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FOREWORD

This final report was prepared by Lockheed Missiles & Space Com

pany, Inc., Huntsville, Alabama, for Lewis Research Center (LeRC), National

Aeronautics and Space Administration, Cleveland, Ohio. The analytical eval

uation of finite deformations of rocket engine test chambers subjected to con

stant amplitude thermomechanical loading cycles was conducted in accordance

with requirements of Contrac t NAS3-2l361 "Structural Analys is of Cylindrical

Thrust Chambers." The study was under the cognizance ofH.J. Kasper of

NASA-LeRC.

The analyses and documentation of results were conducted by W. H.

Armstrong.
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1. SUMMARY

The objective of this study was to determine analytically the cumulative

plastic deformation characteristic of damage observed in coolant channel

walls of regeneratively cooled rocket thrust chambers. The damage of the

channe 1 wall consists of bulging and plastic flow which leads to thinout and

rupture of the channel wall under the high pressures and high temperatures

and temperature gradients experienced during successive cyclic firings of

the thrust chamber. The study involves the structural analyses of two LeRC

test chambers of the same geometric configuration but constructed from

different copper alloys.

The applied thermomechanicalloading cycle was assumed constant in

amplitude and period. Axisymmetric structural temperature and pressure

load histories were provided by LeRC.

Structural response to the provided loading cycle was determined with

the use of the BOPACE finite element computer program. Generalized plane

strain elements were used to model and analyze quasi three-dimensional

behavior of the throat region of the thrust chambers.

Results are presented which show calculated permanent distortions of

the chamber walls; nodal displacement plots of the hot gas and coolant sur

faces and channel wall thicknesses as functions of number of loading cycles

a re inc luded.



2. INTRODUCTION

Life predictions of regeneratively cooled rocket thrust chambers are

normally derived from classical material fatigue principles. The failures

observed in experimental thrust chambe.rs do not appear to be due entirely

to material fatigue. The chamber coolant walls in the failed areas have

exhibited progressive bulging and thinning during cyclic firings until the

wall stress finally exceeds the material rupture stress and failure occurs.

This is not to imply that the primary cause of failure is simply a case of

applied stress exceeding the material strength in the deformed chamber.

The large strains evidenced by plastic flow in the failed areas obviously

result in material damage as well as thinout of the coolant wall. The failure

mechanism possibly consists of the development of a low cycle fatigue crack

which grows rapidly to a critical flaw size in the thinned wall. Consequently,

analytically tracing the chamber wall thinout and changes in coolant passage

geometry are important factors when attempting to predict thrust chamber

life.

A preliminary analysis of an oxygen free high conductivity (OFHC)

copper cylindrical thrust chamber (Ref. 1) demonstrated that the inclusion

of cumulative cyclic plastic effects enables the observed coolant wall thinout

to be predicted. The thinout curve constructed from the referent analysis

of 10 firing cycles was extrapolated from the tenth cycle to the lOOth cycle.

Additional analysis was required to evaluate the extrapolation and study the

effects of material properties on the analytical results.

The study contained herein extends the preliminary OFHC copper

chamber 10-cycle analys is so that the extrapolated thinout curve could be

established by performing cyclic analysis of deformed configurations at 100
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and 200 cycles. Thus the original range of extrapolation wa s reduced and

the thinout curve was adjusted by using calculated thinout rates at 100 and

200 cycles. The study also includes an analysis of the same undeformed

chamber model constructed of half-hard Amzirc to study the effect of ma

terial properties on the thinout curve. Amzirc is a 0.15% zirconium copper

alloy. The same loading cycle was applied to both the OFHC and Amzirc

chambers. Additionally, a higher temperature cycle was applied to the

Amzirc model.
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3. PLUG NOZZLE THRUST CHAMBER

The structure analyzed during this study is the cylinder of a plug type

thrust chamber shown in Fig. 1. The plug nozzle assembly consisting of the

contoured centerbody and flanged cylinder is shown along with cross-sectional

details of the cylinder. The contoured centerbody provides a variable cross

section area along the length of the cylinder similar to that which exists in a

conventional contoured thrust chamber in the throat region.

The bas ic component of the cylinder is the inner wall which contains

72 axial flow coolant channels of constant cross section. Two cylinders

were analyzed during the study. One cylinder inner wall was constructed

from fully annealed OFHC copper. The inner wall of the second cylinder

was of half-hard Amzirc. The closeout wall of both cylinders was electro

formed copper (EFCU).

3.1 THRUST CHAMBER MATERIAL PROPERTIES

The properties used to characterize the cylinder wall materials were

provided by LeRC. The data, taken from Ref. 2, define typic a 1 temperature

dependent thermal expans ion, modulus of elasticity and static stress - strain

behavior of annealed OFHC, half-hard Amzirc and as-formed EFCU. The

material properties are presented in Figs. 2 through 10.

3.2 THERMOMECHANICAL LOADING CYCLES

The loading applied to the cylinder model consisted of constant amplitude

thermomechanical cycles. A baseline cyclic load applied in 24 increments of

temperature and pressure was supplied by LeRC. The baseline cycle was ap

plied to the OFHC and Amzirc models.
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A second cycle, also applied to the Amzirc model, consisted of the

same 24 incremental load steps plus two additional increments at the end

of the heating phase of the cycle. The two additional increments were

added to account for an increase in maximum hot gas surface temperature

from 805 K (1450 R) in the baseline cycle to 950 K (1710 R).

The loading was assumed axisymmetric and structural symmetry was

exploited in order to treat the smallest representative segment of the chamber.

The operating pressures defined in Fig. 11 were applied to the hot gas surface

and coolant channel and were assumed to vary linearly with time during transi

tion periods between cooling and heating phases. The duration of each transi

tion period as well as the durations of cooling and heating phases were specified

and are defined in Fig. 11.

Baseline two-dimensional temperature histories at selected throat plane

nodes are shown in Fig. 12. The origin of the time scale, Le., time = 0 on this

plot is the beginning of the hot phase shown on the diagram accompanying Fig. 11.
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4. STRUCTURAL ANALYSIS

A quasi three-dimensional structural analysis of the OFHC and Amzirc

chambers was performed with the BOPACE finite element computer program.

Generalized plane-strain isoparametric elements were used to model the

smallest repeating segment of the cylinder wall, and time-varying nodal

temperatures, elemental pressure loading and axial thermal strains were

applied to compute chamber wall deformation histories under repetitive firing

cycles. In addition, nonlinear var iations in the temperature dependent ma

terial properties and mechanically and thermally induced plasticity were ac

counted for in the computations.

An initial chilldown from an assumed fabrication temperature of 294 K

(530 R) to a uniform 28 K (50 R) with appropriate coolant surface pressure

was applied to simulate initial starting conditions in the test thrust chambers.

The entire chamber model remained elastic during the initial chilldown.

Ten identical firing cycles were then imposed on the OFHC and Amzirc

models which were geometrically the same prior to initial chilldown. Three

dimensional behavior of the chambers was approximated by specifying a time

varying axial strain equal to the average thermal strain of the relatively

massive EFCU closeout wall. The BOPACE solution involved load incre

mentation, periodic updating of the stiffness matrix and residual load itera

tion to ensure equilibrium.

The cumulative defamations at the end of a firing cycle were used as

the referent configuration for the succeeding cycle. The entire structure

was at 28 K (50R) with a coolant channel pressure of 5.10 MN/m2 (740 psia) at

the end of each cycle. The computed volume of the 10th cycle configurations

6



was used to check extrapolated configurations to assure that total mass was

conserved dur ing the analysis.

A schematic of the chamber model is shown in Fig. 13. Node and ele

ment numbers are identified. The inner wall region is comprised mainly of

quadratic elements. Higher order elements were used on the hot-gas and

coolant boundaries in an attempt to more accurately determine nodal dis

placements on these two surfaces. The closeout wall which exhibits no

significant plastic deformation was modeled with linear elements. A com

puter plot of the undeformed model is presented in Fig. 14.

4.1 OFHC COPPER CHAMBER ANALYSIS

The first 10 firing cycles were consecutively applied to the model

after the initial chilldown. Figs. 15, 16 and 17 show the computed radial

displacements of the hot gas and coolant surfaces after initial chilldown and

at the end of cycles 5 and 10. The progressive inward bulging of the channel

wall and thinout of the wall at the channel centerline is apparent. Figure 18

shows the decreasing thickness of the chamber wall at the channel centerline

during the first 10 cycles. The thinout rate of -2.7 x 10- 3 mm/cycle (-1.05

x 10-4 in./cycle) is uniform over the first five cycles and then decreases to
-4 / -5 /a value of -4.4 x 10 mm cycle (-1.7 x lain. cycle) at the end of 10 cycles.

The rate decrease was attributed to an increase in membrane loading of the

chamber wall as the wall bulges under the firing cycles.

Nodal displacements of the chamber wall boundaries were used to

define displacement rates of these boundaries at the end of the 10th cycle.

The displacement rates were linearly extrapolated to 100 cycles and the

model was redefined for this configuration. Figure 19 shows the predicted

shape of the chamber wall for the lOa-cycle configuration. The progressive

plastic flow in the wall is demonstrated by the thinout of the model at the

channel and rib centerlines. Figure 20 shows the predicted thickness dis

tribution of the chamber wall after extrapolation to 100 cycles. The lOa-cycle
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model, shown in Fig. 21 had a cross sectional area of 1.0417 x 10- 5 m 2

(0.016147 sq in.) which compared to the cross section area of 1.0422 x 10- 5

m
2

(0.016155 sq in.) at the end of 10 cycles. This difference, 0.048 percent,

indicates that mass was reasonably conserved in the extrapolation.

The 100-cycle model was subjected to five consecutive firing cycles

to determine displacement rates of the deformed chamber walls. The com

puted thinout rate changed from -4.4 x 10-4 mm/cycle (-1.7 x 10- 5 in/cycle)
-3 / -5 /at the 10th cycle to -1.2 x 10 mm cycle (-4.9 x 10 in. cycle) at the end

of 105th cycle. These computed rates were then used to interpolate between

the 10th and 100th cycle configuration. The thickness interpolation function

from 10 to 100 cycles was derived by assuming the function to be smooth and

expressible as a quadratic within the range of interpolation. The time deriv

ative of the assumed function results in a boundary value problem solved by

using computed results for the. 10th cycle thickness and the rate of change

in thickness at 10 and 100 cycles. The resulting function of chamber wall

centerline thickness is

-7 2 -5
t l = (-1.76 x 10 ) n 1 - (1.37 x 10 )n

1
+ 0.0342

where

t l = thickness from 10 to 100 cycles (in.)

n l = cycle number, 10 ~ n l ~ 100

The linear extrapolation procedure was then applied to the 100-cycle

configuration and the 200-cycle configuration was developed. Figures 22

and 23 show the predicted shape and thickness distribution of the 200-cycle

chamber wall. The 200-cycle model, shown in Fig. 24 had a total area of

1 -5 2
.0477 x 10 m (0.01624 sq in.).
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Five firing cycles were applied to the 200-cycle con£igura~ion to define

the thinout rate at the channel centerline. The computer thinout rate at the
-4 / -5 /end of the 205th cycle was -6.1 x 10 mm cycle (-2.4 x 10 in. cycle).

Interpolation of the 105th and 205th cycle analytical data resulted in a center

line thickness function of

-2 2 -5
t 2 =(1.27 x 10 )n2 - (7.44 x 10 )n2 + .0372

where

t 2 = thickness from 100 to 200 cycles (in.)

n 2 = cycle number, 100 ~ n 2 ~ 200

Functions t 1 and t 2 are shown plotted in Fig. 25. The thickness from cycle

o to 10 was obtained from computed data in this range.

The complex elements used to model the chamber provided satisfactory

nodal displacement data, but interpretation of the stress field was difficult.

The problem of interpreting stresses was alleviated by developing a finer

mesh 200-cycle model with linear quadrilateral elements. The goal was to

determine the maximum stresses, critical locations, and the time of occur-

ence during a single cycle load application to the 200-cycle configuration.

The linear-element model is shown in Fig. 26. A plot of the histories of

circumferential stresses at the channel centerline on the hot gas and coolant

surfaces is shown in Fig. 27. It is seen that maximum tensile stresses of 5.52 Pa

(8 ksi) occur approximately 0.2 seconds after the end of the heating phase. The

calculated temperature of the channel wall is 238 K (430 R) at the critical time.

According to Ref. 2, the uniaxial tensile strength of OFHC at this temperature

is 2.4 x 10
8

Pa (35 ksi) and rupture of the wall would not be expected. If,

however, low-cycle fatigue damage results in the development of a c rack at

the 200-cycle range, flaw growth would probably be quite rapid and give the

appearance of a strength failure in the channel wall. It was observed that

an average calculated effective strain range of 1.6% was essentially the same

for models used in the analyses of cycles I through 10 and cycles 201 through

205. A previous analysis (Ref. 3) shows that the formation of a fatigue crack

9



under the applied loading should occur at approximately 200 cycles. Thus

it is possible that an OFHC channel wall would crack through in the thinned

region at about 200 cycles. The failure mechanism would be complex and

the stages would probably consist of concurrent thinning and low-cycle fatigue

damage which produce a flaw with rapid growth rates in the thinned out region.

4.2 HALF-HARD AMZIRC CHAMBER ANALYSIS

The Amzirc chamber was analyzed for two different firing conditions.

The pressures and temperatures were the same as those used for the OFHC

chamber for one condition. The second firing condition was the same except

that the coolant wall temperatures were modified to account for an increase

in the hot gas surface temperature from 805 K (1450 R) to 950 K (1710 R).

The two different firing conditions were defined as baseline and high temper

ature firing cycles.

Ten baseline cycles of loading applied to the Amzirc model resulted in

much smaller plastic deformation than calculated for the OFHC model. Figure

28 is a plot of chamber wall thickness at the channel centerline. The com

puted Amzirc thickness reduction at the end of 10 cycles is only 7.14 percent

of the corresponding value computed for the OFHC model. This difference

in behavior was attributed to the greater stiffness and higher yield strength

of the Amzirc. Figures 29. 30 and 31 show the computed radial displace

ments of the hot gas and coolant surfaces at the end of initial chilldown and

baseline cycles 5 and 10. The bulging and plastic flow are apparent but

significantly smaller than observed in the OFHC chamber.

The baseline cycle deformations were linearly extrapolated to define

the 100-cycle Amzirc configuration. Five successive baseline load cycles

were applied to the 100-cycle m.odel. The com.puted thinout rate at the
-4 / . -5 /channel centerline changed from. -2.7 x 10 m.m. cycle (-1.05 x 10 in cycle)

to zero at the end of the 105th baseline cycle. Thus plastic flow apparently

ceased within the first 100 baseline firing cycles of the Amzirc chamber.

10



The above data were used to develop an interpolation function for

centerline thinout of the Amzirc channel wall. The derived function from

cycle 10 to 100 is

-8 2 -5
t=(5.85xlO )n -(1.l7xlO )n+0.0349l

The centerline wall thickness is shown in Fig. 32.

The high temperature load cycle was applied to the Amzirc model

after initial chilldown to 28 K (50 R) and 10 successive firings were applied.

Figures 33 and 34 show radial displacements at the end of cycles 5 and 10.

Figure 35 compares the decrease in thickness of the wall at the channel

centerline for the model subjected to both temperature cycles.

The deformation rates at the end of the 10th high-temperature cycle

were extrapolated to define the 100-cycle configuration shown in Fig. 36.

Ten successive high-temperature loading cycles applied to the extrapolated

model resulted in a computed thinout rate of -4.8 x 10-4 mm/cycle (-1.9 x

10 -5 in./cycle) and the thinout rate at the end of the first 10 cycles was -5.6

x 10-
4

mm/cycle (-2.2 x 10- 5 in./cycle). The thickness function for the

range of 10 to 100 high temperature cycles is

-8 2 -5t = (1.72 x 10 ) n - (2.27 x 10 ) n + 0.03499

The curve of wall centerline thickness is shown in Fig. 37.

11



5. CONCLUDING REMARKS

The results of the present study and the work reported in Ref. I demon

strated the ability to predict cumulative plastic deformations of cyclically

loaded structures. The BOPACE program,which provides state-of-the-art

technology in finite element nonlinear analysis, enabled the progressive

bulging and plastic flow to be determined for successive firings of the engine

thrust chamber.

The nonlinear isoparametric elements used to model and compute

engine chamber deformations provided results that are believed to be good

predictions of long -term engine response to the specified load cycle. These

elements enable the modeling of structures of complex shapes and large

gradients with relatively coarse mesh sizes. This modeling advantage is

offset, however, by difficulty in interpreting the stresses and strains in the

structure. Since the elements can be relatively large, the deformation gra

dients within a given element can be large and the state within the element

can range from elastic to plastic conditions. Thus large jumps in computed
,I

stresses usually exist across element boundaries. In order to elleviate the '.

stress analysis problem, it was necessary to use the deformed boundaries

and develop a fine mesh linear element model. The computed results indi

cated that the maximum hoop stress is not sufficient to cause strength rupture

of the OFHC chamber wall after predicted thinout resulting from 200 firings.

The analysis indicates that failure is precipitated by formation of a low-cycle

fatigue crack which rapidly grows through the wall. It is recommended that

several OFHC chanlbers be tested and each bisected at a predeternlined nUnlber

of cycles so that the progressive thinning and bulging may be observed prior

to 200 cycles for comparison to the predicted conditions.
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The Amzirc model analys is indicates that the higher strength inner

wall exhibits significant reductions in bulging and thinout. Behavior of

the Amzirc chamber was sensitive to the magnitude of the hot gas surface

temperatures and temperature gradients, however. It is probable that both

chambers would exhibit more permanent distortion if the structural tempera

tures were updated along with the structural model update. Although the

channel distortion would have negligible effects on the boundary conditions,

the wall temperature and temperature gradients will change with the geo

metric configuration. It is recommended that additional analyses be per

formed to define the importance of cyclic load updating.

It was noted that the effective strain range resulting from application

of the specified cycle to the initial and deformed models of the OFHC chamber

was essentially constant. It is possible to perform configuration trade studies

which evaluate the susceptibility of a chamber design to permanent distortion

and damage under constant or variable cycle loading. Structural configurations

which are recommended for future study include the milled chamber wall with

a curved (instead of rectangular) coolant wall; the addition of slots at the rib

centerline to relieve the chamber wall; and a brazed coolant tube configura

tion.. The present study provides the analytical capability to efficiently eval

uate the long-term behavior of these configurations. The development of

such information will add to the LeRC thrust chamber design and analysis

methodology.
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