LONG-TERM WEATHERING EFFECTS ON THE THERMAL PERFORMANCE OF THE LIBBEY-OWENS-FORD (LIQUID) SOLAR COLLECTOR

Prepared by

Wyle Laboratories
Solar Energy Systems Division
Huntsville, Alabama 35805

Under subcontract with IBM Corporation, Federal Systems Div, Huntsville, Ala. 35805

Contract NAS8-32036

National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy

U.S. Department of Energy
Solar Energy
This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.
TABLE OF CONTENTS

1.0 SUMMARY 1
2.0 PURPOSE 2
3.0 REFERENCES 2
4.0 TEST REQUIREMENTS AND PROCEDURES 3
 4.1 Collector Thermal Efficiency Test Requirements 3
 4.2 Test Procedure 3
5.0 ANALYSIS 5
 5.1 Thermal Performance Test 5

TABLE I LIBBEY-OWENS-FORD COLLECTOR PERFORMANCE RECHECK AFTER LONG TERM EXPOSURE TO NATURAL WEATHERING CONDITIONS 8

TABLE II LIBBEY-OWENS-FORD COLLECTOR THERMAL PERFORMANCE TEST DATA - 10 MPH WIND BEFORE LONG TERM EXPOSURE 9

Figure 1 Libbey-Owens-Ford Collector Indoor Thermal Performance Test Results 10
1.0 SUMMARY

Thermal performance tests were conducted on the Libbey-Owens-Ford liquid collector, following long term exposure to natural weathering conditions. The collector was mounted on the weathering test stand at the Solar Test Facility at Marshall Space Flight Center, Alabama, with exposure to the natural ambient environment. The collector was under stagnation conditions from June 1, 1977, to August 15, 1978. The collector was retested at the Marshall Space Flight Center Solar Simulator on August 21, 1978. The total weathering period was approximately fourteen and one-half months.

Visual inspection of the collector, prior to the re-test, indicated noticeable clouding of the inner cover glass, probably resulting from out gassing of the insulation. The absorber plate also showed some discoloration. The test results indicated that performance degradation had occurred at inlet temperatures significantly above ambient. The change in the slope of the efficiency curve, from the original data, is a direct indicator of an increase in the collector heat loss coefficient.
2.0 PURPOSE

The purpose of this report is to present the test procedures used and the test results obtained during an evaluation test program. The test program was conducted to obtain thermal performance data on a Libbey-Owens-Ford double-covered liquid solar collector under simulated conditions (Reference 3.1), following long term exposure to natural weathering conditions. The tests were conducted utilizing the Marshall Space Flight Center Solar Simulator in accordance with the test procedures specified in Reference 3.2 and the test requirements of Reference 3.3.

3.0 REFERENCES

3.1 WYLE TR-531-07 Indoor Test for Thermal Performance Evaluation of the Libbey-Owens-Ford Solar Collector

3.2 MTCP-FA-SHAC-400 Procedure for Operation of the MSFC Solar Simulator Facility

3.3 ASHRAE-93-77 Method of Testing to Determine the Thermal Performance of Solar Collectors

3.4 ASHRAE-93-P Method of Testing Solar Collectors Based on Thermal Performance
TEST REQUIREMENTS AND PROCEDURES

4.0 TEST REQUIREMENTS AND PROCEDURES

4.1 Collector Thermal Efficiency Test Requirements

Thermal performance evaluation criteria shall correspond to that of Reference 3.1 with the exception that gross collector area is used according to Reference 3.3. The original data was based on the aperture area according to Reference 3.4. Reference 3.4 was superseded by Reference 3.3, which is the current standard. The original data has been modified based on this standard for comparative purposes as shown in Figure 1 and Table II. Data shall be obtained at inlet temperatures of 0, 25, 50 and 100°F above the ambient temperature at a liquid flow rate of 290 lb/hr (0.58 GPM) at a solar insolation rate of 300 BTU/Hr·Ft² and a wind speed of 7.5 mph. The following data shall be recorded during the test at each test condition.

1. Ambient temperature.
2. Collector inlet liquid temperature.
3. Collector outlet liquid temperature.
5. Differential pressure across collector.
7. Insolation rate.
8. Wind speed.

4.2 Test Procedure

1. Mount test specimen on test table at a 45° angle with respect to the floor.
2. Assure that simulator lamp array is adjusted to an angle of 45° with respect to the floor.
3. Align the test table so that the test specimen's vertical centerline coincides with the vertical centerline of the lamp array and the distance from the top of the test specimen to the lens plane of the lamp array is 9 feet.
4. Insulate all pipes.
5. Assure that data acquisition system is operational.
6. Start liquid flow loop and establish a flow rate of 290 Lb/HR (0.58 GPM).
4.0 TEST REQUIREMENTS AND PROCEDURES (Continued)

4.2 Test Procedure (Continued)

7. Establish the wind speed of 7.5 mph.

8. Power up simulator and establish a solar flux level of 300 BTU/Ft²·Hr.

9. Determine the ambient air temperature.

10. Adjust the inlet temperature of the collector to the ambient air temperature value.

11. After steady state conditions have been established, record data for a minimum of five minutes.

12. Repeat steps 9, 10, and 11, changing the liquid inlet temperature as necessary until data has been obtained for each test condition specified in Paragraph 4.1.

13. Upon completion of testing, power down simulator and liquid loop.

14. Inform data control group that simulator operation has terminated.
5.1 Thermal Performance Test

The analysis of data contained in this report is in accordance with the National Bureau of Standards recommended approach. This approach is outlined below.

The efficiency of a collector is stated as:

\[\eta = \frac{\text{qu}/A}{I} = \frac{\dot{m} C_{tf} (t_{f,e} - t_{f,i})}{I} \]

where:

\(q_u \) = Rate of useful energy extracted from the solar collector (BTU/Hr)

\(A \) = Gross collector area (Ft\(^2\))

\(I \) = Total solar energy incident upon the plane of the solar collector per unit time per unit area (BTU/Hr\cdot Ft\(^2\))

\(\dot{m} \) = Mass flow rate of the transfer liquid through the collector per unit area of the collector (Lbm/Ft\(^2\)\cdot Hr)

\(C_{tf} \) = Specific heat of the transfer liquid (BTU/Lb\cdot°F)

\(t_{f,e} \) = Temperature of the transfer liquid leaving the collector (°F)

\(t_{f,i} \) = Temperature of the transfer liquid entering the collector (°F)

Rewriting Equation (1) in terms of the total collector area yield:

\[\eta = \frac{(\dot{m}A)C_{tf} (t_{f,e} - t_{f,i})}{(IA)} = \frac{\dot{M} C_{tf} (t_{f,e} - t_{f,i})}{P_i} \]

Notice that:

\(P_i = IA = \text{Total power incident on the collector.} \)

\(\dot{m}A = \dot{M} = \text{Total mass flow rate through the collector.} \)

Therefore \(\dot{M} C_{tf} (t_{f,e} - t_{f,i}) = \text{Total power collected by the collector.} \)
5.0 ANALYSIS (Continued)

5.1 Thermal Performance Test (Continued)

Substitution in Equation (2) results in:

\[\eta = \frac{P_{abs}}{P_{inc}} \]

where:

- \(P_{abs} = \) Total collected power
- \(P_{inc} = \) Total incident power

This value of efficiency is expressed as a percentage by multiplying by 100. This expression for percent efficiency is:

\[
\text{Collector Efficiency} = \frac{P_{abs}}{P_{inc}} \times 100
\]

or from Equation (2), collector efficiency is defined by the equation:

\[
\% \text{ Eff.} = \frac{\dot{m} C_{tf} (t_{f,e} - t_{f,i})}{P_{inc}} \times 100
\]

Each term in Equation (5) was measured and recorded independently during the test. The mean value of efficiency was determined over a five-minute period during which the test conditions remained in a quasi-steady state. Each five-minute period constitutes one "data point" as is graphically depicted on a plot of percent efficiency versus \((t_i - t_a)/I\)

where:

- \(t_i = \) Liquid inlet temperature (°F)
- \(t_a = \) Ambient temperature (°F)
- \(I = \) Incident flux per unit area (BTU/Hr·Ft²)

The abscissa term \((t_i - t_a)/I\) was used to normalize the effect of operating at different values of \(I, t_i \) and \(t_a \). The results are shown graphically in Figure 1 with the supporting test data given in Table I. An update of the original efficiency data is shown in Table II, based on the gross collector area.
5.0 ANALYSIS AND RESULTS (Continued)

5.1 Thermal Performance Test (Continued)

Reference 3.3 uses the following terms relating to the thermal efficiency graph:

\[F_R C = \text{intercept of the efficiency curve on the ordinate axis} \]

\[F_{RUL} = \text{the negative of the slope of the efficiency curve} \]

\[F_R = \text{the solar heat removal factor} \]

\[\alpha = \text{absorptance of the collector surface for solar radiation} \]

\[\tau = \text{transmittance of the solar collector cover plate} \]

\[U_L = \text{solar collector heat transfer loss coefficient} \]

Although the value of \(F_R C \) was not significantly changed by weathering, the slope, \(F_{RUL} \), did increase noticeably. Assuming that \(F_R, \alpha, \) and \(\tau \) did not change as indicated above, then the heat loss coefficient, \(U_L \), increased as a result of the weathering. This is supporting evidence that the cloudiness on the inner cover plate was due to out-gassing of the insulation, resulting in poorer performance.
TABLE I

LIBBEY-OWENS-FORD COLLECTOR PERFORMANCE RECHECK

AFTER LONG TERM EXPOSURE TO NATURAL WEATHERING CONDITIONS

7.5 MPH WIND

<table>
<thead>
<tr>
<th>Ambient Air Temperature ((T_a)), °F</th>
<th>82.1</th>
<th>83.6</th>
<th>80.0</th>
<th>80.6</th>
<th>81.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Inlet Temperature ((T_i)), °F</td>
<td>89.6</td>
<td>105.9</td>
<td>129.3</td>
<td>156.8</td>
<td>180.3</td>
</tr>
<tr>
<td>Fluid Outlet Temperature ((T_e)), °F</td>
<td>103.8</td>
<td>119.6</td>
<td>141.1</td>
<td>166.9</td>
<td>188.7</td>
</tr>
<tr>
<td>Differential Fluid Temperature ((\Delta T)), °F</td>
<td>14.2</td>
<td>13.7</td>
<td>11.8</td>
<td>10.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Total Solar Flux ((I)), BTU/Hr·Ft²</td>
<td>305.2</td>
<td>305.2</td>
<td>305.2</td>
<td>305.2</td>
<td>305.2</td>
</tr>
<tr>
<td>Flow Rate, GPM</td>
<td>0.587</td>
<td>0.582</td>
<td>0.581</td>
<td>0.581</td>
<td>0.588</td>
</tr>
<tr>
<td>((T_i - T_a)/I) °F·Hr·Ft²/BTU</td>
<td>0.024</td>
<td>0.073</td>
<td>0.161</td>
<td>0.249</td>
<td>0.322</td>
</tr>
<tr>
<td>Efficiency ((\eta)), %</td>
<td>64.8</td>
<td>61.8</td>
<td>52.7</td>
<td>44.8</td>
<td>37.4</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.996</td>
<td>0.993</td>
<td>0.986</td>
<td>0.980</td>
<td>0.971</td>
</tr>
<tr>
<td>Collector Side °F</td>
<td>80.9</td>
<td>67.5</td>
<td>83.9</td>
<td>84.2</td>
<td>86.1</td>
</tr>
<tr>
<td>Collector Back °F</td>
<td>81.3</td>
<td>68.7</td>
<td>84.9</td>
<td>85.3</td>
<td>86.6</td>
</tr>
<tr>
<td>Outer Cover °F</td>
<td>86.0</td>
<td>75.9</td>
<td>90.7</td>
<td>91.9</td>
<td>92.3</td>
</tr>
<tr>
<td>North Surface °F</td>
<td>101.8</td>
<td>101.1</td>
<td>121.9</td>
<td>124.8</td>
<td>139.3</td>
</tr>
<tr>
<td>Center Surface °F</td>
<td>97.4</td>
<td>96.7</td>
<td>118.1</td>
<td>120.4</td>
<td>136.8</td>
</tr>
<tr>
<td>West Surface °F</td>
<td>97.5</td>
<td>96.6</td>
<td>118.2</td>
<td>120.5</td>
<td>135.8</td>
</tr>
<tr>
<td>South Surface °F</td>
<td>90.0</td>
<td>88.6</td>
<td>111.4</td>
<td>112.0</td>
<td>129.5</td>
</tr>
<tr>
<td>Ambient °F</td>
<td>72.9</td>
<td>58.0</td>
<td>74.0</td>
<td>74.3</td>
<td>74.7</td>
</tr>
<tr>
<td>Tin °F</td>
<td>77.6</td>
<td>74.5</td>
<td>100.8</td>
<td>99.9</td>
<td>120.2</td>
</tr>
<tr>
<td>Tout °F</td>
<td>91.7</td>
<td>89.0</td>
<td>112.7</td>
<td>114.2</td>
<td>131.0</td>
</tr>
<tr>
<td>T °F</td>
<td>14.1</td>
<td>15.5</td>
<td>11.9</td>
<td>14.3</td>
<td>10.7</td>
</tr>
<tr>
<td>Solar Flux BTU/Hr·Ft²</td>
<td>231.0</td>
<td>271.8</td>
<td>231.2</td>
<td>272.3</td>
<td>233.6</td>
</tr>
<tr>
<td>Flow Rate Lb/Hr</td>
<td>291.2</td>
<td>290.5</td>
<td>290.6</td>
<td>289.8</td>
<td>290.3</td>
</tr>
<tr>
<td>Wind Speed mph</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Efficiency %</td>
<td>66.0</td>
<td>61.7</td>
<td>56.8</td>
<td>57.9</td>
<td>51.8</td>
</tr>
<tr>
<td>(T_i - T_a) / I °F·Hr·Ft²/BTU</td>
<td>.021</td>
<td>.061</td>
<td>.116</td>
<td>.094</td>
<td>.195</td>
</tr>
</tbody>
</table>
Figure 1. Libbey-Owens-Ford Collector Indoor Thermal Performance Test Results
Figure 1. Libbey-Owens-Ford Collector Indoor Thermal Performance Test Results