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PREFACE
 

Laboratory tests to evaluate airplane interior materials for combustion properties may not 
rank them by their performance in large fires. The lab test results, alone, do not provide 
direction for selection of materials where a choice between burning characteristics exists. 
The major objectives for this program have been to: 

* 	 Provide information to correlate flammability, smoke, and gaseous product-of-com­
bustion data obtained under laboratory test conditions to data obtained in large scale 
tests of materials under airplane cabin fire conditions. 

* 	 Provide a procedure to assess possible trade-offs in flammability, smoke production, 
and gas evolution for selection of materials with optimum overall combustion proper­
ties. 

Fire tests were conducted in a 737 airplane fuselage at the National Aeronautics and Space 
Administration, L. B. Johnson Space Center, (NASA-JSC), to study possible airplane fire 
conditions. Results from the tests characterized jet fuel fires in open steel pans (simulating 
post-crash fire sources and a ruptured airplane fuselage) and characterized fires in some com­
mon combustibles (simulating in-flight fire sources). "Design" post-crash and in-flight fire 
source selections were based on these data. The program scope did not permit examination 
of all the many possible locations and positions of fire exposure for airplane interior materials. 
The vertical sidewall location was selected as a near-maximum thermal exposure position. 
Large panels of airplane interior materials were exposed to closely-controlled large scale 
heating simulations of the sidewall threat by the two design fire sources. These tests were 
conducted in a Boeing fire test facility using a surplused 707 fuselage section. Small samples 
of the same airplane materials were tested by several laboratory fire test methods. Test 
methods which are now relatively common in evaluating airplane materials and ,methods 
which appeared promising for data correlation to large scale fire results of the sidewall panels 
were 	employed. 

Large scale and laboratory scale data were reduced to express specific material combustion 
properties in the same form wherever possible; then, the results were examined for corre­
lative factors. Published data for dangerous hazard levels in a fire environment were used as 
the basis for developing a method to select the most desirable material where trade-offs in 
heat, smoke and gaseous toxicant evolution must be considered. 

It was concluded that several individual laboratory test methods could rank interior 
materials by their heat and/or smoke release rates. It appears that a currently used test 
method could be revised to predict the magnitude of heat and smoke release by materials 
subjected to large scale airplane fires. The method for assessing gas release was found to 
give inconsistent results as compared to large scale test data. A relatively simple analytical 
tool may be developed to evaluate trade-off in tombustion products, once the laboratory 
fire test methods have been refined, to more accurately predict large scale combustion prod­
ucts release. 

i LPreceding page blank 



It is recommended that further laboratory and large scale testing be conducted to refine 
the most promising laboratory test method for heat and smoke release assessment, andto 
extend data correlation to consideration of overhead horizontal material positions in air­
craft. Further search is needed for a laboratory method to predict material gas release in 
a large- scale fire. 
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OF degrees Fahrenheit 
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INTRODUCTION
 

This program consisted of four study phases to develop fire test methods, ranking airplane 
interior materials by their probable performance during in-flight and post-crash fires. A 
fifth phase evaluated some experimental materials, using the laboratory and large scale 
fire test methods employed in the test methods study. 

The first of the four development stages utilized large scale tests of possible fire sources in 
a fire-inert.737 airplane fuselage to define "design fire sources." Baseline (current) airplane 
materials were then tested in an airplane fuselage-section, to simulations of the sidewall heat­
ing by the design fire sources. In the third stage, the same baseline materials were subjected 
to selected laboratory fire test methods. The final step analyzed the laboratory and large 
scale test results on the baseline materials for possible correlation. An examination of 
published fire hazard limits provided a possible procedure to be used with test results for 
material trade-offs in heat, smoke, and gas evolution. 
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1.0 DESIGN FIRE SOURCE DEFINITION
 

Studies of past transport airplane accidents and fires have shown there is no typical airplane 
fire. Fires have varied in size from small cabin in-flight fires, readily controlled by hand-held 
extinguishers to extensive post-crash, fuel-fed fires which have reduced airplanes to ashes 
in a matter of minutes. It was the objective of this project to find laboratory test methods 
which would rank interior materials by their probable performance in airplane fires. Laboratory 
testing has shown that most materials behave differently when exposed to different heating 
rates and ignition sources. It was not feasible in this project to attempt correlation of the 
complete range of fire-sources to laboratory results. Consequently, it was established that 
two "design" fire sources would be defined. The post-crash design fire source and the in­
flight design fire source would be selected, using full-scale fire testing data and considering 
possible fire hazard limits and reasonable fire sizes. 

1.1 NASA-JSC FIRE TEST FUSELAGE 

Tests were conducted to characterize cabin fire sources in a salvaged 737 fuselage at the 
National Aeronautics and Space Administration, Johnson Space Center (NASA-JSC), 
Figure 1. Boeing designed the test configuration. NASA-JSC technical personnel directed 
the test facility build-up, conducted the tests, and reduced test data to a-form compatible 
with Boeing computer-augmented analysis procedures. NASA also provided all operation 
and instrumentation personnel for the testing in the 737 fuselage. Boeing'provided on-site 
technical support during test phases requiring, coordinated decisions. The airplane fuselage was: 
insulated, "fire-proofed", and instrumented to become a large calorimeter with heat trans­
fer characteristics, ventilating capabilities, and'an interiorcross-section like those of current 
jet transports. Production airplane insulation was installed in the upper lobe-for mostof 
the fuselage length. The center 4.6-meters (15 feet) of the cabin was insulated with a heat 
resistant material and lined with stainless-steel sheet. The rest was lined with altminum 
sheet.. The midpoint of the more -fire-hardened section was established as the test fire 
location. 

The cabin was instrumented with thermocouples to monitor cabin air temperatures, and 
with light transmission instrumentation for determining smoke obscuration. Provisions 
were made for automatically sampling the cabin atmosphere from two locations, at predeter­
mined times during a test. Movable forward and aft bulkheads were installed such that the 
test section length could be varied from a maximum of 17.07 meters (56 feet) down to 6.10 
meters (20 feet). The cabin cross-section area is approximately 6.5m 2 (70 ft 2); therefore, 
the limits of test section volume were 111 m3 (3920 tf3) and 39.7 m3 (1400 ft3). Figure 2 
shows the interior of the test section. Smoke "meters" and exit signs for subjective evalua­
tion of smoke obscuration are not shown in Figure 2. Figures 3 through 7 show complete 
cabin environment instrumentation for the 17.07 m (56 ft) and 6.10 m (20 ft) test configura­
tions. «" 

A forced airventilation system was installed to simulate both post-crash natural convection 
and in-flight ventilation. A controlled air flow of 17.0 kg/min (37.5 lb/min) entering at the 
forward bulkhead was established foi all post-crash testing. Exhaust was in the aft bulkhead. 
Ventilating air for simulated in-flight fire tests entered from a continuous, perforated inlet 
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down the longitudinal cabin ceiling centerline. Air was exhausted into the lower lobe at the 
junctions of the cabin sidewalls and the floor. Simulated in-flight air flow was adjusted to 
be typical for the length of the test section, at approximately 3.0 kg/min-meter (2.0 lb/ 
min-ft). 

Test fires were conducted adjacent to an extensively instrumented panel, installed in the air­
plane sidewall position (Figure 8). An array of eight calorimeters, one radiometer, and eleven 
thermocouples are exposed on the inboard surface of the panel. Six thermocouples were 
attached to the outboard face of the panel to monitor panel temperatures for an indication of 
total heat absorption of the panel. Figure 9 locates the panel's thermal instrumentation. 
This calibration panel was used to characterize the direct threat to a sidewall panel from ad­
jacent fires. 

Auxiliary instrumentation was installed for some or all of the tests to measure ventilating air 
temperature, exhaust temperature and flow, cabin air wet bulb temperature, ceiling heat 
flux, and radiant heating at a specified distance from test fires. These data were not used 
directly in test analysis to meet the program objectives, but were taken to confirm calculated 
parameters and to use in possible future studies of fire properties. 

1.2 POST-CRASH FIRE SOURCE SELECTION 

Shallow open steel pans containing burning Jet A fuel and resting on the cabin floor were 
used in tests to simulate post-crash fuel-fed flames entering a ruptured fuselage, adjacent to 
the sidewall thermal calibration panel. To promote rapid ignition and consistent burning, 
the fuel was preheated to 320C (90 0F), then floated on water-heated to approximately 490 C 
(120 0F) and poured to a depth of about 2.5 cm (1 in.) in the pans. Test fire size and dura­
tion were varied by changes in pan size (burning surface area) and fuel volume, respectively. 

The post-crash design fire source was selected to represent a realistically high thermal ex­
posure from a post-crash fuel-fed fire, but was limited in size such that the fire source, alone, 
would not produce a lethal environment in an airplane fuselage in an unacceptably short 
escape time. Obviously, such constraints would produce different sizes of "design" fire 
sources for different sizes of airplane. cabins. The "design" fuselage size was established as 
the 17.07 m (56 ft) long 737 test section at NASA-JSC, because it permitted a great amount 
of testing with an existing facility without the scaling of results. Also because the smaller cabin 
environment (as compared to longer standard body airplanes or wide-body cabins) should suffer 
the most rapid degradation for any given fire size. Interior material contribution to the hazard 
level could be more significant in the smaller jet transports. 

The incapacitation levels for expected hazards at head level at airplane centerline were estab­
lished as: 

* 204'C (400'F) air temperature 

* 8000 ppm carbon monoxide 

* 100 ppm hydrogen cyanide 
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If concentrations of above 50,000 ppm carbon dioxide or 30 ppm sulfur dioxide were en­
countered, some consideration of the effect on escape would be given. Also, oxygen levels 
below 17% would be considered to affect toxicant intake. The air temperature limit was 
based on Reference 1, and the toxicant limits on Reference 2. 

Fire tests were run with Jet A fuel in four sizes of steel pans: 

* 30.5 x 30.5 cm (12 x 12 in.) 

* 45.7 x 45.7 cm (18 x 18 in.) 

* 61.0 x 61.0 cm (24 x 24 in.) 

* 76.2 x 76.2 cm (30 x 30 in.) 

For calibration, the fuel fires had to bum near their maximum heating rate for at least five 
minutes or until 204'C (400'F) was exceeded at head level down the cabin centerline. Pre­
liminary tests were run in each pan until the required fuel quantity was determined. 

Tests run with full thermal instrumentation showed that with the 61 x 61 cm (24 x 24 in.) 
pan with 4.5 liters (4.76 qt), the average centerline head level temperature (average of ther­
mocouples 3, 7, 11, 15, 19, 23 and 27) approached the limit at four minutes, but did not 
exceed it during the five minute test (Figure 10). Gas samples taken during tests with the 
61 x 61 cm (24 x 24 in.) pan showed that none of the toxic gas limits were approached. Car­
bon monoxide was the only toxicant found in a significant quantity (Figure 11). Carbon 
dioxide and oxygen measurements did not show levels which (theoretically) should signifi­
cantly affect respiration (Figure 12). Methods for gas sampling and analysis were described 
in Appendix A. 

The 61.0 x 61.0 cm (24 x 24 in.) fuel pan with 4.5 liters (4.76 qt) of Jet A fuel was estab­
lished as the design post-crash fire source. 

The cabin temperature curve for the design post-crash fire flattens at approximately four 
minutes. This is partly due to the approaching of a steady state air temperature, but occurs 
primarily because the heat release rate has started to decrease. This decrease may be ex­
plained by the early burning of the more volatile fuel fractions and the less easily-ignited, 
lower vapor pressure portions later. Experimentation with different fuel pan sizes and 
fuel quantities may have produced a fuel pan fire, meeting the desired temperature cri­
terion more exactly. However, the tests were not run at any standard conditions of ambient 
temperature or pressure, but were conducted under the prevailing conditions. A change in 
the test conditions can significantly change the resulting cabin temperatures. Furthermore, 
the limiting temperature of 204'C (400'F) is by no means exact, nor can a definite time of 
exposure for incapacitation be established. The purpose of the tests was to establish a design 
point (condition), approximating an incapacitating environment in about five minutes. The 
selected fire source was deemed acceptable for that purpose. 

The 61 x 61 cm (24 x 24 in.) fuel pan fire, representing the design post-crash fire source, was 
tested in two other fuselage section lengths [9.73 meter (32 foot) and 6.10 meter (20 foot)]. 
The cabin's average centerline temperature and gas data at head level are shown in Figures 13 
through 16. The average light transmission data over a 0.92 meter (3 ft) light path at head 
level are shown in Figure 17. The prevailing test conditions are listed in Figure 13. 
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1.3 INFLIGHT FIRE SOURCE SELECTION
 

Six different fuels were tested as possible interior fire sources. They were considered to be 
near the maximum size sources likely to be found in an airplane cabin, excluding materials 
used for an arson attempt. The sources tested were: 

* 	 2.27 kg (5.0 lb) shredded newspaper (Figure 18) 

* 	 2.27 kg (5.0 lb) cabin and lavatory trash (Figure 19) 

* 	 1.135 kg (2.5 lb) polyster/acrylic cloth 

* 	 2.27 kg (5.0 lb) polyvinylchloride, polycarbonate, and acetone-soaked paper (simulated 
under-seat baggage) (Figure 20) 

* 	 0.91 kg (2.0 lb) polyester filled airline pillows (4) (Figure 21) 

* 	 0.76 kg (1.67 lb) wool/acrylic airline blankets (2) 

The polyester/acrylic cloth and the wool/acrylic blankets were hung over a metal frame 
adjacent to the calibration panel for testing, to simulate draping over a seat. 

The centerline thermocouple and the calibration panel data showed the trash bag fire was 
probably the greatest threat of the sources tested. It was selected as the design in-flight fire 
source. 

The other candidate sources produced appreciably lower centerline temperatures, as shown 
in Figure 22. The concentrations of fixed gases for the design in-flight fire source are shown 
in Figures 23 and 24. The simulated under-seat baggage produced the only significant meas­
ured acid gas concentration, with a maximum of 300 ppm of hydrogen chloride. 

As tested, the design in-flight fire source consisted of two polyethylene bags filled with a 
total of 2.27 kg (5.0 lb) of trash made up as follows: 

1.81 	kg (4 lb) paper towels 

0.136 kg (0.3 lb) paper cups 
0.316 kg (0.7 lb) polystyrene glasses 

Ignition was made near the bottom of one bag, adjacent to the calibration panel. The wire 
cage prevented the contents spilling away from the sidewall during the tests. 

The design in-flight fire source was tested in two smaller fuselage sections. Results of the 
cabin environment data are shown in Figures 25 through 29. 
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1.4 CHARACTERISTICS OF THE DESIGN FIRE SOURCES 

Two major characteristics were defined in order to adequately describe the design fire sources 
for the remainder of the program: 

" Products-of-combustion release rates 

* Thermal threat to the sidewall 

The first characteristic is not complete without an assessment of the probable effects on 
cabin environment under selected standard conditions. Such an evaluation is included in 
the following text. 

1.4.1 PRODUCTS-OF-COMBUSTION RELEASE RATES 

Most laboratory and large scale fire tests use instrumentation to measure physical proper­
ties of the air around, or passing by, the burning material. If all fires are conducted in the 
same chamber and under the same conditions, these measurements may be sufficient to 
rank the fires by the release of products-of-combustion. If comparing data collected from 
different test apparatus at different conditions is required, some-method must be used to 
"normalize" the data or reduce the environment data.to product-of-combustion release 
rates. Such data reduction is desirable to develop a correlation between laboratory and large 
scale material tests and to judge the relative contribution of the material and its fire source 
to the hazard levels produced in a real fire situation. 

Equations to reduce large scale fire test data to heat, smoke, and gas release rates have been
 
developed by Boeing during an IRAD project, concurrent with this effort. Although rela­
tively simple and based on rather wide assumptions, use has shown them to be valuable
 
analytical tools. Appendix B describes the equations and summarizes the method for their
 
use. Reversal of the equations permits the prediction of temperature, light transmission, and
 
gas concentrations under ventilation and volume conditions other than those for which the
 
release rates were obtained. Care must be taken to make sure the conditions do not differ to
 
the extent that disparities in oxygen availability and temperature could significantly change
 
the burning of the fire studied. Details of the development of the equations may be found
 
in Reference 3.
 

The apparent (calculated) release rates for the design post-crash and in-flight fire sources are 
graphed in Figures 30 and 31, respectively. The rates are calculated as constant over finite 
time periods. Because the initial data were taken at specific instrumentation points in the 
fuselage, a negative value (or one much lower than the preceding value) probably indicates 
a settling or dispersal of the combustion product after an active period of production. 
Figures 32 and 33 show the predicted 17.07 meter (56 ft) fuselage section hazard levels 
at head level for the design fire sources under "standardized" conditions. For all environ­
ment predictions in the 17.07 meter (56 ft) fuselage section, the standardized conditions 
are: 

* ambient air and ventilating air temperature - 29"4 I.(530 °Fabs) 
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* ambient air and cabin air pressure -- 1.013 x i05 Pa (2110.29 psf) 

* ventilating air flow in (post-crash) - 17.04 kg/min (37.5 lb/min) 

* ventilating air flow in (in-flight) -- 50.82 kg/min ( 112 lb/min) 

1.4.2 THERMAL THREAT TO THE SIDEWALL 

The sidewall calibration panel data piovides a history of the incident ieat flux and adjacent 
air temperatures during exposure to the design fire sources. Figures 34 and 35 characterize 
the design post-crash fire source heat threat to the sidewall, while Figures 36 and 37 provide 
the same data for the design n-flight fire source. 
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2.0 	 BASELINE MATERIAL TESTS WITH SIMULATED 
DESIGN FIRE SOURCES 

Ideally, large samples of the baseline materials could be tested against the actual design fire 
sources and the total hazardous products release rates calculated. Then the differences 
between these rates and those of the design fire sources, alone, could be taken as the material 
contribution. This method is impractical because the burning of the design fire sources is 
difficult to reproduce within an acceptable tolerance. The fire sources produce such large 
amounts of heat and smoke that the combustion products produced by the same materials, even 
in large samples, may be hidden by variations in the fire source from test to test. For these 
reasons, large samples of the baseline materials were tested against controlled simulations of 
the sidewall thermal threat from design fire sources defined in the tests conducted in thet 
NASA-JSC fire test fuselage. 

2.1 BOEING 707 FIRE TEST SECTION 

The Boeing 707 cabin section, (Figure 38), modified for large scale fire testing, has the same 
cabin cross-section as the NASA-JSC 737 fuselage. The interior lines of both test vehicles 
are representative of the new interior lines in the Boeing standard body airplanes. The 707 
section has been insulated with production airplane insulation and lined with stainless sheet­
ing, the full 6.10 meter (20 foot) test length (Figure 39). 

The cabin environment instrumentation was located the same as in the NASA-JSC 737 fuse­
lage in the 6.10 meter (20 ft) long test mode (Figures 3, 5, 6, and 7), except the exit 
signs which were oriented for viewing from the aft end of the test section, rather than from 
the forward end. The sidewall thermal calibration panels in both facilities were designed 
and fabricated at Boeing for conformity. Quartz lamps were selected to provide the major 
portion of the energy to simulate the sidewall exposure to the design fire sources (Figure 40). 
A propane burner may be adjusted to produce the desired flame and impinging air tempera­
tures. 

2.2 BASELINE MATERIALS 

It was specified for this program that two baseline (current) interior materials would be 
tested in large scale and laboratory test to collect data for correlation efforts. These data 
are supplemented with results of tests on other baseline materials from a parallel Boeing 
IRAD project. Table 1 - Baseline Materials lists materials by sample number, descriptive-title, 
and type of material. The materials are fully described in Appendix C. Two numbers are 
assigned to each material because specimens for laboratory and large scale tests may differ 
in thickness, in order to be accommodated in the laboratory text fixture. Differences are 
described in Appendix C. With this numbering system, displayed results can be readily iden­
tified as based upon laboratory or large scale data. 
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Table 1.-Baseline Materials 

Materialnumber* Description Use or type 

NOO/N01 
N02/N03 
402/403 

412/413 
416/417 

Polyurethane foam 
Fabric-backed vinyl 
Polyvinylfluoride/ 
Epoxy-f iberglass/ 
Polyamide-phenolic 

- Honeycomb sandwich 
Polycarbonate 
Polyvinylfluoride/ 
Polyvinyichloride/ 
Aluminum laminate 

Seat cushion 
Covering material 
Sidewall panel 

Thermoplastic 
Sidewall panel 

* Large scale'sample/laboratory sample 
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2.3 DESIGN POST-CRASH FIRE SOURCE TESTS 

2.3.1 SIMULATION DEVELOPMENT 

Figures 34 and 35 display the calorimeter readings from the sidewall calibration panel for 
the design post-crash fire source. A very accurate simulation of the thermal exposure would 
require simulation of each trace for the five minute test period. Such an exact simulation 
was not considered justifiable because of the variance in the original test data from test to 
test. Instead, the graphs of data from the calorimeters measuring the higher heat fluxes 
(calorimeters 1, 3 and 6) were examined for the period of maximum heat release. This 
period occurred between test time 30 seconds and 210 seconds. It was decided that for each 
calorimeter on the panel, the average heat flux during this period would be established as 
the design post-crash fire source flux. Since the intensity of the fuel pan fire subsided during 
later portions of the test, the simulated design fire heat flux would be removed from the 
material specimens when the total heat applied corresponded to the area under the design 
fire heat flux calorimeter curves. This time of exposure is approximately 4.5 minutes for a 
5 minute test. Heat exposure is terminated by removing the panel from its position in 
front of the fire simulation. Figures 41 and 42 graphically show the described analysis for 
calorimeter 1. Figure 43 is a sketch of the calibration panel, showing the approximate lines 
of constant heat flux calculated for the design post-crash fire by the method just discussed. 
For simulation, the corresponding lateral calorimeter readings were averaged to produce the 
symmetrical thermal map of Figure 44. Experimentation with the fire simulation equipment 
showed that with a simple propane burner, it was not possible to approximate the distribu­
tion of the post-crash design fire source air temperatures along the calibration panel. There­
fore, in the simulation the flame was madeapproximately the same as the height of the fuel 
pan fire as observed during testing and a 6000 C (11 120F) flame temperature maintained 
near the bottom-center of the test panels to assure adequate ignition temperature. The aver­
age temperatures experienced during the design post-crash fire source are shown in Figure 45, 
while the simulation temperatures are plotted in Figure 46. To confirm the adequacy of simu­
lation, four materials were tested in the 6.10 meter (20 ft) 707 test section fire simulation 
and then tested against the 61.0 x 61.0 cm (24 x 24 in.) fuel pan in the 17.07 meter (56 ft) 
737 test section. It was not expected that differences between materials would be evident 
in the light transmission or temperature data in the fuel pan fire tests. However, it was 
thought that the material weight loss and acid gas release could be compared for the simu­
lated fire source test and the fuel pan fire tests on the same material. The comparison is 
shown in Figure 47. Two of the materials, N00 and N02, were almost totally consumed by 
both fire conditions. The other two materials were more fire resistant and there was a dis­
crepancy in the resulting damage. There were major differences in the total toxicant release, 
as calculated for the tests using the data reduction equations of Appendix B. 

The simulation test procedures and gas analysis methods were examined for possible explana­
tions for the discrepancies with the fuel pan fire test data. The simulation was established 
and the steady state environment achieved. The calibration panel was removed from the 
heat exposure and allowed to cool. Then the calibration panel was replaced in the material 
testing position. It was found that the incident heat on the calibration panel increased 
rapidly to approximately 83% of the stabilization value, then clinibed slowly to the full 
value over the next 5 minutes (Figure 48). This climb is apparently caused by increased 
heating of the panel and heating equipment by mutual re-radiation. This does not occur 
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when a test material is placed in front of the heat source. Consequently, the test procedure 
was changed to elevate the heating by the simulation equipment until the desired heating 
rate was measured during the first minute of calibration panel exposure. Furthermore, 
during the early part of one of the fuel pan fire tests of the design fire source, significantly 
higher fluxes were experienced at calorimeters 1 and 3. These higher fluxes occurred during 
test time 30 seconds to 90 seconds. The average flux was 8.86 W/c'n 2 (7.81 Btu/ft2 -sec) 
and 7.37 W/cm 2 (6.49 Btu/ft2-sec) at calorimeters 1 and 3, respectively. To assure maxi­
mum thermal exposure to the material test panels, the heat flux was raised at these two 
calorimeters to the higher values for the first minute of test, then returned to the lower 
level established by the averaging of 30 seconds to 210 second data. Figure 49 shows the 
modified heating schedule for calorimeter 1. The total exposure time for the panel was 
shortened-slightly, to maintain the same area (total heat) under the curve. All four materials 
were retested to the modified heating schedule. Results are summarized in Figure 50 and com­
pared to the fuel pan fire tests and original simulated test data. The weight loss now compared 
more favorably. The second testing of the N02 material showed a measurable quantity of 
hydrogen cyanide, which by interference causes incorrect determination of hydrogen 
chloride by the analysis method used. A change in procedure was made (see Appendix A) to 
alleviate this interference, resulting in the lower value of hydrogen chloride shown. 

On the basis of the post-test appearance of the 402 and 416 panels (Figures 51 through 54) 
and the weight loss data, the NASA and Boeing technical personnel concluded that the 
simulated testing should continue, using the described modifications. 

Tests with calibrated-toxicant concentrations, run in both test facilities, showed that the 
sampling systems and analysis methods gave accurate, repeatable and comparable data. The 
discrepancies between the test data have not been explained; however, it appears that for 
fire safety evaluations, the simulated fire tests gave conservative results (higher toxicant 
release) except in the case of hydrogen chloride (HCL). 

2.3.2 BASELINE MATERIAL TESTS 

Each of the five baseline materials (Table I) were tested with the simulated post-crash fire 
source. Materials 402, 412, 416, and N02 were tested in a steel frame backed by an 0.030 
cm (0.012 in.) thick stainless steel sheet. The total exposed surface area was 2.08 m2 

(22.3 ft2), 122 x 170 cm (48 x 67 in.). The N00 foam sample was arranged in a recessed 
61 x 61 cm (24 x 24 in.) by 5.08 cm (2 in.) dish in a stainless steel panel with the bottom 
edge 30.5 cm (12 in.) from the floor (Figure 55). Thermoplastic material 412 was partly 
supported by screen and metal strips to prevent post-test interference with test equipment 
(Figure 56). Tests were repeated when obvious anomalies occurred. The initial data was 
reduced to the form in Figure 57. The material did not contribute to the data collected 
until the fire simulation had operated sufficiently for cabin environment stabilization. 
After the 40 minute stabilization period, the material sample replaced the calibration panel 
in front of the simulated fire and the five minute test period began. As explained in the 
previous discussion, the specimen was removed from the exposure position (but was left 
in the cabin) at approximately 270 seconds, when the desired total heat exposure had been 
accumulated. 
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Data from the tests were reduced by computer, using the equations of Appendix B to develop 

heat, smoke and gas release rates. The results are in Appendix C. 

2.4 DESIGN IN-FLIGHT FIRE SOURCE TESTS 

2.4.1 SIMULATION DEVELOPMENT 

The simulation of the sidewall fire threat from the design in-flight fire source was developed 
with the same methods and rationale used in development of the simulated post-crash fire 
source. However, the heat flux varied so much from the first of the test to the last that-,a 
single flux distribution would not accurately simulate the sidewall threat. Figure 58 shows 
the design fire heat flux at calorimeter 1 (the most intensely heated instrumentation point). 
The other calorimeters recorded similar trends at lower heating levels. The simulated test 
was established for a total of fifteen minutes. The average heat flux was found for each of 
the stages shown for each calorimeter. Stage 11 and Stage III were established as shown 
for 150 seconds and 300 seconds, respectively. Stage I was established at 116 seconds to 
provide the same total heat (area under the curve) shown from 0 to 150 seconds on Figure 
58. The simulation heat flux for calorimeter 1 is then the "stepped" heating schedule shown 
in Figure 59. The lines of constant flux on the calibration panel for the simulated fire are 
shown in Figures 60, 61 and 62 for Stages 1,11, and Ill, respectively. The required heating 
rates for Stage IV are so low that at 566 seconds the heating equipment is turned off and 
the panel exposed to only the residuahheat in the fixture. 

The average flame (air) temperatureson the calibration panel for the design fire during 
Stage I (Figure 63) were lower than could be simulated while maintaining the desired heating" 
rate. Therefore, as with the simulated post-crash condition, the simulated in-flight fire source 
approximated the actual flame height and provided an igniting flame temperature 538 0 C 
(1000 0F) at the base of the panel during Stage I (Figure 64). The calibration panel air tem­
peratures for the other stages fell as the heating rate was reduced. This was similar to the 
design in-flight fire source tests with the trash bags. 

No confirmation fire tests with material-samples and the trash bags were run in the NASA 
737 fuselage because the thermal exposure by the source was found to be unrepeatable. 
However, the simulated in-flight fire source was calibrated during the first minute of cali­
bration panel exposure as found desirable for the simulated post-crash condition. 

2.4.2 BASELINE MATERIAL TESTS 

The baseline materials were tested using the same specimen fixtures as described for the 
simulated design post-crash fire source testing. Data acquisition and reduction were also 
the same and the results are contained in Appendix C. 
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3.0 LABORATORY FIRE TESTS ON BASELINE MATERIALS 

3.1 LABORATORY TEST METHODS 

Existing laboratory test methods were selected to obtain the combustion properties of the 
baseline materials for comparison to the properties as measured in large scale testing. 
Figure 65 shows the five test apparatus selected in approximately increasing order of com­
plexity along with the properties evaluated by each during this program. A more complete 
description of each method is contained in Appendix D. 

3.2 BASELINE MATERIAL TESTS 

Each of the five baseline materials were tested by each of the five laboratory test methods. 
The data are included in Appendix C and evaluated in the following report discussion, 
"Laboratory and Large Scale Fire Test Data Correlation." 
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4.0 	 LABORATORY AND LARGE SCALE FIRE TEST DATA CORRELATION 

The correlation of large scale fire test data and laboratory data was conducted in two phases: 

* 	 The results were compared directly to observe the consistency of ranking order, and 

* 	 A simple means of approximating large scale test results from laboratory test data was 
studied. 

In the attempt to obtain correlation, two basic assumptions were made: 

* 	 The primary combustion properties of the materials are heat release, smoke release and 
gas release because they can be related to the selected cabin fire scenarios, and 

* 	 The release rates (and total released products) calculated from the large scale tests are 
the correct and desired result of the laboratory test data analysis. 

The above imply that the release rates are all functions of flame spread, decomposition tem­
peratures, decomposition rates, etc., and act as the integrating characteristics for all these 
individual material properties. This analysis also assumes that the large scale test specimens 
are extensive enough that the fire would not have progressed further laterally if the samples 
had been larger. Test results showed that this was true of most samples tested. The-seat 
foam (NOO) test was an obvious exception; however, the~specimen was sized to approximate 
a foam item expected to be exposed upon the initiation of a post-crash or in-flight fire source. 
Material NOO data will not be discussed for correlation purposes because of the disparity in 
thicknesses between the large scale sample and the laboratory sample. All data are included 
in Appendix C. 

4.1 DIRECT COMPARISON 

4.1.1 POST-CRASH FIRE SOURCE 

Examination of the predicted cabin environment at standardized conditions for the design 
post-crash fire source (Figure 32) provides an estimate of time period for which the release 
of the products of combustion are most critical. The predicted cabin temperature does not 
exceed our established limit of 204'C (400'F) until 300 seconds. However, during the last 
85 seconds, the temperature hovered above 193 0C (390 0F) without exceeding the limit. 
This plateau was described during the examination of data for the design fire selection as due 

• 	 to test setup constraints rather than actual fire characteristics. Since the temperature limit 
cannot be considered exact, it was decided arbitrarily to extend the slope of the initial tem­
perature curve to the point at which it would cross the limit. This time was found to be ap­
proximately 215 seconds. Figure 121, shows graphically the definition of the 215 second 
limit. The definition of the design fire required the temperature to limit escape at 300 
seconds. Based on the predicted temperatures and this discussion, the limit now becomes 
85 seconds (300-215 seconds) at an air temperature above 204'C (400'F). Therefore, heat 
release by the material is critical in the first 215 seconds in the post-crash design fire condi­
tion. 
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The matching of observed visual loss of the production exit signs (apparent total obscuration 
of light) with the measured light transmission showed that the observers reported sign ob­
scuration at approximately 1% light transmission. Escape is seriously hampered when smoke 
obscuration occurs. Figure 32 shows that light transmission over 0.92 meter (3 ft) nears 
1%at 90 seconds. Extrapolation shows that light transmission drops below 1%for distances 
greater than 1.52 meters (5 ft) in less than 60 seconds. Based on these observations, the 
critical time period for smoke production was established as the first 90 seconds. With 
passengers seated as much as 6.10 meters (20 feet) from exit signs, it probably is not war­
ranted to consider material smoke production beyond the 90 seconds in the design post­
crash fire condition. 

The only toxicant measured during the design post-crash fire source tests relevant to material 
properties was carbon monoxide. The level of carbon monoxide found was far below an 
incapacitation level; therefore, material toxicant production must be considered for the full 
five minute evaluation period. 

Heat release was the first property examined. Several of the laboratory tests give values which 
cannot be directly related to time. Figure 66 and 67 compare the indices from these tests 
with the heat release from the baseline materials in the large scale tests for the first 215 seconds. 
The tabular form of Figure 66 presents.the data but the specific relationship of the values 
cannot be easily visualized. Figure 67 compares the data with the bar of the material having 
the greatest heat release or flammability value given a rating of 100. Other materials are 
given ratings proportional to the values obtained from the tests. Ideally, the lab tests would 
produce bars corresponding to those of the large scale heat results. The Ohio State University 
(OSU) release rate apparatus produces time based data. Figures 68 and 69 compare OSU 
heat release for 215 seconds obtained at different heating levels to the large scale data at the 
same time. 

Smoke release data are obtained from the National Bureau of Standards (NBS) smoke cham­
ber and the OSU apparatus. Both give time-based values which are compared for the first 
90 seconds with that of the large scale tests in Figures 70 through 73. The NBS chamber as 
modified at Boeing, provides gas release data which is compared to the full scale results in 
Figures 74 through 77. There is no apparent relationship between the values found for hydro­
gen cyanide in the large scale tests and in the NBS chambers, so no bar chart was made. 

4.1.2 IN-FLIGHT FIRE SOURCE 

The same data comparison procedure was used for the in-flight condition. However, the 
release rates are important for the whole test because the design in-flight fire source does not 
produce theoretically limiting levels of combustion products. Most materials have com­
pleted burning by 300 seconds in the large scale testing. Three-hundred seconds was selected 
as the time to compare large scale and laboratory scale release data for the in-flight condition. 
Figures 78 and 79 compare OSU heat release data to the large scale results. Figure 80 com­
pares the large scale test heat release to laboratory tests which give only indices. The large 
scale values of Figure 78 and the laboratory data from Figure 66 are not repeated in a 
separate figure. Figures 81 through 87 compare smoke and toxicant release data for large 
scale and laboratory tests. 
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4.1.3 RESULTS OF DIRECT DATA COMPARISON 

The post-crash condition will be considered first. Based on the limited data base (four 
materials) the following is concluded: 

* 	 The ASTM E-162 heat evolution factor (Q) and the OSU apparatus heat release obtained 
at 2.5 W/cm 2 (2.20 Btu/ft2 -sec) (flaming mode, bottom-center ignition) placed the 
materials in correct order of heat release. None of laboratory test data correctly ranked 
the materials in proportion to heat release in the large scale tests. Bunsen burner "length­
burned" did not relate well to the heat contribution by the materials. 

* 	 The NBS chamber (flaming mode) and the OSU apparatus (flaming mode, bottom­
center ignition) at 2.5 W/cm 2 (2.20 Btu/ft2-sec) correctly ranked the materials in 
order of smoke release in large scale testing. Neither test showed the materials producing 
smoke in the same relative proportions as shown in the large scale tests. 

* 	 The NBS chamber testing showed good relative, proportionate ranking of the two 
materials producing hydrogen fluoride at both 2.5 W/cm 2 (2.20 Btu/ft 2-sec) and 5.0 
W/cm 2 (4.41 Btu/ft 2-sec) heating rates. No relationship between NBS chamber data 
and large scale-test results could be found for hydrogen cynaide, hydrogen chloride or 
carbon monoxide production. 

The in-flight condition showed different tests more applicable: 

* 	 None of the laboratory methods correctly ranked all four materials for large scale heat 
release. If the thermoplastic (412/413) were excluded, the ASTM E-1 62 heat evolution 
factor (Q) correctly ranked the remaining three materials in good proportion to their 
large scale test heat release. The OSU heat release data from 1.5 W/cm 2 (1.32 Btu/ft2 ­
see) tests correctly ranked the same-three materials but not in the same proportion of 
heat release as the large scale tests. The Bunsen burner test (burn length) showed poor 
correlation to the large scale results. 

o 	 Again, no method properly ranked the materials for smoke production if thermoplastic 
(412/413) were considered. The OSU data 2.5 W/cm 2 (2.20 Btu/ft2 -sec) and the NBS 
data at both 2.5 W/cm 2 (2.20 Btu/ft2-sec) and 5.0 W/cm 2 (4.41 Btu/ft2 -sec) correctly ranked 
the other three materials. The NBS data at 5.0 W/cm 2 provided the best proportionate correlation. 

* 	 NBS chamber data at both 2.5 W/cm 2 (2.20 Btu/ft 2-sec) and 5.0 W/cm 2 (4.41 Btu/ft2 ­
sec) correctly ranked the three non-thermoplastic materials for hydrogen chloride pro­
duction; although, the proportions produced were not predictable from the data. No 
relation to large scale results was evident for hydrogen fluoride, hydrogen cyanide, and 
carbon monoxide production. 

Based on this direct comparison of data for the small sample studied, only limited knowledge 
of the material contribution to cabin fire hazards may be gained from the direct laboratory 
data on the relatively fire-retardant airplane interior materials. If screening tests are needed 
for order ranking of heat and smoke production of thermosetting organic materials under 
both post-crash and in-flight fire conditions, the ASTM E-162 heat evolution factor (Q), OSU 
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apparatus heat and smoke release data taken at 2.5 W/cm 2 (2.20 Btu/ft2 -sec), and NBS cham­
ber smoke data at 2.5 W/cm 2 (2.20 Btu/ft2-sec) show the greatest reliability for single tests. 
Thermoplastic materials can be evaluated by the same tests for the post-crash environment 
for heat production at 215 seconds and smoke production at 90 seconds. However, the one 
sample tested could not be ranked for in-flight fire performance by these methods. The 
large sample always softened and ran before sustained ignition was achieved in the large 
scale in-flight fire source test and, consequently, produced less heat and smoke than predicted 
by testing better retained samples in laboratory apparatus. The material was burned more 
predictably by the higher heating rates in the simulated post-crash testing. 

Only one laboratory method of assessing toxicant production was studied. Results generally 
were not related to the large scale data and, therefore the NBS chamber as used, cannot be 
considered an acceptable method of determining toxicant production. 

4.2 CORRELATION DEVELOPMENT 

A complete evaluation of materials for fire hazard contribution requires not only that the 
release rates be established proportionately in proper ranking order but also that the mag­
nitude of the large scale test results be predicted with reasonable accuracy by the laboratory test 
methodology. Only this information can help determine if differences in the material pro­
perties are truly significant in the real fire condition. The OSU release rate apparatus was 
the most versatile test equipment utilized in this program, since ventilation rate and heating 
rate could be readily adjusted (only heating rate was varied in this project). Therefore, an 
effort was made to obtain large scale quantitative correlation of smoke and heat release 
with OSU data. 

4.2.1 POST-CRASH FIRE SOURCE 

The heat flux map of Figure 44 was examined to define areas of heating which might be 
exposed to approximately the four fluxes tested in the OSU apparatus. The result was 
Figure 88. Next, the same total area was apportioned to only two levels of heating, 2.5 W/cm2 

(2.20 Btu/ft2-sec) and 5.0 W/cm 2 (4.41 Btu/ft2 -sec), as in Figure 89. Using the equations 
shown on these two figures, total heat and smoke were calculated for the 300 second test 
period and plotted (Figures 91, 92, 95 and 96) for comparison to those results calculated 
from large scale test data in Figures 90 and 94. Study showed that use of only the two 
heating rates produced nearly as good correlation to the large scale data as the more complex 
calculation with the four heating rates. Further refinement using the two heating rates was 
attempted by using materials 402/403 and 416/417 as a base and multiplying all calculated 
data from OSU results by the average ratio of large scale release to the laboratory test-based 
release for those two materials. The results are shown in Figures 93 and 97 for heat and 
smoke respectively. Correlation with the large scale results is not good but the methodology 
does show some promise. 

4.2.2 IN-FLIGHT FIRE SOURCE 

The same analysis steps were taken with the first 300 sec6hds of the simulated in-flight 
fire source test data. Figures 98 through 101 reflect the assumed areas of large scale heat­
ing rates for Stages I and II of the testing. Figures 102 and 106 show heat and smoke release, 
respectively, from large scale test data. Figures 103 through 105 and Figures 107 through 109 
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show successive attempts at laboratory test data refinement for heat and smoke release, 
respectively. Again, the methodology shows promise, except for the previously discussed 
(direct comparison results) poor correlation of the thermoplastic (material 412/413). 

4.2.3 RESULTS OF CORRELATION DEVELOPMENT 

It appears possible to develop a reasonably good prediction of the large scale test results 
from the OSU apparatus data if the reason(s) for the disproportionate release rates for some 
materials can be found and corrected. Two possible sources for these apparent errors may 
already have been discovered and are under study. The first is the selection of the calibra­
tion "dummy" used in the specimen holder for the pretest. As shown in Figure 110, the 
pretest is run with the dummy in place to determine the effect of specimen and holder 
heat absorption upon the stack air temperature. In our tests, the pretest dummy was a 
1.27 cm (0.5 in.) thick cement-asbestos board while the specimen backup panel during 
the actual test was a 0.64 cm (0.250 in.) panel of the same material. Preliminary analysis 
indicates that changing of both panels to a thinner material with less heat capacity and 
greater thermal conductivity could improve the heat release correlation because of the 
method of calculation as shown in Figure 110. Such a change of the backup panel will also 
affect the burning (and thus the smoke release) of the thinner materials. This change would 
make a mounting more representative of most airplane material installations. 

The apparent heat release from the OSU apparatus is affected also by the "thermal lag" 
inherent in burning such d small sample in close proximity to the relatively large heat sink 
of the apparatus and specimen holder. This phenomena is described by Figure 111. Methods 
of correction have been studied by Boeing and other investigators. 

In the previous discussion, an attempt was made to obtaincloser correlation to large scale 
test results with a "correction factor." This may be possible with materials of similar den­
sity, thermal conductivity, and specific heat. However, dissimilar materials would require 
different "correction" factors. This can be seen by comparing the values for material 
N02/N03 in Figures 90 and 93. Since the proportional correction factor was based on 
materials 402/403 and 416/417, its use does not bring close correlation for material N02/ 
N03. Therefore, an improvement in correlation between the laboratory and large scale fire 
test results will require an understanding and elimination of the factors contributing to the 
disparities rather than development of an empirical correction factor. 

4.3 EVALUATION OF NEW MATERIALS 

NASA-JSC has actively promoted the development of airplane materials with improved fire 
properties for more than a decade. NASA-JSC participation with suppliers and manufac­
turers has included evaluation of the fire properties of proposed and experimental materials. 
In this role, NASA-JSC submitted eleven new materials for evaluation by large scale and 
laboratory fire tests. Table 2 - NEW MATERIALS - is a summary list of the materials sub­
mitted. All of these materials are in some stage of development; they were not submitted 
as ready for airplane use. Many of them have structural limitations which make them un­
acceptable; others are impracticable for other reasons. Some show promising characteristics 
and their continued development is being promoted by NASA-JSC. To evaluate the combus­
tion characteristics of the possible new materials, all were tested regardless of feasibility of 
use. The detailed material descriptions along with laboratory and large scale fire test data are 
in Appendix E. 
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Table 2-New Materials 

Material 
number. 

Description Proposed 
use or type 

N04/NO5 Polyimide foam Seat foam 

N06/N07 Phenolic-fiberglass/polymide foam Floor or structural 
sandwich panel partition 

N08/N09 Polyvinylidene fluoride film/phenolic- Sidewall panel 
fiberglass/polyimide foam sandwich panel 

N1 0/Ni Polyimide-coated fiberglass Covering material 

N12/N13 Polyimide moldable material Thermoplastic replacement 

N14/N15 Phenolic-fiberglass/polyimide foam Floor panel 
sandwich panel 

N16/N17 Polyvinylidene fluoride film/phenolic- Ceiling panel 
fiberglass laminate 

N18/N19 FX resin/fiberglass laminate Air ducting 

N20/N21 Flexible polyimide foam Thermallacoustical 
insulation 

N22/N23 Monsanto E200-3Z Thermoplastic 

N24/N25 Inorganic resin system- Thermoplastic replacement 

fiberglass panel 

*Large scale sample/laboratory sample 
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Experience has shown the post-crash condition to be the most severe. Therefore, the 
heat and smoke release of the new materials will be compared to the baseline materials 
heat and smoke release at test times 215 seconds and 90 seconds, respectively. In general, 
the gas emission of the new materials was very low. Because of the poor correlation of gas 
results demonstrated in the analysis of the baseline materials data, no comparison of the 
toxicant release was made. Gas analysis data are included in Appendix E. 

The new materials were divided into four categories for comparison: panels, covering 
material and laminates, foams, and thermoplastics (and proposed thermoplastic replace-,,, 
ments). Figures 112 through 119 compare the materials by apparent heat and smoke " 
release from the simulated design post-crash fire source tests and by laboratory data found 
most valid during the fire test methods study. The five baseline materials are included in 
appropriate categories for comparison. 
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5.0 LABORATORY FIRE TEST METHODS FOR MATERIAL EVALUATION 

Based upon the data collected from large scale fire tests of materials in a vertical position 
(sidewall orientation), certain laboratory test methods can determine some of the burning 
properties of airplane interior materials. Only four currently used and eleven experimental 
materials were studied. The design post-crash fire source subjected the materials to the 
greatest thermal threat. Therefore, the results of testing materials to this thermal exposure 
were taken as the base for developing laboratory test correlation. 

5.1 METHODS SELECTED 

Current materials used in similar construction (i.e., laminates, sandwich panels or foams) 
may be ranked in order of critical heat release under post-crash conditions by the ASTM E-162 
heat evolution factor, Q, and by the heat release from the OSU release rate apparatus at 215 
seconds from testing at 2.5 W/cm 2 (2.20 Btu/ft2-sec) with bottom-center ignition. Correct 
magnitude of heat released (particularly with more fire resistant materials) cannot be compared 
without testing in the OS1 at 5.0 W/cm 2 (4.41 Btu/ft2-sec) as well. If testing is conducted 
by the method described in Appendix C, using 1.27 cm (0.5 in.) thick and 0.64 cm (0.250 in.) 
thick asbestos/cement board for the dummy and the backup plate respectively, it appears 
the total heat release ina large scale sidewall.test by current sidewall panels may be crudely 
approximated by: 

release at 215 seconds in joules = 

0.38 [8289 cm 2 (OSU2. 5 W/cm 2) + 

5587 cm 2 (OSU 5.0 W/cm2)] 

where OSU is heat release in joules/cm 2 at 215 seconds. 

If customary units are desired, the areas above, respectively, are 8.92 ft2 and 6.01 ft2 , 
while the heat release in Btu/ft2 would be found for 2.20 Btu/ft2 -sec and 4.41 Btu/ft2-sec 
conditions. 

Smoke release ranking may be made for post-crash exposure using 90 second data from the 
NBS chamber or the OSU apparatus at 2.5 W/cm 2 (2.20 Btu/ft 2-sec). Correct magnitude 
of release for current sidewall panel constructions can be approximated for many materials 
using a combination of the OSU data at 2.5 Wfcm2 (2.20 Btu/ft2-sec) and 5.0 W/cm 2 

(4.41 Btu/ft 2-sec) data as with heat release, except the correction factor is 0.97 instead of 
0.38. The correction factors cannot be assumed applicable for panel constructions varying 
greatly from those tested. 

Only one method of obtaining gaseous toxicant release by laboratory testing was investi­
gated. No correlation to large scale data could be determined:! It is concluded at this time 
that sampling of gases released in the NBS chamber testing can only indicate the type of 
gases which might be expected from the burning of a material. 
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5.2 LIMITATIONS
 

Primarily, panel and laminated materials were tested in this program; however, a thermo­
plastic and a foam were among the baseline materials. The foam laboratory data was not 
correlative directly to the large scale results because the thickness of the laboratory sample 
was much less than the large sample to meet fixture constraints. The thermoplastic material 
behavior was predictable for the post-crash condition. It contributed much less in the simu­
lated in-flight test than expected from laboratory testing because at the lower heating'rate 
it melted and pulled away from the igniting flame before a burning front could be established. 

Correlation of OSU data to large scale results can probably be enhanced by some procedure 
and analysis changes discussed in the data correlation development. Ideally, the need for a 
"correction factor" would be removed completely. 
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6.0 POSSIBLE TRADE-OFFS AMONG PRODUCTS-OF-COMBUSTION
 

Selection of a material for "best" fire properties from several choices may require a decision 
as to whether a relatively high smoke production, high heat generation or high toxicant 
evolution is preferable if all cannot be avoided. A sound judgement would require that 
three more pieces of information be available: 

* The release of the products-of-combustion under large scale conditions, 

* The effect of each product-of-combustion on passenger escape or survivability, and 

* Any synergistic or antagonistic effects of two or more products-of-combustion. 

An attempt was made to define a procedure which might be used with some success to pro­
vide the first two data. An understanding of the third item was beyond the scope of this
 
project. First, from the previous discussion on data correlation, it appears possible that
 
refinements in the OSU release rate apparatus and procedures may produce relatively good
 
approximations of heat and smoke release from a sidewall panel exposed to simulated design
 
fire sources. At this time, a method for the estimate of gaseous toxicant production cannot
 
be established.
 

The trade-off of combustion products study was based upon the simulated design post-crash
 
condition as being the most severe. As with the correlation effort, the 17.07 meter (56 ft)
 
standard body fuselage section was selected as the design condition. The heat production
 
prior to 215 seconds was established as the evaluation factor. At this time, the average head
 
level predicted air temperature in the aisle approaches 204'C (400'F) with the design post­
crash fire source alone. This limit was based upon Reference 1. As in the earlier correlation
 
discussion, it was arbitrarily set that 85 seconds at temperatures above 204'C (400'F) would
 
be incapacitating. Therefore, from heat alone, theoretical escape would be limited to 5
 
minutes.
 

In the correlation development, smoke release prior to 90 seconds was set as the criteria.
 
At that time, it is predicted that visibility of exit signs, etc., at distances of 0.92 meter (3 ft)
 
would be obscured by the smoke from the design post-crash fire source.
 

The limits for individual toxicants could be established in the same fashion as for tempera­
ture. That is, when a certain predicted concentration was reached before 300 seconds, it is
 
assumed incapacitation would result. Reference 2 was used to define the limits for some
 
toxicants for design post-crash fire source selection and it could be used for other toxicants.
 
This project was not able to develop a laboratory method for prediction of large scale test
 
toxicant release rates, but the study considered trade-offs for gas evolution.
 

First, to develop a trade-off method, several concepts must be defined. If it is assumed that
 
escape from a post-crash environment is unimpeded for 300 seconds by the products of
 
combustion within the cabin, the escape index E, may be considered as unity. This escape
 
index can be thought of as the product of a constant escape rate factor r, and time, t.
 

24 



E = t, 

E 1
If it is desired to protect an evacuation time of 300 seconds, r =- = - see - . 

t 300 

With only heat considered and with a usable evacuation time of 300 seconds, the design post­
crash fire source escape index would still be unity since, by definition, the heat limit of 
the design fire is not reached until 300 seconds. 

A reduction in the escape index must be developed for the effect of smoke. Reference 4 des­
cribes airplane evacuation tests conducted under various lighting conditions. Examination of 
the data shows that under dark cabin and very low outside illumination conditions, the 
evacuation rate was approximately one-fourth of that found under emergency lighting con­
ditions. Arbitrarily assuming one-third of the loss in rate due to the darkened outside con­
ditions, it was estimated that the rate for evacuation from a smoke-filled cabin might be 
one-half that with no smoke. Therefore, the design fire source escape index (ED) considering 
both heat and smoke can be calculated: 

r 

ED = r 90 (seconds) +- (300-90) (seconds)
2 

90 210 
or ED = -

300 
+ 2 0 

600 
.65 

Another concept, AE, or escape index decrement was developed. If the heat release rate 
for a material exposed to the design post-crash fire source as a function of time is known, 
it may be added to that of the design fire source as shown in Figure 120, using material 416 
exposed in the sidewall position as an example. Using the cabin temperature prediction 
equation of Appendix B, the temperature for the combined heat release is predicted (Figure 
121). Now a heat escape decrement, AEh, can be calculated. 

Eh 215 - t(2 04oc) 

600 

Where t(204oC) is the time at which the predicted cabin temperature exceeds 204C (400'F). 

If t(204C) > 215 seconds, it is assumed to be 215, i.e., AEh = 0. Toxicant escape decrements 

could also be established for individual gases when release rates can be successfully measured 
and design fire test concentrations predicted. A gas escape decrement AEg, can be calculated 
as: 

3 00 - t(g)AE 
- 600 

Where t(g) is the time in seconds at which the predicted gaseous toxicant concentration 
exceeds the incapacitation limit for that gas (time must be less than 300 seconds or 
AEg = 0). 
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The smoke escape decrement, AEs, would be calculated as: 

90 - t(1%) 
AE s = 600 

Where t(l%) is the time when the predicted 0.92 meter (3 ft) light transmission for the 
design post-crash fire source plus material exposed drops below 1%. For our example 
material, Figure 122 shows the predicted transmission and the resulting t(1%). 

From this discussion, a material can be said to have an escape index, EM, calculated as: 

EM = ED - AEs - (either AEh or AEg) 

The either/or term is necessary since both temperature and gas decrements operate from 
an assumed 300 second limit and are not considered additive. The larger of the gas or 
heat decrements is used. For our example material, gas was not considered because the 
accuracy of any gas concentration prediction is in question. The escape index is: 

E4 16  = ED-AES-AEh 

= .65 - [90-kt(l%)] -[215 -t(2040 c] 

90 -58] _ [215 -24.65- [1600 L 0
 

= .578 

The escape index may be calculated for several materials in this manner (if temperature and 
light transmission predictions in the "standard" fuselage section for design post-crash 
conditions can be made) and the higher index would indicate the better-material. Thus 
trade-offs in combustion products can be considered. 

One obvious over-simplification is the assumption that escape rate is not degraded until 
the 1%level at 0.92 meter (3 ft) is reached and then suddenly is reduced by 50%. A 
gradual reduction formula would provide better rating of smoke effect, but would require 
further research to develop. 
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7.0 NEW TECHNOLOGY 

No inventions or new technologies were developed during this program. 

8.0 CONCLUSIONS 

Five current and eleven experimental materials were tested by simulated large scale fire 
exposure and by selected laboratory tests. Laboratory tests were found which apparently 
can rank, in order, materials in a sidewall position for heat and smoke production in two 
defined "design" fires. The laboratory method investigated for measuring toxicant 
production did not consistently produce results which could be related to large scale 
fire test data. Therefore, no laboratory method for assessing toxicant release was defined. 

Direct correlation of laboratory results to the magnitude of the large scale test heat and 
smoke data was sought. Data from the Ohio State University release rate apparatus holds 
promise for being adopted to this purpose, but changes in the test method and analysis 
procedures will be required. 

A method for trade-off of combustion products for material selection was developed 
using an analytical method to predict temperature, light transmission and gas concentrations 
in a "standard"' airplane cabin based on the heat, smoke and gas release,rates for the 
materials under consideration. For effective utilization, the method requires that a satis­
factory gas release test be developed and that the Ohio State University apparatus be 
further evaluated to refine the prediction of heat and smoke release.in large scale fires. 
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9.0 RECOMMENDATIONS
 

It is recommended that further large scale and laboratory testing of materials be accomplished 
to: 

* 	 Extend laboratory and large scale fire test data correlation to foams and to 
materials burned in an overhead, horizontal position. 

* 	 Refine the direct correlation of Ohio State University (OSU) apparatus heat and 
smoke release to the large scale test release of the same combustion products. 

* 	 Develop a laboratory test method capable of predicting the magnitude of the 
gaseous combustion products released in a large scale fire (a modified OSU apparatus 
should receive consideration). 
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APPENDIX A
 
GAS SAMPLING AND ANALYSIS PROCEDURES
 

DESIGN FIRE SOURCE TESTS IN NASA-JSC 737 FUSELAGE 

The exposure of aircraft cabin interior materials to a fire results in the production of a 
variety of gaseous combustion products. It is mandatory that these gases be collected 
quantitatively and measured accurately. The hydrolyzable, acid gases, such as hydrogen 
cyanide (HCN), hydrogen fluoride (HF), and hydrogen chloride (HCL) are collected and 
analyzed differently from the non-hydrolyzable gases, such as oxygen (02), carbon 
monoxide (CO), and carbon dioxide (CO2 ). In the former case the gases are collected in 
0.1 Molar NaOH by "bubbler" systems (microimpingers) and analyzed via specific ion 
electrode techniques. 'In thelatter case, the gases are collected in stainless steel bottles 
and analyzed via gas chromatographic techniques. 

Gases are removed from the 737 fuselage at two different locations. One collection site is 
8 feet forward of the ignition source and the second is 5 feet aft of the ignition source. 
Heated Teflon lines [660 ± 140 C (1500 ± 250F)], are used to transport the hydrolyzable, 
acid gases to glass microimpinger bubblers which contain the 0. 1 Molar NaOH. Stainless steel 
lines connected to evacuated 32-liter stainless steel bottles collect the nonhydrolyzable gases. 

The bubbler systems consist of 4 racks of 11 bubblers, each bubbler filled with 10 ml of 0.1 
Molar-NaOH. Systems A and B comprise 2 racks of 11 bubblers each which collect gas 
samples 8 feet forward of the ignition source. Systems C and D comprise 2 racks of 11 
bubblers each which collect gas samples 5 feet aft of the ignition source. Each rack of 1 
bubblers has 5 sets of 2 bubblers (types "a" and "b") for 5 time intervals during the fire, 
plus a background bubbler. 

The 32-liter stainless steel bottle systems consist of 12 evacuated bottles for the collection 
of nonhydrolyzable gases. System E consists of 6 bottles which remove gases 8 feet forward 
of the ignition source and System F performs the same function 5 feet aft of the ignition 
source. This permits the collection of gases at the same frequency as for the bubbler 
systems. The bottles are pumped down to 5 torr just prior to the test. 

The 0.1 Molar NaOH is prepared fresh every week. The solution is prepared by dissolving 
16.4 grams of reagent grade NaOH in 4 liters of deionized water. This solution is stored 
in a gallon plastic bottle. 

Prior to an actual test, verify that the heated Teflon lines are 66 ± 140C (150°F ± 25°F). 
In addition, the bubblers are filled with 10 ml of 0.1 Molar NaOH and installed in the 
appropriate rack positions. 

Background samples for all 6 systems (4 bubblers and 2 stainless steel bottles) are taken 
just before fire source ignition. During the background sequence, verify that the flow meter 
needle values are providing flow rates of 400 ml/min through all 4 bubbler systems. Con­
tinue to maintain the proper flow throughout the remainder of the test. 
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The 5 bubbler pairs in each of the 4 bubbler systems are activated consecutively (1 minute 
each for a 5 minute burn). The 32-liter bottles are each activated 30 seconds in the middle 
of each bubbler interval. -

After the test, disconnect the bubblers from the sampling lines. With the aid of a clean 
pipette bulb, carefully draw the 0.1 Molar NaOH solution up into the bubbler inlet tube 
2-3 times. Shake and tilt each bubbler so as to wet all internal surfaces and then transfer 
the contents of each to appropriately labeled 50 ml beakers. Cover the beakers until 
the solutions can be analyzed. 

The meter used in the analysis of the bubbler solutions is the Orion Model 801 digital 
pH/millivolt meter. The electrodes used are Orion solid state cyanide, fluoride, and 
chloride specific ion electrodes. The Orion Model 605 electrode switch is also recommended, 
as it saves a significant amount of time in analyzing the bubbler solutions. The common 
reference jack on the back of the Model 605 permits the insertion and use of 3 electrodes 
(the reference, the specific ion, and the pH electrode) all at the same time. 

Since electrode response is sensitive to temperature and stirring rate of the solutions, the 
following recommendations are made. Place a piece of insulating material between the 
50 ml beaker and the magnetic stirrer to prevent heating of the solution by the stirrer 
motor. Both standard and test solutions are to be stirred at the same speed and with the 
same type of stirring motion. A fairly high speed just below the creation of a visible 
vortex is recommended. Also, a small diameter, .32 cm (1/8 in.) or less, magnetic Teflon­
coated stirring bar is recommended. 

The cyanide, fluoride, and chloride standard solutions are prepared in the following manner 
and at the suggested frequency. The 10- 2M cyanide stock solution is prepared fresh every 
2 weeks by placing 0.500 gram of reagent grade sodium cyanide (NaCN) in a I liter plastic 
volumetric flask and filling with 0.1M NaOH. The 10- 3 , 10- 4 and 10- 5 M standards are 
prepared by serial dilution of the stock solution with 0.IM NaOH in 100 ml plastic volumetric 
flasks. The 10- 3 and 10- 4 M solutions should be prepared fresh every 2 days and the 10- 5M 
solution daily. 

The 10- 2M fluoride stock solution is prepared every 2 months by placing 0.420 gram of 
reagent grade sodium fluoride (NaF) in a 1 liter plastic volumetric flask and filling with 
0.1M NaOH solution. The 10- 3 , 10 -4 and 10- 5 M standards are prepared by serial dilution 
of the stock solution with 0.1M NaOH in 100 ml plastic volumetric flasks. The 10-3 and 
104M solutions should be prepared monthly and the 10- 5 M solution weekly. 

The 10- IM chloride stock solution is prepared every 2 months by placing 5.844 grams of 
reagent grade sodium chloride (NaCL) in a 1 liter plastic volumetric flask and filling with 

- 30.1M NaOH solution. The 10- 2, 10 , 10-4 and 2 x 10- 5M standards are prepared by 
serial dilution of the stock solution with 0.1M NaOH solution in 100 ml plastic volumetric 
flasks. The 10- 2, 10- 3 and 10- 4M standards are prepared monthly and the 2 x 10- 5M 
standard weekly. The reason for using 2 x 10- 5M instead of 10- 5M as the minimum chloride 
standard is that the chloride electrode "bottoms out" at concentrations less than 10- 5 

Molar. There are very few millivolts of potential difference between 10-5M chloride and 
pure water. 
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The order of specific ion electrode analysis is cyanide, followed by fluoride, and lastly, 
chloride. Prior to starting the analysis it is recommended that a preliminary calibration 
be made to verify that the 3 electrodes respond similarly as for the previous calibration. 
Only the 10-5 and 10-4 molar standards are needed for the preliminary calibration. 
Use 10 ml of each standard and add 80 microliters of reagent grade glacial acetic acid 
to the fluoride and chloride standards to lower the pH between 5.0 and 5.5. The cyanide 
standards are run as is (pH 12-13). After making these adjustments, insert the Orion double 
junction reference, pH, and applicable specific ion electrodes into the stirred standards and 
record the millivolt (MV) reading, after it has stabilized to less than 0.5MV chang6/minute. 
Verify that the response of each electrode is as expected. 

In analyzing the test solutions it is important to check for the 3 ions even if none is expected. 
Spot check the bubblers which would be expected to give maximum concentrations if acid 
gases were produced in the combustion process. If an ion is found at a level much greater 
than 10-5 Molar, then analyze all test solutions for that ion. When checking for cyanide, 
be certain that the pH of the solution is in the 12-13 range. If the pH is less than 12, add 
sufficient 6M NaOH to bring the pH into the required range. 

If the b-type bubblers were used, spot check at least 3 "b" bubblers expected to contain 
maximum concentrations of cyanide after completing analysis of the a-type bublers. If 
the "b" bubbler solutions contain less than 10% of the cyanide concentration in the "a" 
bubbler solutions, then it.is not necessary to analyze any additional "b" bubblers. If they 
contain greater than 10% of the "a" bubbler concentration, then analyze the remaining 
"b" bubblers. 

Fluoride analysis is performed after completing the analysis for cyanide. Before beginning 
the analysis, bring the pH of the solutions down to the 5.0 to 5.5 range with 80 microliters 
of glacial acetic acid. 

If cyanide was detected at greater than an estimated trace concentration of 10-6 Molar, 
then it is necessary to lower the pH of the test solutions to minimize interference of cyanide 
when analyzing for chloride. This is accomplished by lowering the pH to the 1.0-1.5 range 
with concentrated nitric acid (HNO3) (usually 8-10 drops). This addition must be performed 
before inserting the chloride electrode into the solutions. If the electrode is inserted pre­
maturely, its response will be extremely sluggish and it will not give a stable reading. If 
this should happen, the chloride electrode must be polished with Orion 94-82-01 or equiva­
lent polishing paper. 

The data for the calibration curves for each ion are obtained immediately after analyzing 
the test solutions for that ion. Calibrate only with the standard solution needed to cover the 
range of the test sample concentrations. Start with the 10-5M standard and continue in 
order of increasing concentration. Since cyanide ions will gradually dissolve the membrane 
of the cyanide electrode, avoid using a cyanide standard greater than 10-3 Molar. However, 
if it becomes necessary, do not leave the cyanide electrode exposed to greater than 10-3 
Molar cyanide for more than 1 or 2 minutes. If HNO 3 acid was added to the chloride test 
solutions, then the chloride calibration data must also be obtained at 1.0-1.5 pH. The 
calibration curves are produced by plotting millivolt readings vs molar concentration on 
semi-log graph paper (concentration on logarithmic scale). 
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To calculate the concentrations of each ion in the bubbler solutions, convert the millivolt 
readings to molar concentrations from the calibration curves for each ion. Convert the 
molar concentrations to parts per million (ppm) as shown: 

Cm x VaX Vm x 106 
ppm -= V 

where Cm = concentration in moles/liter 

Va = volume of bubbler solution = 0.01 liter 

Vm = molar gas volume, approximately 24 liters/mole 
at sea level and 25'C 

Vs = volume sampled = F x T where F is the flow rate 
(0.4 liter/min) and T is the sampling time 

For a 1 minute sampling time, this equation becomes 

ppm = Cm x 6 x 105 

If the type-b bubblers have more than 10% of the amounts found in the type-a bubblers, 
then these amounts are added to give a total concentration. 

For each sampling period, duplicate determinations are available. The results obtained for 
rack A and rack B bubblers are averaged and reported as the concentrations measured for 
each time interval at a point 8 feet forward of the fire. The results obtained for rack C 
and rack D bubblers are averaged and reported as the concentrations measured for each 
time interval at a point 5 feet aft of the fire. 

Concentrations of the 3 nonhydrolyzable gases (oxygen, carbon dioxide, and carbon mono­
xide) are determined by gas chromatographic analysis of the contents of the 32-liter stain­
less steel bottles. A dual column, dual detector (thermal conductivity and flame ionization) 
gas chromatograph is used for the analysis. Test gas samples are injected into the chromato­
graph at a known pressure. The sample is split (approximately 50/50) in such a manner that 
one portion flows through a molecular sieve (13X) column and the other through a porapak 
P column. Oxygen and carbon dioxide are detected with the thermal conductivity detector 
while carbon monoxide is converted to methane in a nickel catalyst bed and subsequently 
detected by the flame ionization detector. 

A standard gas blend containing the 3 gases is used to obtain peak height data for known 
concentrations. Peak heights for oxygen, carbon dioxide, and carbon monoxide are com­
puted for both the test samples and calibration standards by multiplying the recorded peak 
height by the amplifier attenuation. The individual gas concentration is calculated using the 
following equation: 

C = Cstd x H 
Hstd 
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where C = concentration of sample gas component (ppm) 

Cstd = concentration of standard gas component (ppm) 
H = peak height of sample gas component 

Hstd = peak height of standard gas component 

The values determined for System E are reported as the concentration of gas measured for 
each time interval at a point 8feet forward of the fire. The values determined for System 
F are reported as the concentration of gas measured for each time interval,at a point 5 feet 
aft of the fire. 

MATERIAL TESTS WITH SIMULATED DESIGN FIRE SOURCES
 
IN BOEING 707 FUSELAGE SECTION
 

The procedures used for.the collection and measurement of hydrolyzable acid gases 
produced via a simulated design fire source combustion of interior materials in a 707 
fuselage section are essentially identical to those used in the design fire source tests. How­
ever, for the case of the nonhydrolyzable gases (oxygen, carbon monoxide, and carbon dio­
xide), different procedures are followed. 

In the former case, the procedural changes are minor, while in the latter case a totally dif­
ferent approach is taken. The modifications in the specific ion electrode techniques involve 
use of pH paper instead ofa pH electrode and the preparation of fluoride and chloride stan­
dards in 0.1M NaOAc instead of 0.lM sodium hydroxide (NaOH). Since an Orion Model 
605 electrode switch was not available the decision was made to use pH paper to measure 
pH of the test solutions. The paper used is pHydrion (0-9 range and 9-13 range) produced 
by Micro Essential Laboratory, Brooklyn, New York. 

The other change involves the preparation of chloride and fluoride standards in 0.1 M NaOAc 
instead of 0.1M NaOH. Thus, the 10-1 stock solutions are prepared by placing 0.5844g NaCL 
or 0.42g NaF in 100 ml volumetric flasks and filling with 0.IM NaOAc. The 10-2, 10-3, 
10- 4 , and 10-S standards are prepared by serial dilution of the stock solutions with 0.1M 
NaOAc. Because of this change-in procedure, the fluoride and chloride standards require only 
25 microliters of glacial acetic acid to lower their pH to 5.0-5.5 rather than 80 microliters 
when they are prepared in 0.1M NaOH. 

Continuous gas analyzers are used to measure the concentrations of oxygen, carbon mono­
xide, and carbon dioxide. A Beckman Process Oxygen (02) monitor, Model 751, is used to 
continuously measure the concentration of oxygen during combustion of aircraft interior 
materials with simulated design fire sources. An Infrared Industries Model IR702 Gas 
Analyzer is used to monitor the concentrations of carbon monoxide and carbon dioxide. 
A stainless steel tube is used to transport the gases from a point 8 feet forward of the fire 
to each analyzer. 
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MATERIAL TESTS IN NBS SMOKE CHAMBER
 

A National Bureau of Standards smoke density chamber is utilized in laboratory testing of 
aircraft cabin interior materials to monitor gaseous combustion products. The smoke 
chamber is modified to allow for removal of combustion products for subsequent measure­
ment of concentrations. As in the case of large scale testing, the hydrolyzable acid gases 
are collected with microimpingers (bubblers) located in the geometric center of the chamber. 
Since 1 liter of air is passed through the bubbler (400 ml/min for 2.5 minutes) the equation 
for calculating the concentration of acid gas becomes the following: 

ppm = CM x 2.5 x 105 

Draeger specific gas analysis tubes are used to determine the concentrations of sulfur dioxide 
and nitrogen dioxide. They are also used as backup methods for the acid gases. An NDIR 
analyzer is utilized to continuously measure the concentration of carbon monoxide. 

Concentrations of oxygen and carbon dioxide are not recorded. Oxygen concentrations are 
not measured because there is no significant depletion of the chamber oxygen. Carbon 
dioxide is not monitored because the lethal gas concentration (120,000 ppm) is so high 
compared to the lethal levels of the other combustion products. 

34 



APPENDIX B 
FIRE TEST DATA ANALYSIS EQUATIONS 

Fire tests of furnishing materials conducted in large scale fixtures generally are compared directly 
by enclosure temperature, smoke density (light transmission), toxicant concentrations, and 
fixed gas levels. This method is acceptable if all ambient conditions (temperature, ventilating 
flow, pressure, lighting level, etc., are carefully reproduced for each test and if the large 
chamber can be used indefinitely for material evaluations. If these two conditions cannot 
be met, then methods must be developed to reduce large scale data to some "standardized" 
conditions and to obtain data which might be correlated to small scale laboratory testing of 
the materials. Several laboratory test methods, including the National Bureau of Standards 
(NBS) smoke chamber and the Ohio State University (OSU) release rate apparatus, reduce 
data to forms defining total release and/or release rates of combustion products. The 
Boeing 707 fire test section may be considered a large scale moderately insulated release 
rate apparatus. Therefore, the development of applicable release rate equations appeared to 
be a feasible step in analysis of the large scale test results. 

The thermodynamic, heat transfer, smoke accumulation, and gas generation principles 
operating in the fire test section were defined.as much as possible. Equations were written 
to calculate the apparent release rates (heat, smoke, toxicants) from a material burning in 
the test section. The section was defined as shown in Figure B-1. All symbols are defined, 
in Table B-1 at the end of this appendix-

Analysis produced the equations shown in Figure B-2 using the general assumptions listed. 
Solving the equations for temperature, light transmission and gas concentrations provided 
the equations in Figure B-3 and permits a prediction of cabin environment if the release 
rates are assumed or known. The temperature prediction must be made first to obtain the 
data by which Mx is calculated: 

(Tc-TcoMX=M+PVcCp
1 RAt Tc TcoG 

The development of these equations is detailed in Boeing Document D6-46952, "Airplane 
Interior Materials Fire Test Methodology", Allen, Nemeth, Peterson and Tustin, 1978. 
Experience has shown them sufficiently accurate for comparisons of materials which are 
relatively fire retardant (such as airplane interior materials) such that very early flashover, 
extremely rapid flame spread, etc., need not be considered a factor. 
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Table B- 1.-Nomenclature 

C9 - Gas concentration at end of time interval 

Cgo - Gas concentration at start of time interval 

Cp - Specific heat of air for standard atmospheric pressure, 1.0045 J/gm - K, (0.24 Btu/lbm -Fabs) 

e - Base (2.718) of natural system of logarithms 

L - Length of light path for transmission measurement, meter (feet) 

m i - Mass of forced airflow into cabin (test section), kg/sec (lbm/sec) 

mx - Mass of airflow fron cabin (test section), kg/sec(Ibm/sec) 

PC - Air pressure in cabin (test section), Pa (lb/ft2) 

R - Gas constant for air, 267.89 J/kg - K (53.34 ft-lbf/Ibm - OFabs) 

Rg - Apparent gas release rate, kg/sec (lbm/sec) 

Rh - Apparent heat release rate, J/sec (tu/sec) 

Rs - Apparent smoke release rate, kg/sec (Ibm/sec) 

t - Time interval, seconds 

Tc - Cabin (test section) air temperature at end of time interval, K(0 Fabs) 

Tco - Cabin (test section) air temperature at start of time interval, K (tFabs) 

T i - Temperature of entering air flow, K (0 Fabs) 

%T - Light transmission over length, L, at end of time interval 

OTo - Light transmission over length, L, at start of time interval 

Vc - Volume of cabin (test section), cubic meters (cubic feet) 

aI - Factor to convert optical density of smoke to mass of smoke per unit volume when 

the length of view, L, is known, 2.05 x 10- 4 m2 /kg (3905.94 ft 2/lbm) 

'g - Specific volume of gas at the air temperature of the cabin, m3 /kg (ft3/lbm) 

p - Air density at the cabin air temperature kg/m 3 (Ibm/ft 3 ) 
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Figure B 1.-Simplified Schematic of Boeing 707 Fire Test Section 
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Relae Rh- inc2)+cm.+PcVco c+c T'Heat ___ + C T,1 -Tc0\l e 1T 
Rate R t IT CpLT RAt - ITcTcoJLL 

SmokeeRelease RS = a p -X1 log - mxAt/P lo -•x 100 -log + e(m-xAtP v) 
Rate p &L %/T LTo 1 

Relas log- s~)-1 I+ I 

Release - m 1 emxAt/Pvc cmxAt/PVc) 

Rate P ^/g ( L 

Equations based on: 
" Instantaneous distributions; instrumentation at avg points 
" Perfect gas laws; basic thermodynamic and heat transfer theory 
" Past studies on smoke particles affecting transmission by other 

individuals and organizations 

Figure B-2.-Data Analysis Equations 
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_ ee nmi +/PV ,T-Toor + T o
Temperature Rh-!2C (In- __ ___T T]

RAt =Cp mi+ TTTc0 

Substitute values of T c and solve by trial and error solution 

Transmission 5,T i 0 2 + [e (-AtmxpVc)(*LP Rs/mx - log 100/%T )- (aLp s/mX)] 

Gas F Pgtg F(Atx/Rc J p, 
miggoC g m+JConcentration 

Equations based on: 
" Instantaneous distributions; instrumentation at avg points 
" Perfect gas laws; basic thermodynamic and heat transfer theory 
" Past studies on smoke particles affecting transmission by other 

individuals and organizations 

Figure B-3.-Fquations for Prediction and Correlation 
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APPENDIX C
 
BASELINE MATERIALS DESCRIPTIONS, LABORATORY
 

TEST DATA, AND LARGE SCALE TEST RESULTS
 

This appendix defines the baseline materials specimens and summarizes the results from 
the large scale and laboratory fire tests conducted on these materials. Laboratory data is 
displayed in the following order: 

Table C-I 

Table C-2 

Materials Descriptions, Mettler.Thermogravimetric 
Analysis Data, and the Limiting Oxygen Index 
Federal Aviation Regulations (FAR) 25.853 Bunsen Burner-
Test Data 

Table C-3 Radiant Panel Test ASTM E162-67 Data 

Table C-4 NBS Chamber Toxicant Concentrations 

Figures C-I-C-5 

Figures C-6-C-10 

Figures C-11 -C-IS 

Heat Release in the OSU Apparatus in the Vertical Bottom-
Center Ignition Mode 
Smoke Release in the OSU Apparatus in the Vertical Bottom-
Center Ignition Mode 
Smoke Release in the NBS Chamber in the Flaming Mode 

The large scale fire test results are related for both post-crash and in-flight simulated design 
fire source conditions: 

Figures C-16-C-21 Apparent Heat, Smoke, and Toxicant Release from Simulated 
Design Post-Crash Fire Source Tests-Baseline Materials 

Figures C-22-C-27 Apparent Heat, Smoke, and Toxicant Release from Simulated 
Design In-flight Fire Source Tests-Baseline Materials 
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Table C-1.-Materials Descriptions and Data 
From Mettler Thermal Balance and Limiting Oxygen Index (LOI) 

402/403 - Sidewall panel - Area density = 0.1507 g/cm2 (0.0021 lb/in.2 ) 

0.D114 cm (0.0045 in.) 2 plies, type 120 fiberglass epoxy prepreg BMS*8-151
IJF a Polyamide honeycomb core 0.3175 cm (1/8 in.) cell, 0.6350 cm (1/4 in.) thick, 

48.06 kg/m 3 (3 lb/ft 3 ) BMS 8-124 

0.0114 cm (0.0045 in.) Type 120 fiberglass epoxy prepreg BMS 8-151 

0.0203 cm (0.008 in.) Type 181 fiberglass prepreg BMS 8-1.43* 

0.0051 cm (0.002 in.) White polyvinyifluoride film 

Ink overprint 

0.0025 cm (0.001 in.) Clear polyvinylfluoride film 

1. Mettler - BMS 8-151, type 120, sample wt - 37.43 mg; wt loss started - 2800C 

W1 W2 W3 

19.3% (4850 C) 78.1% (8600C) 3.6% residue 
LOI = 35.22 

2. 	Mettler - BMS 8-124, sample wt - 37.87 mg; wt loss started - 3300C 

W 1 W2 W3 

20.3% (49500) 79.3% (8950C) 0.4% residue 

LOI = 30.76 

3. Mettler - BMS 8-151, type 120, sample wt - 37.43 mg; wt loss started - 2800C 

W1 W2 W3 

18.3% (4850C) 78.1% (8600C) 3.6% residue 

LOI =35.22 

4. 	 Mettler - BMS 8-143, sample wt - 6.68 mg; wt loss started - 3150 C 

W 1 W2 W3 

22.3% (4400C) 16.9% (6950C) 60.8% residue 

LOI = 37.23 

5. Mettler -	 White polyvinylfluoride film, sample wt - 35.42 mg, wt loss started - 2750C 

Wl W2 W2 W4 W 5 

27.6% (3000C) 1.4% (3400C) 21.3% (5200C) 21.6% (7200C) 28.1% residue 

LOI = 30.01 
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Table C- 1.-(Continued) 

6. Mettler - Ink overprint - acrylic, sample wt - 45.83 mg, wt loss started - 800C 

W 1 W 2 W 3
 

15.9% (315C) 24.7% (670'C) 54.4% residue 

LOI = 21.62 

7. Mettler - Clear polyvinylfluoride film, sample wt - 11.49 mg, wt loss started - 3100C 

Wi W2 W3 W4 W 5 

50.4% (4350C) 10.4% (4650C) 8.7% (5200C) 27.9% (6600C) 2.6% residue 

LO I = 46.70 

412/413 -Thermoplastic- area density = 0.2695 g/cm 2 (0.0038 lb/in.2 )
 

Sheet polycarbonate 0.2286 cm (0.090 in.) thick
 

1. Mettler - Sheet polycarbonate, sample wt - 25.94 mg; wt loss started - 4100C 

W 1 W2 W3 W4 

15.2% (4550C) 51.7% (5450C) 30.3% (6850C) 2.8% residue 

LOI = 28.25 

416/417 - Sidewall panel - area density = 0.2411 g/cm 2 (0.0034 lb/in.2 ) 

0.0813 cm (0.032 in.) aluminum 

0.0178 cm (0.007 in.) polyvinylchloride 

Polyvinylchloride ink 

0.0025 cm (0.001 in.) clear polyvinylfluoride film 

1. Mettler - Aluminum, sample wt - (not tested) 

2. Mettler - Polyvinylchloride, sample wt - 23.32 mg; wt loss started - 2450C 

W 1 W2 W3 W4 

44.3% (3600C) 12.0% (510C) 14.4% (6500C) 29.3% residue 

1 -2 LOI 60.20 

3. Mettler - Polyvinylchloride ink, sample wt - 53.54 mg; wt loss started - 850C 

WI W2 W3 W4 

32.2% (3730C) 4.6% (5000C) 10.2% (7500C) 53.0% residue 

LOI = 25.29 
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Table C-1.-(Concluded) 

4. 	Mettler - Clear polyvinylfluoride film; sample wt - 16.07 mg; wt loss started - 3000C
 

W 1 W 2 W 3 W4 W5
 

46.8% (428-C) 20.5% (450?C) 4.7% (51000) 25.2% (6550C) 2.8% residue
 

LOI = 46.70
 

NO1 - Polyurethane seat foam (CPR 9700 SE) - area density = 0.0883 g/cm2 (0.0013 lb/in.2 )***
 

Mettler - Flexible polyurethane foam 2.54 cm (1.0 in.) thick, 28.83 kg/m 3 (1.8 #/ft 3 ) density;
 
sample weight 15.12 mg; weight loss started 1950C.
 

Wi W2 W3 W4
 

7% (2800 C) 63% (4200C) 24% (7050C) 6%residue 

LOI = 23.35 

N02/N03 - Fabric-backed vinyl -area density = 0.0913 g/cm2 (0.0013 lb/in. 2 ) 

Mettler - Fabric-backed flexible polyvinylchloride, 8.14 kg/m 2 (24 oz/yd2 ); sampleweight 24.08 mg;
 
weight loss started 1809C.
 

Wl 	 W2 W3 W4 

66% (4000C) 22% (6150C) 3% (7500C) 9% residue
 

LOI = 26.98
 

*BMS - Boeing material specification
 
**BMS 8-143, type 181, is currently the same material as BMS 8-132, type 181
 

=***N00 had a thickness 2x that of the lab sample, therefore its area density 0.1776 g/cm 2 (0.0025 lb/in.2 ) 
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Table C-2 -Federal Aviation Regulations FAR 25.853 Bunsen Burner Test Data 

F 12 second test-vertical 60 second test-vertical 15 second test-horizontal 
=403 Burn length = 9.65 cm Burn length 9.91 cm Burn length = 3.05 cm 

Sidewall (3.8 in.) (3.9 in.) (1.2 in.) 
panel Extinguishing time = Extinguishing time = Extinguishing time= 

1.1 sec 1.5 sec 3.4 sec 

413 Burn length = 9.06 cm Burn length = 8.47 cm Burn length = 1.61 cm 
Thermo- (3.6 in.) (3.3 in.) (0.6 in.) 
plastic Extinguishing time = Extinguishing time Extinguishing time 

4.6 sec 6.0 sec 1.8 sec 

417 Burn length = 3,73 cm Burn length = 3.13 cm Burn length = 1.78 cm 
Sidewall (1.5 in.) (1 2 in.) (0.7 in.) 

Extinguishing time = Extinguishing time,= Extinguishing time = 

1.0 sec 1.0 sec 0.9 sec 

NOI Burn length = 11.94 cm Burn length = 13.21 cm Burn length 1.27 cm 
Polyurethane (4.7 in.) (5.2 in.) (0.50 in.) 
seat foam Extinguishing time - Extinguishing time - Extinguishing time 

Osec 1.4 sec 0.80 sec 

=N03 Burn length = 10.24 cm Burn length 7.37 cm Burn length = 1.44 cm 
Fabric- (4.03 in.) (2.9 in.) (0.57 in.) 
backed Extinguishing time = Extinguishing time = Extinguishing time ­
vinyl 0.80 sec 2.4 sec 3.7 sec 

Table C-3;-Radiant Panel Test ASTM E 162-67 Data 

Flame spread (FS) Heat evolution factor (Q) Index (1 = Fs x Q)s 

403
 
Sidewall 24.86 1.88 49.62
 
panel
 

413 
23.90Thermoplastic 4.92 4.82 

417
 
Sidewall 9.39 3.02 "28.10
 
panel
 

N01 
Polyurethane 52.47 15.79 798.82
 
seat foam
 

N03 
Fabric-backed 33.45 10.75 346.10
 
vinyl
 

44 



Table C-4.-NBS Chamber Toxicant Concentrations 

The gas collection initiated times are listed. Where bubblers were used the collection period was for 
150 seconds. NO, was always sampled using a Drager tube whose collection period was 100 seconds. 
CO was determined with an NDI R meter. 

HCN HCL HF NO x CO HBR 

403 (402) 
2.5 w/fl* - - - -

4.0 min 2.0 60 64 - 276 -

10.0 min - 149 44 5 540 -

2.5 w/smol** - - - - -

4.0 min 0.90 47 60 0 0 
10.0 min 1.4 59 46 - 0 -

5.0 w/fl* - - - -

1.5 min 0 50 149 1 204 
4.0 min 7 44 141 2 370 -

413 (412) 
2.5 w/fI* - - - -

4.0 min - 42 - - 280 -

10.0min trace 3 - 3 863 -

2.5 w/smol** - - -

4.0 min - 3 - - 0 -

10.0 min - 3 - 0-0 -

5.0 w/fl** - - - - - -

1-5 min - 458 - 2 216 -

4.0 min - 946 - 5 800 -

417 (416) 
2.5 w/fl* -- - - -

4.0 min trace 342 30 - 102 -

10.0mn - 242 39 1 222 -

2.5 w/smol** - - - - -

4.0 min 0.5 265 7 - 0 -

10.0 min 0.3 745 13 - 0 -

6.0 w/f* - - - - -

1.5mm - 312 30 0 37 -

4.0mi - 656 53 2 67 -
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Table C-4.-NBS Chamber Toxicaot Concentrations (Concluded) 

HCN HCL HF NO CO HBRx 


N01 
2.5 w/fl* - - ­

4.0 min 25 1379 - 33 - ­

10.0 min - 2514 - - -­

2.5 w/smol** - - - ­

4.0 min 5 0 - 0 83 
10.0 min - - 340
 

5.Ow/fl* - ­

1.5 min 57 1574 - 50 303 ­

4.0 min 69 1506 - 60 405 

N03 (N021 
2.5 w/fl* - - - ­

15* *  4.0 min trace 2578 2 62 ­

2.5 w/smol** - - - ­
4.0 min trace 1542 60'* 2 10 ­

50w/fl* - - - ­

1.5 min 2 736 5*** 2 687 ­

4.0 min 4 992 15"** 5 785 ­

*W/cm 2 
- flaming mode
 

**W/cm 2 
- smoldering mode
 
- derived from Drager tube data
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Figure C. .- Heat Release in the OSU Apparatus in the Vertical Bottom-Conter Ignition Mode-402/403 
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Figure C-2.-Heat Release in the OSU Apparatus inthe Vertical Bottom-Center Ignition Mode-412/413 
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Figure C-6. -Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-402/403 
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Figure C-7. -Smoke Releasein the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-412/413 
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APPENDIX D
 
LABORATORY TEST METHODS
 

This appendix describes the laboratory test methods used for this contract. Included are 
basic test procedures and results. The tests described are: Mettler Thermal Balance, Federal 
Aviation Regulation (FAR) 25.853, American Society for Testing of Materials (ASTM) 
E162-67, Limiting Oxygen Index (LOI), Ohio State University (OSU) Release Rate Appara­
tus, and the National Bureau of Standards (NBS) Smoke Density Chamber. 

METTLER THERMAL BALANCE 

The Mettler Thermal Balance (Figure D-l) is used to determine weight and enthalphy 
changes of materials in relation to temperature, pressure and time. The instrument recorded: 
(a) Thermogravimetric Analysis (TGA) - mg,.- weight loss, (b) an expanded TGA - an increased 
sensitivity scale of weight loss, (c) Derivated Weight Curve (DTG) - the weight change per 
time and (d) Differential Thermal Analysis (DTA) - records whether an endothermic or 
exothermic reaction took place. 

The tests were done in an ambient air environment, with an air flow rate of 177 cm3 /min 
(6.25 x 10- 3 ft3 /min). The chamber was heated to a maximum of 1000 C (1832°F) in 
10°C/min (180F/min) increments. If the material reactions stopped before 1000C (1832F) 
was reached, the test was terminated. For these tests, the materials were separated into their 
constituents (i.e., prepreg, decorative film, etc.) and the constituents were tested individually. 

For this program only the TGA was recorded. 

FAR 25.853 BUNSEN BURNER TEST 

The FAR 25.853 Bunsen Burner Test (Figure D-2) is run in compliance with FAA require­
ments stated in FAR Part 25.853 (Amendments 25-15 and 25-32). The Bunsen burner flame 
height was adjusted until it was 3.81 cm (1.5 in.) in height and had a temperature of 8430C 
(1550 0 F + 100) The middle of the 7.62 cm (3 in.) edge of the 7.62 cmx 30.48 cm (3 in.. 

-0x 12 in.) specimens was set at 1.91 cm (0.75 in.) above the tip of the Bunsen burner. The 
baseline materials were tested with 3 horizontally oriented specimens for 15 seconds and 
3 vertically oriented specimens for 60 seconds. The eleven proposed new NASA-JSC 
materials were tested with the ignition source applied to a minimum of 3 vertically oriented 
specimens for 60 seconds, and/or 3 vertically oriented specimens for 12 seconds, depending 
on which vertical test satisfies the FAR test requirements for the type and orientation of the 
material when used in-service. Measurements taken included burn length - cm (in.), self-ex­
tinguishing time - sec, and a visual observation of whether or not the specimen drips. 

RADIANT PANEL TEST-AMERICAN SOCIETY FOR
 
TESTING OF MATERIALS (ASTM) E162-67
 

The ASTM E162-67 (Figure D-3) is used to measure surface flammability of materials. A 
horizontally mounted gas and air pilot burner ignites the 15.24 cmx 45.72 cm (6 in. x 18 in.) 
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specimens by coming into contact with, or 1.27 cm (0.50 in.) above, the top of the specimen. 
The radiant energy source for surface flammability is a radiant energy panel that is gas and 
air supplied and set at 670'C ± 4 (1238 0 F ± 7). The orientation of the specimen is such 
that after the upper edge ignites, the flame front moves down the specimen surface. Four 
test runs are made for each type of material. 

The tests were completed when the flame progressed the full length of the specimen, or 
after an exposure of 15 minutes. Measurements taken during the test included: the rate 
of progress of the flame front, or time of arrival of the flame front at 7.62 ca (3 in.) inter­
val markers scribed on the specimen holder, and the temperature variations of the stack 
thermocouples. 

The Flame Spread Index, I s was the product of the flame spread factor, Fs, and the heat 
evolution factor, Q. 

Is = FsQ 

LIMITING OXYGEN INDEX (LOI) 

The LOI (Figure D-4) is used to rank the relative flammability of materials by measuring the 
minimum concentratiqn of oxygen (expressed as volume percent), in a slowly rising mixture 
of oxygen and nitrogen that will just support combustion. The 0.64 cm x 15.24 cm (0.25 x 
6 in.) test specimens are contained in a heat resistant glass tube, and ignited, at the upper edge 
by a natural gas igniter. Evolved gases, soot and heat are vented through a hood. 

For this test the materials were separated into their constituents (i.e., prepreg, decorative 
film, etc.) and the constituents were tested individually. 

The oxygen index, n, of the material was calculated by: 

n (percent = (100 x 02)/(02 + N2 ) 

OHIO STATE UNIVERSITY (OSU)
 
RELEASE RATE APPARATUS
 

The Ohio State University (OSU) Release Rate Apparatus (Figure D-5) is used to determine 
the release rates of heat and smoke. A pilot flame provides the ignition source and an elec­
trically heated radiant energy panel provides the heat fluxes. The heat flux is calibrated to 
the desired setting at the geometric center of the specimen. 

For the baseline materials, nine specimens, 15.24 cm x 15.24 cm (6 in. x 6 in.), were tested 
in a vertical orientation. Six of these were tested in a flaming mode and three were tested in 
a non-flaming mode. Half of the specimens tested in a flaming mode were ignited in the cen­
ter of the panel and the other half were ignited at the bottom center of the panel. Six speci­
mens, 10.16 cm x 25.40 cm(4 in. x 10 in.) were tested in a horizontal position. Three were 
tested in a non-flaming mode. Thus, a set of 15 specimens per material was run at each heat 
flux. The heat fluxes for the baseline materials were 1.5 watts/cm 2 (1.32 Btu/ft 2-sec), 
2.5 watts/cm2 (2.20 Btu/ft 2-sec), 3.5 watts/cm2 (3.08 Btu/ft2-sec) and 5.0 watts/cm 2 
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(4.41 Btu/ft2 -sec). Tests on the eleven proposed new materials were conducted at 2.5 and 
5.0 watts/cm2 (2.20 and 4.41 Btu/ft2-sec). 

Measurements included: heat - temperature difference across the environmental chamber, 
and, smoke - change in voltage in the photocell absorbing a light source beamed across the 
stack. The rate of flame spread was observed periodically through the test. 

Calculations made were: 

A. Heat Release Rate (HRR) = Specific heat of air (C) X Mass Flow Rate of Air (M) 

B. Smoke Release Rate (SRR) = Concentration (Cs) X Volumetric Flow Rate of Air (V) 

The heat release rate was integrated over time to produce total heat release. The Smoke 
release rate was operated upon by the National Bureau of Standards (NBS) Smoke Density 
Chamber equation to produce specific optical density (D.). 

NATIONAL BUREAU OF STANDARDS (NBS)
 
SMOKE DENSITY CHAMBER
 

The NBS chamber (Figure D-6) measures the increase of opacification due to smoke accumu­
lation. For the baseline materials, a minimum of 3 specimens under flaming exposure and 
3 specimens under non-flaming (smoldering) exposure were tested at 2.5 watts/cm2 (2.20
BtuJft 2-sec). A minimum of 3 specimens under flaming exposure were tested at 5.0 watts/ 
cm 2 (4.41 Btu/ft2-sec). All testing was done in accordance with the NBS chamber require­
ments. The 0.0042 m2 (0.0456 ft2 )* samples are ignited by a propane gas jet and exposed 
to a radiant energy panel. The proposed eleven new NASA-JSC materials were tested at 
2.5 watts/cm2 (2.20 Btu/ft2-sec) and 5.0 watts/cm2 (4.41 Btu/ft2-sec) flaming exposure. 

Measurements included: the percent change in light transmission, which was continually 
monitored by a photocell and recorder, and gas sampling with subsequent toxicant analysis. 
Calculations were made for the specific optical density (Ds): 

Ds = (V/AL) Log 10 100/T 

where V is chamber volume, A is specimen area and L is the light path length. 

Ds is a measure of opacification due to smoke accumulation, and can be compared for dif­
ferent materials on a unit area basis. 

Toxic gas analysis included: (A) Drager specific gas analysis tubes, (b) specific ion electrode 
and colorimetric analysis with samples collected by microimpingers. 

* This is the area of the exposed sample. The actual sample area is 0.0058m 2 (0.0625 ft2 ). 
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APPENDIX E 
NEW MATERIALS DESCRIPTIONS, LABORATORY TEST DATA, 

AND LARGE SCALE TEST RESULTS 

This appendix defines the new materials specimens and summarizes the results from the large 
scale and laboratory fire tests conducted on these materials. Laboratory data is displayed in 
the following order: 

Table E-1 

Table E-2 

Materials Descriptions, Mettler Thermogravimetric Analysis Data, 
and Limiting Oxygen Index 
Federal Aviation Regulations (FAR) 25.853 Bunsen Burner 

Test Data 

Table E-3 Radiant Panel Test ASTM E162-67 Data 

Table E-4 NBS Chamber Toxicant Concentrations 

Figures E-1-E-11 Heat Release in the OSU Apparatus in the Vertical Bottom-
Center Ignition Mode 

Figures E-12-E-22 Smoke Release in the OSO Apparatus in the Vertical Bottom-
Center Ignition Mode 

Figures E-23-E-33 Smoke Release in the NBS Chamber in the Flaming Mode 

The large scale fire test results are related for both post-crash and in-flight simulated design 
fire source conditions: 

Figures E-34-E-55 	 Apparent Heat, Smoke, and Toxicant Release from Simulated 

Design Post-Crash Fire Source Tests-New Materials 

Figures E-56-E-74 	 Apparent Heat, Smoke, and Toxicant Release from Simulated 
Design In-flight Fire Source Tests-New Materials 
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Table E- .- Materials Descriptions, Mettler Thermogravimetric
 
Analysis Data and Limiting Oxygen Index
 

NO& - Polyimide seat foam area density = 0.0141 g/cm 2 (0.0002 lb/in.2)* 

Mettler - Flexible polyimide foam 2.54 cm (1 in.) thick, sample weight 6.00 mag, weight loss
 
started 4550C.
 

W 1 	 W2 

93% (6850 C) 	 7% residue 

LOI = 37.26 

N06/N07 	 - Floor/structural partition area density = 0.2463 g/cm 2 (0.0035 lb/in.2 ) 

Phenolic/unidirectional fiberglass skin, 0.0318 cm (0.0125 in.) thick 

.A . FX resin adhesive 

FPolyimide rigid foam, 0.953 cm (0.375 ig.) thick, 80.09 kg/m 3 (5#/ft3 ) 

J A. 	 FX resin adhesive 

Phenolic/unidirqctional fiberglass skin, 0.0318 cm (0.0125 in.) thick 

1. Mettler - Phenolic/fiberglass skin; sample wt 38.17 mg, wt loss started 1200C 

W1 	 W3 W4W2 	 W5 

2.4% (2950C) 2.2% (4650C) 16.8% (700C) 2.7% (8000C) 75.9%residue 

LO = 100 (does not burn) 

2. Mettler - Polyimide foam core; sample wt 6.15 rng, wt loss started 4150C 

W1 	 W2 

93.5% (80O°C) 	 6.5% residue 

LOI 53.56 

N08/N09 	 - Sidewall panel - area density = 0.1722 g/cm2 (0.0024 lb/in.2 ) 

Polyvinylidene fluoride film 

Phenolic/unidirectional fiberglass skin, 0.0318 cm (0.0125 in.) thick 

SFX resin adhesive 

Polyimide rigid foam, 0.6350 cm (0.25 in.) thick, 48.06 kg/m 3 (3#/ft3 ) 

A 	 FX resin adhesive
 

Phenolic/unidirectional fiberglass skin, 0.0229 cm (0.009 in.) thick
 

*N04 had a thickness 2x that of the lab sample, therefore its area density = 0.0282 g/cm 2 (0.0004 Lb/in. t ) 
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Table E-1.-(Continued) 

1. Mettler - Polyvinylidenefluoridefilm (white), sample wt 13.22 mg, wt loss started 3400C 

W1 	 W2 W3 

50.8% (4350C) 44.6% (6200C) 	 4.6% residue 

2. Mettler - Phenolic/fiberglass skin - 0.0318 cm thick; sample wt 38.17 mg, wt loss started 1200C. 

W 1 W 2 W3 W4 WS 

2.4% (2950C) 2.2% (4650C) 16.8% (7000C) 2.7% (8000C) 75.9% residue 

LOI = 100 (XMP 100 skin only)
 

LOI = 88.96 [XMP 100 skin + polyvinylidene film)
 

3. Mettler - Polyimide rigid foam 48.06 kg/m 3 ; specimen wt 6.97 mg; wt loss start 3950C 

Wl 	 W2 

42.8% (7900C) 57.2% (residue) 

[O1 = 49.52 

4. 	Mettler - Phenolic/fiberglass skin 0.0229 cm thick; specimen wt 35.26 mg; wt loss start 600C 

Wl W2 W3 

7.7% (4600C) 30.0% (7500C) 62.3% (residue) 

LOI = 74.62 

N 10/N 11 -	 "Naugahyde" replacement - area density = 0.0127 g/cm2 (0.0002 lb/in.2 ) 

1. Mettler - Polyimide coated fiberglass 0.2392 gm/m 2 (3.2 oz/yd2 ); specimen wt 14.77 mg, 

wt loss start 2800C 

W	 W
1 	 2
 

19.8% (6400C) 80.2% (residue) 

LOI = 100 (will not.burn) 

N12/N13 -	 Polyimide thermoplastic replacement - area density = 0.2756 g/cm2 (0.0039 lb/in. 2 ) 

1. Mettler - Polyimide moldable material 0.2286 cm thick; specimen wt 16.62 mg; wt loss start 41000 

W 1 	 W2 

60.7% (7450C) 39.3% (residue) 

LOI = 64.76 
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Table E-1.-(Continued) 

N14/N15 - Floor board -area density = 0.3617 g/cm 2 (0.0051 lb/in.2 ) 

Phenolic/unidirectional fiberglass skin 0.0318 cm (0.0125 in.) thick 

SPhenolic resin adhesive (Narmco 9251)

f Polyimide foam filled polyamide/phenolic honeycomb core, 0.9525 cm (0.3750 in.) thick,
3 )144.17 kg/m 3 (9 #ft 

SPhenolic 	 resin adhesive (Narmco 9251) 

Phenolic/unidirectional fiberglass skin 0.0318 cm (0.0125 in.) thick 

1. 	Mettler - Phenolic/fiberglass skin with phenolic resin adhesive; specimen wt 18.70 mg, wt loss 
start 2750C 

Wl W2 W3 W4 

11.3% (4200C) 15.8% (5350C) 56.3% (6850C) 16.6% (residue) 

LOI = 100 (Phenolic/fiberglass skin only) 

2. 	 Mettler - Polyimide foam filled polyamide/phenolic honeycomb; specimen wt 24.79 mg; wt 
loss start 5006 

W1 W2 W3 W4 

3.5% (2900C) 7.5% (4500C) 87.9% (91 00C) 1.1% (residue) 

LOI = 45.15 

3. 	Mettler - Phenolic/fiberglass skin with phenolic resin adhesive; specimen wt 18.70 mg, wt 
loss start 2750C 

W1 W2 W3 W4
 

11.3% (4200C) 15.8% (5350C) 56.3% (6850 C) 16.6% (residue) 

LOI = 100 (Phenolic/fiberglass skin only) 

N16/N17 - Ceiling panel laminate -- area density = 0.1636 g/cm 2 (0.0023 lb/in 2 ) 

- Phenolic/fiberglass laminate 0.1016cm (0.040 in.) thick 

- Polyvinylidene fluoride film 

1. Mettler - Phenolic/fiberglass laminate; specimen wt 46.60 mg; wt loss start 2050C 

W1 W2 W 3 

0 7% (3000C) 25,8% (7200C) 73.5% (residue) 

LOI = 58.31 
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Table E- 1.-(Concluded) 

2. 	Mettler - Polyvinylidene film (clear); specimen wt 13.89 mg; wt loss start 2900C
 

W 1 W2 W3 W4
 

4.1% (3500C) 59.2% (5000C) 35.0% (6450C) 1.7% (residue)
 

LOI = 51.13
 

N1 8/N19 - Air ducting - area density = 0.1257 g/cm 2 (0.0018 lb/in. 2 )
 

1: Mettler - FX resin fiberglass laminate 0.0711 cm (0.028 in.) thick; specimen wt 27.75 mg, wt
 
loss start 700C
 

Wi 	 W2 

41.6% (7000C) 58.4% (residue)
 

LOI = 53.79
 

N21 - Thermal/acoustical insulation - area density- 0.0129 g/cm2 (0.0002 lb/in.2 ) **
 

1. 	Mettler - Flexible polyimidefoam 2.54 cm (1 in.) thick; specimen wt 6.12 mg; wt loss start 4100C
 

W1 W2
 

93.5% (6950C) 6.5% (residue) 

LOI = 37.56 

N22/N23 - Thermoplastic replacement - Monsanto - area density = 0.2971 g/cm 2 (0.0042 lb/in. 2 ) 

1. 	Mettler - Monsanto E200-3Z, 0.2286 cm (0.090 in.) thick; specimen wt 16.04 mg, wt loss start 3700C) 

W1 W2 W3 

64.5% (5300C) 31.9% (6650C) 3.6% (residue) 

LOI = 35.94
 

N24/N25 - Thermoplastic replacement - area density = 0.3014 g/cm2 (0.0043 lb/in.2 )
 

1. Mettler - Inorganic resin system (I RS)/glass fiber panels, 0.2286 cm (0.90 in.) thick, specimen wt 

34.48 mg ; wt loss start 60C)
 

W 1 W 2 W3 W4
 

16.8% (3250C) 18.0% (54500) 5.6% (7800C) 59.6% (residue)
 

LOI = 100 (will not burn)
 

**N20 had a thickness 3x that pf the lab sample, therefore its area density = 0.0387 g/cm 2 (0.0006 lb/in.2 ) 
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Table E-2.-Federal Aviation Regulations FAR 25.853 Bunsen Burner Test Data 

Description 12 second vertical 60 second vertical 

N05 
Polyimide Burn length = 2.12 cm (0.83 in.) 
seat foam Extinguishing time = 0 sec 

N07 Burn length = 1.61 cm (0.63 in.)Floor/structural Extinguishing time = 0 see 

partition 

N09 
Burn length = 1.78 cm (0.70 in.)Sidewall 

= Extinguishing time 0 secpanel 

Nl1 
"Naugahyde" Burn length = 3.39 cm (1.33 in.) Burn length = 4.83 cm (1.9 in.) 

replacement Extinguishing time = 0 sec Extinguishing time = 0 sec 

N13 
Polyimide Burn length = 1.86 cm (0.73 in.) 
thermoplastic Extinguishing time = 0 sec 
replacement 

Floor Burn length = 3.22 cm (1.27 in.)
board Extinguishing time = 0.1 sec 

N17
Ceiling panel Burn length = 1.20 cm (0.47 in.) Burn length = 4.49 cm (1.8 in.)laminate Extinguishing time = 0 sec Extinguishing time = 0 sec 

N19 Burn length = 3.47 cm (1.37 in.) 
Air ducting Extinguishing time = 0 sec 

N21 
Thermal/ Burn length = 3.64 cm (1.43 in.) 
acoustical Extinguishing time = 0 see 
insulation 

N23 
Thermoplastic Burn length = 5.33 cm (2.1 in.) 
replacement- Extinguishing time = 0.70 sec 
Monsanto 

N25 Burn length = 0 cm (0 in.) 
Thermoplastic Extinguishing time = 0 sec 
replacement 
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Table E-3.-Radiant Panel Test ASTM E162-67 Data 

Description Flame spread factor (Fs) Heat evolution factor (Q) Index (Is = Fs x Q) 

NOS 
Polyimide 1.00 1.64 1.64 
seat foam 

N07 
Floor/ 1.00 1.76 1.76 
structural 
partition 

N09 
Sidewall 1.89 1.67 3.19 
panel 

Nil 
"Naugahyde" 1.00 1.50 1.50 
replacement 

-N13 
Polyimide 1.00 1.72 1.72 
thermoplastic 
replacement 

N15 
Floor 1.00 1.64 1.64 
board 

N17 
Ceiling panel 1.00 2.32 2.32 
laminate 

N19 
Air 1.00 2.68 2.68 
ducting 

N21 
Thermal/ 1.00 1.71 1.71 
acoustical 
insulation 

N23 
Thermoplastic 9.56. 26.11 246.21 
replacement-
Monsanto 

N25 
Thermoplastic 1.00 2.11 2.11 
replacement 

Note: Data isan average of 4 specimens 
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Table E-4.-NBS Chamber Toxicant Concentrations 

The gas collection initiated times are listed. Where bubblers were used the collection period was for 
150 seconds. NOx was always sampled using a Drager tube whose collection period was for 100 
seconds. CO was tested for using an NDIR meter. 

HCN HCL HF NO x CO HBR" 

N05 
2.5 w/fl* 

1.5 min 0 
-

15 
-
0 

-
trace 25 

-
-

4.0 min 
5.0 w/fl* 

1.5 min 
4.0 min 

0 
-

32 
30 

27 
-

5 
7 

0 
-

5 
4 

trace 
-

5 
10 

46 
-

188 
670 

-

-

-

N07 (N06) 
2.5 w/fl* 

1.5 min 
4.0min 

5.0 w/fl* 
1.5min 
4.0 min 

-

3 
3 
-

14 
17 

-

34 
33 
-
20 
-

-

0 
0 
-

0 
0 

-

2 
3 

-

2 
10 

-

20 
59 
-

81 
303 

-

-
-

-

-

N09 (NO8) 
2.5 w/fl* 

1.5 min 
-

trace 
-
55 

-
0 

-
3.0 

-

32 -

4.0 min 
5 w/fl * 

1.5min 
4.0 min 

3.0 
-
18 
22 

96 
-
32 
39 

0 
-

216 
124 

trace 
-
4 
5 

111 
-

176 
410 

-

-

-

-

Nl (N10) 
2.5 w/fl* 

1.5 min 
4.0min 

5,0 w/fl* 
1.5mm 
4.0 min 

-
0 
0 

-
0 
0 

-
4 
5 

8 
7 

-
0 
0 

-
5 
0 

-
trace 
trace 

-
trace 

1.0 

-

12 
18 

17 
30 

-

-

-

-

-

N13 (N12) 
2.5 w/f* 

1.5 min 
4.0 min 

-
0 
0 

-

21 
54 

-

0 
0 

-

0 
2 

-

11 
29 

-

5.0 w/fl* 
1.5 min 
4.0 min 

-
24 
28 

-
11 
8 

-
0 
0 

-
4 
1 

-
5 

152 
-

-
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Table E-4.--NBS Chamber Toxicant Concentrations (Concluded) 

HCN HCL Hr NOx CO HBR 

N15 (N14) 
2.5 w/fl* 

1.5 in 
4.0 min trace 

-

27 

-

-

-

-

5 
-

-

19 

-

'0 
5.0 w/fl* 

1.5min 
-
15 

-
0 

.-
- 18 

-

76 
-

0 
4.0 min 33 0 - 30 310 0 

N17 (N16) 
2.5 w/fl* 

1.5 min 0 
-
8 

-
42 

-

trace 16 
-

4.0 min 
5.0 w/fl* 

1.5 min 

0 
-
0 

25 
-
20 

41 
-

176 

trace 
-

2 

54 
-

36 -

4.0min 4 19 164 2 128 -

N19 (N18) 
2.5 w/f* 

1.5 min 
4.0 min 

-
0 
0 

-

6 
8 

-

0 
0 

-

0 
0 

-

11 
68 

-

-

5.0 w/fl* 
1.5 min 
4.0 min 

-
0 
0 

-
8 
4 

-
1 
0 

-

0 
1 

-­

53 
215 

-

N21 
2.5 w/fl* 

1.5 min 
-
0 

-
8 

-
0 

-

trace 
-

14 
4.0 min 

5.0 w/fl* 
1.5 min 
4.0min 

2 
-

32 
34 

20 
-
11 

5 

0 
-

1 
2 

trace 

trace 
3 

39 
-

87 
423 

N23 (N22) 
2.5 w/f* 

1.5 min 
4.0min 

-
0 
2 

-

9 
10 

-

0 
0 

-

0 
trace 

-

11 
133 

-

5.0 w/fl* 
1.5 min 
4.0 mm 

-.­
0 
0 

-
5 
5 

-
0 
0 

trace 
trace 

70 
293 

N25 (N24) 
2.5 w/fl* 

1.5 min 
4.0 min 

-

0 
0 

-

37 
38 

-

0 
0 

trace 
trace 

-

10 
15 

5.0 w/fl* 
1.5 min 
4.0 min 

-
0 
0 

-
103 
253 

-
6 
9 

-
0 
0 

-
4 

23 -­

*W/cm 2 - flaming mode 
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Figure E-10.-Heat Release in the OSU Apparatusin the Vertical Bottom-Center Ignition Mode-N22/N23 
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Figure E-13.-Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-NO6/N07 
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Figure E- 14.-Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-NO/NO9 
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Figure E-18.-Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-N16/N17 
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Figure E-19.-Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-N1A/N19 
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Figure E-22. -Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-N24/N25 
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Figure E-21.-Smoke Release in the OSU Apparatus in the Vertical Bottom-Center Ignition Mode-N22/N23 
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Figure E-29. -Smoke Release in the NBS Chamber in the Flaming Mode-N16/N17 
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Figure E-30. -Smoke Release in the NBS Chamber in the Flaming Mode-N 18/IN19 
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Figure E-31. -Smoke Release in the NBS Chamber in the Flaming Mode-N21 
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Figure E-32.-Smoke Release in the NBS Chamber in the Flaming Mode-N22/N23 
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Figure E-33.-Smoke Release in the NBS Chamber in the Flaming Mode-N24/IN25 
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Figure 21.-AirlinePillows Fire Source 
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Figure 29.-Design In-flight Fire Source-Light Transmission over a 0.92 M (3 Ft) Path at the 1.52 M (5 Ft) Head Level 
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Figure 31.-Design In-flight Fire Source Apparent Release Rates 
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Figure 32.-Design Post-crash Fire Source-Standardized Conditions 
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Fire damage Calculated total toxicant 

Material sample 
number 

%loss of wt 

NASA Boeing HF 

released-grams (10-2 Ib) 

HCL HCN 
fuel simulated 
fire fire NASA Boeing NASA Boeing NASA Boeing 

NOD -100 -1O0 - 0 12.25 42.54 '1.81 5.91 

(0) (2.7) (9.378) (0.40) (1.303) 

N02 -100 -100 0.91 0 35.20 428.6 Not 
(0.20) (0) (7.76) (94.5)( tested

for 

402 27-32 12-13 13.05 12.38 19.89 1.93 0.85 
(2.877) (2.73) (4.384) (0.426) (0.187) 

416 9-13© 5-10 1.81 7.16 5.34 90.15 Not 
(0.40) (1.579)0 (1.177) (19.875)5 - tested 

for 

(D Large value due to HCN-ion interference 

( Does not include aluminum wt loss 

Q Average of two tests 

Figure 47.-Comparison of Fuel Pan and Simulated Fire Results 
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Fire damage 
%toss of wt 

Calculated total toxicant 
released-grams (lb x 10-2) 

Material sample 
number NASA Boeing HF HCL HCN 

fuel simulated 
fire fire NASA Boeing NASA Boeing NASA Boeing 

N00 
Modified Boeing -100 i100 - 0 12.25 1.03 1.81 2.93 
fire simulation (0) (2.7) (0.227) (0.40) (0.646) 

N02 
Modified Boeing .- 100 -100 0.91 0 35.20 1.71 - 0.549 
fire simulation (0.20) (0) (7.76) (0.376) (0.121) 

402 
Modified Boeing 9-13D 8-14 18.78 12.38 63.07 1.93 0.41 
fire simulation (4.13) .(2.73) (13.90) (0.426) (0.09) 

416 
Modified Boeing 27-32 18-19 1.81 5.94 5,34 45.99 0 
fire simulation (0.40) (1.31) (1.177) (10.14) (0) 

(G) Does not include aluminum wt loss 

Figure 50.-Comparison of Fuel Pan and Modified Simulated Fire Results 
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Figure 51. -Material 402 After Design Post-crash Fire Source Test 
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Figure 52.-MaterIa1402 After Simulated Post-crashFire Source Test 
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Figure 53.-Material 416 After Design Post-crash Fire Source Test 

219
 



Figure 54.-Material 416 After Simulated Design Post-crash Fire Source Test 
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Figure 55a-Material WOO After Simulated Design Post-crash Fire Source rest 
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Figure 56.-Material 412 After Simulated Design Post-crash Fire Source Test 
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Figure 58.- Design In-flight Fire Source, Average Heat Flux at Calorimeter 1 
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Figure 59.- Simulated Design In-flight Fire Source Heat Flux at Calorimeter 1 
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Figure 60.- Simulated Design In-flight Fire Calibration Panel Heat Flux Distribution-Stage I 
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Figure 65.-Existing Laboratory Test Methods 
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- FAR 25.853 
Baseline Large scale heat Bunsen burner ASTM E162-67

material release for 215 sec's -burn length- flame spread test
number(® Joules (Btu) cm (in.) 0 Q ISFS 

N02JN03 4'54 x 106 (4300) 10.24 (4.03) 33.45 10.75 346.1 

402/403 1.79 x 106 (1700) 9.91 (3.9) 24.86 1.88 49.62 

412/413 4.85 x 106 (4600) 8.47 ( 3.3) 4.92 4.82 23.9 

416/417 2.00 x 106 (1900) 11.85 ( 4.7) 9.39 3.02 28.10 

Large specimen no./laboratory specimen no. © 60 second vertical ignition 

Figure 66.-Evaluation by Laboratory Flammability Indices for Post-crash Condition 
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Figure 67.-Relative Flammability by Laboratory Indices for Post-crash Condition 



Baseline Large scale heat OS, release rate for 215 see, J/cm2 (Btu/ft 2 )
 
material release for 215 sec
 
number® Joules (Btu) 1.5 (1.32)® 2.5(2.20) 3.5 (3.08) 5.0 (4.41)
 

N02/NO3 4.54 x 106 (4300) 698 (615) 647 (570) 558 (490) 647 (570) 

402/403 1.79 x 106 (1700) 74 (65) 250(220) 409 (360) 698 (615) 

412/413 " 4.85 x 106 (4600) 278(245) 1055 (930) 1475(1300) 1986 (1750) 

416/417 2.00 x 106 (1900) 102 (90) 420 (370) 386 (340) 471 (415) 

( Large specimen no./laboratoryspecimen no. 

Q Vertical, flaming, bottom-center ignition 

O W/cm 2 (Btu/ft 2-sec) 

Figure 68.-Evaluation by OSU Heat Release for Post-crash Condition 
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Figure 69.-Relative Heat Release by OSU Release Rate Apparatus for Post-crash Condition 
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Baseline Large scale smoke NBS smoke release for 90 sec, DsQ)
 
material release for 90 seconds
 
number®G) kilograms (pounds) at 2.5 (2.20)® at 5.0 (4.41)(2)
 

N02/N03 1.50 x 10- 1 (3.30 x 10- 1)  300.0 350.0 

402/403 1.14x 10- 1 (2.51 x 10-1) 75.0 105.0 

412/413 8.30 x 10- 2 (1.83 x 10-2) 0.0 210.0 

416/417 7.71 x 10- 2 (1.70 x 10-1) - 3.0 15.0 

(1) Large specimen no./laboratory specimen no.
 

() Flaming mode
 

®) W/cm 2 (Btu/ft 2-sec)
 

Figure 70.-Evaluation by NBS Smoke Chamber for Post-crash Condition 
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Figure71.-Relative Smoke Release by NBS Chamberfor Post-crashConditions 



Baseline Large scale smoke OSU smoke release for 90 seconds, Ds(
 
material release for 90 seconds
 
numbera® kilograms (pounds) at 1.5 (1.32)(a) at 2.5 (2.20)3 at 3.5 (3.08)w at 5.0 (4.41)(a)
 

N02/N03 1.50 x 10-1 (3.31 x 10-1) 100.0 212.0 270.0 310.0 

402/403 1.14x 10-1 (2.51 x 10-11 7.0 79.0 88.0 82.0 

412/413 8.30 x 10-2 (1.83 x 10-1) 20.0 56.0 197.0 462.0 

416/417 7.71 x 10-2 (1.70 x 10-1) 7.0 38.0 70.0 90.0 

T Large specimen no./laboratory specimen no. 

(2) Vertical, flaming, bottom-center ignition 
(I W/cm 2 (Btu/ft 2-sec) 

Figure 72.-Evaluation by OSU Smoke Release.for Post-crash Condition 
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Figure73.- Relative Smoke Release by OSU Release Rate Apparatus for Post-crash Condition 



Baseline Large scale toxic gas released NBS chamber toxic gas released
 

material at 300 sec-grams (10- 2 lb) 0) at 300 sec, at 2.5 and 5 W/cm 2 -grams (10-2 lb)® ©
 
number HF HCL HCN CO HF® HCL HCN(© COo
 

116.921.71 0.55N02/N03 0 
(0) (0.376) (0.121) (25.777) 

0 1.91 0 0.04 
at 2.5 W/cm2 (0.421) (0.008) 
at 5.0 W/om2 0 0.73 0 0.44 

(0.162) (0.098) 

24.39402/403 18.77 63.07 0.41 
(4.138) (13.904) (0.090) (5.377) 

0.027 0.044 0.0009 0.156 
at 2.5 W/cm 2 

(0.006) (0.010) (0.0002) (0.034) 

0.059 0.033 0.003 0.209 
at 5.0 W/cm2 

(0.013) (0.007) (0.0006) (0.046) 

0 0.86 0.38 58.93 
412/413 (0) (0.190) (0.084) (12.991) 

at 2.5 W/em 2 0 0.031 0 0.158 
(0.007) (6.035) 

0 0.701 0 0.452 
at 5.0 W/cm 2 (0.154) (0.0996) 

5.94 45.99 0 30.00
(1.310) (10.140) (0) (6.614) 

0.010 0.253 0 0.058 
at 2.5 W/cm 2 (0.002) (0.056) (0.013) 

0.022 0.486 0 0.038 
at 5.0 W/cm 2 (0.005) (0 107) (0.008) 

() Large scale volume = 39.64 M3 (1400 ft 3 ) 

(2) NBS chamber volume = 0.509 M3 (18 ft 3 ) 

(® Totals calculated at aconstant temp. (350 C (950 F)) for the entire test 

Figure 74.-Evaluation by NBS Chamber Toxicant Release for Post-crash Condition 
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Figure 75.-Relative Toxicant Release by NBS Chamber for Post-crash Condition, Hydrogen Fluoride (HF) 
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Figure 77.-Relative Toxicant Release by NBS Chamber for Post-crash Condition, Carbon Monoxide (CO) 



Baseline Large scale heat OSU(2)heat release for 300 seconds, J/cm2 (Btu/ft 2 ) 

material release for 300 seconds 
number() Joules (Btu) at 1.5 (1.32)() at 2.5 (2.20)(3) at 3.5 (3.08)3) at 5.0 (4.41)(3) 

N02/N03 5.75x 106 (5450) 620(547) 568 (501) 495 (437) 575 (507) 
402/403 1.74x 106 (1650) 88 (78) 248 (219) 420 (370) 765 (675) 
412/413 9.28 x 105 (880) 432 (381) 1600 (1411) 1968'(1736) 2515 (2218) 
416/417 2.11 x 1o6 (2000) 110 (97) 442 (390) 400 (358) 515 (454) 

(0 Large specimen no./laboratory specimen no. 

() Vertical, flaming, bottom-center ignition 
) W/cm 2 (Btu/ft 2 -sec) 

Figure 78.-Evaluation by OSU Heat Release for In-flight Condition 
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Figure 79.-Relative Heat Release by OSU Release Rate Apparatus for In-flight Condition 
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Figure 80.-Relative Flammability by Laboratory Indices for In-flight Condition 



Baseline Large scale smoke OSU2)smoke release for 300 seconds, DS 
material release for 300 seconds 
numbero kilograms (pounds) at 1.5 (1.32)(®) at 2.5 (2.20)3 at 3.5 (3.08)(3) at 5.0 (4.41)2) 

-N02/N03 1.75x 10 1 (3.85 x 10-1) 122.0 215.0 270.0 310.0 

402/403 6.67 x 10-2 (1.47 x 10-1) 7.0 70.0 85.0 90.0 

412/413 1.46 x 10-2 (3.23 x 10-2) 168.0 576.0 1025.0 1450.0 

416/417 8.62 x 10-2 (1.90 x 10-1) 10.0 40.0 70.0 90.0 

( Large specimen no./laboratory specimen no. 
() Vertical, flaming, bottom-center position 

®) W/cm2 (Btu/ft 2-sec) 

Figure 81.-Evaluation by OSU Smoke Release for In-flight Condition 
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Figure 82.-Relative Smoke Release by OSU Release Rate Apparatus for In-fligf"tt Conditions 



Baseline Large scale smoke NBS smoke release for 
material release for 300 seconds 300 seconds, Ds (I) 

at 2.5 (2.20) at 5.0%Z(4.4l)
number® kilograms (pounds) 

N02/N03 1.75 x 10-1 (3.85 x 10-1) 480.0 350.0
 

402/403 6.67 x 10-2 (1.47 x 10- 1 ) 70.0 110.0
 

412/413 1.46 x 10-2 (3.23 x 10-2) 315.0 640.0
 

416/417 8.62 x 10-2 (1.80 x 10-1) 110.0 140.0
 

G) Large specimen no./labatory specimen no. 

() Flaming mode 

(0) W/cm2 /(Btu/ft 2-sec) 

Figure 83.-Evaluation by NBS Smoke Chamber for In-flight Condition 
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a Lavge scale toxic gas released NBS chpmber toxic gas released 

material b t
 
number 
 HF HCL HCN GO HF(®) HCL(®) HCN® 

0.327 66.93N02/NO3 0 56.97 
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() NBS chamber volume = 0.509 M3 (18 ft 3)
 
(D Totals calculated at a constant temp. (350C (950 F)) for entire test
 

Figure 85.-Evaluation by NBS Chamber, Toxicant Release for In-flight Condition 
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Figure 86.-Relative Toxicant Release by NBS Chamber for In-flight Condition, Carbon Monoxide (CO) 
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Figure 89.- Correlation Assuming Two Heating Rates for Post-crash Condition 
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Figure 90.- Heat Release from Simulated Post-crash Fire Source Tests 



(Btu) 106 joules 
10000 1 

10.0 402/403 

8000 
/ 

/ 

/ 
412/413 

416/417 
N02/NOS 

8.0 / 

6000 

C, 6.0/ 

" 4 0 0 0  4.0/ 
/ 

/• 

2000 3.0 / 

0 I I 

0 60 120 180 240 300 

Time-seconds 

Figure 91.- Heat Release from Area Summation of OSU Data (Four 

Heating Rates) for Post-crash Fire Conditions 
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Figure 93.-Heat Release from Proportional Area Summation of OSU Data 
(Two Heating Rates) for Post-crash Fire Conditions 
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Figure 94.- Smoke Release from Simulated Post-crash Fire Source Tests 
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Figure 96.-Smoke Release From Area Summation of OSU Data (Two Heating Rates) for Post-crash Fire Condition 
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Figure 97.- Smoke Release from Proportional Area Summation of OSU Data 
(Two Heating Rates) for Post-crash Fire Conditions 
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Figure 99.- Correlation Assuming Two Heating Rates for Stage Il/n-flight Condition 
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Figure 102.-Heat Release from Simulated (nflightFireSource Tests 
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Figure 107.-Smoke Release from Area Summation of OSU Data (Four Heating Rates) for In-flight Fire Condition 
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Figure 108.-Smoke Release from Area Summation of OSU Data (One Heating Rate) for In-flight Fire Condition 



kg 

(Ib) 

0.50 Smoke release = 0.58 (A2 .5 (0SU 2 .5 )] 

A2 .5 - area of large sample at 2.5 W/cm2 

/
/ 

-

---

402/403 
.412/413 

1.00 (2.2 Btu/ft 2 -sec) ... 416/417 

OSU 2 .5 - heat release from OSU at 2.5 W/cm 2 - N02/N03 

0.40 (2.2 Btu/ft 2 -sec) 

0.80 

0.600 
0.30 

E.2 

0.20 
0
H- 0.40 

/ 
If11 

0 ­
60 120 180 240 300
 

Time-seconds 

Figure 109. -Smoke Release from Proportional Area Summation of OSU Data
 
(One Heating Rate) from In-flight Fire Conditions
 



Temperature difference converted 
to heat release 

Response with material 
and backup plate 

I-
Ea D 

Response with dummy only 

Time 

Figure 710. -Method of I-loat Release Calculation from. OSU 



0 

,/-Theoretical response without 
heat transfer to test fixture 

\y Actual response 

Time 

Figure 111.-Thermal Lag Characteristics of Heat Release Data from OSU Apparatus 
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Figure 118.,-Relative Smoke Release by Thermoplasticsand Thermoplastic Replacements at90 Seconds 
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Figure 119.-Relative Heat Release by Thermoplasticsand ThermoplasticReplacements at215 Seconds 
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Figure 120.-Combining of Heat Release Rates for the Design Post-crash Fire Source and Material 416 
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Figure 121. -Determining t(204 oC) for Material4 16 from PredlictedCabin Air 7Temperature
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Figure 122.-Determining t(j %) for Material 416 from Predicted "CabinLight Trahsmission 
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