = p(Xli)

The class probabilities. p (i), are assumed to be equal in the maximum-likelihood ratio (Reference 2). However.
the modificd maximum-likelihood ratio can exploit ¢ priori class probabilities by taking

& (X) = p(i)p(Xli)

The benefits of having a priori class probabilities versus equal class probabilities were significant, as pointed
out by comparative tests using the 4,100-point training set (table 22) of the main text.
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APPENDIX E

CORRELATION MATRICES FOR
RECTANGULAR/POINT-SAMPLED TRAINING SETS.

The CLASSIFY lincar-discriminant analysis program operates on a single, within-groups, variance-covariance

matrix to compute discriminant functions and for optional canonical analyses, Another useful table gencrated ,
and printed by this Landsat Mapping System (LMS) program is the d-by-d correlation matrix, R = [pU] » where 5 ‘
the correlation coefficients, P, are related to the covariances (or sample covariances) by

ij
Py =

V0 0

Because -1 < pfj < 1, with pi’j = 0 for uncorrelated features and pfj = %1 for completely correlated features, |
the correlation matrix can be useful, particularly in a nonstepwise analysis in which many variables are con-

sidered, The presence of two fedtures, for which ;oi’j is relatively large, provides redundant information and
creates possibilitics for dimensionality reduction,

Even :ith the stepwise variable-entry feature of CLASSIFY, the correlation matrix is useful for perceiving
numerical relationships between variables. Therefore, correlation matrices were prepared for the four original
MSS bands (table E-1 ), the ten MSS bands/ratios (table E-2), and the seven-variable optimal classifier (table ;
E-3), using the rectangular training-set concept tested and discarded as being-unrepresentative. It was also

instructive for comparison to include corresponding correlation matrices for the four original MSS bands

(table E-4) and the ten MSS bands/ratios (table E-5) derived from the 1/81 grid-sampled point training set,

as well as for the final ten-variable correlation matrix (table E-6) used to classify the 576- by 576-clement

Landsat/ancillary variable scene, The size of the 48-variable correlation matrices precluded their inclusion
here.

TABLE E-1
WITHIN-GROUPS CORRELATION MATRIX FOR THE FOUR ORIGINAL MSS
BANDS DERIVED FROM RECTANGULAR TRAINING SETS. This set of varia-
bles correctly classified 66.19 percent of the 2,413 total samples, but the rectan.
gular training sets later proved to be unrepresentative of the larger scene. Only the
lower diagonal of the matrix is shown because the upper and lower diagonals of the
matrix are symimetrical. The Landsat-1 image variables were added in a free stepwise

.

tashion, The entry order is indicated by superscript numbers on the variable names, 1

Bands
Bands 43 52 64 7"
4 1.000 |
5 0.891 1.000 K4
6 0.457 0,423 1,000 |
7 0.255 0.201 0.635 1.000
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TABLE E-2
WITHIN-GROUPS CORRELATION MATRIX FOR THE FOUR ORIGINAL MSS BANDS AND SIX RATIOS DERIVED
FROM RECTANGULAR TRAINING SETS, This set of variables correctly classified 67,30 percent of the 2,413 total
samples, but the rectangular training sets later proved to be non-representative of the larger scene. Only the lower diagonal
of the matrix is shown because the upper and lower diagonals are symmetrical. The Landsat-1 image variables were added in
a free stepwise fashion, The entry order is indicated by superscript numbers on the variable names,

Bands/Ratios "
BanflS/ 4* ' 54 6° 7 7/()3 7/510 7/47 5/42 5/6s ()/46
Ratios
3 1.000

5 0.891 | 1.000
6 0.456 | 0,423 | 1,000
7 0.255 | 0.201 | 0,635 | 1.000
76 -0.195 | -0.233 (-0.179 | 0.452 | 1,000
15 -0.289 | -0.418 | 0.179 | 0.507 | 0.394} 1.000
7/4 | -0.377 | -0.382 | 0.301 | 0.731 | 0.517]0.732 | 1.000
5/4 0.368 | 0.719 | 0,137 |-0,040 | -0.193|-0.514 | -0.302 | 1.000
5/6 0.249 | 0.358 (-0.365 |-0.238 | -0.082|-0.336 | -0.374 | 0.391 | 1,000
6/4 | -0.320{-0.297 | 0.642 | 0.496 | 0,027[0.537 | 0,755 |-6,197 | -0.578 | 1.000

o Tl T

TABLE E-3
WITHIN-GROUPS CORRELATION MATRIX FOR THE OPTIMAL SET OF THREE MSS SPECTRAL BANDS AND FOUR :
LANDSCAPE VARIABLES DERIVED FROM RECTANGULAR TRAINING SETS. This set of variables correctly classified i
96.64 percent of the 2,413 total samoles, but the rectangular training sets later proved to be unrepresentative of the larger
scene, Only the lower diagonal of the matrix is shown because the upper and lower diagonals are symmetrical, The Landsat-1
image variables were forced in the predeterniined order (table 13 of the main text), and the ancillary landscape variables were
added in a free stepwise fashion, The entry order is indicated by superscript numbers on the variable names. ACRES = total

census tract acreage, ELEVS = topographic elevation, INTER = freeway interchange minimum distances; and URBAN = built-
up urban-area minimum distances.

[ S U VU USUUS,

Variables
Variables | MSS-4® | MSS-52 | MS$S-7' | ACRES* | ELEVS® | INTER? | URBANS i
i
MSS-4 1.000 |
MSS-$ 0.891 1.000 i
MSS-7 0.255 0.201 1.000 |
ACRES -0.035 -0.034 -0.011 1.000
ELEVS -0,032 0.015 -0.001 0.057 1.000 ,
INTER 0.100 0.111 0,042 0.396 -0.089 1.000
| URBAN 0.026 0.049 0.017 0.508 0.014 0.713 1,000
i
|
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TABLE E-

4

WITHIN-GROUPS CORRELATION MATRIX FOR THE FOUR ORIGINAL MSS
BANDS DERIVED FROM GRID-SAMPLED TRAINING POINTS, This set of vari-
ables correctly classified 37,90 percent of the 4,100 total samples. Only the lawer
diagonal of the matrix is shown hecause the upper and lower diagonals are symmetrical,
The l.andsat-1 image variables were added in a free stepwise fashion, The entry order

is indicated by superseript numbers on the variable names,

WITHIN-GROUPS CORRELATION MATRIX FOR THE FOUR ORIGINAL MSS BANDS AND SIX RATIOS DERIVED
FROM GRID-SAMPLED TRAINING POINTS. This set of variables correctly classitied 38,41 percent of the 4,100 total

V Bands ,
Bands 42 53 64 7
4 1.000
5 0914 1.000
6 0,492 0.439 1.000
7 0.169 0,101 0,770 1.000
TABLE E-&

points, Only the lower diagonal of the matrix is shown because the upper and lower diagonals are symmetrical. The Landsat- 1

Image variables were added in a free stepwise fashion, The entry order is indicated by superscript numbers on the variable

names.
Bands/Ratios
pnddl s | e | n [ we s | | 54 | s | e
Ratios
4 1.000
5 0.914 | 1.000
6 0,492 | 0.439 | 1.000
__7 0.169 { 0,101 | 0,770 | 1.000
7/6 | -0.172 |-0.180 | 0.105 | 0.256 | 1.000
7/5 | -0.530 | -0.626 | 0.233 | 0.625 | 0.305| 1.000
714 -0.482 | -0.496 | 0.359 | 0.758 | 0.334| 0.934 | 1.000
5/4 | 0.557| 0.834 | 0.226 | -0.047 | -0.139(-0.639 | 0.416 | 1.000
5/6 0.350 | 0.449 | -0.151 | -0.425 | -0,103{-0.608 | -0.601 | 0.460 | 1.000
6/4 -0.382 | -0.375 | 0.595 | 0.683 | 0.282] 0.794 | 0.871 | -0.294 -0,534 | 1.000
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TABLE E-6
WITHIN-GROUPS CORRELATION MATRIX FOR THE TEN-VARIABLE COMBINATION OF LANDSAT AND LAND-
SCAPE VARIABLES FOR FULL-IMAGE CLASSIFICATION DERIVED FROM GRID-SAMPLED TRAINING POINTS,
This set of variables correctly classified 51.00 percent of the 4,100 total points. Only the lower diagonal of the matrix is
shown because the upper and lower diagonals are symmetrical. The Landsat-1 image bands and the ancillary landscape
variables were added in a free stepwise fashion, The entry order is indicated by superscript numbers on the variable names,
CDP10 = median housing-unit value; CDP18 = average number of familias per acre; CDP19 = average number of year-round

housing units per acre; SLOPE = topographic slope; ELEVS = topographic elevation; and HI9 = built-up urban-area minimum
distances,

Variables

Variables | MSS-410 | MSS-7¢ | cDP10® CDP!83 | CDP196 | SLOPES ELEVS! | HI92 | 7/59 | 5/47

MSS-4 1.000
MSS-7 0.169 1,000
CDP1O | -0.128 |-0,015 1.000
CDP18 0.06¢ | 0.059 | 0.447 1.000
CDP19 | -0.057 [-0.084 |-0.120 0.016 1.000
SLOPE | -0.035 |-0.026 | 0.100 0.072  |-0.064 1.000
ELEVS | -0.042 |-0.057 | 0.259 0.166 [-0.2i8 0.319 1.000

HI9 -0.022 1-0,041 |-0,030 -0.076  |-0.196 0.103 | 0.099 1.000

7/5 -0.527 0.626 | 0.055 -0.011 0.038 -0.014  1-0.055 [-0,023| 1.000

5/4 0.557 |-0.047 |-0.059 0.014 [-0.140 0.006 [0.064 |0.060{-0.639 |1.000
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