General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
LONG PERIOD PERTURBATIONS OF EARTH SATELLITE ORBITS

ANALYTICAL AND COMPUTATIONAL MATHEMATICS, INC.
LONG PERIOD PERTURBATIONS
OF
EARTH SATELLITE ORBITS

BY
K.C. WANG

ANALYTICAL AND COMPUTATIONAL ANALYSIS, INC.
1275 SPACE PARK DRIVE, SUITE 114
HOUSTON, TEXAS 77058
JANUARY 1979

This report was prepared for the NASA/Johnson Space Center under Contract #15445.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Notation</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Solution Algorithm</td>
<td>8</td>
</tr>
<tr>
<td>3.0</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Generating Function S_1^*</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Derivatives of S_1^*</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Derivatives of P_2'' with Respect to DSϕ Elements</td>
<td>16</td>
</tr>
<tr>
<td>4.0</td>
<td>19</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX - COMPUTATIONAL PROCEDURE</td>
<td>23</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

In reference 1, Scheifele and Graf introduced a complete first order solution for the orbital motion of a satellite perturbed by earth oblateness. This solution was expressed in the DSO elements. In reference 2, Bond and Scheifele expressed the first order short period and secular J_2 solution in the non-singular PSO elements. This theory was implemented in an operational computer program named ASOP described in reference 3. In references 4 and 5, the PSO analytical theory was updated to include the drag effects. In reference 6, the theory was developed to account for the time dependent gravitational harmonics. The drag and time dependent geopotential terms have also been included in ASOP.

Bond also extended the PSO theory to include the first order long period terms and second order secular perturbations due to J_2, J_3, J_4 and J_5. However, no documentation of the equations was ever published. In reference 7, Mueller developed a recursive theory to include the first order long period terms and second order secular perturbations due to zonal harmonics of any order. Mueller's theory plus the second order J_2 theory developed by Bond have now been implemented in ASOP.
The purpose of this report is to document all the equations involved in extending the PS\$ solution to include the long periodic and second order secular effects of the zonal harmonics.
2.0 METHOD OF SOLUTION

2.1 Notation

The DS\(\phi\) elements are a set of eight variables which have the following description:

Angle Elements:
- \(\alpha_1 = \phi\) true anomaly
- \(\alpha_2 = g\) argument of pericenter
- \(\alpha_3 = h\) longitude of ascending node
- \(\alpha_4 = \ell\) time element

Action Elements:
- \(\beta_1 = \phi\) related to two body energy
- \(\beta_2 = G\) total angular momentum
- \(\beta_3 = H\) z-component of the angular momentum
- \(\beta_4 = L\) total energy

These may be canonically transformed to the PS\(\phi\) elements by the following relations:

\[
\begin{align*}
\sigma_1 &= \phi + g + h \\
\sigma_2 &= -\sqrt{2}(\phi - G) \sin (g + h) \\
\sigma_3 &= -\sqrt{2}(G - H) \sin (h) \\
\sigma_4 &= \nu. \\
\rho_1 &= \phi \\
\rho_2 &= \sqrt{2}(\phi - G) \cos (g + h) \\
\rho_3 &= \sqrt{2}(G - H) \cos (h) \\
\rho_4 &= L \\
\end{align*}
\]
The DSO Hamiltonian for the zonal oblateness problem is given by:

\[F = F_0 + \epsilon F_1 + \epsilon^2 F_2 \]

(2)

where

\[F_0 = \phi - \frac{\mu}{\sqrt{2L}} \]

two body contributions

\[F_1 = \frac{1}{q_r} \left[\left(\frac{x_3}{r} \right)^2 - \frac{1}{3} \right] \]

(J_2 contribution)

\[F_2 = \frac{1}{q} \sum_{n=3}^{N} \hat{J}_n \frac{1}{1+\frac{1}{n-1}} P_n \left(\frac{x_3}{r} \right) \]

(higher zonal harmonics)

\[\epsilon = \frac{3}{2} \sqrt{\frac{J_2}{R_e}} \]

P_n are the Legendre polynomials, R_e is the mean equatorial radius of earth, and J_2 and \(\hat{J}_n \) are oblateness coefficients.

2.2 Solution Algorithm

Von Zeipel's method of elimination of the short and long periodic terms is used. The solution first requires the transformation to eliminate the short periodic terms due to J_2. The generating function is assumed to be of the form

\[S = S_0 + \epsilon S_1 \]

S_0 is the identity transformation, S_1 is so chosen that the new Hamiltonian is no longer a function of short period variable \(\phi \). The Hamiltonian has the form

\[F'(\phi', g') = F'_0 + \epsilon F'_1 + \epsilon^2 F'_2 \]

A more thorough discussion of the elimination of short periodic terms can be found in reference 2.

An additional transformation must be made to eliminate the long periodic terms from F'. This transformation is defined by the generating function

\[S^* = S_0^* + \epsilon S_1^* \]
Again, \(S_0^* \) gives the identify transformation, \(S_1^* \) is chosen such that the long period variable \(g' \) is eliminated from the Hamiltonian. The new Hamiltonian has the form

\[
F''(\beta'') = F_0' + \varepsilon F_1' + \varepsilon^2 F_2'
\]

A more thorough discussion of the elimination of the \(J_2 \) and higher order zonal perturbation long periodic terms can be found in references 1 and 7.

The solution algorithm can be divided into three steps:

1. Initialize the primed variables
 \[
 \begin{align*}
 \sigma'_{k,0} &= \sigma_{k,0} + ' \left(\frac{\partial S_1}{\partial \sigma_{k,0}} + \frac{\partial S_1^*}{\partial \sigma_{k,0}} \right) \\
 \rho'_{k,0} &= \rho_{k,0} - \varepsilon \left(\frac{\partial S_1}{\partial \sigma_{k,0}} + \frac{\partial S_1^*}{\partial \sigma_{k,0}} \right) \\
 \end{align*}
 \]

2. Analytical integration of primed variables
 \[
 \begin{align*}
 \sigma'_1 &= \sigma'_{1,0} + A_1\tau \\
 \sigma'_2 &= \sigma'_{2,0} \cos(A_2\tau) - \rho'_{2,0} \sin(A_2\tau) \\
 \sigma'_3 &= \sigma'_{3,0} \cos(A_3\tau) - \rho'_{3,0} \sin(A_3\tau) \\
 \sigma'_4 &= \sigma'_{4,0} + A_4\tau \\
 \rho'_1 &= \rho'_{1,0} \\
 \rho'_2 &= \rho'_{2,0} \cos(A_2\tau) + \sigma'_{2,0} \sin(A_2\tau) \\
 \rho'_3 &= \rho'_{3,0} \cos(A_3\tau) + \sigma'_{3,0} \sin(A_3\tau) \\
 \rho'_4 &= \rho'_{4,0} \\
 \end{align*}
 \]

The definitions of \(A_1, A_2, A_3, A_4 \) are given in section 3.0 of this report. The relation between time \(t \) and the new independent variable \(\tau \) is given by \(\frac{dt}{d\tau} = r^2/q \), the definition of \(q \) is also given in section 3.0.
(3) Back transformation

\[\sigma_k = \sigma_k' - \epsilon \left(\frac{\partial S^*}{\partial \rho_k} + \frac{\partial S_1}{\partial \rho_k} \right) \]

\[\rho_k = \rho_k' + \epsilon \left(\frac{\partial S^*}{\partial \sigma_k} + \frac{\partial S_1}{\partial \sigma_k} \right) \quad k = 1, 2, 3, 4 \]
3.0 EQUATIONS FOR ELIMINATION OF LONG PERIODIC TERMS AND ANALYTICAL INTEGRATION OF PRIMED VARIABLES

A detailed description of generating function S_1 and derivatives of S_1 with respect to the PSϕ elements can be found in Appendix F of Reference 3. In this section a detailed description of generating function S_1^* and derivatives of S_1^* with respect to the PSϕ elements will be given. The derivatives of F_2'' with respect to the DSϕ elements will also be given.

3.1 Generating Function S_1^*

From Reference 1 we have:

$$S_1^* = \left(\frac{3F}{3G} \right) \left[\hat{S} - \frac{1}{2} \frac{f^2}{48} (2 - 3b + 6qB)e^2b \sin(2g) \right] \tag{6}$$

\hat{S} are terms related to higher order zonal perturbations. A detailed description of \hat{S} can be found in Reference 7.

Now we introduce $\sin(g)$ and $\cos(g)$

$$\sin(g) = \frac{1}{CD} (\sigma_6 \sigma_3 - \sigma_7 \sigma_2)$$

$$\cos(g) = \frac{1}{CD} (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \tag{7}$$

where

$$C = \sqrt{2(\phi - G)}$$

$$D = \sqrt{2(G - H)}$$

To write S_1^* in terms of PSϕ elements we introduce the following abbreviations

$$Q = \left(\frac{\sigma_8}{\mu} \left[\frac{2\mu}{\sqrt{2\sigma_8}} - \frac{1}{2} (\sigma_2^2 + \sigma_6^2) \right] \right)^{\frac{1}{2}} \tag{8}$$

$$p = \frac{1}{\mu} \left[-\frac{1}{2}(\sigma_2^2 + \sigma_6^2) + \frac{\mu}{\sqrt{2\sigma_8}} \right]^2 \tag{9}$$

$$e = (1 - \frac{2\sigma_8}{\mu} p) = QD \tag{10}$$
\begin{align}
\mathbf{b} &= 1 - \frac{G^2}{H^2} \quad (11) \\
\mathbf{x} &= \mathbf{e}b^1\sin(\mathbf{g}) = \frac{1}{2} \frac{Q}{G} \sqrt{2(G + H)} \left(\sigma_6 \sigma_3 - \sigma_7 \sigma_2 \right) \quad (12) \\
\mathbf{\psi} &= \mathbf{e}b^1\cos(\mathbf{g}) = \frac{1}{2} \frac{Q}{G} \sqrt{2(G + H)} \left(\sigma_6 \sigma_7 + \sigma_2 \sigma_3 \right) \quad (13) \\
\mathbf{0} &= e^2\sin(2\mathbf{g}) = 2x\psi \quad (14)
\end{align}

Now we have
\begin{align}
\mathbf{S}_1^* &= \frac{1}{\partial F} \left\{ \mathbf{3} - \frac{1}{2} \frac{f^2}{48} (2 - 3b + 6qB) \mathbf{e} \right\} \quad (15)
\end{align}

where
\begin{align}
\mathbf{q} &= -\frac{1}{2} \left(\sigma_6^2 + \sigma_2^2 - \sigma_5^2 \right) + \frac{1}{\sqrt{2} \sigma_8} \\
\mathbf{f} &= \frac{1}{\mathbf{pq}} \\
\mathbf{B} &= \frac{2H^2}{G^3} \\
\frac{\partial F}{\partial G} &= \frac{1}{2} \left[f \left(\frac{2}{\mu} \mathbf{qd} + \mathbf{p} \right) \left(\frac{2}{3} - b \right) + \mathbf{B} \right] \quad (19)
\end{align}

and
\begin{align}
\mathbf{d} &= (p\mu)^{\lambda} \quad (20)
\end{align}

Let
\begin{align}
\mathbf{T}_a &= -\frac{1}{2} \frac{f^2}{48} \\
\mathbf{T}_b &= (2 - 3b + 6qB)T_a \\
\mathbf{T}_c &= \Theta T_b \\
\mathbf{T} &= \mathbf{S} + \mathbf{T}_c \\
\text{then} \quad \mathbf{S}_1^* &= \frac{T}{\partial \mathbf{F}} \left(\frac{\partial \mathbf{F}}{\partial G} \right)^{-1} \quad (22)
\end{align}
3.2 Derivatives of S_1^*

Let

$$S_{1k}^* = \frac{\partial S_1^*}{\partial \sigma_k}, \quad k = 1, 2, 3, \ldots, 8$$

From now on the subscript k represents partial derivatives with respect to the 8 PSϕ elements, unless otherwise specified.

- $S_{1k}^* = -\frac{1}{q} \left\{ T \left[\frac{\partial F_1}{\partial \sigma_k} + \frac{q_k}{q} \right] - T_k \right\}$ (23)

- $\frac{\partial F_1}{\partial \sigma_k} = -\frac{r}{2} \left\{ f \left(\frac{2q_0}{\mu} + p \right) \left(2 - \frac{3}{b} \right) + B \right\} + \frac{r}{2} \left[b_k - f \left(\frac{2q_0}{\mu} + p \right) b_k \right.$

$\left. + f \left(\frac{2}{3} - b \right) p_k + f \left(\frac{2}{3} - b \right)^2 \frac{3}{\mu} \left(dq_k + qd_f \right) \right\}$ (24)

- $T_k = \left(\frac{\partial S}{\partial \sigma_p} - \frac{2}{p} T_c \right) p_k + \left(\frac{\partial S}{\partial \sigma_B} - 3T_a \right) b_k + \frac{\partial S}{\partial \sigma_e} a_k^2 + \left(\frac{\partial S}{\partial \psi} + 2T_b \right) \psi_k$

$+ \left(\frac{\partial S}{\partial \chi} + 2T_b \right) \chi_k - \left(\frac{2}{q} T_c - 6B T_a \right) q_k + 6T_a q q_B$ (25)

- $p_k = 0 \quad \text{for} \quad k = 1, 3, 5, 7$

$$p_2 = -2 \sqrt{\frac{\mu}{p}} \sigma_2$$ (26)

$$p_6 = -2 \sqrt{\frac{\mu}{p}} \sigma_6$$

$$p_8 = -2 \sqrt{\frac{\mu}{p}} \left(\frac{2\sigma_8}{3/7} \right)$$

- $q_k = 0 \quad \text{for} \quad k = 1, 3, 4, 6, 7$

$$q_2 = -\sigma_2$$

$$q_5 = \frac{1}{2} \sigma_5^2$$

$$q_6 = -\frac{1}{2} \left(\frac{2\sigma_8}{3/7} \right)^{3/7}$$ (27)
\[G_k = 0 \quad \text{for } k = 1, 3, 4, 7, 8 \] (28)

\[G_2 = - \sigma_2 \]

\[G_5 = 1 \]

\[G_6 = - \sigma_6 \]

\[H_k = G_k \quad \text{for } k = 1, 2, 4, 5, 6, 8 \] (29)

\[H_3 = - \sigma_3 \]

\[H_7 = - \sigma_7 \]

\[f = - f \left(\frac{p_k}{p} + \frac{q_k}{q} \right) \] (30)

\[b_k = - \frac{2H}{G^2} \left(\frac{H}{G} - \frac{H}{G} G_k \right) \] (31)

\[d_k = \frac{1}{2} \left(\frac{H}{p} \right)^{\frac{1}{2}} p_k \] (32)

\[B_k = \frac{H}{G^3} \left(4H_k - \frac{H}{G} G_k \right) \] (33)

\[e_k^2 = - 2 \sigma_8 \mu p \quad \text{for } k = 1, 2, 3, 4, 5, 6, 7 \] (34)

\[e_8^2 = - 2 \sigma_8 \mu p - 2 \mu p \]

\[\chi_k = (\sigma_6^{(0)} - \sigma_7^{(2)}) \frac{\sqrt{2(G + H)}}{2G} \left[Q_k - \frac{Q}{G} G_k + \frac{Q}{2(G + H)} (G_k + H_k) \right] \]

\[k = 1, 4, 5, 8 \] (35)

\[\chi_2 = (\sigma_6^{(0)} - \sigma_7^{(2)}) \frac{\sqrt{2(G + H)}}{2G} \left[Q_2 - \frac{Q}{G} G_2 + \frac{Q}{2(G + H)} (G_2 + H_2) \right] \]

\[- \sigma_7^{(2)} \frac{\sqrt{2(G + H)}}{2G} \]

\[\chi_3 = (\sigma_6^{(0)} - \sigma_7^{(2)}) \frac{\sqrt{2(G + H)}}{2G} \left[Q_3 - \frac{Q}{G} G_3 + \frac{Q}{2(G + H)} (G_3 + H_3) \right] \]

\[+ \sigma_6 \frac{Q \sqrt{2(G + H)}}{2G} \]
\[x_6 = (\sigma_6 \sigma_3 - \sigma_7 \sigma_2) \frac{\sqrt{2(G + H)}}{2G} \left[Q_6 - \frac{Q}{G} G_6 + \frac{Q}{2(G + H)}(G_6 + H_6) \right] + \frac{\sigma_3 Q \sqrt{2(G + H)}}{2G} \]

\[x_7 = (\sigma_6 \sigma_3 - \sigma_7 \sigma_2) \frac{\sqrt{2(G + H)}}{2G} \left[Q_7 - \frac{Q}{G} G_7 + \frac{Q}{2(G + H)}(G_7 + H_7) \right] - \frac{\sigma_2 Q \sqrt{2(G + H)}}{2G} \]

\[\psi_k = (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \frac{\sqrt{2(G + H)}}{2G} \left[Q_k - \frac{Q}{G} G_k + \frac{Q}{2(G + H)}(G_k + H_k) \right] \]
\[k = 1, 4, 5, 8 \quad (36) \]

\[\psi_2 = (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \frac{\sqrt{2(G + H)}}{2G} \left[Q_2 - \frac{Q}{G} G_2 + \frac{Q}{2(G + H)}(G_2 + H_2) \right] + \frac{\sigma_3 Q \sqrt{2(G + H)}}{2G} \]

\[\psi_3 = (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \frac{\sqrt{2(G + H)}}{2G} \left[Q_3 - \frac{Q}{G} G_3 + \frac{Q}{2(G + H)}(G_3 + H_3) \right] + \frac{\sigma_2 Q \sqrt{2(G + H)}}{2G} \]

\[\psi_6 = (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \frac{\sqrt{2(G + H)}}{2G} \left[Q_6 - \frac{Q}{G} G_6 + \frac{Q}{2(G + H)}(G_6 + H_6) \right] + \frac{\sigma_7 Q \sqrt{2(G + H)}}{2G} \]

\[\psi_7 = (\sigma_6 \sigma_7 + \sigma_2 \sigma_3) \frac{\sqrt{2(G + H)}}{2G} \left[Q_7 - \frac{Q}{G} G_7 + \frac{Q}{2(G + H)}(G_7 + H_7) \right] + \frac{\sigma_6 Q \sqrt{2(G + H)}}{2G} \]
The partial derivatives of \dot{S} with respect to p, b, e^2, ψ and χ can be found in Reference 3.

3.3 Derivative of F_2'' with Respect to DS\(\phi\) Elements

From Reference 1, one can find that

$$F_2'' = \frac{f^2}{288} \delta + \frac{\hat{H}}{\mu},$$

(37)

$$\delta = \frac{e^2}{q} (-3b^2 + 24b - 8) + 18 \frac{b^2}{q} - \frac{1}{\mu} \frac{d}{\left(\frac{e^2}{p} + \frac{L}{\mu} \right)}$$

(38)

$$(60b^2 - 96b + 32) - 3b(24b^2 + 36)$$

\hat{H} is the Hamiltonian of higher harmonics, see Reference 7 for detailed description. Because the new Hamiltonian is a function of only action DS\(\phi\) elements, from now on the subscript k represents partial derivative with respect to those DS\(\phi\) action elements.

$$\delta_k = \frac{1}{q^2} \left[\left(e^2_k q - e^2 q_k \right) (-3b^2 + 24b - 8) + \frac{e^2}{q} \left[(-6b + 24)b_k \right] \right.$$

$$+ \frac{36b}{q^2} \left(b_k q - \frac{b q_k}{2} \right) - \frac{1}{\mu} \left\{ \left(d_k \frac{e^2}{p} + \frac{L}{\mu} \right) + \frac{d \frac{e^2_k}{p} - \frac{e^2}{p} b_k}{p^2} \right\} \left(60b - 96b + 32 \right) + \frac{L_k}{\mu} (120bb_k - 96b_k) \right) \right.$$

$$- (24c^2 + 36) (B_k h + \bar{h} b_k) - 24c^2 B_b$$

(39)

where

$$B_1 = 0$$

$$B_2 = - \frac{2H^2}{G^4}$$

$$B_3 = \frac{4H^3}{G^3}$$

$$B_4 = 0$$

(40)
\(d_1 = -1. \)
\(d_2 = 1. \)
\(d_3 = 0. \)
\(d_4 = -\mu(2L)^{-3/2} \)

\(p_1 = -2(p\mu)^4 \)
\(p_2 = -p_1 \)
\(p_3 = 0. \)
\(p_4 = -2(p\mu)^4(2L)^{-3/2} \)

\(e_1^2 = -\frac{2L}{\mu} p_1 \)
\(e_2^2 = e_1^2 \)
\(e_3^2 = 0. \)
\(e_4^2 = -\frac{2}{\mu}(p + Lp_4) \)

\(q_1 = -0.5 \)
\(q_2 = 1.0 \)
\(q_3 = 0 \)
\(q_4 = -0.5\mu(2L)^{-3/2} \)

\(b_1 = 0 \)
\(b_2 = \frac{2}{G}(\frac{H}{G})^2 \)
\(b_3 = \frac{2}{G}(\frac{H}{G}) \)
\(b_4 = 0. \)

\(L_1 = 0 \)
\(L_2 = 0 \)
\(L_3 = 0 \)
\(L_4 = 1 \)
\[F''_{2k} = \frac{f}{288} \left(2f_k \delta + f\delta_k \right) + \frac{1}{q} \left(\hat{H}_k - \frac{q_k}{q} \hat{H} \right) \]
\[(47) \]

\[\hat{H}_k = \frac{3\hat{H}}{\partial p} p_k + \frac{3\hat{H}}{\partial e^2} e^2_k + \frac{3\hat{H}}{\partial b} b_k \]
\[(48) \]

where

\[f_1 = \frac{f_2^2}{\mu} \left(\frac{1}{2} \mu p + 2q \sqrt{\mu p} \right) \]
\[f_2 = - \frac{f_2}{\mu} \left(\mu p + 2q \sqrt{\mu p} \right) \]
\[f_3 = 0 \]
\[f_4 = - \frac{f_2^3}{2\sigma^2} \left(\frac{1}{2} \mu p + 2q \sqrt{\mu p} \right) \]
\[(49) \]

Now the abbreviations \(A_1, A_2, A_3, A_4 \) in the expressions of analytical integration will be given:

\[A_4 = \frac{\epsilon}{2} f_4 \left(b - 2/3 \right) + \mu(2L)^{-3/2} + \frac{\epsilon^2}{288} f \left(2f_4 \delta + f\delta_4 \right) \]
\[+ \frac{\epsilon^2}{q} \left(\hat{H}_4 - \frac{q_4}{q} \hat{H} \right) \]
\[(50) \]

\[A_3 = \frac{\epsilon}{2} fb_3 + \frac{\epsilon^2}{288} f^2 \delta_3 + \frac{\epsilon^2}{q} \left(\hat{H}_3 - \frac{q_3}{q} \hat{H} \right) \]
\[(51) \]

\[A_2 = \frac{\epsilon}{2} \left[f_2 \left(b - 2/3 \right) + fb_2 \right] + \frac{\epsilon^2}{288} f \left(2f_2 \delta + f\delta_2 \right) \]
\[+ \frac{\epsilon^2}{q} \left(\hat{H}_2 - \frac{q_2}{q} \hat{H} \right) + A_3 \]
\[(52) \]

\[A_1 = 1 + \frac{\epsilon}{2} f_1 \left(b - 2/3 \right) + \frac{\epsilon^2}{288} f \left(2f_1 \delta + f\delta_1 \right) \]
\[+ \frac{\epsilon^2}{q} \left(\hat{H}_1 - \frac{q_1}{q} \hat{H} \right) + A_2 \]
\[(53) \]
4.0 CONCLUSIONS

The equations described in this report have been implemented into the ASOP program. The program has been checked out and verified with results documented in reference 8. Comparisons with numerical integrations show the long period theory to be accurate to within several meters after 800 revolutions. The extension of ASOP to include the long period terms, allows the solution to maintain a high degree of accuracy even for extremely long prediction intervals.
REFERENCES

APPENDIX

COMPUTATIONAL PROCEDURE

The computational procedure for elimination of long periodic terms and analytical integration of primed variables are described below. First subroutine LONGPP(NN) (long period perturbations) is called with parameter 0, it will return initialized primed variable. During the procedure subroutine DETERM is called to compute terms related to the higher order harmonics. Then subroutine will be called again with parameter 1, this time it will return the partial derivatives of primed Hamiltonian with respect to the DSΦ elements. During the procedure subroutine FPRIME is called to compute derivatives of higher order harmonics. The sequence of computation will be given below. The left column gives the quantity to be computed, and the right column references the equation number in the text.

LONGPP(0)

<table>
<thead>
<tr>
<th>Computing Sequence</th>
<th>From Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>(20)</td>
</tr>
<tr>
<td>B</td>
<td>(18)</td>
</tr>
<tr>
<td>e</td>
<td>(10)</td>
</tr>
<tr>
<td>[\frac{\partial F_1}{\partial G}]</td>
<td>(19)</td>
</tr>
<tr>
<td>X</td>
<td>(12)</td>
</tr>
<tr>
<td>(\psi)</td>
<td>(13)</td>
</tr>
<tr>
<td>(\hat{\phi})</td>
<td>(14)</td>
</tr>
<tr>
<td>(\hat{S}_k)</td>
<td>subroutine DETERM</td>
</tr>
<tr>
<td>(f_k)</td>
<td>(30)</td>
</tr>
<tr>
<td>(b_k)</td>
<td>(31)</td>
</tr>
<tr>
<td>(d_k)</td>
<td>(32)</td>
</tr>
</tbody>
</table>
Computing Sequence (continued)

From Equation (continued)

\[B_k \]
\[e_k^2 \]
\[\left(\frac{\partial F_1}{\partial G} \right)_k \]
\[\chi_k \]
\[\psi_k \]
\[T_k \]
\[S_{1k} \]
\[\sigma'(0), \rho'(0) \]

LONGPP(1)

\[d \]
\[B \]
\[e \]
\[B_k \]
\[d_k \]
\[p_k \]
\[e_k^2 \]
\[q_k \]
\[\hat{H}_k \]
\[\delta_k \]
\[F_{2k}'' \]
\[A_1, A_2, A_3, A_4 \]

subroutine FPRIME

\[(39) \]
\[(47) \]
\[(33) \]
\[(34) \]
\[(24) \]
\[(35) \]
\[(36) \]
\[(25) \]
\[(23) \]
\[(3) \]
\[(20) \]
\[(18) \]
\[(10) \]
\[(40) \]
\[(41) \]
\[(42) \]
\[(43) \]
\[(44) \]