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ABSTRACT

alysis of aerospace structures by the finite element method

asiderable computer time. The cost of this resource and the

desire to have rapid feedback concerning such questions as

the effect of a change in loading of the structure or in a parameter of

some structural material have led to the design of a special purpose

parallel computing system for finite element analysis. As a special

purpose computer, the architecture of this finite element computer is

closely tied to computational aspects of the particular problem. This

paper will relate various aspects of an MIMD array of microprocessors

to the requirements of the class of finite element analysis problems

which it is intended to solve.
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Introduction

The finite element method [1] reduces a structure to a set of discrete nodes

joined together by idealized elements. The elements model the relationship

between a force on node i and a displacement of node j by a stiffness

coefficient k ij . Rotational displacements and moment type forces may be

included but the character of the problem is apparent if only translation

forces and displacements are considered. The stiffness coefficients form a

stiffness maltrix K which relates the vector F of forces at each node

to the vector d of nodal displacements by the linear equation F = K8.

In general F and d involve several degrees of freedom, corresponding

to rotational and translational movement in three dimensions, but we can

restrict the discussion to one degree without losing generality. Figure 1

shows a very simple structure consisting of 10 nodes which might be

considered to be connected Ly bar or beam elements only. It is also

possible that a group of nodes and their stiffness coefficients arise

from applying the finite element method to a more complex element, such

as a plate.
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F = Kd

Figure 1: A Simple Finite Element Model of a Structure.

The computations of a finite element method solution may be divided

into two parts:

1) Formation of the stiffness matrix K and

2) Solution of the linear equations for a given load case (value of F).

In forming the stiffness matrix, the elements used must be reduced to a small

set of discrete nodes and stiffness coefficients. This is done using the

geometry of the element and constants describing the particular material. The

result is usually a set of node coordinates and a stiffness submatrix in some

local coordinate system. The total stiffness matrix K is found by perform-

ing local to global coordinate transformations on each submatrix describing

an element and adding in its contribution to the overall K matrix. It can

be shown that the resulting K matrix is symmetric and sparse. The number

of nonzero coefficients in a given row (or column) does not grow with the

number of elements in the structure but depends only on the complexity of

individual elements and how many of them are connected at a single point.
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The sparseness of the K matrix is one aspect of the finite element

problem having a strong influence on the architecture of a special purpose

finite element computer. Of course, solving the linear equations by forming

the inverse of K causes the zero elements to fill in with nonzero values.

Iterative solution methods, however, work directly with the K matrix and

thus avoid fill in. A test case with 63 nodes had a maximum of 12 nonzero

coefficients for any node. Call a node j a neighbor of i if kij 0 0

then Figure 2 shows the percentage of nodes having n or fewer neighbors.

Clearly the predominant number of nodes have very few neighbors. Almost

70% have 5 or fewer.

number of neighbors

Figure 2: Number of Neighbors per Node in a Test Case.

Another aspect of finite element analysis on which the architecture will

depend is the designer's tendency to do many solutions involving the same

structure (or at least the same structural topology). He may vary material

constants, element dimensions or loads without changing the topology defined

by the nonzero elements of the K matrix. This implies that a fair amount
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of computational effort in transforming the problem topology to fit a given

computer structure may be profitably traded for faster solution time with the

fixed topology. Thus two of the guiding principles in the development of

a finite element computer architecture are the limited number of neighbors

per node in a finite element model and the willingness to use more problem

set up time for a new model in order to gain faster response when the model

topology is fixed. Parallel computation is a chief method of reducing response

time and the limited number of neighbors per node holds out hope that the

major obstacle of communication between processing elements can be overcome

in this case.

To approach the introduction of parallelism into the solution of a finite

element problem we use the fact that methods can be developed for computing

the stiffness matrix and for solving the resulting equations which partition

the work into portions associated with each node of the structure. Data is

shared among the nodal subtasks in a way isomorphic to the interconnection

of nodes by elements of the structure. The subtasks are not identical but

depend upon the connectivity of the particular node and the types of the

finite elements joined at that node. This is in contrast to the identical

subcomputadLons performed by other proposed special purpose processor arrays

such as the Navier-Stokes Computer [2]. Introducing parallelism by running

nodal subtasks concurrently implies a computer architecture of the multiple

instruction stream, multiple data stream (MIMD) type [3]. Even though a

general parameterized program might be written which subsumed the computations

necessary at every node, loops would be performed a different number of times

at each node and major subcomputations might be skipped entirely for nodes

with simple structure. A single instruction stream architecture would thus

be inefficient and hard to synchronize if the work is partitioned into
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subtasks according to the physical topology of the structure.

This MIMD approach is consistent with current single chip microprocessor

technology since a group of loosely coupled but independent microprocessors

with local instruction memory can be expected to be less expensive than a

network for distributing single instructions from a common stream to multiple

processing elements. Another step taken to avoid the costs associated with

distributed networks demanding high performance is to avoid the use of shared

memory. The processors will communicate data by explicit transmissions from

a source processor to a specific destination. (Broadcast is also possible.)

Since all processors cooperate on a single job, there is only one input stream

and one output stream. This implies that I/O should not be distributed

but under control of a single sequential process, i.e. attached to a single

processor.

PMS Level Description of the Architecture

The structure of the machine is adapted to the solution of finite element

structural analysis problems by iterative schemes. 	 The property of the

solution method which influences the architecture is that the computations

carried on by a single processor will be associated with a given node. We

will think in terms of problems with on the order of 1000 nodes. With a cor-

respondence between nodes and processors the topology of the physical node

interconnection pattern will have to be modelled by the interconnection

topology built into the hardware. The simplest processor interconnection which

is general enough to model any topology is the single time-multiplexed bus con-

necting all processors. The aspect of the problem which rules out this

approach is the short period, measured in bus transmission time units,

between exchanges of information between processors. Permutation networks

(crossbar switches or rearrangeable switching networks, RSN) provide for N

simultaneous information transfers, where N is the number of processors,
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but must be switched frequently for one processor to communicate with several

others during an iteration. Crossbars are easily sw+tched, but are expensive

in gate count (N2), while RSNs are expensive in terms of time to set up

a given permutation (order N 1092 N time units [4]). Since nodes in a

structure modelled by finite elements are typically connected to a small number'

of other nodes, it is tempting to try to provide a network of local inter-

connections which may carry the interprocessor communications. Any network

of local interconnections will have a fixed topology, however, so that the

node interconnection topology of the finite element model must be mapped onto

the processor interconnection topology. Such a mapping is not possible with

an interconnection network growing linearly with the number of nodes and an

arbitrary model topology.

The approach adopted in this design is that of a fixed interconnection

pattern backed up by one (or more) time multiplexed bus for connections which

do not fit this topology. The interconnection patterns to be investigated

include 8 nearest neighbors on a square planar grid and cubic close packing

in 3 dimensions, both with boundary nodes considered as neighbors of approp-

riate boundary nodes on the opposite side. From the point of view of hard-

ware design costs the simplicity and regularity of this interconnection

pattern reduces the number of long cables and the number of external

connections to a given hardware module (circuit board, cabinet, etc.).

From the point of view of structural analysis, most problems have a large

component amenable to mapping onto a topologically regular grid in

3 dimensions or which can be developed onto a plane, leaving a small percent-

age of the nodes which must compete for use of the time multiplexed bus.

Furthermore, the bus is likely to be used most often by nodes which connect

to a large number of others, such as the vertex node in a conical structure.

These nodes have a longer computation to do per iteration, thus reducing
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the average rate of bus usage. The interconnection pattern is schematically

shown for 16 processors assuming 8 nearest neighbor planar topology to

Figure 3. The bus is omitted for clarity.

Figure 3: Fixed Interconnection Pattern for Processors.

The individual processors will be 16 bit, single chip microprocessors,

with hardware multiply and divide, coupled to a read/write memory, RAM,

for programs and data and a read-only memory, ROM, for the start up algorithm.

The interconnecting paths appe_r to the processor as I/O ports (memory lo-

cations for memory-mapped I/0) and provide not only for data (and address

in the case of the bus) but also for handshake control signals between

source and destination. It is felt that the most appropriate way to control

such a multiprocessor system is by using a control algorithm which can be

distributed among the processors. Indeed, some aspects of control must

be distributed in an MIMD machine and we provide some simple synchroniza-

tion mechanisms, discussed below, to help implement such algorithms. How-

ever, at the current state of development of parallel control algorithms

we prefer to provide the option of using a central control processor for

the initial phases of development. We expect this processor to be important

in initial startup of the array in doing I/0. Since a single problem will

be running on the system, the 1/0 is beat handled by one process running
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we will take k - S, N - 1024. An abbreviated PMS (5) diagram for the pro-

cesaor array is shown in Figure 4. A diagram for one processor is given in

Figure S.

L('Global bus) - C(Control) - (I/0 environment)

F	 P(#i-l;#j+l)--5. 	 P(#i,#j +1)— -M	 P(#i+l;#j +1 —S-M

1

1
	 P(#i-1;#j)—•S-M	 P(#i;#j)- S-M	 P(#i+l;#j)--S-M

1
P(#i;#j-1)— S - M 	 P(#i+l,oj-1l) S-M	

1

Figure 4: Partial PMS Diagram for the Array

P(#i; #j; 16 bit/word; 1 chip CPU)

-S(in(i-l,j-1))

-S(in(i-1,j)) -
	 S(local out)

-S(in(i-l,j+l))

-S(in(i,j-1)) -

-S(in(i,j+l)) -
	

K(global out)

-S(in(i+l,j-1))
	 L (global bus)-

-S(in(i+l,j)) -
	 Ms (in buffer)

-S(in(i+l,j+l))

K (signalling) - L (signalling net) -

M (Read/Write; program; data)
	

M(ROM; coldstart program)

Figure 5: PMS Diagram for One Processor.
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Influence of the Architecture on the Solution Algorithm

To see how the proposed architecture would be used for an iterative

solution to a finite element analysis problem, consider the calculation done

by a processor associated with node j in one step of the Jacobi method for
iterative solution of the set of linear equations, KS • F, where K is the 	 ;--

stiffness matrix, d is the dis-lacement vector and F the load vector.

Note that the architecture is not limited to this method, but it serves to

illustrate the ideas in a simple context. We do not consider formation of

the stiffness matrix and assume that processors have already been assigned

to nodes for the structure in a way such that most physical node interactions

occur between locally connected processors. The computation performed by the

processor for node j is

F.	 k.

l	 kjj i#jkjj 1

where the sum ranges over nodes i for which k ji # 0. We call such nodes

physical neighbors of node j and call nodes assigned to processors with local

connections to the processor for node j local neighbors of node J. The

optimal condition is that in which all physical neighbors of node j can
also be made local neighbors by proper assignment of processors to nodes.

Since this is unrealizable in general, the global bus will need to be used

for some of the physical neighbor interactions.

Each processor is assumed to be provided with a table of physical neighbor

nodes giving their mapping onto the processor array and the route by which

data travels to and from them. The local data paths are named by the compass

points N,NE,E,SE,S,SW,W, and NW. The connections using the bus require

that processor j know the processor number P(i) of the physical neighbor.
The receiver i of a bus transmission uses the number j of the source
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processor to determine a buffer register in its memory for data from processor J.

The physical neighbor table might appear as in Figure 6. R(i) is the register

in the memory associated with global bus input from node i. R(N), R(NE),

etc. are local connection input registers. The algorithm performed by

Physical Neighbors of j

node number	 route	 coefficient

i t	NE	 ajkl = kjil/kjj

i2	E 	 aji^

i3	S

1
4
	Nib

iS	R(i5)

R(i6)	 a  i
6

Figure 6: Routing Table for Processor j.

processor P(j) would have the general form shown in Figure 7. Note that

some synchronization must be provided so that an input register of P(j)

associated with P(i) is not read before P(i) has filled it.

Since the long distance bus is a ; potential bottleneck, care should be

taken that the transmission over this bus does not interfere any more than

necessary with the progress of the transmitting and receiving processors.

To allow overlapping of bus transmission delays with other computation, data

transfer requests should be made as early as possible. Thus transfers should

be initiated by the source processor as ;oon as the data is produced rather than

i6
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Initialise reavlt dj ♦ Fj/kjj
Access routing table starting
with a - i

Is in local? )----ego

r

get q to the direction
of 

a
I.  and calculate

6  + 8  - ajin x R(q)
later R(P(in)), •waiting
It is not yet filled.♦ 6  aji- x R(P(ia))

Increment L 
­
 _ ^;

neiahbor table or

neighbors?

Transmit bj to all array neighbors and send

It over the bus to each processor connected
	

of

by a long distance link.
	 Step

Figure 7: Iteration Step for Processor j.

by the destination processor when the data is required in order for the com-

putation to proceed. A possible design of the bus communication system would

then behave as follows:
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1. The source processor would place a request for data transmission

to a given bus input cell of a given destination processor by entering

address and data into a FIFO buffer.

2. A hardware transmission controller would examine the FIFO and, if

it was nonempty, would request the bus, wait for bus control and

transmit the data to the appropriate address.

3. A reception controller would be responsible for monitoring the

bus fcr its processor number and, when it was addressed, placing the

data into a memory register associated with the source processor. Each

word would have a full/empty flag which would be set to full by the

receiver when data was stored into that cell. (See note 1.)

4. The receiving processor would access a particular cell in the

memory associated with the global neighbor, waiting until the cell was

marked full. On reading the data from the cell the processor would mark

it empty.

The algorithms for the bus communication system in processor P are indicated

by the flowcharts of Figure 8. The one level buffering and full/empty

indicator should also be included in the local connection input registers

making possible full data synchronization of an iteration step.

Note 1: If the destination register is still marked full from a previous

reception the receiver must buffer the data until it is emptied by the

processor. In the Jacobi iteration step, it is guaranteed that only one

level of buffering is required. Let the source processor be i and the

receiving processor j. Processor i writes di l) into processor j

and proceeds to compute di g) which it also transmits to processor j.

Assuming that processor j has not yet read 6 �1) this dig) must be

buffered. But processor i cannot continue to produce 	 di3) since

this requires using 6 2) which cannot be produced until processor j

has emptied 
dil) .
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FIFO Transmission Buffer

Processor #	 Data

5Transmit instruction

Enter

Write address and
data into FIFO.

Exit

Read instruction

Enter

Register empty? Yes
i, 

lNo

Read data and set

to empty.

Exit

i-ransmitter process

FIF empty.	
Yes

No

Request bus and wait.

Send destination address,
source address, and data,
and advance FIFO.

Receiver process

j^

Processor P addressed?

IYes

Store bus data into
local regiser (or buffer)
associated with source and
set to nonempty,

No

Figure 8: Bus Communication System.
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Interprocessor Communication Primitives

Having considered all major system components we are ready to describe

the system at the instruction set level. The instruction set of the nodal

processors is assumed,but must be enhanced by communication and signalling

operations. At the algorithm level the processor producing a result will

broadcast this same result to all of its neighbors. The form of the broad-

cast operation at this level would be:

OUT (value, result id).

If result numbers are produced in a fixed order then the result identifier

may be deleted. Of course, results for separate iterations are produced

in a fixed order, but within any iteration several numbers may be produced,

i.e, displacements for several degrees of freedom.

At the same level, a processor which requires a result from one of its

neighbors must identify that neighbor. Including the identification of

the neighbor and the character (degree of freedom, etc.) of the number

required, the input primitive operation at the algorithm level would have

the form:

IN (value, input id, neighbor).

Each processor (structural node in the finite element problem) will input

k numbers in order to produce one result, where k is the number of

neighboring nodes in the problem topology. This will be done fxk times

per iteration where f is the number of degrees of freedom.

At the implementation level, neighbors are of two types: those with

local connections to the reference processor (called local neighbors) and

those only connected to the reference processor by the global bus (called

global neighbors). At the algorithm level a neighbor is identified by an

absolute node number where the numbering scheme refers to the problem topology.

At the implementation level, physical neighbors are identified in two
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different ways depending on their local or global relationship to the

reference processor. Local neighbors are identified by a relative designa-

tor, which for planar connectivity could be specified by a compass direc-

tion, North, Northwest, Southeast, East, etc. This relative designator

will map directly into a reference processor input port address. A global

neighbor would be referenced by a processor number determined by a hard-

ware-fixed numbering scheme established by the processor interconnection

topology. Of course, for any given reference processor, numbered i in

the global numbering scheme, the global number of any local neighbor can

be determined from i and the relative designator.

j = h(i, direction), where "direction" is the relative designator.

Because of the character of the iterative scheme, results for distinct

iterations will be accessed sequentially by the processor using them. Thus

no iteration number need be associated with a result number. The flow of

results from source to destination can be viewed at the algorithm level as

taking place via a group of FIFOs associated with the receiver. There is

one conceptual FIFO associated with each neighbor in the problem topology

and with each of the neighbor's degrees of freedom. The total number of

conceptual FIFOs for processor i is N F =	 I	 fj, where f  is
neighbors
j of node i

the number of degrees of freedom of processor j. The number of degrees of

freedom is 6 for a node at which all 3 translational and 3 rotational displace-

ments in 3 dimensions are allowed. The nature of the parallel iterative

scheme guarantees that each of these FIFOs need only have length 2. Data

synchronization requires a receiving processor to hang up when attempting to

read an empty FIFO. Providing the ability for a processor to wait for an

-4 -

j



16

information item (message) also provides hardware support for the highly

message oriented type of operating system described by Brinch Hansen [6].

These conceptual FIFOs are impractical to implement in hardware as a

result of their limited length and large number. If, however, a fixed order
	 4 g a^

is adopted for producing numbers associated with different degress of freedom,

then one FIFO could be associated with each neighbor, j, with a length on

the order of	 2X 
7 

floating point numbers. For the local neighbors, at

least, it might be practical to implement such FIFOs in hardware. The FIFOs

for all local neighbors should not be combined for two reasons:

1) Some locally connected processors may not be neighbors in the

problem topology.

2) The varying nature of the iteration completion speeds would make

it difficult to establish a sequential order on results from different neighbors.

For global neighbors, numbers arrive over the same global bus from different

source processors in random order (though the order of numbers from any given

processor may be fixed by the degree of freedom to which it corresponds).

Thus the manipulation of a FIFO for each global neighbor will probably be a

software function if it is desirable.

Let us adopt the strategy of a single input FIFO associated with pro•

cessor i for each of its local neighbors. Processor i is then responsible

for determining the character of an input number from the order of arrival;

thus a result id is not necessary. Figure 9 shows the local transmission

scheme with 12 neighbors allowed to take into account the 3 dimensional

case. Processor i places words for local neighbors into the local out-

put register for simultaneous transmission to all local neighbors which

are enabled. A non-empty input FIFO with its interrupt enable bit set

v
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will cause an interrupt of processor i whenever it is not empty. The non-

empty status can also be tested directly. An input FIFO full condition

must be reported to the processor writing into the FIFO and thus affects

this processor's output operation. A set of primitive operations for local

communication is given in Table 1.

From Neighbor 1	 From Neighbor 2	 From Neighbor 12

Int.
Enable

1

Empty	 Empty
	

Empty

	

Input	 Input	 ..	 Input

	

FIFO 1	 FIFO 2
	

FIFO 12
E-16 bits—io 	 F16 bits--.*
	

E-16 bits-

Multiplexer

Intetrupt

Processor
i

Local Output Register

16 Bits

To Neighbor 1 To Neighbor 2 To Neighbor 12

Figure 9. Conceptual Framework for Local	 'Transmission
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Operations:

Output (word)	 - Broadcast the 16 bit word to all enabled

neighbor processors.

Enable (j)	 - Set the flag to enable output to local neighbor j.

Disable (j)	 - Disable output to local neighbor J.

Input (j, word)	 - Input one 16 bit word from the input FIFO for

neighbor j.

Interrupt enable (j)	 - Enable interrupt when input FIFO j becomes

nonempty.

Interrupt disable (j) - Disable interrupts from input FIFO i.

Tests:

Output busy?	 - Is this processor's input FIFO in any enabled

neighbor full?

Input ready (j)? 	 - Is input FIFO j nonempty?

Table 1. Local Communication Primitive Operations

For global transmissions we will also adopt the policy of having a

receiving processor, say k, determine the character of a word received from

processor i by the order in which i. transmits words. Any FIFO buffering

must be done by software since it is impractical to supply a hardware FIFO for

every other processor in the system and only the software can determine which

connections are active in a given problem. Thus words coming in over the

global bus must be associated with a source processor number i and will

interrupt processor k which will determine what to do with them (place them

in a software FIFO associated with global neighbor i). The FIFO output queue

prevents a sending processor from hanging up on an output request until as

many as 1023 bus transactions are completed. Processor i records a word

w and destination processor k in the FIFO and a hardware controller requests

the global bus and performs the (w,k) transmission when it is at the head of

the queue and the bus is available. The transmission (w,k) performed by
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processor i is received by processor k as the pair (w,i). Thus inform-

ation transmitted on the global bus takes the form of information packets

(source, word, destination) where "destination" plays the role of an address

and "source" and "word" are the data received. A diagram of the global bus

interface is shown in Figure 10. The global bus is provided with an input

Interrupt	 To processor i

From Processor i
	

Empty

Busy
	 Global Bus Input

Status
	

FIFO

Destination I	 Data
	 Source I	 Data

Strobe

Full
Global Bus Output
	

Address
FIFO
	

Comparator

Source # Destination	 Data
Global Bus

Data

Address

Figure 10. Outline of Global Bus Interface

FIFO because processor i could receive transmissions (from different sources)

as often as once every bus cycle in the worst case. This is faster than the

data can be handled by software.
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The primitive operations and tests associated with global bus communica-

tion are listed in Table 2. A special destination number is provided for

broadcast mode transmissions.

Operations:

Set destination (i) - Write processor number (i) into the global

bus destination	 register.

Send word (w) - Write	 w	 and destination register contents to

FIFO initiating transmission.

Set broadcast - Set the global bus destination register to the

special broadcast address.

Read source (s) - Read the source processor number at the head

of the FIFO.

Read data (w) - Read the data word and advance the FIFO to

the next source and data pair.

Receive broadcast - Set address comparator to respond to broadcast

address.

Ignore broadcast - Set address comparator to respond only to this

processor's number.

Test:

Global input ready? -	 Is there a (source, data) pair in the FIFO?

Table 2: Global Bus Communication Primitive

The broadcast mode is primarily intended for loading the same program or

initial data into all, or almost all, processors. It will thus probably be

used only with the control processor as a source. It is easy, however, to

give broadcast capability to all processors. Transmission of a block of words

to a single destination is done by following one Set destination operation

by several Send word operations. Thus the software can approximate a

block transmission operation without complicating the bus structure.
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Two timing problems were mentioned in connection with transmission over

the global bus:

1) A processor sending information may have to wait as long as 1023

bus cycles before its request for the bus is granted.

2) Packets of information may arrive at a destination processor as

fast as once per bus cycle.

The problem of a source processor waiting to obtain the bus can be solved

by providing a FIFO buffer for output to the global bus. Transmission

requests, consisting of destination processor number and word, are posted in

the FIFO and a hardware controller transmits a word whenever the bus becomes

available. The problem of a destination processor not being able to handle

information packets as fast as they arrive in the worst case could be solved

by having the destination processor refuse the transmission, in which case

the source processor relinquishes the bus leaving the information packet in

its FIFO.

The problem with allowing the destination processor to refuse a trans-

mission is that it introduces a non-zero probability that a processor attempt-

ing to transmit will be refused arbitrarily often. Thus a particular kind

of deadlock becomes possible in which the system as a whole progresses but

one or more processors are blocked. This sort of deadlock is not possible if

the transmitting processor holds the bus until the transmission is complete.

Bus holding, however, allows for complete hang up of the system as a result

of one processor's failure to empty its global bus input register.

In either case the prompt omptying of global bus input registers by

receiving processors is essential to efficient use of the bus. Thus the in-

terrupt associated with a full input buffer should have very high priority.
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Perhaps it should be non-maskable. The probability of deadlock in either

case (bus holding by the source or transmission refusal by the destination)

can be statistically reduced by adding a global bus input FIFO. The possi-

bility of deadlock still exists, however, since the FIFO may become full.

Cooperative Signaling and Synchronization

Several aspects of the algorithms to be executed by the finite element

machine require synchronization of the nodal processors. Consider, for example,

the transition from formation of the stiffness matrix to solution of the linear

equations defined by it. No processor should proceed to the solution process

until all are finished with the stiffness matrix formation. Let us call such a

synchronization a barrier synchronization. Such an operation can be performed

by designating a control processor and requiring each processor to report arrival

at the barrier to the control processor by way of the global bus. The control

processor waits until all reports are in and then sends a broadcast message for

all to pass the barrier. For 1024 processors this requires 1025 bus transmis-

sions to do barrier synchronization. As bus transmissions are sequential, this

is quite time consuming. Faster synchronization might be performed using a

reporting network built from local interconnections, but, since software is

involved in rebroadcasting a locally received message, longer basic transmission

times and nontrivial control software are involved.

It is proposed to address this and similar synchronization problems by

providing hardware support, other than the local and global communication

schemes, for cooperative signaling. The cooperative signaling interface to

one processor is shown in Figure 11. It consists of a set of k identical

interfaces forming k independent networks over the set of all processors.

That is, the ith signaling flag interfaces on all processors form the ith

signaling flag network. The flag is the central item of the ith interface
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1

Processor

Figure 11: Cooperative Signaling Interface.

Enable serves to connect this processor ' s Flag into the ith signaling network.

Any and All are cooperatively determined signals which tell each processor if

any enabled Flag is set and if all enabled Flags are set, respectively. To

support unique selection, each time a Flag is set a priority network decides

if the Any line was initially zero and this is the leftmost (in an arbitrary

ordering) processor to set its flag at this time. The unique " first" processor

to set its flag on a given signaling cycle has its First bit set. First is

cleared when the flag is cleared. The primitive signaling operations avail-

able to each processor are summarized in Table 3.

Connect (i)	 - Set the ith Enable bit.

Disconnect (i)	 - Clear the ith Enable bit.

Set (i)	 - Set signaling Flag i.

Clear (i)	 - Clear signaling Flag i.

Any (i)?	 - Is the ith Flag set in any connected processor?

All (i)?	 - Are the ith Flags set in all connected processors?

First (i)?	 - Did the last Set (i) cause First to be set?

Table 3: Cooperative Signaling Primitives.
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With these signaling primitives the barrier synchronization can be

performed. One processor is chosen as controller and all are connected to two

signaling flags. Flag 0 is the barrier and is initialized to one in the

controller and to zero in all other processors. Flag 1 is the report flag

and satisfies the same initial conditions. Upon reaching the barrier, each

processor sets its report flag and performs the Any test on the barrier, waiting

as long as Any is true. The controller repeatedly performs the All test on

the report flag and clears the barrier flag when this test succeeds. Using

the unique selection feature the barrier synchronization can be accomplished

with an identical program in all processors as shown in Figure 12.

arrive at barrier

Set (0). Set the barrier flag.

Set (1). Set the report flag.

Yes	
F rst (1	 Am	 first to report.	

No

;All M. Have all revortedT7

Yes 1	 \ No

Clear (0). lower the barrier.

Clear (1).	 Clear

continue

Figure 12: Barrier Synchronization with Unspecifi--d Controller.

Under the reasonable assumption that each primitive operation requires one

instruction time, an 8 instruction loop can be used to fully synchronize a

multiple item broadcast transmission as would be used to load a common program

into all processors.

The number of signalling flags required to perform the synchronization



2S

needed in the finite element machine remains to be determined. It appears

that many useful synchronizations can be performed in a time independent of

the number of processors with only a few flags. for example, two flags are

sufficient to imitate the 3 wire handshake of the IEEE standard interface

bus [7j. No active synchronization mechanism such as semaphores or critical

section support [ 8 ) is proposed for this machine. Such mechanisms are most

helpful in arbitrating a shared facility. Where is no shared facility in the

present architecture other than the global bus which is handled by its own

arbiter.

Performance of the Finite Element Machine

It is now important to evaluate the perfo-mance of the architecture

described above over the problem class for which it was designed. The follow-

ing comments give an indication of the direction of the work to be

done in this area. A few of the crucial performance issues are:

1. The development of effective procedures for mapping the finite

element model topology onto the array topology with minimal use of

the bus.

2. Effective overlapping of time multiplexed bus transmissions with

computation.

3. Effectiveness of global control of the array and global 1/0 operations.

4. Speed of the linear equation solution.which reduces to rate of con-

vergence for an iterative scheme.

Of particular concern is the relatively slow convergence rate which can be

expected for the Jacobi iteration (see e.g. [9)) since a Jacobi method seems

most natural for the type of microprocessor array described.

The fact that a receiving processor waits for its input registers (local

and global) to be marked full before performing the next iteration step means
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that data synchronization can be used to get away from Jacobi iteration to

a "wave type" interation scheme which is similar to Gauss Seidel in that

the latest available information at each node is used in the computation

(see e.g. [9]). The iteration could be started with an initial d value

guess, but the source registers for only a few processors marked full.

These processors would proceed to calculate results and fill the registers

of their neighbors. By correctly arranging the initial full/empty marking

the updated values could be made to proceed in waves through the structure.

In Figure 13, input cells initially set full are indicated by black dots

at each node circle.

Figu I l3: Initia l	editions for Iteration

Computation starts at the vertex node, since only this node has all input

cells marked, and, when complete, the result is sent to the 3 nearest

neighbors to the right, marking their corresponding input cells as full.

Thus the new values propagate from left to right through the structure

in a wave-like fashion. The vertex node can start its second iteration

cycle as soon as all 3 neighbors have completed their first iteration.

r
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Some rough timing considerations for the execution of one iteration step,

as outlined in the flowchart of Fig. 7, can be made. Each complete iteration

step involves some results from processors with local connections to processor

j (left hand branch in flowchart) and some results sent over the bus (right hand

branch). We assume that all local connections are listed first in the routing

table of Fig. 6. We can then view processor j as proceeding from left to

right computing an expression of the form:

6j = C  - a1R(gl ) - a2R(g 2) - ... - afR(gf)

- b 1 R(P 1 ) - b2R(P2) - ... - b9R(P9).

The number of local connections for processor j is f (or f j ) and the number

of global, or bussed, connections is gj . Let t(m) be the time required to

compute the constant term through the mth product term in the expression. Then

processor j has t(fj ) time units at the beginning of each iteration cycle

during which it requires no resu' : °ent via the global bus. If fmin = min j(fj)

is the minimum number of local connections over all processors, then t(fmin)

time units at the beginning of each iteration step are available for bus

transmissions with no possibility of delaying any processor. In the worst case,

it is possible that tt,e last bus result transmitted is the first one needed,

though this case is not likely. In this case, one or more processors would

have to wait for completion of all bus activity before proceeding to calculate

the part of the expression depending on global results.

To explore the timing associated with the hardware of the proposed

system, we assume that each processor in t	 .ray consists of a 16 bit, single

chip microprocessor (for example the TMS 9900 from Texas Instruments) enhanced
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by a hardware floating point unit. It is proposed to allow for 32 bit

floating point operations although the precision requirements are not yet

firmly established. The average instruction time for the 9900 is about 6

microsec and we assume that the multiply-subtract operation required for each
e-1

R value can also be performed in 6 microsec by the added hardware. With

these assumptions a sketch of the code needed to accumulate terms in the

expression and optimistic timing estimates would be as shown in Figure 14.

Get constant term. 	 6 microsec

Reference routing table.

Get multiplier.

Get result value.	 36 microsec
Multiply-subtract.

Increment index.

Test for completion.

Time to accumulate constant and m product terms:

t(m) = 6 + 36 m microsec

If floating point operations are done by software then:

t(m) = 12 + 250 m microsec

Figure 14: Program Timing for an Iteration Step

To see how the computation time interacts with bus transmission time, we

must consider the speed of bus transfers. Contention for use of the bus among

N processors can be done by a request tree technique so that the total delay

involved in determining the next processor to get control of the bus is

log2N times the network gate delay associated with a single processor. Assum-

ing 50 nanosec delay for gates in one processor and the transmission line to

the next processor in the network, 0.5 microsec would be required for bus

.._	 .
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acquisition. Transmission of data by the processor curently in control of

the bus can proceed in parallel with the priority computation for the next

controller, so 500 nanosec are available for transmission of address and data

bits over the bus. With a careful bus design, probably of an hierarchical

nature, this seems within reach of current technology.

If 
nmax 

is the maximum number of connections to any one processor, then

the total time for all processors to complete one step of the iteration has

the form t(n max ) + tbus' 
where tbus is the time spent waiting on bus

results. If the number of bussed connections times the time for one bus

transmission is less than 
t(f min )' then 

tbus is guaranteed to be zero.

If all bus transmissions cannot be done in t(f
min), t 

bus may still be

zero depending on the detailed scheduling of bus transmissions. Assuming a

bus capable of 2 transmissions per microsec, if each processor has at least

one local connection (f 
min- 

1), then 84 results can be transmitted over

the bus without any possibility of a processor waiting for bus results.

/ .__-I..-___

The architecture described above is in the process of being evaluated to

determine its effectiveness for finite element analysis. This evaluation

involves a combination of prototype design, simulation and algorithm develop-

ment. The approach taken is essentially iterative,in that knowledge gained from

constructing algorithms for the initial (small) version of the processor array

will be used to influence the direction of future designs. An initial logic

design for the nodal processors, along with interfaces for local and global

communication as well as cooperative signalling, is complete and construction

of a system with a restricted number of processors has started.

e
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