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1. INTRODUCTION

Optimal control theory of stochastic linear systems has advanced

rapidly since the original contributions [1], [2]. 	 For discrete-time

linear dynamic systems with additive Gaussian noise, the true optimality

is guaranteed by the Separation Theorem [3], [4]. 	 However, nearly all

of the results have been obtained under the assumption • of the existence

of a centralized decision maker which takes all the measurements and

generates ail control inputs.	 For systems with multiple decision makers

a general computationally feasible theory does not exist at the present

time.	 On the other hand, since most system designs and implementations

have been simple and analog in nature, there is a lag in the utilization

of digital components and the correspondingly improved performance that

could be achieved.	 This can be partially explained in that in many

cases the designers of a control system usually have constraints which

make a decentralized computer approach impractical.

The availability of microprocessors, assembled from a small set

of LS1 logic components, has presented the control system designer with

new opportunities for sophisticated control system design.	 Many de-

signers of control system components have improved their products

through the use of microprocessors.	 This fact is substantiated in re-

ference [5] where a design of a microprocessor-controlled rate gyro is

presented.	 The use of a microprocessor in the rate gyro resulted in

an improved performance and a substantial savings in hardware.	 Incor-

poration of microcomputers also makes redundant navigation systems avail-

able for only a moderate cost and size increase over non-redundant sys-

tems.	 The trend of device manufacturers to use microcomputers as
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integral parts of their equipment is expected to continue. The features

of a microprocessor--flexibility, modularity, good hardware communica-

tions and low cost, have made distributed or decentralized control a

suitable answer to many control problems. A distributed-control system

offers several potential advantages over a centralized control system,

but in the past the high cost of processors has discouraged its use.

The advances in microprocessor technology have shifted and are continu-

ing to shift the cost balance in favor of distributed control systems.

The following are some of the potential advantages of a distributed-

control system.

1. The interface between the computer and the process, i.e.,

the wiring of the process input and output signals to a centralized*

computer has constituted a considerable portion of the to_^l cost for

a centralized control system. In some cases the wiring is susceptible

to electromagnetic interferences. Communication difficulties may arise

because of non-instantaneous transmission of data between physical lo-

cations; by the time the control computer receives the data it may be

too late for effective control. Therefore, it is desirable to bring

the computers as close as possible to the process.

2. The computation time required to process the data in real

time at a centralized computer may be great despite the rapid advance

in mainframe computer technology. Intolerable time delays may occur be-

tween a portion of the process needing attention and another part which

has information for the required action. Parallel computation, with

microcomputers each dedicated to a portion of the process, can help to

solve this type of problem.
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3. Computer down-time has been a nightmare in real-time appli-

cations. In most cases it has been so intolerable that a back-up unit

is required to ensure reliable operation. But idle facilities can be

very hard to justify economically. The structure of a distributed con-

trol system is more reliable in the sense that failure in one computer

does not usually have catastrophic consequences. For the portion of the

process which is critical to the whole operation, a redundant microcom-

puter can be installed for reliable control at a minimal cost increase.
ie

4. The initial capital investment for centralized control may

ti	 not be economically feasible because of the high cost of mainframe com-

puters. A distributed control system installed step by step, can be

more attractive to the management when there is a constraint on the

capital expenditure.
r"

Information exchange is a critical issue in distributed-control

systems. In a distributed-control system, it must be assumed that no

controller, local or central, possesses a complete description of the Sys-

tem. Figure (1.1) shows an example of a distributed flight control sys-

tem with minimal module requirements from the flight control point of

view. Note that a microcomputer controller is associated with each physi-

cal device in the system and that each controller can communicate with

other physically distributed elements using an information exchange bus.

The controllers, therefore, must exchange information among themselves

in order to achieve satisfactory opera n. The type of inforr.+ation

available to a controller for its decision-making is called its infor-

mation pattern [6], [7]. Hence, for a distributed processing system we

have an information pattern considerably different from that of a



CU = Control Unit

Figure 1.1 A Distributed Flight Control System
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I.
	 cen+_ralized control system in which the central controller is assumed

to have complete and instantaneous information of the system. The

fol.lowing are some practical aspects we must consider in a distributed

microprocessor.-based control system.
i
i..	 1. Because of the high cost of communication, various techniques

for data reduction are needed. For example, in a distributed aircraft

control system, an adaptive sampling technique may be employed to re-

duce the data traffic between sensors and actuators [8],[9],[10]. In

an adaptive sampling system, the trade-offs between performance and

communication loads must be considered. The current estimate of the

state is transmitted to the actuator only as needed to maintain ade-

quate performance of the system. Thus, there will be variable time in-

tervals between information updates to the actuators.	 ,

2. As more transmission lines are added to a distributed-control

system, it becomes economical to multiplex data on the lines. In some

cases, a reduction in weight and size is also a significant improvement.

This is especially true in aerospace applications. There are two

common methods to merge data over a single transmission line--Frequency

Division Multiplexing (FDM) and Time Division Multiplexing (TDM). In

FDM, devices share a common transmission line by dividing its frequency

spectrum into several subchannels. In TDM, devices queue on one end of

the transmission line so that exactly one device is allowed to trans-

mit on it at a time. In the latter case, the data arrival time may be

uncertain.

3. For economic as well as system stability reasons, the sampling

rate should be selected according to the bandwidth of the loop being

t
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controlled. If loops can be controlled separately, they can usually be

sampled at different rates. The necessity for a multivariate system be-

comes obvious if the bandwidths are more than an order of magnitude apart.

The advantages of multirate systems are so great that they have been

employed in industry even though there are no complete analytic tech-

niques to design them at the present time [11],[12]. One example is in

the Digikon-II program of the space Shuttle fligtit control system, where

multirate results are developed for 2:1 and 4:1 sampling ratios [13].

The above discussion indicates that a distributed control system

may have a stochastic information pattern where the data arrives at

random times. It is surprising that modern control theory has only a
1

limited amount of available work on this practical aspect of control
7^

problems, whereas single rate control and filter problems are well de-

veloped [2],[4]. However, it is encouraging that recent'v, there has

been an increasing interest in multirate systems. Primarily, though, it

has been assumed that the information pattern is deterministic in both

multirate and single rate cases; and control systems with stochastic

information patterns have not received enough attention.

In this report, a stochastic model of a sampling process is postu-

lated which accounts for

(1) Variable time intervals in adaptive-sampling systems

(2) Uncertainty of data arrival time in multiplexed communi-

Ication systems

(3) Multirate-sampling systems

Stochastic modeling of a sampling process was first suggested by

A. K. Caglayan and H. F. VanLandingham [14]. In reference [14] an
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optimal control policy was obtained for the system with a discrete

Markovian sampling process. However, the optimal solution was restricted

to a process in which the time interval between each information update

was known to the system at the initiation of the interval. In this

report an optimal policy is obtained for virtually all Markov type

sampling processes. The restriction was relaxed to include the situa-

tion where the control unit does not have to know the duration of the

information update interval at its initiation, but instead, only has

knowledge of the past history of the information update intervals. This

assumption is more applicable to a distributed-control system because

its control units ordinarily will not know how long they will have to
i,

act with the same in:ormation. The system with additive plant and

measurement noise is, of course, also considered as being a practical

constraint of control systems. A separation theory of estimation and

control for the randomly-sampled system is presented. In particular, in

a randomly-sampled system the stochastic optimal control can be synthe-

sized by cascading an optimal estimator with the optimal control law.

This is significant because it considerably simplifies the implementa-

tion of the stochastic optimal control of randomly sampled systems. The

theory is applied to the control of the longitudinal motion of the

F8-DFBW (F-8 Digital Fly-by-Wire) aircraft. Both theoretical and simu-

lation results indicate that, for the application example, the optimal
.-	

cost obtained using a variable time-increment Markov information update
^w

process (where the controllers know only the past information update

.-	 intervals and the Markov transition mechanism) is almost identical to

the cost obtained using a known uniform update interval.
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2.	 OPTIMAL CONTROL OF RANDOMLY-SAMPLED SYSTEMS

i

2.1	 Introduction

The low cost of microprocessors together with increasingly complex

control systems gave necessitated a re-examination of the information

structure in conventional Linear-Quadratic-Gaussian (LQG) controller de-

sign.	 The conventional LQG control methods avoid consideration of any

variation in information structure; it always assumes that the system is

uniformly sampled, i.e., the information is transferred at fixed times

with uniform intervals.	 In a computer-based control system, especially

those with multiple processors, it is not always possible or practical

to transfer information uniformly.	 A more general formulation is needed.

0. A linear sampled-data control system can be classified by its input charac-

teristics as having either random or deterministic inputs; by the measure-

ment model as being noisy, when it is impossible to determine the state

of the system exactly, or noise-free, when the state of the system can

be known exactly; by the information transfer mechanism as being randomly-

sampled, when the information is transferred at random times, or uniformly

sampled when the information is transferred at fixed times with uniform

intervals.	 In this chapter it is assumed that the input is deterministic

and the measurement process is noise-free, but that the information is

transferred at random times. 	 A more general model with additive plant

Land measurement noise will be discussed in Chapter 4.

A mathematical model describing the information transfer mechanism

is first postulated in Section 2.2.	 Using dynamic programming, a control

8
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law is then derived in Section 2.3 which optimizes the average of an

integral of a quadratic form in the state and control variables. In

section 2.4 we examine the asymptotic behavior of the optimal control

for randomly-sampled systems. Conditions are given for the stability

of the closed-loop ayste:u using quasi-steady state feedback.

2.2 Stochastic Information Distribution Model

The purpose of this section is to present a model which is useful

in describing the stochastic information transfer process in a multiple-

processor control system. The next section will present the derivation

of the optimal control law that minimizes the average of an integral

in the state and control variables.

Consider the continuous dynamical system represented by the linear

differential equation:

x =Ax+Bu	 (2.2.1)

z
i
t
i
i

r
t
1A^

where x is an n-dimensional vector, representing the system states, u

is an m-dimensional vector representing the control inputs, A is an

n x n matrix describing the dynamics of the system and B is an n x m

matrix describing the control effectiveness. It is assumed that the

state information is transferred at discrete points in time, ak,

k - 0,1, ••• ,N where a 0 "^ al "c	al < ak+l	 < aN'

The sequence (ak} is defined to be the sum of a stochastic pro-

cess {tk I	 in the following sense:

k
a  = a0 + E ti	 (2.2.2)

i=1

1

r
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where tk is an element of the set T(i). Hence, a 0 denotes the

starting time, t i denotes the ith time interval between two consecu-

tive information updates and a k is the time that the k th information

update takes place. Since the time interval between two consecutive in-

formation updates cannot be negative, the sample space of the stochastic

process t(i) for i - l, ••• , N, is restricted to sets of positive real

numbers. There is, however, no restriction on the statistical nature

of the process. The set of information update sequences which are ad-

missible for a k-stage process is the Cartesian product of T(i), i.e.,

T(k) a T(k) = T(1) x T(2) ••• x T(k) 	 (2.2.3)

tk E T (k)	 (2.2.4)

T(k) - { tl , ...' tk}	 (2.2.5)

Figure 2.2.1 illustrates the relation between t k and ak . The

average of a quadratic integral in the state and control is defined to

be the cost functional for the N-interval process to achieve the desired

system performance. We assume a cost functional of the form:

J 2 ET(N) ry IX (t ) Q x(t) + uT (t)R u(t) ] dt + xT(N. )Sx (QN)	 (2.2.6)

a0

The cost functional can be expressed as the sum of N integrals by

dividing the total time into N intervals, viz.

N-1 
J 2 

ET(N) ( Z 
f%+i
 [xT ( t)Q x(t) + uT (t)R u(t)J dt + xT (aN)Sx CaN) (2.2.7)

-0 a
k

j
i
as
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It is interesting to note that the random variable appears in the

limits of the integral only. Since the equivalent discrete-time system

is obtaiued by integrating the system differential equation and cost

functional over each sampling period, the random variable will appear

everywhere in the equivalent discrete-time system! If control inputs are

further restricted to piecewise constant functions of time that change

only at sampling instants ak, i.e.

	

u(t) - u(ak)	 ak < t < 
ak+l '	

(2.2.8)

it is well known that
t

fx(t) - 4(t, ak x(ak)+ 	 0(t,$) B(s)ds u(ck)	 (2.2.9)

ak

Therefore, the equtvalent discrete-time system is given by

tk+l..	

x(1)	 f( 1' )x(tk) + I f(tk+l' s)B(s)ds u(tk)	 (2.2.10)

tk

i.	 To simplify the notations, the following matrices are defined

f(k+l, k) - O(tk+l , tk)	
(2.2.11)

tk+l
T(k+l. k) _	 0(tk+l, s)B(s)ds	 (2.2.12)

T	 tk

Using equations (2.2 10) and (2.2`.11),-the equations describing the pro-

cess and cost function J can be written in difference equation form as

x(k+l) - 0(k+l, k) x(k) + t(k+l, k) v(k) 	 (2.2.13)

' J - T Et(N)[x(N)T	
N_1

Sx(N) + E (x(k) T Q(k)x(k) + v(k)TR(k)v(k)}](2.2.14)
k-0

r

_....rrr
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where

4(k+l, k) - eAtk+1 - R71 (k)  W(k) T 	(2.2.15)

r(k+l ,k) - r(tk+l)

t

r (t) -	 aAsBds	 (2.2.16 )
0

Q(k) - t (e )TQ e^
1	

dr - W(k)a 1W(k)	 (2.2.17)

0

R(k) - f tk+l [R, + rT (r,0)Qr(r,0)ldr	 (2.2.18)

0

and

W(k) - f kt (e^) TQ(eAr )dr	 (2.2.19)

 0

The above representation was obtained using the techniques of

Reference [151 with the transformation

v(k) - u(k) + R(k) 1W(k) Tx(k)	 (2.2.20)

employed to eliminate the cross product terms a (k)W(k)u(k) that would

otherwise appear in the cost function representation.

1

w
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2.3 The Optimal Solution for Randomly-Sampled Systems

We begin with a formal statement of the optimization problem for

randomly-sampled systems:

For the stochastic difference equation describing the system

x(k+l) _ 0(k+l, k)x(k) + P(k+l, k)v(k) 	 (2.3.1)

where f(k+l, k) and T (k+l, k) are functions of tk tk+l 
and the cost

function J given by

N-1

J2
E {x(N) TSx (N) + E [x(k)TQ(k)x (k) + v(k)TR(k)v(k)]}	 (2.3.2)

^. k-0

we will select the sequence v(k) to minimize J given the distribution

	

'	 of the stochastic process { k).

	

j.	 The principle of Optimality [16],[17] has proven to be a powerful
I ..

tool for obtaining the solution of optimal control problems. This prin-

ciple states that whatever the initial state and initial decision may be,

the remaining decision must constitute an optimal policy with regard to

the state resulting from the first decision. Using the principle of op-

timality, we reduce the N-stage to N one-stage problems. This result is

desirable because decisions can then be made sequentially. The optimi-

zation is carried out using dynamic programming in a manner similar to

that of Reference [18].

First we consider a single stage optimization problem over the last

sample interval which starts at aN-1 and terminates at aN. Subsequently,

we will generalize the result to all N stages by induction.

i
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Single Stage Process

Consider the last stage of the process which starts at a N-1 and

terminates at aN. The optimal control over the last stage produces a

cost

J(N-1, N) _ -1min E{ xT (n-1)Q(N-1)x(N-1) + v(N-1)TR(N-1)v(N-1)
2v (N-1)

+ x(N)TP (0)x(N))	 (2.3.3)

where P(0) 9 S.
But x(N) is related to v(N-1) by the state equation.

x(N) = (D(N, N-1) x(N-1) + r (N, N-1) v(N-1)

Substituting this equation into the cost function, we have

J(N-1, N) - 1 min E{x (N-1) TQ (N-1)x(N-1) + vT (N-1) R(N-1)v(N-1) + [o(N,N-1)
2v(N-1)

x(N-1) + r (N, N-1)v(N-1)]TP ( 0)[O(N, N-1)x(N-1) + r(N, N-1)v (N-1)11(2.3.4)

The control v(N-1) is required to be physically realizable and

therefore should be independent of the stochastic process t N. Using

one of the properties of conditional expectation; namely, that E(x)

E[E(x/y)] where the outer expected value on the right-hand side is

over y, we have

J(N-1, N)	 1 min ME
-
 x(N-'.T ' Q(N-1 )x(N-1) + v (N-1)R(N-1 )v(N-1)

2v(N-1) TN/TN-1

+ [O(N, N-1 ) x(N-1) + r(N, N-1)v(N-1)]TP(0)[O(N, N-1)x(N-1)

+ r(N, N-1 )v(N-1)]}}
	

(2.3.5)

^he performance measure can be minimized by minimizing only the inner

s
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expected value in equation (2.3.5) with respect to v(N-1). The minimum

U(N-1 N)is obtained by setting 
ov(N-1)	

to zero. Thus,

E	 {R(N-1)v(N-1) + r(N, N-1)TP(0)(O(N, N-1)x(N-1)
TN TrT-1

+ r(N, N-1)v(N-1)1 - 0	 (2.3.6)

Since the stochastic process (tN) is independent of x(N-1), we have

v(N-1) _ -ETN/TN-1 [R(N-1) + r T (N, N-1)P(0)r(N, N-1)]-1

• ET 
/T	

[ rT (N, N-1)P(0)O(N, N-1)]x(N-1)	 (2.3.7)
N N-1

Introducing K(N-1) to represent the optimal gain at the (N-1)th stage,

we have

v(N-1) - K(N-1)x(N-1) 	(2.3.8)

where

K(N-1) _ -ET /T	 [R(N-1) + rT (N, N-1) - P(0)r(N, N-1)]-1

E', IT	 [rT (N, N- 1)P(0)O(N, N-1)]	 (2.3.9)
N N-1

For notational simplification we let

K(N-1) - K(N-1)/T(N-1) 	 (2.3.10)

i.e., the conditioning will be understood in context.

The cost resulting from application of the optimal control can be

evaluated as

J(N-1, N) - E /T
	

{xT(N-1)Q(N-1)x(N-1) + [K(N-1)x(N-1)]TT
N N-1

R(N-1)K(N-1)x(N-1) + WN, N-1)x(N-1) + (Continued)
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+ r(N, N-1)K(N-1)x(N-1)]TP(0) [I(N, N-1)x(N-1) + r(N, N-1)

K%'N-1)x(N-1) ] }	 (2.3.11)

Hence, the cost function takes the form

J(N-1, N)2 x(N-1) T P(1) x(N-1)	 (2.3.12)

where

P(1) = ET /T	 {Q(N-1) + K(N-1) TR(N-1)K(N-1) + [O(N, N-1) + r(N, N-1)
N N-1

K(N-1)]TP(0) • [^D(N, N-1) + r(N, N-1)K(N-1)]) 	 (2.3.13)

For notational simplification, let (as in 2.3.10)

P(1) = P(1) /TN-1
	

(2.3.14)

The result is analogous to the optimal solution of uniformly-

sampled control systems. The optimal cost is still a quadratic function

of x(N-1), the initial state for the single-stage problem; however, P(1)

is replaced by the mathematical expectation of the same function. This

is an important characteristic of randomly-sampled control systems.

We can no longer determine the minimum cost exactly, but instead,

only its statistical average before applying the control.

Two Stage Process

The final two intervals of the process have an optimal cost

N-"1
J(N-2, N) - 1 min	 E	 {xT(N)S x(N) + E (x(k)TQ(k)

2v(N-1),v(N-2) TN' TN-1/TN-2	 K=N-2

x(k) + v(k)TR(k)v(k))} 	 (2.3.15)

CS

i

i1

r
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= 1 min	 (E	 [xT(N-2)Q(N-2)x(N-2) + vT(N-2)R(N-2)
2v(N-1),v(N-2) TN'TN-1/TN-2

v(N-2)] + ET
N , N-1 N-2T 	 /T	 [xT(N-1)Q(N-1)x(N-1)

+ vT (N-1)R(N-1)v(N-1) + xT(N)P(0)x(N)]}	 (2.3.16)

J(N-2, N) 1 min E	 {xT(N-2)Q(N-2.)x(N-2) + vT(N-2)R(N-2)v(N-2)
2v(N-2) TN-1/TN-2

• min	
TI

XxT(N-1)Q(N-1)x(N-1) + vT(N-1)R(N-1)v(N-1)
v(N-1) N N-1

• xT(N)P(0)x(N)]}	 (2.3.17)

The last equation follows from the property of conditional distributions,

viz.

PTN'TN-1/TN-2

= PTN/TN-1'TN-2PTN-1/TN-2

= PTN /T 
N-1 

PT 
N-1 

/T N-2	
(2.3.18)

From this property a similar identity can be derived for the mathemati-

cal expectation operator. That is

ET N 9 N-1 N-2T 	 /T	 (-) = 
ET 

N /T N-2 
[ET 

N /T N-1 (•)]	 (2.3.19)

From the Principle of Optimality, the cost functional for the two-stage

problem can be written as

J(N-2, N) - 1 min E	 {xT(N- ?)'Q(N-2)x(N-2) + vT(N-2)R(N-2)v(N-2)
2v(N-2) TN-1/TN-2

+ J* (N-1, N)}	 (2.3.20)
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J(N-2, N) 1 min E	 [xT(N-2)Q(N-2)x(N-2) + vT(N-2)R(N-2)v(n-2)
2	

TN-1/TN-2

+ xT(N-1)P(1)x(N-1)]	 (2.3.21)

The cost functional for the two-stage process is analogous to that

of the single stage process; v(N-2) can therefore be determined easily

by repeating the steps which led to the expression for v(N-1). For the

two-stage process, we conclude immediately that

J(N-2, N) - xr (N-2)P(2)x(N-2)	 (2.3.22)

P(2) = ET	 /T	 {Q(N-2) + KT (N-2)R(N-2)K(N-2) + [@(N-1, N-2) + I'(N-1,
N-1 N-2

N-2)K(N-2)]TP(1) • [(D(N-1, N-2) + T(N-1, N-2)K(N-2)]} 	 (2.3.23)

where

K(N-2) _ -ET	 /T	 [R(N-2) + TT(N-1, N-2)P(1)I'(N-1, N-2)]-1
N-I N-2

• ET	 /T	 [rT (N-1, N-2)P(1) ,P(N-1, N-2)]	 (2.3.24)
N-1 N-2

where for notational simplification
t

P(2) = P(2)/TN-2

and

K(N-2) = K(N-2)/TN-2	(2.3.25)

Utilizing the principle of induction, we can prove Cie theorem

for the N-stage problem by carrying out the above derivation for %--stage,

problem, assuming the form for the (k-1) stage problem, i.e. we will

first assume that equations (2.3.22), (2.3.23) and (2.3.24) hold for the

(k-1)-stage problem and then we will show it also holds for the k-stage

problem.

r
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Assumed Relations for the (k-1)-Stage Problem

The optimal control at time N-k+l for the (k-1)-stage process is

characterized by the follow-ng equations.

J(N-k+l, N)	
2 
xT (N-k+l)P(k-1)x(N-k+l)	 (2.3.26)

F

P(k-1) - ETN-k+2/TN-K+1{Q(N
-k+l) + KT(N-k+l)R (N-k+l)K (N-k+l)

+ [t(N-k+2, N-k+l) + T (N-k+2, N-k+l)K(N-k+l) ] T • P(1)

[@(N-k+2, N-k+l) + t(N-k + 2, N-k+l)K(N-k+l)l} 	 (2.3.27)

and

K(N-k+l) _ -ET 	
/T	

[R(N-k+l) + r (N-k+2, N-k+l)P(k-2)T(N-k+2,
N-k+2 N-k+l

N-k+l)]-1 ETN-k+2/TN-k+l[TT(N-k+2, N-k+l)P(k-2)

WT	 O(N-k+2, N-k+l ) l	 (2.3.28)

Using the Principle of Optimality the cost function for the k-stage
3	 ^.

problem can be written as

J(N-k, N) min E	 {1 xT(N-k) Q(N-k)x(N-k) + 1 v(N-k)T
v(N-k) TN-k+1/TN-k 2	 2

R(N-k;v(N-k) + J(N-k+l, N)} 	 (2.3.29)

Using equations (2.3.26) and (2.3.1), we have

J(N-k, N) - min E	 {1 xT (N-k) • Q(N-k)x(N-k) + 1 v(N-k)T
v(N-k) Tn-k+1/TN-k 2
	 2

R(N-k)v (N-k) + [O(N-k+l, N-k ) x(N-k)

E

"	 + I'(N-k+l, N-k) v(N-k)]T	 P(k-1)[I (N-k + 1, N-•k)x(N-k)

(Continued)
E^
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+ r(N-k+l, N)v(N-k) 	 (2.3.30)

The minimum is obtained by setting

U(N-k, N) = 0	 (2.3.31)
8v (N-k)

Repeating the steps similarly used for the single-stage problem,

the following recursive relations are obtained for the k-stage process

J(N-k, N) 2 x(N-k) TP(k) x(N-k)	 (2.3.32)

P(k) = ET	/T {Q(N-k) + K(N-k)T • R(N-k)K(N-k) + [O(N--k+l, N-k)
N-k+l N-k

+ r(N-k + 1, N-k) • K(N-k)]TP(k-1)[@(N-k+l, N-k) + T(N-k+1,N-k)K(N-k)]}

(2.3.33 )

and

K(N-k) = -ET 	 /T [R(N-k) + rT (N-k+l, N-k)P(k-1)r(N-k+l, N-k)]-1
N-k+l N-k

ET	/T	 [TT(N--k+l, N-k)P(k- 1)O(N-k+l, N-k)]	 (2.3.34)
N-k+l N-k

Markov Process Assumption

The statistical property characterizing a Markov process is analo-

gous to the property • Iewtonian dynamics. In a dynamical system the

equation of motion describing the future trajectory can be determined

if the position and velocity are given at any time t; the past trajec-

tory before time t is irrelevant. In a Markov process, the correspond-

ing property is that the present state of the system contains all rele-

vant statistics pertaining to the future. Mathematically, a process

x(1), x(2), ••• is called a Markov process if [19], [20]

P(x(N+1) /x(N),• - ,x(1)) - P(x(N+1)/x(N)).
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	 If Tk {to ••• tk} with Tk its sample space and if Tk is the

sample space of tk, then assuming a Markov relationship,

i

PT /T	 (tk/Tk-1)k k-1

- PTk/Tk-1(tk/tk-l)' 	
(2.3.35)

This equation states that the present sampling interval determines the

probability of the next sampling interval in the future. For such a

process a transition mechanism can be defined and the joint density

PT (Tk) can be written as
k

PT
k 

(TO = PT k , k-1T	 (t k 3' Tk-1)
i 

= PTk/Tk 1(tk/Tk-1)PTk-1(Tk 1)

k

= i11PTi/Ti-1(tk/Ti-1)Pi (to)

k

ia1PTiPC	
( ti/t i-1) PT ( t0 )	 ( 2.3.36)O 

Hence, for a Markov process,specification of the prior density

function P
To 0

(t ) together with the transition probabilities

P	 (tk/tk-1) completely determine the distribution of the process.
Tk/Tk-1

As a result, equations (2.3.3 2-34) can be modified to replace condition-

.^	 ing on TN-k by conditioning on TN-k . Hence, the probabilistic Riccati

r	 Equat; in, .re

y	
J(N-k, N) = XT- (N-k) P(k)x(N-k)	 (2.3.37)
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P(k)	 ET	 {Q(N-k) + KT (N-k)	 R(N-k)K(N-k) + [O(N-k+l, N-k)
^ n /TN-k+l	 N-k

'- + r(N-k+l, N-k)K(N-k)]TP(k-1)[O(N-k-1, N-k) + P(N-k+l, N-K)K(N-k)]}

(2.3.38 )

K(N-k) _ -ET	
/T	

[R(N-k) + t(N-k+l, N-k)p(k-1)r(N-k+l, N-Q]T
N-k+l	 N-k

ET	/T	 [P(N-k+l, N-k)P(k-1) 	 O(N-k+l, N-Q]	 (2.3.39)
N-k+l	 N-k

where

PM	 P(k)/T
N-k

and

K(N-k) = K(N-k)/TN
-k

f
The computation for the above probabilistic Riccati Equations is

simpler than the previous ones because the set that the expectation
f

operators are conditioned on is more restricted. 	 However, if the ex-

pectation operator is time-dependent and if the 	 sample space of
c -

{tk} is continuous, integration still has to be performed at each stage

of the recursive Riccati equation.	 The computational time for this case

can be exhorbitant.	 On the other hand, if the expectation operator is
j

i stationary (independent of time) and the sample space of {t k } is con-

tinuous,integration for the expectation operator has to be performed

only once before solving the probabilistic Riccati equations. 	 A simpler

case in which the expectation operator is stationary and the sample

is discrete	 be discussed in thespace	 will	 next section.

r
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Discrete Stationary Markov Processes

If the sample space T  is discrete and finite and if the condition-

al probability is stationary, then the transition mechanism can be re-

presented by the matrix T - Tt 
k ,tk_1 _ {Tij ) _ {P/tk = Sj/tk-1 = Si))

for a given sample space T  - {s1' s2,•••,sNS I for k - 1, ••• ,N. In

that case the optimal solution consists of NS gain and sensitivity

matrices at each stage so that

P(k)/TN-k c { P (k) / sl, P(k)/s2 ... P(k)/sNS) 	
(2.3.40)

and

K(N-k)/TN-k a {K(N-k) / s1, K(N-k) /s2, ... K (N-k)/sNS )	 (2.3.41)

The equation operator for a discrete sample space can be replaced

by a summation. That is

NS

ET
N-k+l /T 14-k

([f] /tN-k Si) j^1 f(Sj) * P(tN-k+l = Sj /tN-k - Si)

NS
= E Tij f(Sj )	 (2.3.42)

j=1

The following notations will be used for simplification.

Q(N-k, i) = Q(tN-k = S i) = Qi (2.3.43)

R(N-k, i) - R(tN-k = Si) - Ri (2.3.44)

O(N-k, _ D(tN-k .0Si) _ 0i
(2.3.45)

r(N-k, i) - r(tN-k Si) - Ti (2.3.46)

where Qi , RV 4^i , r 	 are defined in equation (3).	 The probabilistic

equations can now be written in difference equation form.

s

4

1

e
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J(N-k, N) - xT (N-k)P(k/i)x(N-k) 	 (2.3.47)

NS
P(k/i)	 E	 Tij {Q(N-k, j) + KT (N-k/j)R(N-k, j)K(N-k /J) + [ @(N-k, j)

j=1

+ P(N-k, j)K(N-k/j)]TP(k-1 /j)[O(N-k, j) + t(N-k, j) • K(N-k/j)]

(2.3.48)

NS
K(N-k/i) _ - { E	 Tij [R(N-k, j) + TT(N-k, j) - P(k-1/j)t(N-k, j)]-1}

j-1
NS

{ E	 T [TT (N-k, m) • P(K-1/m)§(N-k, m)]} 	 (2.3.49)
f	 „
t

im
m-1

M

The recursive computations required to generate the optimal con-
..

trol for the probabilistic Riccati equation above is similar to that

for a deterministic Riccati equation. 	 However, the probabilistic 

Riccati equation also requires the prior distribution function for

•- to, viz. PT (to), to initiate the computation.	 Furthermore, at each
o

stage of the recursive computation NS gain matrices and NS sensitivity

matrices must be calculated.	 The computations required to generate the

optimal control sequences for the randomly-sampled system is equivalent

to solving NS Riccati equations coupled by transition probabilities.

If the transition probability matrix is an identity matrix then the

corresponding Riccati equations are decoupled.	 Each decoupled probabi-

listic Riccati equation reduces to a deterministic Riccati equation with

•i

uniform sampling. 	 The solution with N and k infinite is called the

quasi-steady-state solution.	 ".:.:!t quasi-steady solution is obtained as

In	 the NSthe NS gain matrices approach constant values. 	 general,	 gain

matrices have different quasi-steady values.	 For the purpose of com-

puting quasi-steady-state gains, the prior distribution function can

i

t

1t

_., -
}
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be chosen to be

FT (to	Si)	 1	 (2.3.50 )_
o

:. and

PT 
(to # S i )	 0

o
i.

This is equivalent to selecting an initial sampling interval

to	Si to start the process. 	 Hence, there are generally NS simulations

of interest in the class of distributions considered, one for each t:

element of the discrete sample space T o .	 The optimal cost is not gener-

ally asymptotically stationary. 	 That is, the cost will depend on the

initial sampling interval selected. 	 One trivial example is the system

with identity transition probability.	 The optimal cost depends on the

initial sampling interval chosen in this case because all subsequent

sampling intervals are the same as the initial sampling interval. 	 Each

simulation requires that the initial conditions x(o) and the initial

sample interval to contained in T = {S 	 ' sNS } be given.	 If the

quasi-steady state gains are used and if t o = Si , then the control f.:

u(o) applied over the interval t 	 is given by u(o)	 Kix(o), where

- Ki = K(N-k/i) for N and k infinite with i = 1, 2, ••' NS.	 Subsequent
r

control actions are computed according to u(k) = K ix(k) if tk
Si'

-1

Fig.	 (2.3.1) shows the closed loop control system using quasi-steady-

state feedback.

2.4	 The Stability of the Closed-Loop System

In this section we will study the stability of the randomly-sampled

system in which the sampling interval varies randomly over a fixed,

t	 g



i
27

I
f
F

i

E

I
I
1
1
1
1
1
1

Figure 2.3.1. The Closed-Loop System Using Quasi-Steady-State
Feedback.
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finite set of positive numbers. The stability of the randomly sampled

system can be analyzed by re-examining the discretization procedure for

a continuous system. The optimal gains calculated in section (2.3) are

used to stabilize a linear system of the form

x = Ax+Bu
	

(2.4.1)

If a finite set of positive real number {s1 • s 
N 
I is selected for

possible sampling intervals and a constant u(k) is applied to produce

the state x(k+l), s  time units later, the state at the next sampling

instant is given by

x(k+l) = esi x(k) + ieAtdt Bulk)(2.4.2)
f

s

0

For the case in which the controller knows the duration of the

sampling interval at its initiation, the constant u(k) is the product

of the state and the gain matrix, which depends only on s i (the duration

of the sampling interval), i.e.

T

u(k) - Fix(k)	 (2.4.3)

For the case in which the controller does not know the duration

of the sampling interval at its initiation, there are possible combina-

tions of gain and sampling intervals, but the basic approach will be

the same. For simplicity we will stay with the first case.

Introducing (2.4.3) into (2.4.2),

x(k+l) - (
esiA + f S 

i 
e 

At 
Bdt Fi)x(k)	 (2.4.4)

0

We define

e

-.1
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s iA
die

and

	 f

si

Ti = 	 eAtBdt	 for	 i = 1, " ', N.	 (2.4.5)
0

Equation (2.4.4) can now be written as

x(k+l) _ (01 + r Ji)x(k)	 (2.4.6)

Defining	 Hi = (0i + TiF1),	 (2.4.7)

x(k+l) - Hix(k)	 (2.4.8)

Since the sampling interval varies in time, we introduce the index

ik to denote ith configuration at the kth sampling instant. Hence,

x(k+l) _ (0i + r'kFi- )x(k)	 (2.4.9)

where 1 < ik < N.

Let

Hik 
23

	 + tikF
'k
	 (2.4.10)

Using Equation (2.4.9), the state at the k Lh- sampling instant can be

expressed as
k-1

x(k) = R Hi x(o)
j=o j

with 1 < ij < N.

The stability of the system (2.4.6) is, therefore, guaranteed if

the following sequence converges

k-1
R H

j =o ij
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Before discussing the convergence of a set of matrices, let us

define some definitions on vector and matrix norms, [29], [30].

Vector norms must satisfy the following relations:

jjxjj	 0	 and	 jjxjj	 0 iff x - 0

II	 II	 jal	 jjxjj	 for any scalar a

I 1 X+Y1 I	 I 1 X I I	 +	 I l y l 1	 (2.4.11)

Similarly, matrix norms have the following properties:

11AII	 0 and 11AII - 0 iff A - 0

11cLA11	 Jai	 11AII	 for any scalar a

11A+B11	 JJAJJ	 +	 JIBIJ
YIa

Yf

11ABI1	 :_11AII	 JIBIJ	 (2.4.12)

Corresponding to each vector norm, the induced matrix norm is

defined as

JjAxjj11AII	 max	 -	 (2.4.13)
 Trx-ITx#0

It can be proved that JJAJJ -,maxl,Ax,l
1XI =1

Three most commonly used vector norms are

11X11 P -	(1xl 1P + 1x2 1P + ".	 1xN1P)l/P

for P - 1,2,-.	 (2.4.14)

The norm 
11x112 

is called the Euclidean norm and 11x11 ., can be

interr,:eted as maxIx 1 1.	 It is conceivable that a measure of magnitude
i

for matrices could be based on the magnitude of the eigenvalues. 	 If

-0,

/a
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ul •'• u  are the eigenvalues of A, then u  = maxluj 1 (1 < . j < n) is
J

called the spectral radius of A. The following theorem on spectral

radius of A*A will be used to establish the stability conditions of the

closed-loop system.

Theorem 2.4.1 If ^^•^^s denote the matrix norm (known as spectral norm)

induced by the Euclidean norm, then 11 AIIs = A^2 , where 
AA 

is the

spectral radius of A*• A.

Proof: Since the matrix A A is Hermitian and positive-definite, it is

well known that the eigenvalues of A A are real and non-negative. The

spectral radius AA is, therefore, an eigenvalue of A A.

Let {xl, x2 , •••, 
n

} be a set of orthonormal right eigenvectors

of A A with associated eigenvalues Xl , Ix 2 , ••• an . For any x with
n

11x1 2 = 1 write x = E jxj , then
j=1

U
A*Ax = E	 a x

j=1 jjj
and

(11AX112)2 = (Ax)* Ax - x*(A*Ax)

_ (i ej xj ) * (z CkAkxk)

2^j
j

which uses the fact that x 
j
xk = ajk • 'therefore,

llAxll2 . {EI^jl2aj }1/2

j
I	 But

y..+rvl'.!.i•'.+'oaf ^x^^N':^'w./-./.!.'.w ^.». .-.
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aj > 0 for j - 1, " ', n.

It follows immediately that

I A I IS = ^I I Ax I 1 2 = XA^2

Since Hi
j	

"is chosen from the finite set {Hl , ' HN }. We will

state the definition of convergence of a set of matrices.

Definition 2.4.1: A set { Hl , H2 •••	 } of m x m matrices is conver

gent if every sequence

k
{x, Hi x, Hi Hi x,	 ( IT Hi )x, 

...}

0	 t o	 J=O j

(ford < ij < N) converges to zero for every x in Rn.

The convergence can be written as

k
lim( R Hi )x - 0
k+- i =o j

for all 1 < i. < N.
— I —

It is well known that the single element set {H1 } is convergent

if and only if the spectral radius of H 1 is less than one--i.e., H1

satisfies the relation 11H1x112 < i1x11 2 for all x in Rn , where II.112

denotes the Euclidean norm. One is tempted to conjecture that a set

{H1 ••• HN } of m x m matrices is convergent if and only if every matrix

Hi , 1 < i < N has a spectral radius less than one. Unfortunately,

this is not true. The following is a counterexample.

E I^j 1 2 = 1
j

and
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Example 2.4.1 Let the set of matrices be {H 1 . H2 } where

0 1	 0 0
Ii1 =	 H2 =
	 ]

0 0	 1 0

It is clear that both H 1 and H2 have spectral radii which equal

zero. However, the following sequence will not contract the vector

[0 1]T

HIH2H1H2 ,„ H1H2 ...

Therefore, the set of matrices {H1 . H2 } is not convergent.

At present a necessary and sufficient condition for the conver-

gence of a set of matrices is unknown. We have, however, established

a sufficient condition for the convergence of a set of matrices.

Theorem 2.4.2 A set {H1 , H2 ,	 HN} of m x m matrices is convergent

if for every matrix Hi, 1 < i < N, HN has a spectral radius less than

one.

Proof: from the definition of the spectral norm (the matrix norm in-

duced by the Euclidean norm) we have
	 1

11H 
k Hi k-1 "' H1 o x011 <_ 	

k
II Hi Hi k-1 ... H i 11 IIx01l

0

where

1 < ii < N for j=0,	 k

But

11H  Hi	... H, 11 • II xo 11 _ IIHi 11 •.. 
11H  11 Ilxoil

k k-1	 k	 o

= XikXik-1 ... Xi0llxoll2
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from Theorem 2.4.1, where a	 is the spectral radius of H H
i3 	ij i j •

Since every matrix H 
i 
H 
i has a spectral radius '

l ess than one

for 1 < i < N and 1 < ij < N, therefore 'Xi
	

< 1 for j - 0, •••, k.

Hence, each number in the sequence Xi^ A ii 	 •••	 has an absolute

	

-k 	 io
value less than one, and

k
	lira II X	 0

-).= j =o

Therefore, the sequence of matrices will also converge.

To verify Theorem 2.4.2, let us return to Example 2.4.1. It is

obvious that both H 
1 
H 
1 

and H 
2 
H 
2 
have a spectral radius equal to 1.

Therefore, the set of matrices {H1 . H2 } is not necessarily convergent

under Theorem 2.4.2.

From the above discussion, we can see that the convergence of

the set of matrices ((ti + riFi), i-1,	 N) is a sufficient condi-

tion for the stability of the randomly-sampled system. Although the

condition looks very restrictive, it is required for reliable operation

of the control system. Namely, if the set of matrices {(O i + riFi),

i=1, •••, N} is convergent, the system will remain stable regardless of

what the actual transition probability between adjacent sampling inter-

vals is, since it is conceivable that the actual transition probability

could change due to software or hardware failure in a digital system.

`	 The convergence is, however, not a necessary condition for finding a

stable sequence. We will state the example from Reference [20] to show

why it is not a necessary condition. The example is interesting be-

cause it shows that for any given vector it is possible to find a

stable sequence of matrices from a set of matrices in which each
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element is unstable by itself.

Example 2.4.2 Let the set of matrices be

{H1 , H2, 
H3' 

H4}

where- -

	

5 0 	 [I.25 -. 75
s	 J

	

1 0 2	 2 -.75 1.25

	

2 0	 1.25.75

H3	 H4

	

10 -S	 .75 1.25

It can be easily verified that each matrix has a spectral radius of 2.

The set of matrices is not convergent by Theorem 2.4.2 and Definition

2.4.1. But for every vector in R2 it is always possible to find a

sequence of matrices from the set which will contract the vector to

zero for the following reasons: Hl contracts every vector in the

closed cone Rl , co-axial with the x axis, having 45° vertex angle at

the origin. Similarly H 2 , H3 and H4 contract vectors in the cones R2,

R3 and R4 which are counter-clockwise rotations of R1 through 45%

90° and 135°, respectively. Apparently, R 1 , R2 , R3 and R4 cover the

whole region of interest. Hence, we can contract every vector in R2

using the set {Hl , H2 , H3 , H4 }. The above example shows that while

the convergence of the set of matrices guarantees the stability of the

closed-loop system, it is not a necessary condition to find a stabiliz-

ing sequence of matrices.

To summarize, we state the following theorem for the stability

of our closed-loop system.
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Theorem 2.4.4 If each spectral radius of the matrices in the set

{(Oi + TiFi) (01
 + T iFd.i=1, •••, N} is less than unity, the closed-

loop optimal control system with random-sampling is stable regardless of

what the actual set of transition probabilities between the adjacent

sampling intervals is.

2.5 The Existence of Quasi-Steady-State Solutions

Optimal control problems with an infinite optimization interval

are always of special interest. The resulting control strategy, if it

exists, is usually simple to implement, and with suitable assumptions

yiel-is a stable closed-loop system. The single sample-rate discrete-

time system is said to be stabilizable if there exists, a matrix F such

that all the eigenvalues of (o + TF) are inside the unit circle [2),

[281. It is obvious that if a system is stablizable, there always

exists a control input which makes the performance index with in-

finite optimization interval finite. For the randomly-sampled system

we state the following theorem on stablizability.

Theorem 2.5.1 A randomly-sampled system with NS possible configura-

tions {(dbi , P i), i-1,	 NS} is stabilizable if for each pair

(oi , ti) there is an Fi such that the set of matrices {(O i + r i 
F i ) i=l,

•••, NS} is convergent.

From Theorem 2.4.4 the following theorem is immediate.

Theorem 2.5.2 If fir each pair (Oil t i) in the set [(Oil t i), i-1, •••,

NS} of randomly-sampled system there exists an F  such that all the

ei envalues of [^	
T

g	 i + t 
i 
F 
i J
 [oi + I' iFi J are inside the unit circle,

, ..--
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the system is stabilizable.

In order to establish the existence of an optimal solution as

the time index k-+ W , we must prove certain properties of the matrices

P(k/i), see (2.3.48), 1=1, •••, NS. Specifically, we will show that

the sequence is bounded above and is non-decreasing. It is clear that

P(k/i) is bounded if the system is stabilizable. The inequality

P(k+l/i) > P(k/i) can be established if we have x TP(k+l/i)x > xTP(k/i)x.

We will prove xTP(k+l/i)x > xTP(k/i)x as follows:

Since each term in the cost function

N-1

j2 E( x(N)TSx(N) + E [x(k)TQ(k)x(k) + VT(k)R(k)V(k)])
k-0

is nonnegative, we have

J* (N-k, N+1) > J* (N-k, N).

From equation (2.3.48), we have

J* (N-k, N) = xT(N-k)P(k/i)x(N-k).

It should be noted that the value of P(k/i) in equation (2.3.48)

depends only on the number of iterations. The time invariance of the

statistics of the system allows a shift from the interval (N-(k+l), N)

to (N-k, N+1). Thus, we have

J(N - (k+l), N) - J(N-k, N+1)

Therefore,

P(k+l/i) ? P(k/i)

***This completeu the proof. The quasi-steady state can, of course,

be calculated by substituting P(k) for P(k-1) in equation (2.3.48) and

i
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solving the resulting algebraic Riccati equations. To summarize, we

state the following theorem:

Theorem 2.5.3 If a linear system with random sampling is stabilizable,

the quasi-steady state solution for the probabilistic Riccati Equations

(2.3.48) and (2.3.49) exist and can be determined from the following

algebraic Riccati equations.

NS
P(k/i)	 E Tij {Q(N-k, j) + KT(N-k/j)R(N-k, j)

J-1

• K(N-k, j) + [?(N-k, j) + T(N-k, j)K(N-k/j)]T

P(k/j)[§(N—k, j) + T(N—k, j) ' K(N—k/j)]
(2.5.1)

NS
K(N-k/i) _ -{ETij [R(N-k, j) + TT (N-k, j)

J-1
NS

P(k-1/j)r(N-k, j)]-1}{ E Tim
[TT (N-k, m)

M-1

P(k-1 /m)O(N-k, m)]}
	

(2.5.2)
t

S

Considerable computational time may be saved by using equations

(2.5.1-2.5.2) instead of equations (2.3.48-2.3.49). If Theorem 2.5.3

fails to indicate the stabilizability of the system, equations

(2.3.48-2.3.49) can be iterated recursively, backward in time until

either they converge or pass some test of non-convergence. Since the

P(k/i) matrix is non-decreasing, it is not possible to have limit

cycles.

OP

t

r
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L	 3. APPLICATION TO AIRCRAFT CONTROL

3.1	 Introduction

In this chapter we illustrate the application of the optimal

solution of Chapter 2 to the longitudinal control of the F8-DFBW
1.

(Digital-Fly-By-Wire) aircraft.	 The longitudinal dynamics of the

F8-DFBW is modeled as a linear process and the information distribu-

tion process is modeled as a variable time -increment process where,

at the time that information is supplied to the control effectors,

the control effector knows the time of the next information update

only in a stochastic sense. 	 Section (3.2) describes the longitudinal

dynamics of the F8-DFBW aircraft. 	 The unaugmented response of the

aircraft to initial conditions indicates the need for control.

In section (3.3) the aircraft control problem is modeled as an

optimal control problem with random sampling. 	 The optimal control

problem for the aircraft is solved in section (3.4).	 Theoretical

and simulation results indicate that the optimal cost obtained using

a variable time-increment Markov information update process, i.e.

where the control effectors know only the past information update

intervals and the Markov transition mechanism, is almost identical

to that obtained using a known uniform information update interval.

3.2	 The Equations of Motion

The longitudinal equations of motion for a rigid aircraft are:

my EFv - T cos a - mg sin (A - a) - D	 (3.2.1)

39

a

•i^
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mva = mvq - T sin a + mg cos (6 - a) - L 	 (3.2.2)

Iyq	 EM 	 = Ma + Mt 	(3.2.3)
=x

6 ' q	 (3.2.4)

where

E v = forward velocity

a = angle of attack

q = pitch rate

6 = pitch angle

T - thrust, D = drag, L 	 li-t

Ma - pitching moment due to aerodynamic forces

Mt - 0 - pitching moment due to thrust

M = mass, g = gravity, I 	 - moment of inertia

about the y-axis.

The state variables of the aircraft longitudinal system are

forward velocity, angle of attack a, pitch rate q and pitch angle 6.

The aerodynamic forces and moments are the lift and drag forces and

the pitching moment. 	 These forces and moments can be expressed in

 terms of aerodynamic data as follows:

D -	 Pv S	 (u, a, a, q, de, of) 	 (3.2.5)
2

L - 2 pv SC L (u, a, a, q, 6e, 6f)	 (3.2.6)

j, M =2 pv ScCM (u, a, a, q, 6e, 6f)	 (3.2.7)

Ha -

1
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where

S = the effective aerodynamic surface area

P = atmosphere density

c = the mean aerodynamic wing chord 	 4L
CD , CL , CM = nonlinear drag, lift, and moment coefficients.

c>z

U, Se, df = perturbation in velocity and elevator and flap

surface deflections

For a nonlinear dynamic system

Y = f (x, —U)	 (3.2.8)

The small perturbations around the nominal value moo , uo ) can

be expressed as

"f-y0  + Tx	 (3.2.9)

u = uo + 'Tuo	
(3.2.10)

Substituting equations (3.2.9) and (3.2.10) into (3.2.8). we

have

xo +	 f(xo + dx, yo + TO	 (3.2.11)

Taking a Taylor series expansion, we have

Y 
+ dx f 

moo' 
	

+ 8x moo' 
70) 6x

	

+au (moo , iio ) 6u + Higher order terms	 (3.2.12)

i
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Neglecting higher order terms, we have the following linearized

equation.

dx = Aft + BdTr (3.2.13)

where

A =	 (uo, 'WO) (3.2.14)

B = 3u (x0 , u0) (3.2.15)

For the F8-DFBW aircraft the linearized equations of motion

'- at a selected trimmed flight condition have the matrix form

v	 P1 P4 0	 -g	 V P7 0

a	 =	 P2 P5 1	 0	 a	 + P8 p10	
rfe

(3.2.16)

qp3 p6 P12	 0	 q p9 P11

9	 o o 1	 OJ	 LO-j LO 0

where

_ _ S

E	 Pi mV CDu
i
f

P	 qS
2=-2CLumv 0

.pc	 _1ScP3 
VOIy (Cmu 2mVo2 

Cma CLu)

p=-57.3c-SC
4	 m	 De

i

t

s
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_ 57.385
P5	 mV CLa0

	

57.	 _ g^c__
P6	 Iy	 ^Cma 2mVo Cma CLa)

	

57.	 c	 _ Sc
P7	 Iy	^Cmde 2 V 2 Cma CLde)

0

P8 57.35
CDde

P	 57.3gS

9	 mVo CLde

57.3gS
P10	 m CD6f

_ 57.385
P11	 mV CLdf0

P12 2VLocIy (C
mq + C-)

q 
2 

p Vo .

For the equilibrium flight condition at an altitude of 20,000

feet and a Mach number of 0.67, the linearized longitudinal dynamics

take the following numerical values

-9.529 E- 3	 -1.283 E+ 1 0 -3.217 E+ 1

-1.175 E- 4	 -9.782 E- 1 1.0 0
A

3.324 E- 7	 -4.723 E+ 0 -4.729 E- 1	 0

0 0 1.0 0

T
9

F

r

i
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-6.554 E + 0 0

-2.253 E - 1 -1.513 E - 1
B

-1.539 E + 0 -1.333 E + 0

0	 0

3.3 Formulation of a Randomly-Sampled Aircraft Control Problem

For a "staticly stable aircraft" all eigenvalues of the A

matrix must have negative real parts. A staticly stable aircraft

will return to its equilibrium position after a small disturbance

has occurred. Although all aircraft are designed to be staticly

stable, certain disturbances may result in unsatisfactory responses.

Figure (3.3.1) shows the unaugmented response of the aircraft to

initial conditions. The motion is characterized by two oscillatory

modes, one of short period and one of long period (phugoid). The

predominant oscillation, seen in Figure (3.3.1), is the short-period

oscillation which has a period of 3 seconds. The large variations of

the angle of attack and the pitch angle are not acceptable. In

addition, the short-period mode causes the aircraft to have a pro-

longed oscillation. The main control objective is to damp the short-

period mode. The weighting matrices, Q and R, of Equation (2.2.6),

were selected so that only elevator deflections are used to control the

aircraft and so that only the short-period mode is regulated. This

requires high weights on the a- and 9-error terms and a high weight

on the flap cost term. The v and 6 weighting terms are small so as

not to over-control the long-period mode.
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Figure 3.3.1. Response of Unaugmented aircraft
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Errors in the state variables are weighted relative to control

effc.rt by adjusting the Q and R matrices in the coot functional. The

specified values for the Q and R matrices are

2.5 E- 5 0 0 0

0 3.0E+0 0 0
Q = f

0 0 3^0 E+ 0 0

0 0 0 i.0 E-2.J

4.0 E+0 0
R =

0 4.0E-1

	

The sample space	 s chosen to be T = {0.02, 0.03, 0.11 and

the transition probability is chosen to be

.95	 .05	 0

	

T	 0	 .8	 .2

.7	 0	 .3,

Hence, if the sampling interval at t k-1 is S 1 the probability

that t  = S1 is 0.95, the probability that t  = S 2 is 0.05, and the

probability that tk = S3 is zero. Figure (3.3.2) is a graphical	 x

representation of transition mechanism. A characteristic of this

transition mechanism is that it leads to a process which is cyclic.

That is, it tends to change gradually from the fastest sampling

interval to the slowest and back to the fastest. Table (3.3.1)

t

t

e
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Figure 3.3.2. Probabilistic Transition Diagram
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Table 3.3.1 Sequences generated by Random Number Generator

Sequence 1 = { S19 Sit Sit S i g S 2 , S 2 , S 2 , S2 , S2 , S3 , Si g Sit S1}

Sequence 2 = {S l$ S 19 Sit S 19 Sig S y , S 2 , S 3 , S19 Sl , S19 S 2 , S2}

Sequence 3 = {Sl, S i g Si p Sit Sit S 1 , S19 S 19 S 1 , S19 S 2 , S2 , S2}

1
i
1
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shows several sampling sequences generated by a random number

generator using the indicated transition probability.

3.4 Numerical Results and Conclusions

In this section some numerical results on the F8-DFBW aircraft

longitudinal system with random sampling will be presented. For the

chosen sample space t - { 0.02, 0.03, 0.1 1, the equivalent discrete

model is obtained for each sampling interval using equations (2.2.13-

2.2.18) and the software in Reference [19]. The results are shoain

in Tables (3.4.1), (3.4.2), and (3.4.3). For the purpose of comparison,

the optimal control system with uniform sampling is solved for each

sampling interval. The optimal gains for the uniformly-sampled

system were first obtained by solving the stochastic Riccati equations

(2.3.47 and 2.3.48) iteratively with the transition probability

matrix T - I. In this approach three steady-state gains for the

system with uniform sampling intervals S 1 . S 2 and S 3 were obtained

simultaneously. Each gain matrix was verified by solving the regular

Riccati equation individually using the software in Reference [19].

The results were identical. The steady-state solutions of the

uniformly-sampled system are shown on Tables (3.4.4-3.4.6). The

uniformly-sampled system was simulated for each sampling interval

using the corresponding optimal gain matrix. The optimal responses

for each system are shown in Figures (3.4.1-3.4.3). It should be

noted that the response improves as the time interval becomes smaller.

it should be emphasized once more that the uniform!  -sampled systems
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are not realizable by our assumption and the systems are simulated

here only for the purpose of comparison. The optimal gains for the

randomly-sampled cases were also obtained by solving the stochastic

Riccati equations (2.3.47 and 2.3.43) iteratively with the transition

probability T as given in Figure (3.3.2). In this case the optimal

control law consists of three quasi-steady state gain matrices

Ki K(-/i) with i - 1, 2, 3. If the sampling interval at the

(k - 1)-th interval t k_1 is Si , the control u(k) applied over the

k-th time interval t  is given by u(k) = Kix(k). The quasi-steady-

state gain matrices and sensitivity matrices are shown in Tables

(3.4.8) and (3.4.7), respectively. It is interesting to see that

the norms of the sensitivity matrices are very close to each other.

Therefore, the expected cost, which is equal to x (0) P(-/i) x(0),

is almost the same regardless which initial sampling interval t o is

assumed. The quasi-steady-state gain matrices, on the other hand,

are considerably different from each other. Hence, it is important

to use the correct gain for each sampling interval.

A randomly-sampled system is simulated with the transition

probability between the adjacent sampling intervals equal to the

matrix shown in Figure (3.2.2). The quasi-steady gain from the

optimal stochastic regulators is first applied to the randomly-

sampled system. The response of the system is probabilistic, i.e. each

run is different from the other even if the initial state is the same.

Figure (3.4.4) shows a typical response of the randomly-sampled

system using optimal control. Comparing these results with the

.- _
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deterministic optimal solution with known uniform sampling intervals

in Figure (3.4.1), we can see that the trajectories differ only

insignificantly. The expected value of the cost of the process can

also be evaluated using the sensitivity matrices according to the

formular xT(0) P(m/i) x(0). That value is 0.5096 for uniform

sampling(.02 sec/sample) and 0.5159 for stochastic sampling. This

indicates that little is lost in the stochastic information update

process provided that the stochastic nature of the process is

accounted for in the control logic. The closeness of the stochastic

and deterministic trajectories are remarkable since the determinis-

tic optimal control requires absolute knowledge of the whole sampling

sequence, which, of course, is not realizable for the problem we are

considering. Non-optimal gains are applied to the randomly-sampled

system to study the sensitivity of the feedback gains. Figures

(3.4.5), (3.4.6) and (3.4.7) illustrate typical responses of the

randomly-sampled systems using 'optimal gains" calculated for a

uniformly-sampled system with sampling interval equal to 0.02 sec.,

0.03 sec. and 0.1 sec., respectively. To study the average cost,

50 simulations were performed for the optimal feedback system and

each non-optimal feedback system. The results are summarized in

Table (3.4.9). They are consistent with our theory, i.e. in the

randomly-sampled system the optimal stochastic gains give the lowest

average cost (0.5174) over all other gains, including those calcu-

lated for the uniformly-sampled system.
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a Table 3.4.1. Discrete Model for Sampling Interval .02 Sec.

Phi Matrix 4 Rows 4 Columns

9.9980E-01 -2.5395E-01 -8.9546E-03 -6.4333E-01

-2.3265E-06 9.7969E-01 1.9705E-02 7.5103E-07

1.1653E-07 -9.3074E-02 9.8965E-01 -2.5765E-08

8.0091E-10 -9.3540E-04 1.9899E-02 1.0000E+00

Gam Matrix 4 Rows 2 Cols

-1.3040E-01 1.1827E-03

-4.7669E-03 -5.6363E-03

-3.0430E-02 -2.6517E-01

-3.0553E-04 -2.6568E-03

Q Matrix 4 Rows 4 Columns

4.9990E-07 -1.3299E-07 -3.2405E-11 -1.6081E-07

-1.3299E-07 5.8979E-02 -2.2011E-03 -2.0356E-0.8

-3.2405E-11 -2.2011E-03 5.9406E-02 1.9939E-06

-1.6081E-07 -2.0356E-08 1.9939E-06 2.0006E-04

W Matrix 4 Rows 2 Columns

-6.4985E-08 -1.5411E-10

-1.6300E-04 7.1016E-04

-1.8245E-03 -1.5837E-02

-1.2901E-08 -3.5469E-07

R Matrix 2 Rows 2 Columns

8.0019E-02 1.6258E-04

k
1.6258E-04 9.4109E-03

r

•
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Table 3.4.2. Discrete Model for Sampling Interval	 . 03 Sec.

f	 ^^

--
Phi Matrix 4 Rows 4 Columns

+. 9.9971E-01 -3.7854E-01 -2.0093E-02 -9.6496E-01

' -3.4712E-06 9.6900E-01 2.9333E-02 1.6839E-06

Y

2.5597E-07 -1.3854E-01 9.8382E-01 -8 . 4251E-08

^.	 lift
2.6189E-09 -2.0941E-03 2.9767E-02 1.0000E+00

Gam Matrix 4 Rows 2 Columns

:^	 lift -1.9500E-01 3.5489E-03

-7.3405E-03 -1.0381E-02

-4.5363E-02 -3.9656E-01

-6.8466E-04 -5.9662E-03

Q Matrix 4 Rows 4 Columns

7.4978E-07 -2.9745E-07 -3.5255E-10 -3.6180E-07

-2.9745E-07 8.7869E-02 -4.9137E-03 -6.8748E-08

-3.5255E-10 -4.9137E-03 8.8637E-02 4.4800E-06

3.6180E-07 -6.8748E-08 4.4800E-06 3.0023E-04

W Matrix 4 Rows 2 Columns

-1.4569E-07 -1.3404E-09

-2.4918E-04 2.5790E-03

-4.0778E-03 -3.5439E-02

-4.3452E-06 -1.1955E-06

R Matrix 2 Rows 2 Columns

1.2006E-01 5.4536E-04
T

5.4536E-04 1.6741E-02

Ef`

FF

tY

1

i
i

r ^

M
lift
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Table 3.4.3. Discrete Model for Sampling Interval - .10 Sec.

Phi Matrix 4 Rows 4 Columns

9.9905E-01 1.1885E+00 2.1859E--01 -3.2154E+00-

-1.1101E-05 8.8512E-01 9.2281E-02 1.8223E-01

2.6658E-06 -4.3586E-01 9.3174E-01 -2.9155E-06

9.0630E-08 -2.2417E-02 9.6923E-02 9.9999E-01
a

Gas Matrix 4 Rows 2 Columns

r -6.3000E-01 1.0718E-01

-- -2.8607E-02 -7.7585E-02

-1.4419E-01 -1.2888E+00

I -7.3792E-03 -6.5259E-02

Q Matrix 4 Rows 4 Columns

2.4976E-06 -3.1953E-06 -3.0913E-08 -4.01?4E-06

-3.1953E-06 2.8821E-01 -5.1246E-02 -2.5491E-06

-3.0913E-08 -5.1246E-02 2.8283E-01 4.9393E-05

-4.0174E-06 -2.5491E-06 4.9393E-05 1.0086E-03

W Matrix 4 Rows 2 Columns

-1.5976E-06 -2.4818E-07

5.6752E-03 1.0009E-01

-4.2932E-02 -3.7628E-01

-1.5797E-06 -4.3838E-05

R Matrix 2 Rows 2 Columns

4.0222E-01 1.9270E-02

1.9270E-02 2.0976E-01

t
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Table 3.4.4. Optimal Solution for Uniformly Sampled
System with Sampling Interval - .02 Sec.

Gain for Tau (1) - .20000E-01

	

G(1) Matrix	 2 Rows	 4 Columns

	

1.8535E-04
	

7.8963E-02
	

2.2683E-02	 -2.5638E-02

	

-5.2238E-03
	

3.1285E-01
	

1.9756E+00
	

8.8219E-01

i

Sensitivity Matrix for Tau (3) - .1.0000E+00

P Matrix 4 Rows 4 Columns

1.1994E-04 1.0675E-03 -3.3902E-04 -9,4343E-03

1.0675E-03 1.4353E+00 1.3888E-02 -3.9375E-01

-3.3902E-04 1.3888E-02 1.1996E-01 5.8485E-02

-9.4343E-03 -3.9375E-01 5.8485E-02 1.7723E+00
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Table 3.4.5.	 Optimal Solution for Uniformly Sampled
System with Sampling Interval - .03 Sec.

Gain for Tau (2) - .30000E-01

G(1) Matrix 2 Rows 4 Columns

1.9892E-04 7.7499E-02 1.9770E-02 -2.7282E-02

-4.6552E-03 2.2307E-01 1.7167E+00 7.7317E-01

Sensitivity Matrix for Tau (2) - .30000E-01

P Matrix 4 Rows 4 Columns

1.1922E-04 1.0879E-03 -2.4621E-04 -9.3346E-03

1.0879E-03 1.4311E+00 2.5550E-03 -3.9702E-01

-2.4621E-04 2.5550E-03 8.6224E-02 4.3228E-02

-9.3346E-03 -3.9702E-01 4.3228E-02 1.7566E+00

t

I
f
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1i

1	 Table 3.4.6. Optimal Solution for Uniformly Sampled
System with Sampling Interval = .10 Sec.

Gain for Tau (3) _ .10000E+00

G(1) Matrix	 2 Rows	 4 Columns

2.2852E-04 7.1368E-02 1.0267E-02 -3.2493E-02

-2.2871E-03 -7.7732E-02 8.3336E-01 3.8282E-01

Sensitivity Matrix for Tau (1) _ .20000E-01

P Matrix	 - 4 Rows 4 Columns

1.1354E-04 1.1378E-03 -2.3509E-04 -9.1732E-03

1.1378E-03 1.4297E+00 1.7943E-03 -3.9664E-01

-2.3509E--04 1.7943E-03 8.4000E-02 4.1950E-02

-9.1732E-03 -3.9664E-01 4.1950E-02 1.7453E+00

i
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Table 3.4.7. Quasi-Steady State Sensitivity Matrix of
Stochastic Ricatti Equations.

Sensitivity Matrix for Tau (1) = .20000E-01

P Matrix	 4 Rows	 4 Columns

1.1978E-04 1.1080E-03 -2.4544E-04 -9.4068E-03

1.1080E-03 1.4327E+00 1.8046E-03 -4.0116E-01

-2.4544E-04 1.8046E-03 8.5011E-02 4.3119E-02

-9.4068E-03 -4.0116E-01 4.3119E-02 1.7696E+00

Sensitivity Matrix for Tau (2) = .30000E-01

P Matrix 4 Rows 4 Columns

	

1.1996E-04
	

1.0959E-03
	 -3.0399E-04
	 -9.4375E-03

	

1.0959E-03
	

1.4343E+00
	

6.2613E-03	 -3.9918E-01

	

3.0399E-04
	

6.2613E-03
	

1.0405E-01
	

5.2773E-02

	

-9.4375E-03
	 -3.9918E-01
	

5.277.3E-02
	

1.7747E+00

Sensitivity Matrix for Tau (3) = .10000E+00

P Matrix 4 Rows 4 Columns

1.1985E-04 1.0977E-03 -2.7469E-04 -9,4191E-03

1.0977E-03 1.4338E+00 5.4788E-03 -3.994E-01

-2.7469E-04 5.4788E-03 9.6078E-02 4.7938E-02

-9.4191E-03 -3.9947E-01 4.7938E-02 1.7717E+00

c

r
3-



f

62

.Afw - 7

Table 3.4.8.	 Quasi-Steady State Gain Matrix of Stochastic
Riccati	 Equations.

Gain for Tau (2) _ .30000E-01

G(1) Matrix 2 Rows 4 Columns

2.1973E-04 7.3006E-02 1.4131E-02 -3.0984E-02

-2.9917E-03 1.2004E-01 1.2040E+00 4.9917E-01

Gain for Tau (1) = .20000E-01

G(1) Matrix 2 Rows 4 Columns

1.9223E-04 7.8889E-02 2.2274E-02 -2.6143E-02

-5.3798E-03 3.0465E-01 1.9414E+00 8.9281E-01

Gain for Tau (3) _ .10000E+00

C(1) Matrix 2 Rows 4 Columns

2.2576E-04 7.4G35E-02 1.1344E-02 -3.1862E-02

-2.5799E-03 -5.9389E-02 9.4410E-01 4.3141E-01
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Table 3.4.9. Results of Simulation Study: Averages of 50
Random Runs of 10-Second Durations

0
Optimal Gain Optimal Gain Optimal Gain System with

Gains for a 0.02 sec. for a 0.03 sec. for a 0.10 sec. Unaugmented Optimal
Used Uniformly- Uniformly- Uniformly- System

Stochastic 
Sampled System Sampled System Sampled System Gains

Average 0.6158 0.5526 0.5372 1.427 0.5174
Cost

rn

,



I *_
4. RANDOMLY-SAMPLED STOCHASTIC SYSTEM CONTROL

4.1	 Introduction

In Chapter (2)	 optimal control of linear systems with

stochastic sampling was discussed. 	 A more practical concern is

with a more general stochastic control problem.	 Specifically, we

focus our attention on a randomly-sampled linear process model in

which additive process and measurement noise are present. 	 The

control effectors in the process have variable sampling intervals

between information updates.	 The information update intervals are

modeled as an independent stochastic process with known transition

probabilities relating the duration of adjacent intervals. 	 We will

minimine the mathematical expectation of a quadratic form in the state

` variables and control variables. 	 As in the optimal control of

stochastic systems with uniform sampling, the determination of the

optimal strategy involves two problems, i.e. the problem of optimal

control and the problem of optimal estimation. 	 On the standard

deterministic linear-quadratic-Gaussian (LQG) problem the separation

theorem for the control and estimation holds [3], [4]. 	 In this case

the stochastic optimal feedback controller can be synthesized by

cascading an optimal estimation (Kalman-Bucy filter) with the deter-

ministic optimal control [21], [22]. 	 Unfortunately, in most

stochastic control systems with multiplicative noise, the optimal

solution does not separate in the sense that the filter gains are

not independent of the control computation [23],	 [24],	 [25j,	 [26].

68
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In other words, the optimal control has to perform simultaneously

the estimation and control of the state in order to minimize the

expected cost of some real-valued cost function.

For the stochastic control system with random sampling, the

optimal estimator is equivalent to the time-varying Kalman filter

because the estimator has perfect recall of the previous sampling

intervals. Furthermore, the separation theorem still holds. The

separation of estimation and control is important because it con-

siderably simplifies the implementation of the stochastic optimal

controller for randomly-sampled systems [4], [27'. in section (4.2)

we discussed the formulation of the stochastic control system with

random sampling. Section (4.3) solves the optimal estimation and

one-stage prediction problems for rarAomly-sampled stochastic

systems. Section (4.4) presents the Separation Theorem, and section

(4.5) provides some simulation results.

4.2 The Formulation of the Stochastic Control Problem

In a manner similar to our treatment of the deterministic

system with random sampling, the control effectors are assumed to

receive state information at time a  for k - 1, 2, 3, . . . and the

control actions are subject to the constraint u(a) - u(a k) for

ak ` a `— ak+l k - 1, 2, 3,	
The sequence {a k } is random and

can be described by the incremental process itkI with an initial

value cop so that

r

I	 --
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k

	

Q.	 a +	 t	 k = 1, 2, 3, . . .	 (4.2.1)

	

K	 o=1 j

with {tk} a stochastic process. The systems we are considering are

governed by the following stochastic difference equations

x(k + 1) _ @(k + 1, k) x(k) + M + 1, k) w(k)

+ T(k + 1, k) u(k)	 (4.2.2)

with the measurement equations

^. y(k + 1) = Hx(k + 1) + 9(k + 1) (4.2.3)

where w (k) and 9 (k + 1) are mutually independent, zero-mean Gaussian

,• white noises with known statistics given by

..
E{w(k), w(k)) = a(k) (4.2.4)

E{O(k), w(k)} = 0 (4.2.5)

E{A(k), 9 (k)} = 8(k) (4.2.6)

It should be pointed out that {w(k)), {9(k)} and { tk } are mutually

independent processes, but that the matrices @(k + 1,	 k),	 r(k + 1, k)

and V, (k + 1, k) depend on tk .	 It is also assumed that {w(k)},

{@(k)} and { tk } are independent of x(N) and the initial state x(0),

which has a normal distribution with

E{x(0)} = m (4.2.7)

Cov (x(0), x(0)} = Y(0) (4.2.8)

The optimal stochastic control problem is to determine a

closed-loop control strategy based on the past and currenti
1
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measurements, past control and past sampling history to minimize the

mathematical expectation of a quadratic function of the state and

control variables.

N
V(N) - Min	 E{	 xT(i) Q(i) x(i)

u(0),	 u(N - 1)	
i-1

+ uT (i - 1) R(i - 1) u(i - 1))

(4.2.9)

subject to the dynamics of Equation (4.2.2) and the measurements of

Equation (4.2.3). The weighting matrices Q(i) are assumed to be

positive semi-definite and the matrices R(i), positive definite.

Similar to the deterministic control problem in Chapter (2), we

denote the entire sampling history by T(k)

T(k) - (to , tl ,	 tk)	 (4.2.10)

where T(k) a T(k).

In analogy to T(k), the vector Y(k) is introduced here to

describe the ertire measurement history

Y ( k) - {Y(o), . . . , y(k)}
	

2.11)

where Y(k) a y(k).

4.3 Optimal Estimation for Stochastic Systems with Random Sampling

The optimal estimation problem is to obtain a best estimate

R(k) for x(k) given the measurement history Y(k) and sampling history

T(k). For the system we have been considering if T(k) is given,

all system matrices t(t), L(t) and r(t) are known for t - 1, 	 k.

r

x

J

4	 _
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The optimal estimator is, therefore, same as the standard Kalman

filter up to t - k, which satisfies the recursive relations stated

in the following theorem:

Theorem 4.3.1 For the stochastic system with random sampling, the

optimally filtered estimate x(k + 1/k + 1) is given by the recursive

relation

x(k + 1/k + 1) - O(k + 1, k) x(k/k) + r(k + 1, k) u(k)

+ K(k + 1)[y(k + 1) - HO(k + 1, k) :R(k/k)]

(4.3.1)

where the gain matrix is determined by the following recursive

relations

K(k) - O(k + 1, k) P (k) HT [HP(k) HT + a(k)] -1	(4.3.2)

P(k + 1) _ [O(k + 1, k) - K(k) H] P(k) [O(k + 1, k)

- K(k) 
HI + B(k) + K(k) a(k) K(k)T

for k - 1, 2, . . . 	 (4.3.3)

where P(k) is the covariance of the vector estimation error. The

initial conditions are

P(0) - Y(0)

X(0) - m

The filter error {x(k + 1/k + 1)l defined as

x(k + 1/k + 1) - x(k + 1) - s(k + 1/k + 1)

--

I
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for k - 0, 1, . . .	 is a zero-mean Gauss-Markov sequence whose

covariance is given by (4.3.3).

The Kalman filter (4.3.1-4.3.3; for the stochastic system

with random sampling is, however, time-variant because the system

M	 Inmatrices switch randomly among	 possible configurations.

general, the gain matrix K(k + 1) is not expected to reach any type

of steady-state.	 But there is no need to store any measurement data

? since the measurements can be processed on line as they occur.

x(k/k) is the only estimate of state needed to be stored at time k.

„ Since we will not have a steady-state gain, all possible configurations

must be stored in order to calculate the optimal gain which is

usually time-variant.	 Figure 4.3.1 gives the block diagram for the

stochastic system with random sampling showing the information

flow inside the filter.	 It should be emphasized that the duration

of the last interval along with the new measurement must be provided

to the filter in order to proceed one step in time.

The prediction problem for a stochastic system with random

sampling is considerably complicated in that the predictor does not

have exact knowledge of future sampling intervals and instead knows

only their probability distributions. 	 For simplicity, yet us assume

the sampling rate switches randomly among m possible discrete values.

The ith of m linearized models is represented by 4i, 
yi 

and ii,

the set of which is denoted by S i .	 Since the discrete -time system

constantly switches among m models, S i (k) represents the ith model

j(configuration) at the kth sampling instant. 	 Since the stochastic

.^► 	 -
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Figure 4.3.1. Block Diagram of a Kalman Filter for a
Randomly-Sampled System
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sampling process is modeled as a semi- Markov process in which the
w

adjacent sampling intervals switch according to the transition

^r
	 probability matrix, the probability of ith model at time k + 1 is

conditioned on the last sampling interval value and represented by

II i (k + 1) = Prob. {Si (k + 1)/tk }	 (4.3.4)

For simplicity we will write the system model (4.2.2) in

the following form

x(k + 1) = (D (k) x(k) + r(k) u(k) + ^(k) w(k) 	(4.3.5)

y(k) = Hx (k) + 0(k)	 (4.3.6)

where

(D(k) E {^DV . . . , gym}

^(k.) E {^y l ,	 gym}

r(k) E { rl ,	 rm}

for k = 1, ..., n
Si	 {(P i , ^ i , ri}

The optimal predition of the state x(k + 1) at time k + 1 is

x(k + 1) = E[x(k + 1)/x(k)] 	 (4.3.7)

•j	 X(k + 1) - f xp {x(k + 1) = x/x(k)} dx 	 (4.3.8)

Using S i(k) to represent the ith configuration at time a k , the

conditional probability in Equation (4.3.6) can be written as
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P(x(k + 1) = x/x(k))

M
P(x(k + 1) = x/x(k), S i (k + 1)) r i (k + 1)	 (4.3.9)

i=1

Combining equations (4.3.9) and (4.3.4), we have

m
%(k + 1) _ f x I P(x(k + 1) - x/x(k), S i (k + 1)) dx II i (k + 1)

i=1

m
x(k + 1) = Z [f xP(x(k + 1) - x/x(k), S i (k + 1)) dx] 'I i (k + 1)

i=1

M
x(k + 1) _	 xi(k + 1) 7 i (k + 1)	 (4.3.10)

i=1

Since xi (k + 1) can be obtained from the standard Kalman

filter algorithm for predition,

Xi (k + 1) _ i x(k) + t
i u(k)	 (4.3.11)

Hence, Equation (4.3.10) becomes

m

x(k + 1) = T (4 i x(k) + `'i u(k)) " i (k + 1)	 (4.3.12)
i=1

X(k + 1) = T(k) x(k) + y(k) u(k)	 (4.3.13;

where i(x-) and r(k) denote the expected values of the corresponding

matrices conditioned on knowledge of previous sampling intervals.

Equation (4.3.13) is used for one-stage prediction.

OP
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4.4 A Separation Theorem for Randoml y Sampled Systems

In a manner analogous to our treatment of the randomly-

'"	 sampled system without noise in Chapter 2, we will prove the Separa-

tion Property for rando-ly-sampled systems by dynamic programming.

First we consider a single-stage optimization problem over the last

interval which starts at 
o
N-1 and terminates at a N , and then we

generalize the result to all N stages by mathematical induction.

Single-Stage Problem

The optimal terminal cost for the single-stage process which

starts at time N - 1 and ends at time N is equal to

V(1) = u in1) E{xT (N) Q(N) x(N) + uT (N - 1)

. R(N - 1) u(N - 1)} 	 (4.4.1)

From the equation of our system model, we have

x(N) - t(N, N - 1) x(N - 1) + w(N, N - 1)

w(N - 1) + r(N, N - 1) u(N - 1) 	 (4.4.2)

Introducing equation (4.4.2) into (4.4.1). we have

17(1) - u(in1) E{(Ox + w+ ru)TQ

(fix + yw + ru) + uTRu)	 (4.4.3)

where x = x(N - 1) , w = w(N - 1) , u = u(N - 1) ,
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Q = Q(N) , R - R(N - 1) , 4 - ^ (N, N - 1) ,

r=r(N, N-1) andv - y(N, N-1) .

After some manipulation, we have

V(1) . min ENTtTQuT + 2xT01QTyw + 2xT0TQru

+ 2wT*TQru + wT40TQT+w + uT(rTQr + R) u} (4.4.4)

According to our assumptions, x(i), a(i) and S(i + 1) are statis-

tically independent of each other and w(i) has zero mean. Therefore,

the expected value of the second, third and fourth terms in Fquation

(4.4.4) are zero. The optimal cost becomes

V(1) - min E {xT(PTQOx + 2xT4TQru

+ wTyTQ)w + uT (rTQr + R) u) .

Using a property of conditional expectation; namely, that E {x}

E {E(x/y)}, where the outer expectation is over y, we have

V(1) - min E {E[xT0TQfx + 2x  TQru + wT^TWw
u

+ uT (rTQr + R) u/y(N - 1), tN-1 )} .

We will evaluate the second term of the above expression to show how

the conditional expectation should be evaluated



79

E 12xT^ Qru/y(N - 1), tN-1;.

	

= E {2xT 1^TQt/y(N - 1), tN-l1 u
	

(4.4.5)

_	 [E OxT^TQr /y(N - 1), Si(V) r] •.i i (N) •u
	 (4.4.6)

i=1

where

i (k) = Prob {Si(k)/tk-1I

The expected value can be evaluated as the following

E {2xT4TQr /y(N - 1), S i(N)! = NtI iQir1
	

(5.4.7)

where the index i denotes the ith configuration Taking the sum-

mation over i, we have

E {2xT9 Qru/y(N - 1), t`-1} = 2x ^ W'U	 (4.4.8)

where 0TQt denotes the expected value of O TQr given the value of the

last sampling interval. TB--ing the gradient of V(1) with respect

to u and setting the result equal to zero, we have

u	 - (rTQT + R) -1 (D TQr x	 (4.4.9)

It should be emphasized that x is the optimal estimate of x(N - 1)

from the Kalman filter algorithm. Substituting the equation for u

into the equation for V(1),

iA
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t
	

V(1) - E 
{xT^ QU - 2xT tTQr (." TQr + R)-1 ^TQ1 x

t
	

+ wTJ TQt'w + XT jQr (rTQr + R)-1 rTQ4 :}}	 (4.4.10)

After some manipulation,

V(1) - E 
{xT [JQ'b - JQr (rTQr + R)-1 rTQp ] x

+ E {XT [4. Qr (rTQr + R)-1 1" 00]	 + wTV Q+yw1	 (4.4.11)

where x - x - x	 (4.4.12)

Summarizing the results for the single -stage problem where P(N)

Q(N), we have

u(N - 1) - S(N - 1) R(N - 1/y(N - 1), tN-1 )	 (4.4.13)

where

S(N - 1) _ - [r - (N, N - 1) P(N) r(N, N - 1)

+ R(N - 1)] -1 I (N, N - 1) P(N) t(N, N - 1)

V(1) _ E fxT (N - 1) M(N - 1) x(N - 1) + a(N - 1)}	 (4.4.14)

where

M(N - 1) _ OT (N, N - 1) P(N) ^(N, N - 1) - @ T (N, N - 1)

• P(N) r(N, N - 1)(r T (N, N - 1) P(N) rT (N, N - 1)

+ R(N - 1)) -1 rT (N, N - 1) P(N) ^(N, N - 1)	 (4.4.15)
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1(N - 1) - E {R(N - 1)[% T (1 , N - 1) R(N) '(N, N' - 1) .

(. (N, N - 1) P(N) r(N, N - 1) + R(N - 1)-1

rT(N, N - 1) P(N) NN, N - 1)] R(N - 1)

+ w(N - 1) T y(N, N - 1) T P(N) ;+(N, N - 1) w(N - 1) 1

(4.4.16)

Double-Stage Problem

The optimal cost for the double-stage problem is

V(2)	
u(Nin 2) 

u(in- 1) E {[x
T (N - 1) P(N - 1) x(N - 1)

+ u(N - 2) R(N - 2) u(N - 2)] + [x T (N) P(N) x(N)

+ uT (N - 2) R(N - 1) u(N - 1)]1	 (4.4.17)

From the ?rinciple of Optimality and the expression for V(1)

V(2) - u in2) 
E {KT (N - 1) Q(N - 1) x(N - 1)

+ uT (N - 2) R(N - 2) u(N - 2) + V(1)	 (4.4.18)

From Equation (4.4.14)

V(2) - u(Nin 2) E I (N - 1) Q(N - 1) x(N - 1)

+ uT (N - 2) R(N - 2) u(N - 2) + E [xT (N - 1) M(N - 1)

x(N - 1)] + a(N - 1)}	 (4.4.19)
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i

t

Hence, Equation (4.4.18) can be simplified as

V(2) - 'i1n2) E Q xT (N - 1)(Q(N - 1) + .4(N - 1)) x(N - 1)

+ uT (N - 2) R(N - 2) u(N - 2)] + n(N - 1))	 (4.4.20)
	

A.

Since the choice of u(N - 2) will not affect a(N - 1), only the

first two terms of (4.4.20) will be involved in optimization.

Defining P(N - 1) - H(N - 1) + Q(N - 1),

V(2) - min E {xT (N - 1) P(N - 1) x(N - 1)

+ u7 (N - ?) R(N - 2) u(N - 2) + a(N - 1) i
	

(4.4.21)

From the equation of our system model,

x(N - 1) - O(N - 1, N - 2) x(N - 2) + *(N - 1, N - 2) w(N - 2)

+r(N-1, N-2) u(N -2)
	

(4.4.22)

Comparing Equations (4.4.21) and (4.4.22) with Equations (4.4.1) and

(4.4.2), the equations for the double-stage problem are of the same

form as the equations for the single-stage problem with the excep-

tion of the additive term a(N - 1) which is unrelated to the

optimization. The optimization can, therefore, be carried out in

the same manner as in the single-stage problem.

The results are

u(N - 2) - s(N - 2) x(N - 2/y(`I - 2), tN-2 )	 (4.4.23)
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S(N - 2) - - [; T (N - 1, N - 2) P(N - 1) "(N - 1, N - 2) + R(N - 2)j- 
i

• rT (N - 1, N - 2) P(N - 1) ^(N - 1, N - 2)	 (4.4.24)

V(2) - E {xT (N - 2) M(N - 2) x(N - 2) + a(N - 2)- 	 (4.4.25)

P(N - 1) - M(N - 1) + Q(N - 1)	 (4.4.26)

where

M(N -2) - 0T (::-1, N-2) P(N -1) m(N-1, N-2)

- tT (N - 1, N - 2) P(N - 1) r(N - 1, N - 2) .

[ rT (N-1, N-2) P(N	 1) r(N-1, N-2)+

R(N-2)]-lr(N-1, N-2) P(N -1) O(N-1, N-2)

(4.4.27)

and

a(N - 2) - E {-xT (N - 2)[0 T (N - 1, N - 2) P(N - 1) r(N - 1, N - 2)

• SO - 2)J ,1( N - 2) + wT ( N - 2) yT (N - 1, N - 2)

• P(N - 1) y(N - 1, N - 2) w(N - 2)} + z(N - 1)

(4.4.28)

Utilizing the Principle of Induction, we can prove the Separation

Theorem for the g:.neral N-stage problem by carrying out the deriva-

tion for the (k-1)-stage and k-stage problem. We will first assume

the recursive relations (4.4.24), (4.4.26), (4.4.27) and (4.4.28)
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hold for the (k-1)-stage problem and then prove the Separation

Theorem by showing that they also hold for k-stage problem.

(k-1)-Stages

The optimal strategy at time N - k + 1 for the (k-1)-stage

process is characterized by the following equations

u(N • k + 1) - S(N - k + 1) 2(N - k + 1/y(N - k + 1), tN-k+l)

(4.4.29)

S(N-k+l) - - [TT(N-k+2, N-k+l) P(N-k+2) r(N-k+2, N -k+l) + R(N-k+1)1-1

• rT(N-k+2, N-k+l) P(N-k+2) 9(N-k+2, N-k+l)

P(N-k+2) - M(N-k+2) + Q(N-k+2)	 (4.4.30)

V(k-1) - E (xT(N-k+l) M(N-k+l) x(N-k+l) + a(N-k+l)} (4.4.31)

where

M(N-k+2) - pT (N-k+2, N-k+l) P(N-k+2) ^(N-k+2, N-k+l)

• [PT (N-k+2, N-k+l) P(N-k+2) P(N-k+2, N-k+l) + R(N-k+l]-1

• P(N-k+2, N-k+l) P(N-k+2) ^(N-k+2, N-k+l) 	 (4.4.32)

and

•	 a(N-k+l) - E [-xT	,(N-k+l)[T(N-k+2, N-k+l) P(N-k+2)

r(N-k+2, N-k+l) S(N-k+l)] x(N-k+l) + (continued)
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wT (N-k+l) WT (N-k+2, N-k+l) P(N-k+2, N-k+l) w(N-k+l))

+ a(N-k+2)
	

(4.4.33)

k Stages
	 -06 -

Using the Principle of Optimality the cost function for :.ne

k-stage problem can be written as

V(k) - (
Nn j) 

E {xT(N-j+l) Q(N-j+1) x(N-j+l)

+ uT (N-j) R(N-J) u(N-J) + V(K-1)]	 (4.4.34)

Combining (4.4.34) and (4.4.31),

V(k) - (Nn j) E {x( N-j+l) P(N-j+1) x(N-j+1)

+ uT (N-j) R (N-J) u(N-J) + a(N-j+1 )1 	 (4.4.35)

where

P(N-j+l) - M(N-j+l) + Q(N- j+i)

From the equations of system dynamics

x(N-j+l) - 4^(N-j+l, N-j) x(N-j)

+ ^ (N-j+l, N--j) w(N-j)

+ r(N-j+l, N-j) u(N-j)	 (4.4.36)

With the exceptions of the difference in time arguments and the

additive term a(N-j+l) which is unrelated to the minimization,
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the equations (4.4.35) and (4 . 4.36) are in the same form as the

equations (4.4.21) and (4.4.22). The optimization can be carried

out by repeatir; the similar steps. We will state the results in

the following theorem.

Theorem 4.4.1 (The Separation Theorem)

The optimal strategy for the stochastic linear system with

random sampling can be implemented by cascading the optimal Kalman

filter with the optimal feedback gain matrix of the probabilistic

linear regulator. The parameters for the two parts of the control
.ry

system can be determined separately. The optimal Kalman filter is

governed by equations (4.3.1-4.3.3). The probabilistic linear

regulator satisfies the following recursive relations:

	

F(k+l) - M(k+l) + Q(k+l)	 (4.4.37)

S(k) - -[rT (k+1, k) P(k+l) r(k+l, k) + R(k)J-1

	

rT (k+l, k) P(k+l) 4^(k+l, k)	 (4.4.38)

M(k) - C (k+l, k) P(k+l) t(k+i, k) +

I 
°	 (Dy(k+l, k) F(k+l) r(k+l, k) S(k) 	 (4.4.39)

fork-N-1, N-;?,	 0.
E

If we are only interested in generating the control, the

i	 term M(k + 1) can be eliminated by substituting M(k + 1) - P(k + 1) -
i

Q(k + 1) into Equation (4.4.39). This leads us to the corollary:
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Corollary 4.4.1. The optimal control for the stochastic linear system

with random sampling can be generated using the following recursive

relations:

..& -
u(k) - S(k) x(k)
	

(4.4.40)

S(k)	 - [TT (k+l, k) P(k+l) t(k+l, k) + R(k)]-1

PT (k+l, k) P(k+l) ^D(k+i, k)	 (4.4.41)

P(k) _ 0T (k+l, k) P(k+l) 0(k+l, k)

+ itT (k+l, k) P(k+l) ;(k+l, k) S(k) + Q(k) 	 (4.4.42)

k - N - 1, N - 2, . . . , 0 .

With the exception of notational differences, Equations

(4.4.40-4.4.42) are the same as Equations (2.3.32-2.3.34). This

result is significant because the optimization problem can be re-

duced to two separate optimizations whose solutions are in closed

form. The most important feature of the optimal strategy for the

stochastic system with random sampling is that the feedback gain

matrix is independent of the statistics of the additive noise but

dependent on the statistics of the sampling process, wh reas the

optimal filter is independent of the weighting matrices in the

performance measure. The block diagram for the Control system is

shown in Figure (4.4.1).
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Figure 4.4.1. Stochastic Optimal Control with Random Sampling
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4.5 Numerical Results

In this section we present some numerical results of optimal

control and estimation applied to the F8-DFBW aircraft in a noisy

environment. The aircraft in the noisy environment is modeled as

x - Ax + Bu + w	 (4.5.1)

Y - Hx + 0	 (4.5.2)

where A is (4 x 4) matrix

B is (4 x 2) matrix

w and 0 are (4 x 1) random vectors

H is the (4 x 4) identity matrix

With the exception of additive Gaussian noise terms, the air-

craft is assumed to be in the same. flight configuration as that used

in chapter 3. We al::) use the same random sampling process. The

noise processes w and 0 are independent random vectors with zero

means. The covariance of w is equal to diag. [.04, .04, .04, .041.

The covariance of 0 is equal to diag. [.01, .01, .01, .011.

The equivalent discrete model for the system (4.5.1) and

(4.5.2) is given by

x(tk+l )	 O(tk+l' tk) x ( tk) + jtk +l ^(tk+l' T) Bu(T) dT

+ f 
k+l ^(tk+l' T) w(T) dT 	 (4.5.3)
k

j

i
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t'

y(t' k) = HO(t' k , tk) x(tk) + H jt k (D(t' k , T) Bu(T) dT
k

t'

+ H !t 
k O

D(t' k , T) w(T) dT + 0(t' k)	 (4.5.4)
k

But as t' k -> t  the second and third terms approach zero and

0(t' k, tk) approaches unity. We have the following equivalent model

after dropping the t notation for simplification.

x(O-1) = (D(k+l, k) x(k) + r(k+l, k) u(k) + v(k) 	 (4.5.5)

y(k) = Hx(k) + 0(k)
	

(4.5.6)

where

t
E{v(k) v(k)T}	 rk+l 0(tk+l' T) R(T) ^T(tk+l' T) dT

t
1 k

(4.5.7)

R(t) 6(t-T) = E {w(t) wT (T)}	 (4.5.8)

For the purpose of comparison both the unaugmented system and

each uniformly-sampled system were simulated. The results are shown

in Figures (4.5.1-4.5.4). A randomly-sampled system is simulated

with transition probabilities as shown on Figure (3.3.2). Typical

responses of the randomly-sampled system using optimal gains calcu-

lated for the uniformly-sampled system are shown in Figures (4.5.5-

4.5.7). p typical response of the randomly-sampled system with optimal

gains is shown in Figure (4.4.8).
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Table 4.5.1. Results of Simulation Study on Stochastic System with Random Sampling:
20 Random Runs of 10-Second Duration.

Optimal Gain Optimal Gain Optimal Gain Optimal
GAIN for 0 . 02 sec. for 0.03 sec. for 0.10 sec. Unaugmented

Stochastic
USED Uniformly- Uniformly- Uniformly- System Gains

Sampled System Sampled System Sampled System

Average
0.982 1.045 1.029 1.490 1.901

Cost

N-

^o

6

^k sue , '^	 f, n	 :'^-+z
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5. EXTENSIONS AND RELATED TOPICS

5.1 Introduction

In this chapter the major results will generalized to cover

a wider range of applications of probabilistic Riccati equations.

The problem can be re-formulated so that the probabilistic Riccati

equations (2.3.47-2.3.48) form the optimal solution of the system

which switches randomly among NS different configurations. There

are a variety of causes for the change of configurations in a dynamic

system. In a large-scale system the failure of an individual sensor

or actuator may change the system dynamics. The occurrence of a

failure is more frequent in this case due to the size and complexity

of large systems. In a nonlinear system the dynamics can be thought

to change as the system moves from one linearized region to another.

In an adaptive-sampling system, each sampling rate results in a

unique equivalent discrete model determined by Equations (2.2.15-

2.2.19). The generalized probabilistic Riccati equations will be

presented in Section 5.2. We will discuss failure detection and

accommodation of large-scale system in Section 5.3. In Section 5.4

we will show that the solution of the probabilistic Riccati equation

is the optimal solution for nonlinear systems in which the non-

linearity is formulated as a semi-Markov switched-linear process.

The application of stochastic sampling theory to an adaptive-sampling

system is presented in Section 5.5.

s
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5.2 Generalization of the Probabilistic Riccati Equations

In this section, we will consider a discrete -time system which

switches randomly among m possible configurations {(¢i' r i , Ri' Qi),

i = 1, . . . , m). The cost function for the discrete-time system

is defined as

N-1
J - 2 E{ x(N) T Sx(N) +	 [x(k) T Q(k) x(k) + uT (k) R(k) u(k)J}

k=0
(5.2.1)

where

Q(k) e { Qi , i = 1,	 mq}

R(k) a {Rig i - 1,	 Mr 

for k - 1, 2, 3, . . .

The dynamics of the system can be described as

x(k+l) = 0(k+l, k) x(k) + r(k+l, k) u(k) 	 (5.2.2)

where

4(k+l, k) a {^ i , i - 1, . . . , m^}

r(k+l, k) e {r i , i - 1, . . . , m Y }

I
For notational simplicity we will represent the ith configura-

tion by S i and the configuration of the system at time k by S(k); i.e.

[.	 Si	 o	 r i , Ri , Q i) ror i	 1,	 m

i^
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and

r

S(k) = Mk+l, :.), r(k+l, k), R(k), Q(k))

for k = 1, . . . , N .

If the transition mechanism among m possible configurations can

be described as a stationary Markov process, i.e. the transition

mechanism can be represented by the matrix T defined by

T = {P(S(k) = S i/S(k-1) = Sj)}

then the optimal control is governed by the following recursive

relations

J(N-k, N) - xT (N-k) P(k/i) x(N-k)	 (5.2.3)

P(k/i) = I Tij {Qj + KT (N-k/j) Rj K(N-k/j)
j=1

+ [^Dj + rj K(N-k/j)] r P(k-1/j) [( j + rj K(N-k/j)]}

(5.2.4)

MK(N-k/i) _ - {	 Tij [Rj + r^ P(k-1/j) rjF I

j =1	 ,

•{Tij [ri P(k-1/j) 4j ]}	 (5.2.5)

j=i

u(N-k/i) = K(N-k/i) x(N-k) 	 (5.2.6)

The proof is omitted here because it is similar to that in

Section 2.3.
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The optimal solution (5.2.3-5.2.6) was obtained under the

assumption that the configuration of the system can be identified

perfectly with at most a one-step delay. If the structure of the

system cannot be observed perfectly with at most a one-step delay,

the solution is no longer optimal. 	 This is because with imperfect

observation of the system, the control must perform dual functions;

one is to control the state, and the other is to identify the struc-

ture of the system [31], [32]. The phencmenon that the control

influences the estimation of the state or the structure of the system

is called the dual effect. In the randomly-sampled system there are

no dual effects since the control strategy does not affect the

estimation of the state or the determination of the system structure.

This is also the basic reason for the separation of estimation and

control in randomly-sampled systems. Unfortunately, these results

can not be extended optimally to systems in which the structure is

uncertain. On the other hand, the optimal control for a system

--	 with dual effects requires unrealistically large amounts of computer

resources. Therefore, the use of Equations (5.2.3-5.2.6) as a

suboptimal strategy should still be considered.
d

5.3 Failure Accommodation in Large Scale Systems

With ever increasing complexity of digital control systems,

there is a need for design techniques for the control system that will

respond rapidly and maintain overall system performance when a

failure occurs. In designing a reliable cuntrol system there are

two considerations: 1. The control system must respond rapidly
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when a failure occurs; and 2. 	 There must not be a significant

degrac:ation in performance during normal operation. 	 These two

considerations are usually conflicting. 	 In the probabilistic

Riccati Equations (5.2.3-5.2.6) the trade-off between these con- ;.;:- .^ .

siderations is assessed by the Markov transition probability matrix

T.	 Therefore, in a failure-tolerant control system, the Markov

transition ^robability must reflect the probability of failure,

maintenance time and the probability of recovery.	 From the discussion

in Section 5.2 we know that the solution given by Equations ( 5.2.3-

5.2.6) is optimal only if the system configuration is identified

with at most a one-step delay. 	 It is, therefore, important to select

detection filters which can rapidly identify any change in the system

configuration.	 The detection filters developed by Beard [33] and

Jones [34] are very ;promising.	 Their work has led to a systematic

design procedure for the detection of a wide variety of abrupt

failures in linear time-invariant systems. 	 The failure modes that

Beard and Jones have considered include actuator and sensor shifts

and shifts in the matrices A and B. 	 Let us consider using these

detection filters in a decentralized control system.	 A decentralized

control system can be represented as [35]

x(t) = Ax ( t) +	 Biui (t) 	(5.3.1)
i=1

yj (t)	 = Cj x(t)	 j	 1,	 .	 .	 .	 ,	 m	 (5.3.2)

ii•

I_
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where B = (B l ,	 Bm)

	

C = (C1 ,	 C m ) T

Suppose we want to detect a failure in the jth actuator,

which can be modeled as

m
c(t) = Ax(t) + E Biui (t) + Bjv(t)	 (5.3.3)

i=1

where v(t) is an arbitrary time function.

The detection filter is governed by the following dynamics in the

absence of failure and is illustrated in Figure (5.3.1)

m
X(t) - Ak(t) + Dj (yi (t) - Cjx(t)) +	 Biui	 (5.3.4)

i=1

The objective of the detection filter is to choose the gain

matrix D  so that the effects of jth actuator failure are accentuated

in the detection filter residual

	

r(t) - x(t) - i(t)
	

(5.3.5)

From Equations (5.3.3), (5.3.4) and (5.3.5), we know that

the detection filter residual has the following dynamics in the

absence of failure

	

r - (A - Dj Cj ) r(t)
	

(5.3.6)

The output residual is given by

OP

r'(t) = C  r(t)
	

(5.3.7)
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Figure 5.3.1. Failure Detection in a Large-Scale
Control System Using the Beard-Jones
Failure Detection Filter.
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The residual dynamics in the presence of the jth actuator failure

is governed by

r(t) = e(A-DjCj) (t-to)t (t) + rt e (A-Dj Cj )(t-T) Bj v(T) dTo 1 0

(5.3.8)

The detection filter residual is contained in the controllable sub-

space W  of Bit which is equal to

	

W  - (Bj , (A-Dj Ci) Bj , . . . (A-Dj Cj )n-1 Bj ]	 (5.3.9)

The output residual is contained in the subspace spanned by CjWj.

The failure of jth actuator is, therefore, detectable if D  can be

chosen so that rank of C.W.
J 

is one and the eigenvalues of (A-D.
J 
C.)

J	 J

are stable. The choice of D  will influence the eigenvalues of

(A-Dj C j ) and hence the speed of failure detection. This can be

illustrated if we judiciously chose

(A-Dj Ci ) _ - aI
	

(5.3.10)

Furthermore, if we assume that v(t) = V, which is a constant,

then we have

—Q t

r(t) - e 
a(t-t 

o) r(t 0) + V ( 1 -ae	 ) 
B 
	 (5.3.11)

It is apparent now that the greater the detection filter gain

a, the faster the residual will approach its steady state which is

equal to 
Q 

Bj in the direction of B j . The output residual is equal

to v Cj Bj which is in the direction C j Bj . Hence, in a noise-free

system, the speed of failure detection can be made as fast as

AP

i
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desired by increasing the detection filter gain.	 This is, however,

not possible if noise is present because the magnitude of the output

residual is inversely proportional to the filter gain.

From the above discussion, we conclude that the optimal

control strategy determined by Equations (5.2.3-5.2.6) together with 5 -4

the Beard-Jcnes failure detection filter is an interesting and

logical approach, especially in systems where the noise level is

relatively low.

5.4 Applications to Nonlinear Systems

A general nonlinear system can be represented by

x - f(x, u)	 (5.4.1)

where x is a vector of system states and u is the vector of inputs.

The entire state space of interest can be partitioned into a

number of regions, viz. (S i , i - 1, . . . , ml. The dynamics in

each region can be approximated by a linear model which is derived

by using a Taylor series expansion in the neighborhood of the

to 	 (xi , u i ) of the region. Using a first-order approximation

as in Section (3.2), we have the following linearized model for

each region,

du - Ai6x + B i6u	 (5.4.2)

where

i
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Ai = ax (x i , u i )	 :5.4.3)

Bi = au (xi , u i )	 (5.4.4)

fori=l,	 m

For each linear model an equivalent linear discrete-time

model can be calculated of the form

x(k+l) _ 0 i (k+l, k) x(k) + r i (k+l, k) u(k)

fori=l, . . . ,m

As the state of the nonlinear system moves from one region

to the other, our linear approximation model should change

accordingly. A nonlinear system can, therefore, be thought of as

a linear system with time-varying parameters. Several methods have

been developed to identify these parameters. One well known tech-

nique is called "Partitioned Adaptive Estimation," first introduced

by Magill and later refined by Lainiotis [36], [37]. In this

approach the optimal estimate is a weighted sum of estimates

derived from a bank of Kalman filters. The weighting coefficients

are functions of the measurement residuals. The weighting coef-

ficient corresponding to the actual plant model will approach unity

while the other coefficients approach zero given sufficient time

for the identification. The partitioned adaptive control known as

"Multiple Model Adaptive Control" was developed in the Electronic

Systems Laboratory of Massachusetts Institute of Technology.
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The method was successful in controlling the nonlinear dynamics of

the F-8 aircraft in its various flight configurations [38].	 These

methods, however, failed to track nonlinear plants undergoing

relatively rapid maneuvers as reported in reference [39].	 Moose,

Wang and Zwicke developed a better estimator by assuming that the

random configuration changes could be modeled as a semi-Markov

1
process [40], [41],	 [42].	 This formulation is exactly the same as

that presented in Section 5.2. 	 The optimal control, assuming that

the plant configuration can be identified with at most a one-step

delay, is given by Equations (5.23-5.2.6). 	 One feature of Equa-

tions (5.2.3-5.2.6) is that the optimal control has accounted for

i
a possible change of configuration in the future since the feedback

t

gain matrix is generated from a recursive probabilistic Riccati

equation.	 Unfortunately, a nonlinear plant can seldom be identi-

fied within one iteration.	 On the other hand, since dual optimal

control requires immensely large amounts of computer resources,

the suboptimal approach by assuming, valid or not, that the plant

can be identified with no more than a one-step delay is still

attractive.

-	 5.5 Minimization of Information Flow Using Adaptive Sampling
a

The exchange of information between microcomputers is an

item of concern because its cost is high relative to the cost of

computation within a given micro-computer. This section explains

an analytical procedure that assesses the trade-off between the

_A

I
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stability and control objectives of the control system and its

information exchange requirements. Figure (5.5.1) shows a typical

trade-off between the objectives of the control system and informa-

tion exchange requirements. The optimal trade-off involves

determining the information pattern of the system (i.e. variables

exchanged between the distributed microcomputer subsystems and the

frequency of the exchange). Past research has considered control

l_.	 system designs using quadratic optimization for a fixed informa-

1

	 tion pattern P i.. For that process, the variable exchanged and the

frequency of the exchange are fixed and the control system gains

d	

and filter constants are selected as in classical regulator theory

to minimize an objective function of the form

3

Jo - jo FXT (t) Q(t) x(t) + uT (t) R(t) u(t)) dt 	 (5.5.1)

f •
Since the information pattern P i specifies the variables

available for information and the rate of information exchange, the

s _	 result of the minimization of Jo will depend implicitly on Pi.

The variation of the optimal control objective function with P i is

recognized and accounted for in the adaptive sampling. This is done
3

by considering a total objective function that not only involves

I
performance of the objectives of the control system as in classi-

cal regulator theory but also penalizes the use of information flow.

The total objective function to be minimized is of the form

i
J - Jo + C(Pi)

s.

A
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J

a

Sample time

Figure 5.5.1. Qualitative Effect of Information Exchange
Rate (Sample Rate) on the Stability and
Control Objective Function J , the
Information Exchange Penalty°Function C,
and the Total Design Objective Function J.
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The first term forces the algorithm to obtain a desired system

performance and the second term penalizes high information exchange

rates.

For the purpose of optimizing the total objective function,

J, the sampling rate T is assumed to be in the range of usable

values. The range of usable T—values is limited from below by

computer I/O capabilities and is limited from above by stability	
s .q

requirements. For the case of a linear plant of the form

.. = Ax(t) + Bu(t)
	

(5.5.2)

u(t)	 u(k)	 (5.5.3)

for t  < t < tk+,, k = 1, 2, .	 with the total objective function

J2fo (xT (t) Qcx(t) + u (t) Rcu(t) dt + f(T)	 (5.5.4)

When the plant (5.5.2) is subject to the constraint (5.5.3),

the plant dynamics have the following equivalent discrete-time

representation

x(k+l) _ (D(k+l, k) x(k) + r(k+l, k) u(k)	 (5.5.4)

with the cost function

J	 I [x(k) Q(k) x(k) + 2x(k) M(k) x(k)
k=1

+ u(k) R(k) u(k)J + f(T)	 (5.5.5)

where 0(k + 1, k), r(k + 1, k), Q(k), M(k) and R(k) are functions
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of T. The minimization of J should be taken over the set of

sequences U = {u(k); k - 1, . . . , -}. This, however, leads to

a complex analytical problem. The analytical complexity can be

reduced by considering a restricted class of information patterns

Pi where the data bus is assumed to be sampled at uniform intervals.

If the data bus is, in fact, assumed to be sampled at uniform

intervals, T, the solution to the optimization problem over the

sequence u is the feedback control law:

(5.5.6)u (k) = F(T) x(k)

where

F(T) - - (R + PT
 
Kr) -1 (rTKO + MT)

and K is the solution to the matrix Riccati equation

K = 0TKO + Q - (rTKo + MT) T (R + tTKT)
-1
 (rTU + MT)

(5.5.7)

(5.5.8)

Note that F and K, as well as Q, R and M are functions of T. When

the sequence u (k) is applied, the cost function J becomes

J = xT (o) K(T) x(o) + f (T)
	

(5.5.9)

which is a function of the initial state x(o) and sample time T.

If the number of usable sampling intervals is small and the initial

state is known, the minimal J can be determined by evaluating

Equation (5.5.9) for all possible values of T. This is not



OP

115

feasible for an on-line application if the number of usable sampling

intervals is large.

A different approach involves computing T by optimizing

J over a sample interval (t k , t  + T). The cost accrued over that

interval is

AJ(T) - xT (k) H(T) x(k) + f(T)	 (5.5.10)

where

H(T) = Q(T) + 2M(T) F(T) + FT (T) R(T) F(T)	 (5.5.11)

The functions Q(T), M(T) and R(T) are analytic in T and,

under the assumption that f(T) is also analytic, AJ(T) can be

expanded in a Taylor series about the sample time which was last

used, viz., T i . This results in

AJ(T) - f + xT (k)[H + H' (-r 	 +2H "(T-T i ) 2 ] x(k)

+ f' (T-T i) + 2 f"(T-T 
i)2	 (5.5.12)

where e.g., H' A 8 
and all functions are evaluated at the last

sample time, T i . The minimization can be simplified by neglecting

higher-order terms (higher than (T-T 1 ) 2). This results in

f'(T ) + xT (k) H'(T ) x(k)
T - Ti	 -	 i	 i	 ( 5.5.12)
 

fit(Ti) + xT (k) H"(T i) x(k)

For ca-line implementation, it is only necessary to store f', f", H'

and H".
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Using the above adaptive-sampling algorithm, the control

system will have random sampling intervals. 	 Unless the sampling

process can be modeled as a semi-Markov process, there is currently

no control law which can account for the random sampling intervals.

i. In order to use Equations (5.2.3-5.2.6) to calculate the control

law, we must know the transition probabilities. 	 On the other hand,

in order to determine the transition probabilities in simulation,

we must first have the control law. 	 To avoid this dilemma, a

heuristic method is introdu^ed in the flow chart shown in Figure

(5.5.2).	 In this approach the steady-state gain is calculated for

i
each sampling interval assuming that the gain will be used in a

 uniformly-sampled system.	 These gains are then applied to the

' simulation of the adaptively-sampled system. 	 These gains are, of

course, not optimal in the adaptively-sampled system. 	 From the

simulation the Markov transition probabilities between adjacent

sampling intervals are determined.	 Using these probabilities, the

M« optimal quasi-steady-state gains can be determined from Equations

r
(5.2.3-5.2.6).	 We will then iterate between generating the new

w.

transition probabilities and calculating the quasi-steady gains

until the algorithm converges.	 Since this method is heuristic in

i
nature, the convergence of the algorithm is not guaranteed.

i
' However, if the algorithm does converge, the quasi-steady-state

gains should be very closed to the optimal solution.
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k=0

Select a set of usable sampling
intervals

S = {T1 ,	 Tm}

Calculate the uniformly-sampled steady-
state gain for each Ti,

{Go,	 Gm}

Use gains {Gi,	 Gm} to

simulate the adaptive samplin
system to determine the tran-
sition probabilities

Pi . k = Pk (Tn = Ti / T 	T.)
n-1

Solve for the quasi-steady-
state gains using the stochas-
tic Riccati equations based o
the above probabilities, i.e.

{Gk+l,	
Gk+1}

k = k+l	
NO	

IIGi+l - Gi II < t	 YES	
STOP

i=1,	 m

Figure 5.5.2. A Heuristic Approach to Determine the
Control Law for an Adaptively-Sampled Svstem.
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