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ABSTRACT

An efficient numerical technique for solving the equations
resulting from finite difference analyses of fields governed
by Poisson's equation is presented. The method is direct
(noniterative) and the computer work required varies with
the square of the order of the coefficient matrix. The
computational work required varies with the cube of this
order for standard inversion techniques, e.g.,Gaussian
elimination, Jordan, Doolittle, etc,

INTRODUCTION AND BACKGROUND
General

"Thermal spreading resistance' is defined as the conduc-
tive thermal resistance between a source region and a sink re-
gion in a solid where the geometry is such as 10 preclude one
dimensional heat flow. Knowledge of thermal spreading resist-
ance is needed in two aerospace engineering areas. These are
the thermal design of electronic components or equipments and
in the prediction and control of thermal contact resistance,

Importance to the Design of Electronic Components and Equip-
ments- The thermal analysis of a power semiconductor or inte-
grated circuit can be reduced to the problem of determining the
appropriate spreading and bonding thermal resistances. As an
exaiupie, the problem of calculating the junction-to-case ther-
mal resistance of a semiconductor bonded to a substrate which
is bonded in 2 metal case will be considered. Figure 1 illus-
trates this problem,

Heat is generated in a region of known size, the junction
region of the semiconductor. The first, and most significant,

*The work reported in this paper was done under National Aero-
nautics and Space Administration contract NAS8-28616.

7 SUANK NOT FILb-

gD



JUNCTION

SEMICONDUCTOR CHiP

CHIP TO SUBSTRATE BOND

SUBSTRATE

SUBSTRATE TO CASE BOND
I.C. CASE

Fig. 1 Semiconductor in an Integrated Circuit

spreading resistance of interest occurs between the junction and
the opposite face of the silicon chip. The next thermal resist-
ance of interest is that across the bond between chip and sub-
strate. It is of significance that these thermal resistances are
not independent. The thermal conductance of the bond proper
can vary several thousandfold depending on the use of a metallic
or nonmetallic bonding material, The resistance to heat flow be-
tween the semiconductor chip bond region and the rear of the sub-
strate represents a second spreading resistance. In a typical
integrated circuit package, the entire bottom region of the sub-
strate would not be available as a sink for a single semiconductor
chip due to the presence of other heat dissipating chips. It ig
usually possible to estimate the size of the effective sink region
on the rear of the substrate from considerations of symmetry or
because it exceeds dimensions which appreciably affect the ther-
mal spreading resistance, Inthose few cases where interactions
must be considered, the key analytical tool is superposition.
Green's function approach may be employed to advantage. For
example, see reference 1.

The importance of being able to predict thermal spreading
resistances in single and multilayered material in the evaluation
of the thermal design of semiconductor or integrated circuits has
been shown, Spreading thermal resistances are important in
other electrical devices such as phased array antenna elements,
Peltier coolers, Seebeck generators, and most devices which
utilize conductive heat transfer,

Prediction and Control of Thermal Contact Resistance

The resistance to heat flow between two mating (touching,
as in a joint) pieces of metal is called thermal contact resistance,
When the actual microscopic regions of contact between two mat-
ing surfaces are examined, it is found that metal-to-metal con-
tact occurs in small discrete regions where the asperities or
microscopic protuberances make contact. References £ and 3de-
scribe this model of contact in great deiail. Figure 2 illustrates
this contact model.
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REGIONS OF ASPERITIC CONTACT

Fig. 2. Microscopic View of the Joint of Contacting
Pieces of Metal

The heat flow to and from a region of asperitic contact is
seen to be of the ""spreading” type. In fact, the effective thermal
contact resistance of any contact may be considered as the sum
of the parallel microscopic spreading resistances in the contacts
themselves. References 2 and 3 deal largely with isotropic con-
tacts in which the thermal conductivity within the bodies of both
contacts is uniform.

Analysis has shown that the bulk of the spreading resist-
ance occurs close to the region of actual asperitic contact and
that the spreading resistance in any region varies inversely with
the thermal conductivity of the material. Figures 3 and 4 illus-
trate the first of these points, Figure 3, drawn to scale, shows
the equipotencial lines about a circular contact region eachdrawn
to show one-tenth of the total spreading resistance between the
circular contact region and a body of semi-infinite extent. It is
seen that half of this total resistance occurs within one contact
radius from the circular contact or source region and 80 percent
occurs within three contact radii. Figure 4 illustrates these re-
lationships. Figures 3 and 4 are taken from reference 4.

The thermal conductivity of the contact material close to
the contact region is of such importance that even a thin 45 Ang-
strom thick layer of oxide on an aluminum contact can contribute
measurably to the thermal contact resistance. This has been
shown by actual measurement; see reference 4.

Mikic and Carnasciali, reference 5, have utilized the above
facts to enhance thermal contact conductance by plating materials
of higher conductivity on the contacting faces of a metallic joint,
They present an approximate analysis of spreading resistance
from a circular contact into a contact region composed of two
layers of materials with different conductivities, An exact bound-
ary value solution of this basic problem has proven impossible as
no mathematical function has been found which will satisfy all the
boundary conditions between the plating and the body materials.
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Fig. 3. Temperature Profiles Described by Holm's Equation
for Isothermal Circular Source on a Semi-Infinite Slab

Professor C.J. Moore, Jr.* in his discussion at the end
of reference 5, felt this two layered spreading resistarce problem

* Associate Professor of Mechanical and Acrospace Engineering,

North Carolina State University, Raleigh, N.C,
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Fig. 4. Percent of Total Constriction Resistance for a Single
Isothermal Circular Source on a Semi-~Infinite Slab as a
Function of Distance into Body of Contact

could best be handled by a "well-conditioned finite difference
computer code." Mikic and Carnasciali then question the eco-
nomic feasibility of such calculations,

Attempts by the author of this study to solve the two layer
thermal spreading resistance problem unging a finite differcice
approach utilizing Gauss-Seidel iteration have shown the cost of
digital computer calculation to be excessive for large nodal
systems.

METHOD
General

The governing differential equation for the thermal spread-
ing resistance problem is Poisson's equation. For those spread-
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ing resistance problems that are two-dimensional* or may be
reduced to two-dimensional problems, the equation is:

2 2

6T oT "

Cpsly = Q" (1)
6:22- oy t

Consider a rectangular field subdivided into rectangular
subregions as illustrated in Figure 5. The heat balance equation
describing the heat flow among element m, n and its four princi-
pal neighbors is:

(Tm,n B Tm,n+1)Hm,n * (Tm,n B Tm-l,n)vm n
]
* (Tm,n - Tm,n— I)Hm,n-l * (Tm,n - Tm+1,n)vm+1,n
=Q @)

m, n
where

T is temperature

Q'" is heat generated per unit volume

X, ¥, z are spatial coordinates

H, V are horizontal and vertical conductances, respectively

m is row index

n is column index

Q is heat generated in node m,n
m,n
The convention for the horizontal and vertical conductances used
is shown in Figure 6,
Each of tue following observations will be helpful in under-
standing the discussion which follows:

(1) When any texperature Ty, p is known (e.g., as a
bounda: v condition), it will affect equation m, n by
yielding a virtual heat generation term Qm, nWhich
is subtracted from the right-hand side of equation (2)
where Q;m n 8

»

' + I +V 3
m,n  “m,n“'m,n vm,n “m, -1 m+1,n) @)

—— st st s

*Th.- method developed is applicable to three-dimensional prob-
lems as discussed in this last part of this section,
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Figure 5. Rectangular Field Divided into 25 Finite Elements
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Figure 6. Nomenclature for Nodal Interconductances

(2) M the original physical field is divided into nodes of M
rows and N columns, then:
(a) There will be N*M linear equations,
(b) There will be not more than N*M unknowns (fewer
if some temperatures are initially prescribed).
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(c) There can be as many different and distinct nodal
conductances as there are interconnections be-
tween adjacent nodes.

Now, if the system of linear finite difference equations is
written in matrix form (using the nodes of Figure 5) from left to
right, top row to bottom row, as in reading English, « coefficient
matrix results that has a pattern characteristic for field prob-
lems descrihed by Poisson's or LaPlace's equations. This pat-
tern is illustrated in Figure 7.

It was noted by Karlqvist (reference 6) that the matrix in
Figure 7 may be pariitioned as shown. It can be seen that each
of the submatrices 18 ¥NM x #NM and the size of the coefficient
matrix is NM x NM where the original finite element matrix was
N x M in size.

Derivation of an Efficient Technique for Exact Solution of this
System of Equations

The submatrices shown in Figure 7 are defined in Figure
8. Expanding the partitioned matrices (Figure 8) into a system
o( equations, having normalized each equation with respect to
the diagonal element:

-BZTI +T2 - A2T3 = C2
"Bst + T3 - A3T4 = Ca

-BuT + T, = Cn
the general equation has the form:

BTt Ti- 4T = € )

The first equation can be solved for Ti:
T, = C; + AT, (5)

and the i-th for Ti:

Ty =Ci+ AT *BT

The goal is to find a recursion relationship built upon suc-
cessive substitutions, which provides a solution for the i-th

(€.
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Fig. 7. System of Equations in Matrix Notauon
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Fig. 8. System of Submatrices in Matrix Notation

unknown in terms of the (i + 1)-th. That is:
- ] t
T, = AT+ By M
Examining equation (5) for T, above, it can be seen that:
The equation for T2 is:
'I‘2 = C2 + A2T3 r Ble (8)
which, when written in terms of the equatirn for Ty, becomes:
= [ -1 ' -1 [ [}
T, = [1- By AT, o 1- B8 e, vBBy] @)

where I is the unit matrix.
The general coefficients found in this manner become:

A = [1 - BjA|_ lj'l A (a square matrix)
and -1

B = [1 - BjA 1] [BiBi-l + Ci] {(a column matrix)
Therefore:

Ty = AT, + B (10)

The temperature matrices (colurans) are found stoit.ng at
the/'NM row (or 5th row of Figure 8).

T = B as A’ = 0 (11)
~MN NMN ~MN

Defining O as the order of tlie coefficient matrix (e.g.,
square matrix of Figure 7), the system ¢. equations has heen
solved by operating on 3 - 2 submatricevs, each of which is
the square root of the size of the original NM x NM coefficient
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matrix. Three /O inversions of thege submatrices are re-
quired. The total number of multiplications - a good measure
of the computer effort required during solution - is:

No. of Multiplications = 302 + 03/ 2 _ 0+ 01/ 2 (12)
This may be compared against other direct methods (see ref. 7):

Number of Multiplications

Method Required during Solution
Gaussian Elimination %03 + 02 - -;0
1.3 2 1
Jordan EO + O - '2'0
. 1.3 2 1
Doolittle -30 +0 - -30
Cholesky éo‘ +§02 +%o

Cornock's method (ref, 8), a triangulation type, alsomakes
use of the characteristic pattern of submatrices which results
during a finite difference solution for fields described by
Poisson's equation. When the field properties are homogeneous
and isotropic, Cornock's method is very powerful since only one
of the abc © submatric 3s of order A/O need be inverted. How-
ever, for the general .ution of the nonhomogeneous field the
number of n.altir, .cations required is:

_lg 02 ) _50.3/2
Cornock's method does not lend itself to ready general program-
ming for matrices of variable size as does the method described
in this paper.

That equation (12) ‘s indicative of the computer c.tort re-
quired for solution has been substantiated in practice. Figure 5
shows the variation is cost realized in the solution of very large
matrices using the method developed in this paper, The mea-
sured slope of the line in Figure 9 is very close to 2.

-20-5 (13)
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Figure 9. Cost of Computation versus Size of Coefficient Matrix

Applicability of Technique to Three-Dimensional Problems

The technique discussed above is suited to the solution of
field problems having three or more dimensions. Figure 10 il-
lustrates the characteristic pattern of the coefficient matrix for
a three-dimens iongl finite element array. It is seen that the
submatrices are /0 x % «n size for an O x O coefficient
matrix, The same block tridiagonal pattern of submatrices is
seen to occur as in the two-dimensional case so the derivation
above for the technique of solution for two-dimepsional matrices
is still applicable. Since the submatrices are ~/0O x ~/O rather
than% X % in size, the technique is even more powerful for
three-dimensional problems. The number of multiplications re-
quired for solution of the three-dimensional problem is a func-
tion of 04/3 as opposed to O% for the two-dimensional array
where O is the order of the coefficient matrix.
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