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1.0	 EXECUTIVE SUMMARY

	

1.1	 Purpose of Effort and Degree of Performance

The overall objective of the effort has been to critique the

design and assess the performance of the Orbiter Ku-band radar/communica-

tion equipment. The work has three principal aspects:

(1) Review the architecture of the HAC Ku-band equipment and

assess the design in regard to compatibility with NASA performance

requirements over the specified environments.

(2) Review data from tests performed by HAC on the Ku-band bread-

board hardware and the engineering model and identify any discrepancies

between predicted (design analysis) performance and measured (test data

analysis) performance and provide recommendations to NASA in those areas

not providing satisfactory performance.

(3) Evalute the Ku-band hardware product design and identify any

problem areas with recommendations for possible alternatives.

The degree of results produced with respect to objective (2) is

directly proportional to design and test data available from the Ku-band

radar/communication equipment contractor, HAC. Additional testing by HAC,

Rockwell and NASA is needed before full evaluations are possible.

	

1.2	 General Approach to the Activity

The general approach has been to work with cognizant NASA per-

sonnel and individuals at RI and HAG to ascertain directions taken. A

vital part of this activity has involved Axiomatix attendance and parti-

cipation in the regular monthly program reviews as well as all special

meetings at HAC. These latter gatherings usually involved detailed dis-

cussions on design and specification issues that surfaced at the regular

monthly reviews.

Each month, Axiomatix prepared a Monthly Technical Report which

contained a brief summary of all relevant technical activity, including

design reviews, technical conferences, design and analysis efforts and

results, critical problem areas, and a forecast of effort for the next

monthly reporting period. In addition, Axiomatix prepared a report for

each of the tasks. This Final Report summarizes the results of these

reports.
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1.3	 Contents of the Final Report

This report provides information on all activities with which

Axiomatix was involved during CY78.

Section 2.0 is an expanded introduction which addresses the

in-depth nature of the tasks and indicates continuity of the reported

effort and results with previris work and related contracts.

Two major modes of operation exist in the Ku-band system, namely,

the radar mode and the communication mode, as seen in Figure 1. The

Ku-band radar system is designed to search for a target in a designated

or undesignated mode, then track the detected target, which might be

cooperative (active) or passive, providing accurate estimates of the tar-

get range, range rate, angle and angle rate to enable the Orbiter to'

rendezvous with this target. The radar mode is described along with a

summary of its predicted performance in Section 3.0. The principal sub-

unit that implements the radar function is the Electronics Assembly 2

(EA-2). The relationship of EA-2 to the remainder of the Ku-band system

is shown in Figure 2. Section 4.0 presents a block diagram of EA--2

including the main command and status signals between EA-2 and the other

Ku-band units.

The Ku-band communication mode is designed to enable the Orbiter

to communicate with the Tracking and Data Relay Satellite (TDRS). This

requires angle tracking of the TDRS as well as a forward link to receive

from the TDRS and a return link to transmii to it. various functions

have to be performed in order to recover the data in the forward link.

The main functions can be summarized in tracking the received carrier,

despreading of any existing spread spectrum signal, then either passing

the signal through an amplifier and line driving stage (buffering) or

detecting the data by performing bit and frame synchronization before

sending it to the Orbiter. Two modes can be selected in the return link

whereby both channels are quadriphase modulated on a subcarrier, then

either quadriphase modulated with a third channel on a carrier in one

of the modes or added to the third channel to frequency modulate a

carrier. Detailed descriptions of the forward and return links are

discussed in Sections 5.0 and 6.0 respectively.

In order to operate the Ku-band system and select the required

modes, various power supply voltages and command signals are generated.
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These are briefly discussed as part of Sections 7.0, 3.0 and 9.0, which

are devoted to the description and discussion of the actual subunits

being built by HAC and which are shown in Figure 2 with the major signals

between the units as well as between the units and the Orbiter. As shown

in this figure, these units are:

1. Deployed Mechanical Assembly (DMA)

2. Deployed Electronic Assembly (DEA)

3. Electronic Assembly 1 (EA-1)

4. Electronic Assembly 2 (EA-2) (presented in Section 4.0)

5. Signal Processing Assembly (SPA)

The product design considerations for the Ku-band integrated

radar and communication equipment are presented in Section 10.0. The

equipment, as designed by HAC, is comprised of four line replaceable units
(LRU). One of these LRUs is a deployed assembly (DA) located within the

payload bay. It is deployable upon opening the payload bay door. The

other three LRUs are EA-1, EA-2, and SPA.

Finally, Section 11.0 presents a cumulative index of the major

HAC documents describing the Ku-band radar/communication system. The

intent of the index is to provide a cohesive reference to the various
documents describing the system. Information relevant to any one of the

subsystems may be contained in several documents; the index should help

those who are familiar with the system to access needed information and

those who are not to gain an understanding of the functions of the system.

1.4	 Design Evaluation Summary

This section presents a summary of the major potential problems

found in this study. The potential problems in each Ku-band system sub-

unit are identified, and possible alternatives are suggested when this

is applicable.

1.4.1	 Deployed Mechanical Assembly

There are two major areas of concern pertaining to the Ku-band

antenna system:

(1) Although the specifications require the antenna sidelobes
to be at least 18 dB below the main lobe, the current test figures show

'r
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that the sidelobes can be as high as I4 dB below the main lobe. This

might create a problem in sidelobe discrimination, especially in the

radar mode.

(2) Since the primary MRS search mode is now the GPC designate

because of the inability of the TDRS angle tracking circuitry to with-

stand a Iarge rate of signal power change, it was recommended that the

wide beam horn polarization be changed to linear polarization. This

would help the sidelobe rejection capabilities in the radar move.

	

1.4.2	 Deployed Electronic Assembly

The DEA test data show that the unit is meeting the specifica-

tions in all major tests performed. It should be noted, however, that

the transmitter/receiver microwave subunit has not yet been adequately

documented, which limits the ability of analyzing it in more detail for

any potential problems.

	

1.4.3	 Electronic Assembly i

The receiver part of the EA-1 appears to be meeting the specifi-

cations. In particular, (1) with the loop SNR predicted for the Costas

loop of the forward link, the data detection capability of the loop is

degraded very little within the C/N0 operational range; (2) the computa-

tions show that a maximum acquisition time of 70 cosec is needed in no-

noise for the Costas loop to pull-in; and (3) both analysis and experi-

mental data show that the tau-dither loop is expected to meet the tracking

specifications of 0.022 chips. A worst-case degradation is not expected

to exceed 0.14 dB.

One aspect of the PSK data demodulator design which requires

closer examination is that of using the 5.92 kHz "dither" signal in

modes other than CW reception. For the CW mode, the dither signal is

obviously required to provide the sideband which can be utilized by an

AC coupled Costas loop for coherent carrier acquisition and tracking.

However, for the case when biphase--L data is being received, the require-

ment for a dither waveform is questionable because the spectrum of the

data does not contain DC, i.e., the carrier, anyway. Locking up to and

tracking of such biphase-L data with an AC coupled loop should not present

a problem.

r.
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Introduction of an asynchronous dither signal into the received

• IF signal biphase modulation and subsequent removal of this signal from

the baseband data by a chopper may result in "glitches" which, in turn,

may degrade the BFR performance.

Consequently, it is recommended that the function of the dither

signal during reception of the biphase-E data be reexamined and, if it

is not found to be justifiable, use of dither in the data receive mode.

be discontinued.

As far as the scanning function of the FA-1, the data presented

at the PDR points out that the 30% overlap specification is not met.

The HAC digital simulation results show that the overlap is about 25% in

the radar main scan and only 12% in the communication main scan. This

problem deserves special attention due to its impact on the system per-

formance in the search mode.

1.4.4	 Electronic Assembly 2

The radar mode, which is the primary function of the EA-2,

appears to be meeting specifications in most cases of interest. The

major problems in the EA-2 can be summarized as:

(1) Detection margins are negative for the worst-case design

and are marginal for the average--losses design at 10 nmi. An increase

in the scanning time from 1 min to 2 min is recommended to assure ade-

quate performance.

(2) Angle rate accuracies are marginal for some ranges and the

angle rate transient response to accelerations normal to the line-of-sight

does not settle fast enough within the specifications. Any attempt to

widen the angle loop bandwidth to improve transient response will have an

inverse effect on the steady-state tracking performance of the loop. It

is believed that, unless major design changes are made, a compromise

between steady-state performance and transient performance of the angle

tracking loop has to be worked out.

(3) There is a discrepancy between the range rate logarithmic

discriminant error calculated by Axiomatix and that calculated by Hughes.

This might be due to the method that HAC is implementing to map between

the doppler offset and the expected mean of the discriminant. Further

HAC documentation is needed before this discrepancy can be resolved.
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(4) It is believed that the angle and angle rate measurements for

large targets will not be dependable at close ranges. These ranges are

functions of the target size and shape. It is recommended that further

analysis be performed before an optimum solution to this problem is

reached.

It should be emphasized that a close agreement is found between

analytical performance curves derived by Axiomatix and available data

supplied by HAC.

t	 1.4.5	 Signal Processing Assembly

The detailed evaluation of the SPA data is discussed in Section

9,0. The two main functions of the SPA are the forward link bit syn-

chronization and frame decommutation and the return link baseband three-

channel signal modulation.

The first and main function of the SPA forward link signal pro-

cessing is to establish bit synchronization before frame decommutation

can take place. The bit synchronizer implemented by HAC includes an

ambiguity resolver which distinguishes midbit transitions from between-

bit transitions of the incoming 215 kbps biphase-L data. The detailed

analysis of the bit synchronizer is presented in Appendix F.

A description of the ambiguity resolver and numerical results of

the performance analysis are presented in Section 9.3, with the complete

performance analysis presented in Appendices F and G. However, no test

data is available yet for comparison.

Several observations can be made concerning the bit synchronizer:

(1) The calculations show that the degradation in signal-to-noise

ratio due to imperfect bit timing does not exceed 0.75 dB for R d > 2 dB

(Rd= E b/NO ), which is well below the specifications of 1.0 dB and in

agreement with most of the available data. Some test data, however,

show that, for high temperatures (85°C), the loss can be between 1-1.5 dB.

(2) For given values of in-phase decision threshold and transi-

tion density, tracking jitter decreases with an increase in signal-to-noise

ratio, Rd . This is intuitively correct because better performance should

be expected at higher signal-to-noise ratios. It is pointed out, however,

that the test data supplied by HAC show a reverse trend at high R d , where



the loss which is proportional to the tracking jitter is shown to increase

' with the increase of signal-to-noise ratio.

E (3)	 The test data show that, in order for the bit synchronizer

loop to acquire and maintain lock over the full temperature range of -20°C

to 85°C, signal-to-noise ratios of Z dB and 5.9 dB might be needed for

random data and alternating data, respectively. 	 At the same time, the

available test data show that acquisition is taking place down to 0 dB

with a wide frequency pull-in margin that exceeds by far the specifica-

tions of x-22 Hz.	 Though a possible small margin of signal-to-noise ratio

above 0 dB might be warranted to allow for component aging, the value

of 5.9 dB is believed to be high for such tolerances.

t
1.9.6	 System Software

In order to assure proper functioning of the Ku-band system hard-

ware, the system software has to be completed. 	 The lack of documentation

of the software design, the required memory size, and the cycle time make

it impossible to evaluate this important part of the Ku-band system.	 This

constitutes a major problem in the evaluation of the system and cannot be

resolved before adequate documentation is made available.

r
1.5	 Continuing-Effort

Axiomatix will continue to support the overall Ku-band system

developments and, 	 in particular, all activities associated with develop-

ment of the Ku-band avionic hardware. 	 During CY79, this effort will

- include:

ry
(1)	 Development test performance evaluation

(2)	 Qualification test performance evaluation

(3)	 Radar range test evaluation

(4)	 Ku-band high-gain antenna/widebeam horn design evaluation.

In addition, Axiomatix will be working with all concerned agencies (prin-

cipally, NASA, RI and HAC) to solve design and operational problems in a

timely, efficient, low--cost manner.
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2.0	 INTRODUCTION

This Final Report summarizes the design evaluation and performance

assessment of the Orbiter Ku-band radar/communication equipment being

developed by Hughes Aircraft Company (HAC) under subcontract from Rockwell

International (RI).

2.1	 Statement of Work

2.1.1	 Objectives

The overall objective of the effort has been to critique the

design and assess the performance of the Orbiter Ku-band radar/communica-

tion equipment. The work has three principal aspects:

(1) Review the architecture of the HAC Ku-band equipment and

assess the design in regard to compatibility with NASA performance

requirements over the specified environments.

(2) Review data from tests performed by HAC on the Ku-band bread-

board hardware and the engineering model, identify any discrepancies

between predicted (design analysis) performance and measured (test data

analysis) performance, and provide recommendations to NASA in those areas

not providing satisfactory performance.

(3) Evaluate the Ku-band hardware product design and identify any

problem areas with recommendations for possible alternatives.

2.1.2	 Stipulated Tasks

The contract statement of work calls out the following tasks:

"Task #1	 Ku -Band Equipment Design Evaluation

The contractor shall perform evaluation analysis of the
Ku-band design as depicted in the Ku-band contractor sche-
matic diagrams. The contractor shall assess the design
in regard to compatibility with NASA performance require-
ments over the specified environments. In addition, the
contractor shall identify areas of the design that may
involve high technical risk or marginal performance and
recommend alternate designs. The results of the Ku--band
Equipment Design Evaluation shall be detailed in the
Design Evaluation Report.
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.	 Task #2. Ku-Band Breadboard Test Analysis

The contractor shall provide analysis of Ku-band breadboard
' hardware test data as presented by the Ku-band contractor.

The contractor shall verify that the test data supports the
NASA requirements. The contractor shall identify any dis-
crepancies between predicted (design analysis) performance
and measured (test data analysis) performance of the bread-
board hardware, and provide recommendations to the NASA in
those areas not providing satisfactory performance. The
results of the Ku-band Breadboard Test Analysis shall'be
reported in the Test Data Analysis Report.

Task 73. Ku--Band Product Design Anal sis

The contractor shall provide evaluation of the Ku-band hard-
ware product design. This shall include, but not be limited
to, review of the box layouts, enclosure design, partition-
ing, board layouts, and test signals. The contractorshail
identify any problem areas identified and recommend possible
alternates. The results of the Ku--band Product Design Anal-
ysis shall be reported in the Product Design Evaluation
Report.

Task n4. Ku--band Engineering Model Data Analysis

The contractor shall provide evaluation analysis of the
Ku-band engineering model test data presented by the Ku-band
contractor. The contractor shall verify that the test data
supports the NASA requirements. The contractor shall identify
discrepancies between the expected performance, based on design
analysis and breadboard test data, and the performance measured
during engineering model tests. The results of the Ku-band
Engineering Model Data Analysis shall be reported in the
Prototype Data Analysis Report.”

2.1.3	 General Approach

The general approach has been to work with cognizant NASA person-

nel and individuals at RI and MAC to ascertain directions taken. A vital

part of this activity has involved Axiomatix attendance and participation

in the regular monthly program reviews, as well as all special meetings,

at HAC. These latter gatherings usually involved detailed discussions on

design and specification issues that surfaced at the regular monthly

reviews.

Each month, Axiomatix prepared a Monthly Technical Report which

contained a brief summary of all relevant technical activity, including

design reviews, technical conferences, design and analysis efforts and

11
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results, critical problem areas, and a forecast of effort for the next

monthly reporting period. In addition, Axiomatix prepared a report for

each of'the first three tasks. The report covering the fourth task is

included in this Final Report along with summaries of the work performed

under the first three tasks.

2.1.4	 Continuity with Previous Wlork and Relationship to Parallel Work

The subject contract effort was new for CY78; however, previous

activity was carried out under contract NAS 9-14614, "Study to Investi-

gate and Evaluate Means of Optimizing the Radar/Communications Functions."

The work performed under the subject contract was strongly interrelated

to parallel efforts; contract NAS 9--I5240C, "Shuttle Ku-Band and S-Band

Communications Implementation Study," forms the system framework which

ties the Ku--band communication equipment to the overall Tracking and

Data Relay Satellite System (TORSS) network and addresses the system

interfaces.

2.2	 Scope of the Final Report

The integrated Ku-band communication/radar system is described

here from two separate points of view. The first is concerned with the

signal flow during various operating functions of the system, while the

second is devoted to describing the functions and operation of the var-

ious subunits currently being implemented by HAC.

Two major modes of operation exist in the Ku-band system, namely,

the radar mode and the communication mode, as seen in Figure 3. The

Ku-band radar system is designed to search for a target in a designated

or undesignated mode, then track the detected target, which might be

cooperative (active) or passive, providing accurate estimates of the

target range, range rate, angle and angle rate to enable the Orbiter to

rendezvous with this target. The radar mode is described along with a

summary of its predicted performance in Section 3.0. The principal sub-

unit that implements the radar function is the Electronics Assembly 2

(EA-2). The relationship of EA-2 to the remainder of the Ku-band system

is shown in Figure 4.

Section 4.0 presents a block diagram of EA-2 including the main

command and status signals between EA-2 and the other Ku-band units.
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Section 4.0 also identifies the major existing problems in the radar

mode of operation.

The Ku-band communication mode is designed to enable the Orbiter

to communicate with the Tracking and Data Relay Satellite (TDRS). This

requires angle tracking of the TDRS as well as a forward link to receive

from the TDRS and a return link to transmit to it. Various functions

have to be performed in order to recover the data in the forward link.

The main functions can be summarized in tracking the received carrier,

despreading of any existing spread spectrum signal, then either passing

the signal through an amplifier and line driving stage (buffering) or

detecting the data by performing bit and frame synchronization before

sending it to the Orbiter. Two modes can be selected in the return

link whereby both channels are quadriphase modulated on a subcarrier,

then either quadriphase modulated with a third channel on a carrier in

one of the modes or added to the third channel to frequency modulate a

carrier. Detailed descriptions of the forward and return links are dis-

cussed in Sections 5.0 and 6.0, respectively.

In order to operate the Ku-band system and select the required

modes, various power supply voltage and command signals are generated.

These are briefly discussed as part of Sections 7.0, 8.0 and 9.0, which

are devoted to the description and discussion of the actual subunits

being built by HAC and which are shown in Figure 4 with the major signals

between the units as well as between the units and the Orbiter. As shown

in the figu

1.

2.

3.

4.

5.

re, these units are:

Deployed Mechanical Assembly (DMA)

Deployed Electronic Assembly (DEA)

Electronic Assembly I ( EA-1)
Electronic Assembly 2 (EA-2) (presented in Section 4.0)

Signal Processing Assembly (SPA)

Also in Sections 7.0, 8.0 and 9.0, the major existing problems in these

subunits are identified as a result of evaluating the available test data

and comparing it to the predicted performance.

The product design considerations for the Ku-band integrated radar

and communication equipment are presented in Section 10.0. The equipment,

as designed by HAC, is comprised of four line replaceable units (L RU).

a

emu,
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One of these LRUs is a deployed assembly (DA) located within the payload

bp.y, it is deployable upon opening the payload bay door. The other three

three LRUs are EA-1, EA-2, and SPA.

These LRUs are located inside the Orbiter cabin in the avionics

bay. The DA consists of the two major subassemblies, the DEA and the DMA.

The detailed description of the product design of the Ku-band system is

discussed in Appendix H. It should be pointed out that, since the only

available literature concerning the product design is that from HAC, most

of the material describing the product design has been extracted from the

various contractor (HAC) reports.

Finally, Section 11.0 presents a cumulative index of the major

HAC documents describing the Ku-band radar/communication system. The

intent of the index is to provide a cohesive reference to the various

documents describing the system. Information relevant to any one of the

subsystems may be contained in several documents; the index should help

those who are familiar with the system to access needed information and

those who are not to gain an understanding of the functions of the sys-

tem. It is recommended that the index be expanded and updated as addi-

tional documents become available from HAC, as well as from other sources.

2.3	 Evaluation and Recommendation Summary

This section presents a summary of the major potential problems

found in this study. The potential problems in each Ku-band system sub-

unit are identified, and possible alternatives are suggested when this

is applicable.

2.3.1	 Deployed Mechanical Assembly

There are several problems pertaining to the Ku--band antenna

system:

(1) Although the specifications require the antenna sidelobes

to be at least 18 dB below the main lobe, the current test figures show

that the sidelobes can be as high as 14 dB below the main lobe. This

might create a problem in sidelobe discrimination, especially in the

radar mode.

(2) Since the primary TDRS search mode is now the EIPC designate

because of the inability of the TDRS angle tracking circuitry to withstand
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a large rate of signal power change, it was recommended that the widebeam

horn polarization be changed to linear polarization. This would help the

sidelobe rejection capabili4ies in the radar mode. A study should be per-

formed to investigate the need for circular polarization of the widebeam

horn in the communication mode.

(3) As discussed in Section 7.1.1, the monopulse feed presents

a potential tracking problem in one plane. An explanation of the possible

null degradation phenomenon is first outlined in Section 7.1.1, and a

subsequent corrective measure employing curved dipoles is developed.

Finally, some design considerations are included to minimize blockage

effects.

2.3.2	 Deployed Electronic Assembly

The DEA test data as summarized below show that the unit is meet-

ing the specifications in all the major tests performed. It should be

noted, however, that the transmitter/receiver microwave subunit has not

yet been adequately documented, which limits the ability of analyzing it

in more detail for any potential problems.

(1) The low noise RF amplifier (LNA), which is a three-stage

gallium-arsenide (GaAs) field effect transistor (FET) unit, is meeting

the gain specifications of 20 dB over a temperature range of -18°C to

60°C. Because the maximum input signal in the communications mode is

-92.6 dBm, resulting in an output of about -70 dBm (input signal plus

amplifier gain), it is evident that this amplifier does not present a

dynamic range limitation to the communications signal. Furthermore, the

13,725 MHz spur (a sixth harmonic of the 2287.5 MHz S-band signal) is

estimated at about -60 dBm at the input to this amplifier. This results

in a -38 dBm output, which is still significantly below the I dB compres-

sion point. Thus, sufficient dynamic range is provided for handling the

spur as well as the signal.

The bandpass filter which follows the LNA has a bandwidth which

is sufficiently wide to accommodate the radar signal band, yet its roll-off

is such as to provide more than the specified 20 dB of rejection of the

image frequency band.

(2) The S-band spur problem has been resolved by implementing

the Gunn-VCO circuitry at the exciter/receiver subunits.

er'",



18

(3) All the tested TWT amplifiers have provided 55W to 60W over

the radar frequency band and 6OW over the communication band. Several

tests have also been conducted on various aspects of the TWT operation

and they all seem to be meeting the specifications.

(4) The gain imbalance requirement of less than 3 dB between the

sum channel and the difference channel has been tested. A maximum of

less than 1 dB has been quoted.

(5) The input and output saturation tests show that the OEA is

meeting the specifications in this respect. The ambient temperature for

these tests has not been specified, however.

2.3.3	 Electronic Assembly 1

The receiver part of the EA-1 appears to be meeting the specifi-

cations. In particular:

(1) With the loop SNR predicted for the Costas loop of the for-

ward link, the data detection capability of the loop is degraded very

little within the C/M, operational range.

(2) The computations show that a maximum acquisition time of

70 msec is needed in no-noise for the Costas loop to pull-in. The

available data over the C/N 0 range of 60-80 dB, and a temperature range

of -20°C to 80°C also show that the acquisition time varies between

60-195 msec. All of the above indicate that the 200 msec requirement

on acquisition time will present no problem with the present forward

link power budget. In addition, the experimental data indicate that the

acquisition probability of 0.99 can be achieved by the Costas loop at a

CA of 61 dB--Hz over the temperature range of -20°C to 65°C and a fre-

quency offset of x-150 kHz. Consequently, the possible widening of the

Costas loop bandwidth during acquisition does not seem to present a

potential problem.

(3) Both the analysis and the experimental data show that the

tau-dither loop is expected to meet the tracking specifications of

0.022 chip. The tests were performed over the full expected temperature

range. The degradation in this loop can also be considered negligible.

A worst-case degradation is not expected to exceed 0.14 dB.

One aspect of the PSK data demodulator design which requires

closer examination is that of using the 5.92 kHz "dither" signal in
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modes other than CW reception. For the CW mode, the dither signal is

obviously required to provide the sideband which can be utilized by an

AC coupled Costas loop for coherent carrier acquisition and tracking.

However, for the case when biphase-L data is being received, the require-

ment for a dither waveform is questionable because the spectrum of the

data does not contain DC, i.e., the carrier, anyway. Locking up to and

tracking of such'-biphase -L data with an AC coupled loop should not pre-

sent a problem.

Introduction or an asynchronous dither signal into the received

IF signal by biphase modulation and subsequent removal of this signal

from the baseband data by a chopper may result in "glitches" which, in

turn, may degrade t6b BER performance.
Consequently, it is recommended that the function of the dither

signal durin g,.reception of the biphase- . L data be reexamined and, if it

is not found ta, be justifiable, use of dither in the data receive mode

be discontinued.

As far as the scanning function of the EA-1, the data presented

at the PDR points out that the 30% overlap specification is not met.

The HAC digital simulation results show that the overlap is about 25% in

the radar main scan and only 12% in the communication main scan. This

problem deserves special attention due to its impact on system performance

in the search mode.

2.3.4	 Electronic Assembly 2

The radar mode, which is the primary function of the CA-2,

appears to be meeting specifications in most cases of interest. The

major problems in the EA-2 can be summarized as:

(1) Detection li,argins are negative for the worst-case design

and are marginal for the average-losses design at 10 nmi. An increase

in the scanning time from 1 min to 2 min is recommended to assure ade-

quate performance.

(2) Angle rate accuracies are marginal for some ranges and the

angle rate transient response to accelerations normal to the Tine-of-sight

does not settle fast enough within the specifications. Any attempt to

widen the angle loop bandwidth to improve the transient response will have

an inverse effect on the steady-state tracking performance of the loop.

f
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It is believed that, unless major design changes are made, a compromise

between steady-state performance and transient performance of the angle

tracking loop has to be worked out.

f 
(3) There is a discrepancy between the range rate logarithmic

discriminant error calculated by Axiomatix and that calculated by HAC.

This might be due to the method that HAC is implementing to map between

the doppler offset and the expected mean of the discriminant. Further

HAC documentation is needed before this discrepancy can be resolved.

(4) It is believed that the angle and angle Mate measurements

for large targets will not be dependable at close ranges. These ranges

are functions of the target size and shape. It is recommended that fur-

ther analysis be performed before an optimum solution to this problem is

reached.

It should be emphasized that a close agreement is found between

the analytical performance curves derived by Axiomatix and the available

data supplied by HAC.

2.3.5	 Signal Processing Assembly

The detailed evaluation of the SPA data is discussed in Section

9.0. The two main functions of the SPA are the 'forward link bit syn-

chronization and frame decommutation and the return link baseband three-

channel signal modulation. A summary of the results is presented in

this section.

2.3.5.1 Forward Signal Processing

The first and main function of SPA forward link signal processing

is to establish bit synchronization before frame decommutation can take

place. The bit synchronizer implemented by HAC includes an ambiguity

resolver which distinguishes midbit transitions from between-bit transi-

'Lions of the incoming 216 kbps biphase-L data. The detailed analysis of

the bit synchronizer is presented in Appendix F.

A description of the ambiguity resolver and numerical results of

the performance analysis are presented in Section 9.3, with the complete

performance analysis presented in Appendices F and G. However, no tbst

data is available ,yet for comparison.

Several observations can be made concerning the bit synchronizer.
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,a 1.	 For a given value of bit energy-to-noise spectral density

ratioR ) and a given transition density( d
	

y (pt), the in-phase decision

threshold, which is used to decide the polarity of a given bit or the

y inability to decide that polarity, has an optimal value 
(riopt).	

Since

no threshold value has been quoted by HAC, a value of 0.3 was selected

to obtain quantitative results.	 A typical value of bit time and loop

bandwidth product (BLTJ was selected to be 10 -2 .	 The calculations show

that the degradation in signal-to-noise ratio due to imperfect bit timing

` does not exceed 0.75 dB for Rd >_2 dB, which is well below the specifica-

tions. of 1.0 dB and in agreement with most of the available data. 	 Some

test data, however, show that, for high temperatures ($5°C), the loss can

be between 1.0 and 1.5 dB.	 Though s#ch losses are not believed to present

any problem to overall system performance, a closer look at the data and

the breadboard setting is needed to verify the validity of the test data.

It is also worth noting that the selection of the value of

B 
L 
T is a compromise between tracking accuracy and ability of the loop to

track long streams of ones or zeros.

2.	 For given values of in-phase decision threshold and transition

density, the tracking jitter decreases with an increase in signal-to-

noise ratio, Rd .	 This is intuitively correct because better performance

should be expected at higher signal-to-noise ratios. 	 It is pointed out,

however, that the test data supplied by HAC show a reverse trend at high

Rd , where the loss which is proportional 	 to the tracking jitter is shown

to increase with an increase in signal-to-noise ratio. 	 It is believed

- that the test setup is the cause of this problem and a closer look at

the setup is believed essential to obtain better test data.

r 3.	 The mein--squared tracking jitter is considerably more sensi-

tive to values of decision threshold greater than nopt than it is to

Y n< popt .	 This sensitivity itself diminishes with decreasing p t and

increasing Rd .	 At fixed Rd , one cloncludes that the mean-squared track-k

ing jitter decreases with decreasing p t .	 (NOTE:	 Decreasing NRZ tran-

sition density implies increasing between-bit transitions in the Manchester

biphase-L coded waveform.	 In fact, p t = 0 results in a square-wave data

waveform at twi ce the bit rate.)

4.	 As discussed in detail	 in Appendix E, windowing the in-phase

I&Ds to half a bit (as in the HAC design), results in a 3 dB SNR penalty
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for making decisions on the midbit and between-bit transitions relative

to performing full-bit in-phase I&Ds.

5. The test dclta show that, in order for the bit synchronizer

loop to acquire and maintain lock over the full temperature range of

-20°C to 85°C, signal-to-noise ratios (Rd = E 
b 
A 0 ) of 2 dB and 5.9 dB

might be needed for random data and alternating data, respectively. The

available test data at the same time show that acquisition is taking

place down to 0 dB with a wide frequency pull --in margin that exceeds by

far the specifications of x-22 Hz. Though a possible small margin of

signal-to-noise ratio above 0 dB might be warranted to allow for compon-

ent aging, the value of 5.9 dB is believed to be high for such tolerances.

2.3.5.2 Return Link Signal Processing

Two areas of concern were discussed in analyzing the test data:

1. Variations in power distribution between the three channels

were analyzed using the latest link budgets. It was found that the

expected variations in the power ratio distribution of the three channels

in the return link do not create any problem in meeting the specified

probabilities of error at the TDRSS because of the high return link

signal-to-noise ratios.

2. The expected performance of the TDRS bit synchronizer for

a given amount of asymmetry in the high data rate channel was presented.

It is believed that the proposed asymmetry compensator should provide

adequate means for reducing symmetry in the forward link to within the

specified 10%. This will limit loss due to asymmetry to a maximum of a

few tenths of a dB. Test results are not yet available. Such results

are needed before passing a final judgment on the performance of the

compensator and the resulting degradation due to asymmetry.

2.3.6	 System Software

In order to assure the proper functioning of the Ku-band system

hardware, the system software has to be completed. The lack of documen-

tation of the software design, the required memory size, and the cycle

time make it impossible to evaluate this important part of the Ku-band

system. This constitutes a major problem in the evaluation of the system

and cannot be resolved before adequate documentation is made available.

F
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3.0	 DESCRIPTION AND PERFORMANCE OF THE KU-BAND RADAR

The obj ective of the Ku-band radar system on the Shuttle Orbiter

is to detect the presence of a target and then obtain continuous accurate

estimates of the various target parameters, namely, its range, range

rate ( velocity), azimuth, elevation angle, and angle rates. The target

is usually detected when the radar is in the search mode, while the

accurate estimates are obtained in the track mode. It is the objective

of this section to describe the overall radar block diagram, explain

its operation in both the search and track modes, and summarize its

expected performance.

The radar employs coherent processing over each RF frequency

transmitted, and noncoherent postdetection integration ( PDI). Following

the intermediate amplifiers, in-phase and quadrature--phase baseband

signals are sampled and digitized (A/D converted), providing target

amplitude and phase information. For longer range search and acquisi-

tion (R> 0.42 nmi), 16 doppler filters are formed, covering the doppler

interval defined by the repetition rate. This is an ambiguous doppler

interval; this ambiguity is removed via differentiation of the range

estimates.

The magnitudes of the doppler filters outputs are determined and

summed over the number of RF frequencies (noncoherent postdetection

integration). This result is then compared to a threshold. The

threshold is set from noise measurements so as to maintain a constant

false alarm probability (CFAP). This can be implemented by any of

several methods.

In the search mode, only the sum channel is processed. When

the threshold is exceeded and target detection is declared, the auxiliary

antenna signal is processed, and its magnitude is compared to that of

the main antenna to eliminate sidelobe detected targets. The auxiliary

antenna has a peak gain which is approximately 20 dB less than that

of the main antenna. Also, the sidelobes of the main antenna are

approximately 20 dB down from the main lobe. This provides roughly

a 20 dB main lobe/guard antenna ratio to detect and eliminate sidelobe

targets. It should be emphasized that a lobe /guard of only 14 dB has

been measured during preliminary tests.
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In the modes for which angle tracking is required, namely, GPC

acquisition and autotrack, the sum plus angle error channels are pro-
p

cessed. The azimuth and elevation error signals are time-multiplexed,

thereby eliminating the need for a second and third matched processing
i.

channel.

A general block diagram is now presented and explained in

more detail; the functions of the individual blocks are then described.

3.1	 Ku-Band Radar Block Diagram

The Shuttle Ku-band radar block diagram is shown in Figure 5.

The antenna assembly consists of a main antenna and an auxiliary antenna,

followed by the deployed mechanical assembly (DMA) and the deployed

electronics assembly (DEA), where various switching and filtering oper-

ations take place, as explained in Section 3.2. The antenna assembly

is followed by several IF mixing stages to bring the carrier frequency

down to a stable IF of f  = 78.143 MHz. The output of the I-Q stage

that follows is a pair of baseband signals which are in phase and in

quadrature with the input signal. The operation of the previous two

stages is discussed in Section 3.3. The available information is con-

verted by an A/D converter to digital data which samples both channels

at a rate of fs = 480 ksps, which is slightly larger than the Nyquist

rate of the baseband signals at the output of the I-Q stage. (The l.PF

bandwidth in both the I and Q channels is equal to 237 kHz.) The output

of the A/D converter is a set of complex numbers which undergo various

stages of digital processing before estimates of the target parameters

(range, velocity, azimuth angle, elevation angle) are obtained. The

first processing stage is a presumming stage, followed by a set of range

gates and doppler filters consecutively. The arrangement of the gates

is varied for the two modes of operation. Two cases are distinguished

in the search mode. When a range designation is not available, four

range gates per pulse are used, whereas two overlapping range gates are

used when range designation is provided. The width of each of the two

range gates is 3T/2, where T is the pulse width. In the track mode,

there are only two nonoverlapping gates, an early gate and a late gate,

each of width T seconds.

i.
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For long ranges, the magnitudes of the outputs of the doppler
filters are summed over the RF frequencies and compared to a threshold

to detect the existence of a target. For short ranges (R< 0.42 nmi),

the detection takes place without using any doppler filtering.

Once a target is detected, the radar is switched to a track

mode and the digital signals undergo post-detection integration,

followed by an error estimation unit which is initiated by the crude

estimate obtained by the search mode operation.

In the following sections, a detailed discussion of the various

stages in the block diagram is presented, along with an analysis of

the signal timing in both the search mode and the track mode.

3.2	 Antenna Assembly

The antenna assembly is illustrated in Figure 6. (For a more

detailed illustration, see [1].) The main antenna has a gain G= 38.5 dB.

There is also an auxiliary antenna whose gain is G= 20 dB, which is

used to guard against target effects on the sidelobes of the main

antenna. Three signals emerge from the antenna, namely, the sum

signal (E) which carries the received signal, and two angle signals
(AAZ and AEL) which supply the azimuth and elevation angle information.

The E signal is passed through a bandpass filter (BPF), whose center

frequency can be adjusted by a centralized frequency synthesizer in

the exciter to be one of the five frequencies (13.779 GHz, 13.831 GHz,

13.883 GHz, 13.935 GHz, 13.987 GHz). The angle signals AAZ and oEL are

passed through a selecting switch which selects one of the signals at

a time at a rate of 93 Hz. The output of the switch is then passed

through a phase encoder whose rate is twice that of the selecting

switch. A typical sequence of signals out of the encoder is shown

in Figure 7.	 The encoded angle signal is then passed through a

matching BPF to that of the Z signal. The two signals are then

passed through the T/R switch to the receiver IF mixing stage.

When angle track is operating, there are four antenna error

dwell periods at each RF, during which the azimuth and elevation error

signals are processed. During each error dwell period, 32 doppler

filter outputs (via DFT) are computed.
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3.3	 IF Mixing and I-Q Stage s

The antenna assembly is followed by two stages of IF amplifiers

and filters, where the frequency of the signal is beaten down to a

stable 78.143 MHz, as shown in Figure 8. In this stage, the power in

the E-channel is divided in two equal parts to be Used for communica-

tion and the radar. This results in a loss of 3 dB in signal-to--noise

ratio due to this power split. Following the first down converter

stage, a solid-state diode receiver blanking switch is included in each

channel (DS1, DS2). These switches are controlled by a blanking logic

to perform four functions: (1) preventing excessive leakage into the

receiver during transmission; (2) switching the sum channel only during

search; (3) switching the difference channel only during the main lobe/

sidelobe discrimination test; and (4) switching both channels during

track. The radar E--channel is then combined with the A-channel to form

the multiplexed signal (E± o). Only one-fourth of the power available

in the o-channel is used when forming Z± A , as seen in Figure 8. The

multiplexed signal is then passed through an in-phase and quadrature-

phase detector (I-Q), where it is converted to two baseband signals.

The two signals are converted to digital data using an A/D converter

whose sampling frequency is slightly higher than twice the bandwidth of

the signal to reduce the aliasing error to less than 0.5 dB. All com-

putations after the A/D converter are carried out digitally. The sampling

frequency is equal to 480 Hz. For long-range search, when the pulse

width is 66.4 psec, this corresponds to 32 samples/pulse from each

channel of the I-Q detector for each range gate period. These samples

are summed at the PRESUM stage to give a complex number that represents

every received pulse.
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3.4	 Si2gnal Parameters

Before explaining the different modes of operation, it is

important to discuss the signals that are being used. The signals

are RF pulses with a duration (z) and a pulse repetition frequency

(PRF) that are -Functions of the designated range. Frequency diversity,

using five RF frequencies, is used in both the search and track modes.

The five RF frequencies are generated in the DEA using a common swept
Gunn oscillator with the communication mode. As explained in more

detail in Section 6.5, the 83rd harmonic of a I56 MHz reference fre-

quency from EAl is mixed with the output of the Gunn VCO and fed into

a loop filter and a comparator. A zero beat is detected as shown in
Figure 9 whenever the resulting frequency is a multiple of 52 MHz. A

bank of five BPFs is used to select the 52Xi MHz signals (i- 3,4,5,6;7)

which are fed back to the sweep control logic that locks the VCO at five

discrete frequencies starting with 13.128 CHz and differing by multiples

of 52 MHz. These frequencies are then mixed with 651 MHz (generated

from the reference 156 MHz, as explained 'in Section 6.5) to yield the
required five frequencies.

Switches SWl and SW2 are used for selecting communication or

radar signals, and switch SWl is used to obtain the TWT bypass mode

for the close range operation.

Table 1 lists the five frequencies [2] which are cycled in
a given pattern which is convenient for the manual operation mode [31.

The table also shows the associated PRFs for different ranges [2].

The various signal timings are summarized in Table 2 for , the search

mode and in Table 3 for the track mode [2]. The PRF values used in

the tables are those corresponding to the middle IF frequency. It is

noted that the integration time corresponds to slightly more than five

frequency dwell times in order to allow for computation time at the

end of every spatial dwell in the search mode and every accuracy esti-

mate calculation in the track mode.

The AGC operation in the Ku-band radar consists of a linear

AGC and a set of five step attenuators. Their operation is summarized

in Figure 10; where the hysteresis effect of the step attenuators can

be observed. The linear AGC has a range of 25 to 30 dB. At the extremes

r•. a
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Table 1. Frequency Synthesizer Frequencies for

the First IF Mixing L.O. (in GHz)

F l F2 F3 F4 F5

Frequency

13.779 13.831 13.883 13.935 13.987

Long Ranges 3009 2998 2987 2976 2965

PRF
	

R> 9.5 nmi

(Hz)	 Short Ranges 7017 6994 6970 6946 6923
R< 9.5 nmi

Table 2. Signal Parameters for Various Designated Ranges in Search Mode

Designated	 Frequency Dwell	 Integration

Range (nmi)	 T (uses)	 PRF (Hz)	 Time (msec)	 Period (cosec)

7.2	 - 66.4 2987 5.36 28.6

3.8	 - 7.2 33.2 6970 2.29 12.2

1.9	 - 3.8 16.6 6970 2.29 12.2

0.95- 1.9 8.3 6970 2.29 12.2

0.42- 0.95 4.15 6970 2.29 12.2
- 0.42 0.122 6970 2.29 12.2

Table 3. Signal Parameters for Various Designated Ranges in Track Mode

Designated	 Frequency Dwell	 Integration
Range (nmi)	 T (psec)	 PRF (Hz)	 Time (msec)	 Period (msec)

9.5	 - 33.2 2987 21.44 116

3.8	 - 9.5 16.6 6970 9.18 51.2

1.9	 - 3.8 8.3 6970 9.18 51.2

0,95- 1.9 4.15 6970 9.18 51.2
0.42- 0.95 2.07 6970 9.18 51.2

- 0.42 0.122 6970 9.18 51.2

F6
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of the linear range, a step attenuator is inserted which extends the

limits of operation of the AGC. As can be seen from Figure 10, when

all five step attenuators are taken into account, the dynamic range

of the AGC is in excess of 125 dB.

The only region of possible concern is the transient response

of the AGC after one of the step attenuators has been either inserted

or deleted. The transient response does appear to be fast enough so

that there is no problem in this area.

3.5	 The Search Made

In explaining the search mode operation, the long--range signal

format is chosen for demonstration. All other ranges follow the

identical processing except for the short range (R< 0.42 nmi), which

does not utilize the doppler filters.

Sixteen pulses are transmitted at each RF frequency. The

duration of each pulse is 66.4 usec, while the time between consecutive

pulses is a35 psec. Four range gates (R l ,R2 , R3 , R4 ) are used to cover

the target range when no range designation is available. When range

designation is available, two overlapping range gates are used around

the designated range. The width o, each gate in this case is three--

halves the pulse width [2].

For each RF frequency, 64 complex numbers are stored in a memory

designated as M(l), as shown in Figure 11. The output of each range

gate at every RF frequency is passed through a bank of 16 doppler

filters, uniformly spread over [fc ,fc f PRF], and implemented as dis-
crete Fourier transforms (DFT). The magnitudes of the outputs of these

filters are calculated and compared'to precalculated thresholds. The

target is detected when the magnitude of one or two outputs of adjacent

doppler filters pertaining to one or two range gates is exceeded.

Initial estimates of the range and the range rate of the target are cal-

culated from the knowledge of the doppler filters and range gates whose

outputs have exceeded the threshold. These initial estimates are fed

into the error estimators as initial conditions to start thi_ successive

estimation process in the track mode. The thresholds are calculated

to produce an error alarm rate of one false alarm per hour.
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For short ranges (R <0.42 nmi), a single short pulse is trans-

mitted at a PRF of 6970 Hz [2]. The width of the pulse is equal to

0.122 Usec. The detection is carried out by finding the magnitude of

the return signal over the time period corresponding to 0.42 nmi and

comparing it continuously to a threshold. If the threshold is not

exceeded, the receiver waits for the second transmitted pulse and the

process is repeated. The number of pulses transmitted at every RF

frequency is 16. The RF frequencies used in the short-range detection

are the same as those used in long-range detection. For short ranges,

once the threshold is exceeded, a hit is declared. Five hits are

required before declaring detection. Tracking is started once the

target is detected. The initial range estimate is obtained by finding

the time that elapses between the transmission of the pulse and the

exceeding of the threshold. This is done by implementing a range bin

clock and a counter, as seen in Figure 12.

Alp	 Magnitude	
Threshold	 Hit

Samples	
Detect

Range Bin

	

	 Initial
Counter

Range
[Estimate

Clock 

Figure 12. Short-Range Detection

3.6	 The Track Mode

3.6.1	 Signal Format and Block Diagram

The block diagram for track m^-)dc processing ;s shown in Figure

13. All the computations involved in obtaining the tracking accuracies

are digital. The separate blocks in the figure are explained in detail

in subsequent sections.

Lam:
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The signal in the track made consists of 64 pulses for each RF

•	 frequency, instead of the 16 pulses in the search mode, as shown in

Figure 14 (3]. For long-range tracking, the frequency dwell time is

equal to 21.44 msec. Each frequency dwell time is divided into four

time slots by the switching combination of SUFI and the phase encoder

switch in the antenna assembly. The signals in the succeeding time

slots are E+ QAZ, E- oAZ, Z+ oEL, and E- QEL, respectively. The time

slots are arranged so that the first two are used to measure the azimuth

angle, while the Iast two are used for the elevation angle. Each one

of the previous time slots consists of 16 pulses. The pulses are passed

through two nonoverlapping gates, an early gate and a late gate, which

are located around a predicted estimate of the range, R p (n), from the

processor timing unit. The width of each gate is equal to the pulse

width. The output of each range gate is a complex number z(I,J,L,K),

which is a function of four parameters (I,J,L,K):

I denotes the RF frequency being transmitted; I=1,2,...,5

J denotes the time slot in each frequency such that

J= 1 corresponds to E+ oAZ

J = 2 corresponds to Z- oAZ

J= 3 corresponds to E+ oEL

J= 4 corresponds to E- oEL

K denotes a particular pulse in each time slot; K = 1,2,...,16

L denotes the range gate under consideration,

L= -1 corresponds to early gate

L= +1 corresponds to late gate.

Figure 14 illustrates the signal format in the track mode. The compu-

tation time is not included in the figure.

3.6.2	 Doppler Filtering

The outputs of the range gates are stored in a memory bank,

designated for illustration as M(l). For all combinations of I, J, and

L, the series of 16 pulses (K = 1,2,...16) are passed through a bank of

32 doppler filters, as shown in Figure 15 [2]. The doppler filters

are uniformly spread over [fc,fc + fPRFI. The overlapping of adjacent

filters results in a doppler filter loss, which has to be taken into

consideration. The outputs of the doppler filters are designated as
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w(I,J,L,M), where M denotes a particular filter (M = 0,1,...,31). Since

doppler -Filtering is accomplished by digital Fourier transforms (DFT),

w(I,J,L,M) is given by

16	 - (j2,rKM)/16w(I,J,L,M} =	 I z(I,J,L,K) e
K=l

x(I,J,L,M) + j y (I,J ,L,M)	 (1}

Implementing doppler filters using a DFT (or an FFT) might result in

losses due to the lack of proper match between the pulse bandwidths,

the PRF, and the bandwidth of the DFT.

The outputs of the doppler filters are stored in a memory bank

designated as M(2), as shown in Figure 16. Only the outputs of three

adjacent filters are processed further, namely, the output of the filter

whose center frequency is closest to the actual doppler and the outputs

of the -Filters adjacent to it. If the middle filter is designated as

Ml , then the outputs of filters Ml - 1, M 1 , and M1 + 1 are processed

further through the post--integration stage. The output of M 1 is used

in computing the range, as well as the angle discriminants, while the

outputs of M1 -I and M 1 + l are used in computing the range rate (doppler)

discriminant.

3.6.3	 Post-Integration

The outputs of each of the doppler filters M 1 - 1 1 M1 , and Ml + 1

consist of 40 memory cells from the memory M(2), as shown in Figure 16.

The 40 cells correspond to five RF frequencies (I= 	 two

range gates (L = ±1), and four time slots (J= 1,2,3,4). Each one of

these cells carries a complex number w(I,J,L,M), whose magnitude is

found by finding e = tan
-1
 (y(I,J,L,K)/x(I,J,L,K)) by table look-up and

then rotating w(I,J,L,K) by an angle a to find the magnitude. This

procedure uses Programmable Read Only memories (PROM) and is easier

to implement than multiplying the number with its conjugate. These

magnitudes are added in different manners to form the post-detection

integration (PDI) outputs. To be able to demonstrate the logical

procedure for addir,g these magnitudes, the memory cells under consider-

ation are redrawn for a given RF frequency F i , as shown in Figure 17.

r
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Eight sums are formed at the output of the post-detection

integrator—two corresponding to each of the four parameters of interest,

namely, range, range rate, azimuth angle, and elevation angle. As

mentioned previously, for range and angle accuracy computations, the

output of the doppler filter M I is used, whereas the outputs of the

two adjacent filters M 1 - 1 and M 1 + I are used for range rate computation.

Ml -I I M 1	 Ml + I

Figure 17. Memory Cells Storing w(I,J,L,M) for a Given RF

	

3.6.4	 Range PDI Outputs

The two range outputs are formed by the post-detection integra-

tion, one corresponding to the early gate and the other corresponding

to the late gate. They are denoted SR (L = -1) and S R(L = +I). The R

denotes the range and the L denotes the early or late gate. They are

formed by using the output of the middle doppler filter (M I ). Thus,

to obtain S R (L = -1), the magnitude of all the complex numbers pertaining

to the early gate and the filter M 1 are added over all the RF fre-

quencies. S R(L = +1) is obtained in a similar fashion using the late

gate.

	

3,6.5	 Range Rate (Doppler) PDI Outputs

The doppler PDI outputs are designated as S D (M = M i - 1) and

SD (M = M 1 +1) and are obtained by summing the magnitudes of the numbers

out of the doppler filters M l -I and M 1 + 1, respectively (Figure 17).
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Each sum is taken over the two gates, the four time slots, and all the

RF frequencies.

	

3.6.6	 Angle PDI Outputs

To obtain the two PDT outputs for the azimuth (elevation) angle

information, the output of the doppler filter M l is used to obtain the

magnitudes of the first ( last) two time slots corresponding to Z + AAZ

and Z- AAZ (E+ AEL and z- AEL) which are added over all RF frequencies

to give SAZ (J = 1) and SAZ (J = 2) [S EL (J = 3) and S EL (J = 4)a, respectively.

As in the range rate case, the outputs of both the early and late range

gates are used and are summed.

	

3.6.7	 Logarithm Discriminant Formation

The purpose of the logarithm discriminant is to obtain an esti-

mate of the error ( error signal), including sign, of the various param-

eters under consideration. Since the following approximation is valid

for small x:

In	
+x 

= 2x ;	 x << l ,	 (2)

then, if x represents the errors in the parameters under consideration,

this error can be computed by forming the logarithm of (1+ x)/(1 -x).

The mathematical derivation of the variance of the logarithmic estimator

is formed in [4], where the maximum likelihood estimator of the form

X f ui ^2

x = log '	 2	 (3)

1 IV i fi
is analyzed. U  and V i represent a pair of voltages whose difference

is proportional to the target parameter being measured. Since the

target range, range rate, and orientation angles are mathematical

duals of each other, it is the objective of the following discussion

to relate 
JUi12 

and 
IVil2 

to the various outputs of the PDI, as illu-

strated in Figure 17.
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3.6.8	 Range Discriminant

In the formation of the range discriminant, a sum signal (S)

and a difference signal (0) are formed such that

S = SR (L = -1) + SR(L=+1)

0 = SR (L = -1) - S R (L = +1) ,	 (4)

where SR ( } is defined in Section 3.6.4.

Since the output of the early gate is a measure of R- AR, where

AR is an absolute error in the range, and the output of the late gate

is a measure of R+ AR, then S is a measure of the range R and 0 is a

measure of the absolute range error. `then, replacing S by R and D by

AR, it can be stated that

S R (L = -1) - R - AR

SR (L=+I) - R•NAR.	 (5)

(A proportionality constant might be added; however, this coefficient

will drop when taking the logarithms.)

Let

S R (L = -]) F 
20
^ ' Ui 1 2

i=7
and

SR(L=+1)	 X IViI2
i=1

where N = 20 is the number of samples used in calculating a single range

error estimate. It corresponds to four time slots over five RF fre-

quencies. It is now easy to see that

^Uii2

in 
20

2	
R	 E

-
Vi

i1	 `

(6)

where RE: is the required ranee error signal. This procedure for obtain-

ing a normalized estimate of range error estimate is illustrated in

Figure 18.
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In (R+AR)

Logarithm	
2AR

R

In (R- AR)

SR(L=+1)

S R (L = -1)

Figure 16. Range Discriminant

3.6.9	 Doppler ( Range Rate) Discriminant

A similar argument can be stated for the doppler discriminant.

In this case, however, the number of samples used to calculate a doppler

error estimate is equal to 40. This is because both the outputs of

the early gate and late gate are used in the computation which is also

carried over four time slots and five RF frequencies. Thus, from

Section 3.6.5.

40	 2

iYI I0 i^	 SD(M=M1-I) + SD(M=M1+1)
s

	

In ^ I
^ Iz = 2SD(M=Ml-1) - SD(M=M1+1) 	

2RE.	 r8)

i=I

3.6.10 Angle Discriminants

As has already been noted, the magnitudes of the samples from

the DFT corresponding to both the early and late range gates are summed

to form an on-target gate and then integrated over the transmitter

frequency cycle. This means that the number of samples used per cal-

culation of an angle error estimate is equal to 10 for two range gates

and five RF frequencies. The sum and difference samples of an angle

error are then log-converted and subtracted to form the normalized

angle errors for the elevation and azimuth channels. The error signals

are then D/A converted and sent to the servo filters and finally to

the servo motors.

The angle error signals are given by
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These error signals are used to obtain the various required estimates

pertaining to the parameters under consideration.
41
5ince the error signals are obtained successively as new read-

ings are processed, they will be denoted by R E(n), RE (n), A EAZ(n), and

A£EL(n), where (n) denotes the nth error signal being processed by the

logarithm discriminant.

The angle error signals A EAZ and AEEL are fed into loop filters

as shown in Figure 19 to obtain two sets of estimates:

(I) Angle estimates oAZ and oEL, which are fed back to the

servo motors.

(2) Angle rate estimates aAZ and oEL, which are displayed

for the astronauts for visual reading.

The range and range rate error signals, however, are fed into the

processor timing unit to obtain various required estimates, as dis-

cussed in the following section.

3.6.11 Processor Timing, Range and Range Rate Prediction

The processor timing stage consists of two substages. The first

is called the a-0 tracker [5] and the second is designated as the

ambiguous doppler resolver and corrector, as shown in Figure 20. The

a-s tracker is employed to give a smoothed estimate of the current

range Rs (n), a predicted estimate of the next range reading Rp(nf1),

and a smoothed estimate of the range rate k
s 
W. This latter value

is used along with the range rate error signal RE (n) as inputs to the

ambiguous doppler resolver and corrector whose output is fed through a

sliding window to produce a smoothed corrected doppler estimateRSC(n)

and a predicted corrected doppler estimate R c (n+]). The doppler esti-
p

mates sc (n) and PC (n+l) are obtained by averaging (smoothing) m pre-

vious estimated values that are stored in a special memory (sliding
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window averaging). The number of estimates (m) being used is dependent

on the designated range [2]. For long ranges (R> 9.5 nmi), m is equal

to 2 while, for shorter ranges, it is equal to 4.

These estimates are used for various purposes, which are sum-

marized in Table 4.

Table 4. Processor Timing Stage Outputs

Estimate	 Rp(n+l)	 Rs (n)	 Asc(n)	 Rpc(n+l}

Use	 Adjust early	 Display	 Display	 Select
and late gates	 doppler

location	 filters

Whereas the location of the range gates is adjusted as a result

of every new range estimate, the location of the doppler filters remains

unchanged. The range rate estimates are used to select the filter MI

whose center frequency is closest to the estimated doppler. This filter

remains unchanged until the doppler error changes appreciably to make

the estimated doppler frequency closer to a different filter center

frequency.

The operation of the ambiguous doppler resolver and corrector

is explained in detail in [6].

This completes the description of the Ku--band radar system.

Sufficient detail has been given so that accurate performance estimates

can be made in both the search and track modes of operation. More

detailed functional flow and block diagrams are given in [1]. In subse-

quent sections, a summary of anticipated performance is given for all

aspects of the search and track modes of the Ku-band radar.

3.7	 Ku-Band Radar Performance in Target Acquisition (Passive Target)

A fundamental part of the operation of the Ku-band radar is the

capability to detect and reacquire the target at all ranges less than

IO nmi. The acquisition capability of the present configuration of the

Ku-band radar is summarized in this section. The development in

Appendix A of [6] is used extensively.
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The primary emphasis in the evaluation of the Ku-band radar

during acquisition is "how the radar performs." Comparison will be

made to the specification values, but no heavy emphasis is placed on

it. In those situations where the performance does not meet the speci-

fication requirements, reasonable alternatives are proposed which will

provide satisfactory performance in all rendezvous profiles.

	

3.7.1	 Target Detection Processing Losses

The target detection processing losses as they are presently

estimated are summarized in Table 5. The Iosses anticipated by both

Hughes and Axiomatix are shown. The reasons for the agreements and

disagreements are detailed in [6,7].

The totals of the losses are used in evaluating radar detection

performance. It is noted that the difference between the average

losses and worst case losses is 4.0 dB. In the next section, the

differences in these losses and their implications are discussed.

	

3.7,2	 Radar Detection Performance Philosophy

The losses summarized in the last section demonstrate two

approaches in establishing a radar detection performance philosophy.

The differences center around what is to be taken into account when

averages are performed. The "Hughes" approach is to average over all

target positions and velocities when carrying out an average. The

"Axiomatix" approach is somewhat more pessimistic in that the average

is carried out over thermal noise, target scintillation effects, and

other radar parameters. This is done, however, for a target located

at the worst possible velocity and worst possible angular position.

There is merit to both approaches. Therefore, the detection

results to be subsequently presented are carried out under both per-

formance philosophies.

In the one case, the design philosophy is that

Average Pd = 0.99

for a 1 square meter target. In the latter case, the design philosophy

is that

Average Pd >_ 0.99

for a 7 square meter target for all target velocities and spatial

positions.

4
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Table 5. Summary of Target; Detection Processing Losses

Hughes Axiomatix
(worst case)

(av(rage)

Transmit Lass 3.7 3.7

Beam Shape Loss 2	 (avg) 3.2 (max)

Pre-Sum Mismatch 0.57 0.57

Constant FAP 1.7 1.7

Doppler Mismatch 1.1	 (avg) 3.9 (max)

Range Gate Straddle
Designated Mode 1.76 1.76
Undesignated Mode* Lstr -f(R) Lstr - f(R)

Processor Loss 1.25 1.25

Totals	
Designated Mode 12.08 16.08
Undesignated Mode,` 10.32 + Lstr 14.32 + Lstr

The range gate straddle loss in the undesignated node varies from 0 d8
to 6 dB, depending on the range. For details,	 see [6,7].
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3.7.3	 Radar Detection performance

	

•	 Based on the losses summarized above, the Ku-band radar detection

performance is summarized. In Figures 2.1 and 22, the target detection

design margins are plotted versus range for both the designated range

	

`	 and undesignated range modes of operation. Except for the losses, all

radar equation parameters are the same as used in Appendix A of [6].

In Figure 21, the worst case losses of Table 5 are used. Also, a

transmitted power of 50 watts is used, although the present system

configuration consists of a 60-watt TWT. This is approximately 0.8 dB

	

s`
	

improvement. For the range designation mode, a design margin of 0 dB

is obtained at approximately 9.3 nmi. For the undesignated range mode,

it is about 7.5 nmi. The design margin for the undesignated range

mode deteriorates as the range is reduced in the interval of 8 nmi to

11 nmi because, in this interval, the range gate straddling loss is

increasing faster than the factor R-4 gain in the radar equation.' At

12 nmi,'the design margin is -4.5 dB for the range designated mode and

-5.1 dB for the undesignated range mode.

In Figure 22, the design margin is shown versus range for the

average losses in Table 5. In this case, a 0 dB design margin is

obtained at approximately 11.7 nmi; at 12 nmi, the design margin is

greater than -1 dB. These results are close to those quoted in [8]

by HAC. The HAC results are shown as two dots in Figure 22.

The cumulative detection probability is platted versus range

for the worst case in Figure 23; both M= 1 and M = 2 scans are shown.

It is seen that the two-scan case uniformly outperforms the single-scan

case for both the designated and undesignated range modes. In these

computations, a transmitted power of 60 watts was used.

Inspection of Figure 23 reveals that, depending on the range,

the cumulative detection probability for the-designated range can be

both smaller and larger than that for the undesignated case. This is

also the case for the design margins in Figures 21 and 22. At 12 nmi,

the cumulative detection probability is approximately 75% for two scans

and approximately 50% for one scan. This is the case for both the

designated and undesignated range modes.

The design margins can be significantly improved without alter-

ing the present design by allowing more time (greater than 1 min) to
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illuminate the search volume. The scan rate is held fixed at two scans

per minute in Figure 24, where the cumulative detection probability is

plotted versus range. The gain in performance is significant. At

11.3 nmi, for example, by increasing the total scan time from l minute

to 2 minutes, the cumulative detection probability increases from 90Z

to 99%.

3.7.4 Alternatives and Recommendations

if the design philosophy of average losses is acceptable, then

the design margin at 12 nmi is within a few tenths of 0 dB with a

50-watt TWT and approximately 0 dB with a 60-watt TWT.

If the design philosophy of worst case losses is preferred, the

design margin is between -4 dB and -5.2 dB. As shown above, however,

there is significant improvement in performance by maintaining the same

scan rate and allowing the total search time to increase from 1 minute

to 2 minutes. This increases the total number of scans from 2 to 4,

and keeps the present radar configuration entirely intact and thereby

has virtually no hardware implications. For worst case losses, a 0 dB

design margin is obtained at a range of 11.3 nmi. We recommend this

alternative, and this recommended design point is shown in Figure 24.

Another alternative which applies to the range designate mode

only is to narrow somewhat the two range gates during search. How much

they can be narrowed is a function of the anticipated range designate

accuracy. We do not have a recommendation for this alternative. It

could be implemented in addition to the recommended alternative above.

If one has any doubt about the range designate accuracy, however, this

alternative does not appear satisfactory.

3.7.5	 Detection of an Active Target

In the detection mode of an active target at 300 nmi, there is

a positive design margin of greater than 2.5 dB. There does not appear

to be any problem with the present radar configuration in regard to

the detection of active targets at maximum range.

3.8	 Point Target Tracking

The tracking performance of a point target of the Ku-band radar

is described twofold. First, the effects of ttt-.rmal noise and target

P
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amplitude scintillation are given. The tracking capability is then

given in the presence of relative accelerations along and perpendicular

to the LOS. Emphasis is placed on the recovery time after an acceleration.

	

3.8.1	 Thermal Noise and Target Scintillation Effects on
Tracking Accuracies for Passive Point Targets

The tracking accuracies of the four variables being tracked

(range, range rate, angle, and angle rate) are presented as functions

of range and compared to the existing specifications, as well as to the

available HAC data. It is to be noted that there are two factors affect-

ling the results:

(1) Thermal noise and target scintillation which become the

dominating factors at long ranges.

(.2) Quantization effects in the Ku-band radar [6] which uses

4 bits of quantization, resulting in a signal-to-noise ratio at the

output of the A/D converter equal to

1

(sldR)out ={SNRJ in '	 (1 Q)1 +
L 

+ {SNR} in̂  (0.0129)

where (SNR)in is SNR at the input of the A/D converter. dote that, for

high (SNR) in , the limit of (SNR) out is 18.9 dB. The signal at the output

of the AID converter is presumed with a resulting gain in (SNR)
out 

equal

to 16 ( .12.04 dB). It is easy to see from the above that, at high input

5NR (close range), the resulting SNR saturates at

SN R = 18.9 + 12.04 = 30-94 dB , 	 (11)

which makes the quantization effect the major contributing factor to the

tracking accuracies. The combined effect of both factors is taken into

account in all subsequent calculations.

There are many parameters in the various tracking loops that are

varied with the designated range. The parameters used in these calcula-

tions are the latest available from HAC and are summarized in Table 6.

	

3.8.2	 Angle and Angle Rate Tracking Accuracies,

The angle and angle rate tracking accuracies are presented

together because the angle rate estimation is carried out in the angle

tracking loop. Figures 25 and 26 illustrate the variations of Sa e and
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Table 6• Summary of Tracking Loop Parameters (Passive Target)

Parameter

Range (nmi)

Remarks> 9.5 9.5-3.8 3.8-1.9 1.9--0.95 0.95-0 - 42 0.42

d 0.099 0.116 0.058 0.029 4.0144 0.00085 Duty ractor

T  (msec) 5.36 2.29 x'_.29 2.92 2.29 2.29 1/BF

A (usec) 33.2 16.6 6.3 4.15 2.07 0.122 Pulse width

a '0.0566 0.1132 4.2263 0.2263 4_4526 0_4803

5 0.000884 0,00354 4.0283 0.0283 0.1132 0.1202

B	 (Hz).F 186 437 437 437 437 437 Doppler filter
bandwidth

m 2 4 4 4 4 4 Number of
averaged samples

Ts (msec) 107.2 45.9 45.9 45.9 45.9 45.9

L 
e,e

16.90 16.83 16.83 16.83 16.83 16.83 Angle and angle
rate losses

LR,Ii 9.49 9.42 9.42 9.42 g.42 g_, Range and range
rate losses

K 0.0288 0.0288 0.2221 0.5685 4.5685 0.5585 Angle loop gain

(r pc) 12 12 4.25 2.7 2.7 2-7
Angle loop
time constant

PRF°.`7) 2987 6970 6970 6970 6970 5970
Ma
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3o5 with range, along with the data obtained from HAC [9]. These perform-

ance predictions are developed in [6,7]. It is obvious that both the angle

and angle rate accuracies meet the design specifications. The design

margin in the angle rate tracking, however, is much less than that for

the angle. This is due to the fact that the loop filter in the former

has been widened to provide faster recovery from acceleration transients.

It is believed that increasing the gain K "slightly or effectively increas-

ing the natural frequency fn would improve the transient performance of the

loop while maintaining the random error within or very close to specifica-

tions. It should be pointed out that, although some differences exist

between the Axiomatix and HAC angle and angle rate performance curves,

both results show the same trend and are well below specification iimi'cs.

One area of concern is the angle rate accuracy at close range when the

target accelerates in a direction orthogonal to the line of sight. Per-

formance curves for angle rate tracking are presented in Section 3.8.2.1.

In addition, since simulation efforts are underway to obtain additional

data on the tracking capabilities of the Ku-band radar, normalized track-

ing errors are introduced in Section 3.8.2.2 which are independent of the

Ku-band radar parameters that are range dependent.'

3.8.2.1 Angle Rate Tracking Accuracy

This section is concerned with the angle rate tracking accuracy

when the target accelerates in a direction perpendicular to the line of

sight. This is of special importance in any rendezvous mission when retro

rockets are fired to adjust the rendezvous trajectory. The analysis of

the angle rate performance in an acceleration environment was presented

in detail in [6]. No attempt will be made to repeat the analysis, and

only new performance curves are presented.

The angle rate estimation takes place in the angle tracking loop

whose gain K and time constant T are given 'tn Table 6, along with the

other tracking loop parameters for a passive target. The noise-free

assumption is warranted, especially at short ranges, because of the exist-

ing high SPIR at these ranges. Figures 27, 28,: and 29 illustrate the

normalized angle rate error as a function of time for various parameters

of interest. The actual angle rate error ©e(t) in mrad/sec is obtained

by scaling the plots vertically in proportion to the actual acceleration (a)

in ft/sect . This implies that the actual angle rate error at a given time

W

w ^.
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is equal to that obtained from the figures times the acceleration perpen-

dicular to the line of sight in ft/sect.
r

Figure 27 illustrates the angle rate error due to acceleration at

a range R 0.5 nmi for burn times T = 1, 3 and 5 sec, which are typical

	

`	 expected burn times. rt is easily observed that the recovery time, which

	

' A 	is the time required for the error to settle within the specified 3a accu-

racy of 0.14 mrad/sec, varies between 2 sec for T = I  sec and 3.5 sec for

T= 3 sec. These figures represent recovery times when the acceleration

a =1 ft/sec; they increase with the increase in acceleration. It should

also be pointed out that, in order to obtain the cumulative angle rate

error, the error due to acceleration should be added to the errors caused

by thermal noise, bias, glint, etc.

Figures 28 and 29 illustrate the angle rate due to acceleration

with range R as a parameter for burn times T of l and 3 sec, respectively.

Similar observations can be made here. In addition, it can be seen that

the error decreases with range and that the response at various ranges

differs due to the variations in the angle tracking loop parameters as

seen in Table 6.

It should be emphasized that all of these results assume a point

target which is an ideal assumption suitable for analysis. Target effects

are discussed in [7] and are believed to make major contributions to the

error at short ranges.

3.8.2.2 Normalized Tracking Accuracies

Normalized tracking error expressions suitable for simulation pur-

poses are derived in this section for the three parameters of interest.,

namely, range, range rate and angle. The angle rate rms error is shown

in [7] to be proportignal to the angle error and hence will not be discussed

further. The rms tracking error due to thermal noise and target amplitude

scintillation is developed in [61, where it is shown that

AC	
Q (SNR)

^R	 16 (BNRTs}1/2 XR
	

for range,	 (12)
p R SNR

c BF 1 ^XR(SNR}

6 k W 16 f	 for range rate,	 (13)
c ^ ^pk SNR
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Figure 27. Angle Rate Accuracy with Acceleration Perpendicular to the
Line of Sight with Burn Time as a Parameter; R = 0.5 nmi.
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Line of Sight with Range as a Parameter; Burn Time T = 3 sec.
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(SNR)
and	 ^^ ^ 4 (BNe 

1-s )1/2 ^Xe	
(143

Fe SNR

for angle, where c is the velocity of light in free space, f  is the

carrier frequency (13.85 GKz), and 6  is the antenna beamwidth (1.60).

BNR 
and BNe are the single-sided noise bandwidths of the range and angle

tracking loops, respectively. They are given by

$p a -^
^a

BNR	 4 a Ts	 (15}

B	
K z2 + 1	

{16)No	 4T

The parameters a, S, T s , K, (, A. BF and m are system parameters that
vary with range and are given along with their description in Table 1.

Finally, ax^(SNR) is the normalized tracking standard deviation for

the measured parameter C, and p C (SNR) is the normalized correlation
coefficient of ;. The parentheses emphasize the dependence of (:YX,

and p^ on the signal-to-noise ratio (SMR) [6].

In order to obtain normalized tracking accuracies, which are

independent of the above system parameters, we define

A aC
	

^`X
-- ^-	 (17)

zN - C6	
f_ ,

,v p

where ^ denotes any one of the three parameters of interest and C

are constants that depend on the above system parameters, namely,

C	
oc J'NRT
	 (18a)R16 	 s

c B F 	1	
(18b)

CR	 16f c

o e6
C e-,BNe Ts	 (18c)

Figures 30 and 31 illustrate the normalized tracking accuracies 'RN,

c'AN, and a 6 as functions of the signal-to-noise ratio (.SNR) at the

r
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output of the doppler filters for nigh and low SNRs, respectively.

•	 SNR is defined as

SNR
Q 

Pa—q r
	

(19)
N0 BF

where Pavg r
is the average received power, B F is the one-sided doppler

filter bandwidth, and N 0 is the single--sided noise spectral density

in W/Hz.

These curves can be used to obtain -the tracking accuracy of any

of the three parameters at any range after multiplying the proper

reading with the appropriate constant from (184), (18b), or (18c).

3.8.3	 Range Tracking Accuracies

Figure 32 illustrates the variations of the range error at

ranges (R< 6 nmi) with the latest values of a and o as parameters. The

figure also shows the latest performance curve presented by HAC [10] for

comparison purposes. There are four points to observe:

(1) The range tracking performance of a passive point target

due to thermal noise and target scintillation is well below the speci-

fications, especially at close range.

(2) The fiat portions of the curve at ranges R< 1 nmi are due

to quantization limiting effects.

(3) The difference between the Axiomatix and HAC performance

curves is believed to be due to the automatic gain control (AGC) which

has not been taken into account in the analysis.

(4) Although the accuracies at close range drop below 10 feet,

it is believed that 10 feet is the best achievable accuracy because of

the sensitivity of the display meters. As shown in [6], the range

accuracy meets the specifications up to 9.5 nmi.

3.8.4 Range Rate Tracking Accuracy

The evaluation of 6R for various ranges (2 < R< 12 nmi) is shown in

Figures 33 and 34. Figure 33 illustrates range rate errors at long ranges

and shows the effect of varying the number of averaged samples (m) at

9.5 nmi. Figure 34 illustrates the calculated range rate errors at short

ranges and compares them with those presented by HAC [10]. As is obvious



Axiomatix

500
	

^.-- Hughes

100	 .^` S ec^

IV. f.
72

50

4J

ccb
M

S-
o
S^
sr

LU 7 0
v
m

5

^y	 Axiomatix Parameters

i a = 0.4303; s = 0.1201
2 a = 0.4526; a = 0.1132

3 a = 0.2263; a = 0.0283

4 a = 0.1132; s = 0.00354

1.0

...j

O.L

	

	
6	 7

Range, R (nmi)

Figure 32. RMS Range Tracking Error of Passive Point Targets at Close Range
Versus Range

s-



l.f

r	
73

m = Number of samples averaged

3a = 1 ft/sec Specification
1.9

0.5

Z
^.1
N

-N

M

0 5.	

7	 8	 9	 10	 11	 12

Range, R (nmi)

Figure 33. RMS Range Rate Tracking Error Due to Thermal Noise and Target
Scintillation of Passive Point Targets Versus flange (Long Ranges)
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from the figure, the i-ange rate accuracies meet the specifications for all

ranges below the specified 10 nmi. The same is true for short ranges [7].

	

3.8.5	 Effects of Point Target Accelerations

This section investigates the performance of the Ku-band radar

system in the tracking mode when constant acceleration takes place. Two

extreme cases can be distinguished; the first will be referred to as radial

acceleration which is achieved by firing retro rockets in the direction of

the LOS. This causes the range to vary as a quadratic function of time

rather than as a linear function of time, which occurs in the case of a

constant approaching velocity ( . range rate). The second case will be referred

to as tangential acceleration, which is an acceleration in a direction per-

pendicular to the LOS, causing a quadratic variation in the target angle

being tracked. Since both the azimuth and elevation angles are tracked

similarly [61, this section will not distinguish between the two angles.

The results of an analysis of the tracking loops in the presence

of acceleration is presented in this section for a deterministic input.

The deterministic input is a realistic assumption for the range of interest,

namely, close range when the SNR is high.

	

3.8.6	 Radial Acceleration

A constant radial acceleration causes the range to change as a

quadratic function of time without affecting the angle measurements. A

detailed analysis of the effect of radial acceleration is presented in [7].

A typical response of the loop to radial accelerations is shown in Figure 35,

which shows the variations of error AR for a radial acceleration of A = O.I q

and a burn time of T = 10 sec at a range of 2 nmi. It can be easily seen

that the error due to 0.1 g acceleration is well below the I6 specification

for the range error (la = 40 ft at 2 nmi). Since it is believed that the

value of the acceleration (A) will actually be of the same order of magni-

tude as 0.1 g or less, no problems are anticipated in tracking radial

accelerations during target approach.

	

3.8.7	 Tangential Acceleration

While it was shown that the radial acceleration affects the range

measurements, the tangential acceleration has a direct effect on the

angle and angle rate measurements 16,71.
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The angle and angle rate transient accuracies are discussed in

detail in [6,7]. Figures 36 and 37 illustrate these accuracies with

range as a parameter with a burn time T= 10 sec and an acceleration

A = 0.1 g. Using these figures and [5,6], it can be concluded that the

angle error due to acceleration is always less than 3a and is less than
la for all the cases considered except for ranges less than 1000 feet
and burn times larger than 2 seconds. In the latter two rases, the

recovery time, which can be defined as the time required after the burn

to reside below the specifications (1a), is equal to 4 seconds. Since

the actual amplitudes of acceleration are believed to be in the range

of 0.1 g or less, the angle errors due to tangential accelerations are

not believed to constitute a major problem for angle tracking.

It is evident, however, that the angle rate errors due to accel-

eration exceed the 3a angle rate specifications for all cases studied.
For the close range of 1000 feet, the recovery times to reside within

la of the angle rate specifications are 8, 8.75, 9.25, and 9.30 sec

for burn times of,`f, 2, 5 and 10 sec, respectively. All of these

recovery times exceed the desired 2-sec recovery time. In order to

reduce the angle rate acceleration errors to the desired levels, the

equivalent noise bandwidth of the angle tracking loop has to be widened

considerably, which would result in an appreciable increase in the

angle and angle rate errors due to thermal noise. It is believed that,

short of major design changes, any attempt to reduce the angle rate

recovery times to within the desired value of 2 sec is unrealistic.
A compromise can be worked out in such a way as to make the

thermal noise tracking accuracy of the angle rate marginal and improve

on the transient performance by widening the angle loop noise bandwidth.

The extent of this compromise is dependent on the,navigAtion needs of

the astronauts.

Responses from other values of accelerations for any of the cases

in this section can be obtained simply by scaling the desired value with

respect to that shown on the appropriate figure. This is due to the fact

that, at high values of SNR and the small accelerations considered, the

systems are nearly linear. The same scaling cannot be carried out in the

time dimension, however.

e
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4.0	 ELECTRONIC ASSEMBLY 2

The block diagram of the Electronic Assembly 2 (EA-2) is shown in

Figure 38, with the main command and status signals indicated. Since the

unit is implemented mainly for use its the radar mode and discussed in

detail in Section 3.0, no detailed discussion of the radar signal flow

is presented here. This section is devoted to explaining the main com-

mand signals between EA-2 and the other Ku-band units, as well as pointing

out the major existing problems in the radar mode of operation.

The 78 MHz radar ( .A+ E) signal is received from the DEA receiver

by the EA-2 analog processor, which applies 20 dB of automatic gain con-

trol before mixing it with two quadrature 78 MHz reference signals. The

reference signals are generated from a 156 MHz signal from EA-1. The

resulting orthogonal signals are filtered by a variable bandwidth video

filter before being A/D converted by four bit encoders to digital signals.

As explained in Section 3.0, the resulting complex signal is pre-

summed and the output of the pre-sum is filtered using discrete Fourier

transforms (DFT) to approximately determine the doppler frequency. Sixteen

filters are used in the search mode and 32 filters are used in the track

mode.

Post-detection is used to detect the presence of targets and to

send a signal to EA-1 declaring the detection of a target. In the track

mode, the signal is sent to a logarithmic discriminator that forms the

error signals for the range, range rate and angle tracking loops. It also

puts out a signal to be used by the AGC block to generate the required

AGC signal for use in the DEA and the analog processor.

The range tracking loop outputs three main signals. The first is

used by the timing and mode control circuits to adjust the positions of

the range gates. The second is used in the open range rate tracking loop

to resolve range rate ambiguity, and the third is sent to the interface

circuits before sending it to EA-1. The angle tracking loop is also used

to generate angle rate estimates for both the azimuth and elevation angles.

Its outputs are used in the EA-1 control electronics to adjust the antenna

position and are sent to the Orbiter via the interface with EA-1.

One of the most critical aspects of EA-2 is the timing and mode

control block which receives commands from the interface indicating the
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designations of targets in the designated mode or switching the system to

the undesignated mode. It also receives information concerning whether

the target is active or passive. All of these commands are sent from EA-1

to EA-2 via the interface circuity. The timing circuit also receives a

command directly from EA-1 so as to direct an attenuator at the DEA to

select the proper radar signal power to be transmitted. It also controls

the timing and selection of the five radar frequencies generated at the

DEA for frequency diversity purposes in the passive mode or chooses the

middle frequency in the active mode. The transmit/receive (T/R) gates in

the DMA and DEA are also controlled by signals from the timing and control

circuitry which, in addition, control the operation of the blanking signal

that is generated in the DEA (exciter).to appropriately switch the diode

switches in the DEA (receiver) (see Section 3.3). Another important signal

issued by this block is the Az/El modulated signal which is used by the

EA--1 angle servo in the radar mode to control the torque on the antenna
driving motors. The timing and controls also monitor the antenna steering

mode and the range designation word during search.

The main signals received or sent by the EA-2 interface can be

summarized as follows:

(.1) Signals to EA-1

Range, range rate, angle and angle rate measurements
in the track mode

- Angle enable signal which implies that acquisition is
completed

- Target self-test generation in the self-test mode
- Miniscan signal to be used after search is terminated
and acquisition is to be initiated

Signals  from EA-1

- Slew rate of the antenna which is used in the search
mode sequence

- A main or miniscan signal

- A signal that initiates target test

- Mode (active or passive)

- Various other signals, including designation, antenna
steering, etc.

A more detailed and lengthy description of sequencing and other control

signals can be found in [l] and [11],

(2)
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The major problems in CA-2, as shown in Section 3.0, can be sum-

marized as:
	

S

(1). The detection margins are negative for the worst-case design

and are marginal for average losses design at 10 nmi. An increase in 	 ^.

the scanning time is recommended to assure adequate performance with

minimal hardware impact.

(21 The angle rate accuracies are marginal for some ranges, and

the angle rate transient responses to acceleration normal to the line-of- .

sight do not settle fast enough to meet the specifications. Any attempt

to widen the angle loop bandwidth to improve the transient response will

have an adverse effect on the steady-state tracking performance of the

loop. It is believed that, unless major design changes are made, a com-

promise between the steady-state performance and the transient performance

of the angle tracking loop has to be worked out.

(3) There is a discrepancy between the range rate logarithmic

discriminant error calculated by Axiamatix and that calculated by HAC.

This might be due to the method HAC uses to implement the mapping between

the doppler offset and the expected mean of the discriminant [7]. Further

HAC documentation is needed before resolving this discrepancy.

(4) It is believed that the angle and angle rate measurements for

large targets will not be dependable at close ranges. These ranges are

functions of the target size and shape. It is believed that further analysis

has to be performed before an optimum solution to the problem is reached.
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5.0	 FORWARD LINK

The function of the forward link is to receive the communica-

tion signal from the TDRS and process this signal before handing it

over to the various Orbiter equipments. The processing starts at the

DA by downconverting and power amplifying the signal. Recovery c-F

the carrier and despreading of the signal whenever a spread spectrum

signal exists are carried out in EA-1. Two modes exist in the SPA

which result in either buffering the data before sending it to the

Orbiter or demodulating the data and then sending it to the Orbiter.

The demodulation of the data involves the ability to achieve bit syn-

chronization and frame synchronization.

In order to adequately describe the forward link, the input

signal and noise levels are traced to give the maximum and minimum

expected signal-to-noise ratios at various parts of the system. A

summary of these signal levels is given in Section 5.1, with the

detailed analysis carried out in Appendix A, which also includes the

tracking performance of the Costas loop (used in EA--1 to recover the

carrier) and the tau-dither loop (used in EA-1 to track the PN code).

Section 5.2 discusses the signal flow in the DA and EA-1, while Section

5.3 discusses the two modes that exist in the SPA and the signal pro-

4	
cessing involved in each mode.

5,l	 Input Signal and Noise Levels

The received signal-to-noise ratio at the output of the Shuttle

antenna depends on the effective isotropic radiated power (EIRP)

delivered by the TDRS, the distance between the Shuttle and the TDRS

(path loss), and the Ku-band antenna geometry.

To provide a satisfactory forward link performance, the Shuttle

Ku-band communication receiver must accommodate a range of received

power levels. Using the Ku-band antenna gain of 38.5 dB and the cor-

responding effective area A e , Figure 39 illustrates the power densities

at the Ku-band Orbiter antenna and the corresponding power levels

versus TDRS EIRP and range. The range changes 1121 result in the

path loss variations shown in Table 7.

r.r
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Table 7. Path Loss Versus Orbiter-to- ;TDRS Range

Range
(nmi)

Range
(meters)

Path Loss
(dB-m2) Comment

18,000 3.34107 161.5 Minimum

22,600 4.19x107 163.5 Nominal

25,000 4.63x107 164.3 Maximum

Considering the EIRP variations, the higher values of EIRP

(i.e., 50 to 55 dBW) are characteristic of a "hot transmitter" (a

new tube, start-of-life-cycle operation) at the TDRS. These values

are above a typical "high power" mode x-48.5 dBW minimum output [12].

The EIRP levels below the +48.5 dBW value correspond to conditions

existing when the TDRS antenna is not pointed directly at the Shuttle.

Therefore, the lower values of the EIRP are the "effective" val-ies

presented to the Shuttle antenna. These values typically occur during

the spatial acquisition phase of the Ku-band Orbiter/TDRS link.

Taking the values of -126.9 dBW/m2 and -113.5 dBW/m2 as

minimum and maximum flux densities with which the receiver must meet

the specifications, Table 8 summarizes the respective receive power

levels in the acquisition mode, tracking mode, and minimum range mode,

which is actually 2 dB above the nominal specification parameter

mode based on the range of 22,600 nmi.

Table 8. Ku-Band Signal Levels at Acquisition,
Tracking and Nominal Link Operation Point

Minimum
Acquisition	 Tracking	 Range

Incident Flux Density, dBW/m 2	-126.9	 -126.9	 -113.5

Antenna Area, dB-m2	-5.7	 -5.7	 -5.7

Polarization Loss, dB -0.2 -0.2 -0.2

Pointing Loss, dB -3.0 -0.3 -0.3

Received Power, dBW -135.8 -133.1 -119.7

(dBm) (-105.8) (-103.1) (	 -89.7)

Y	 ^	
____-_	 ..	
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The resulting maximum power variation at the antenna is then 16.1 dB.

The single-sided noise spectral density is computed in Appen-

dix A to be N0 = -196.6 dBW/Hz; hence, the input carrier power-to-

noise spectral density ratios C/N 0 are 60.8 dB-Hz, 63.5 dB-Hz, and

76.9 dB-Hz for the acquisition mode, tracking mode and minimum range

mode, respectively.

Figure 40 shows the block diagram of the Ku-band receiver

configuration, comprised of the DMA, DEA and EA-1. The basic archi-

tecture of the equipment is that of a two--channel monopulse receiver.

One channel is used for amplifying the sum (E) output of a two-axis

monopulse antenna; the second channel amplifies the time-multiplexed

.PAZ and oEL signals developed by the monopulse bridge of the antenna. 	 i

The receiver utilizes double conversion with all of the data demodula-

tion related functions performed at the second IF. The time-multiplexed

angle tracking modulation, however, is detected at the first IF to

minimize the overall number of the receiver components.

The gains and losses of the major subunits and the appropriate

signal levels, both minimum and maximum, are indicated in Figure 40..

It is important to point out that, as shown in the figure, the dynamic

range of the signal levels handled by the receiver is comprised of

two components: (1) the change in the input signal strength ( = 16 dB)

and (2) the variation in the amplifier gains over the temperature

range. Examination of the design review data E13] indicates that

gain variations of the receiver subunits contribute an additional

10 dB dynamic range requirement over the'specified range of the oper-

ating conditions. Thus, the total dynamic range requirement imposed

on the automatic gain and level control is about 26 dB.

5.2	 Forward Link Signal Flow in DA/EA-1

Two channels have to be considered in this discussion, the

sum channel (z) and the difference channel (o).

Consider first the signal flow through the sum channel of the

receiver. The received 13,775 MHz signal power output by the sum

channel antenna feed, which is a part of the deployed mechanical

assembly (DMA), is passed through the rotary joint and is applied

to a bandpass filter (BPF 1A) and a limiter. The function of the

A
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filter is to couple the incoming 13,775 MHz signals into the receiver

and to reject the communication transmitter signal. Although the band-

width of the communication signal is less than 10 MHz, the passband

of this first filter is 300 MHz wide to accommodate the frequency

hopped signal of the radar which shares this channel. Also, the

amplitude limiter is required primarily for the radar mode, and thus

it does not affect the communication mode.

The combined loss of the antenna feed, the rotary joints, and

the filter/limiter subunit is about 2.9 dB, which implies that the

maximum and minimum input levels are reduced to -92.6 dBm and -168.7 dBm,

respectively.

The low noise RF amplifier (LNA) which follows is a three--

stage field effect transistor unit which, as explained in Ap pendix A,

has sufficient dynamic range to handle the S-band spur as well as the

signal. The bandpass filter (BPF 2A) has sufficiently wide bandwidth

to accommodate the radar signal and still provide 20 dB rejection of

the image frequency band.

After preselection by this bandpass filter, the received

signal is applied to a single balance mixer where it is downconverted

by a signal generated in the exciter to the first IF of 647 MHz. The

output of the mixer is applied to a first IF preamplifier which com-

pel^sates for the signal losses incurred in the prefiltering and in

the downconversion.

The FFT LNA, the bandpass filter (BPF 2A), the mixer, and the

post--conversion preamplifier are contained in a single hermetically

sealed subassembly which is located physically close to the input

bandpass filter/limiter unit to reduce the RF losses. The overall

RF to IF gain of this subassembly (shown by dotted lines in Figure 40)

is 23 ±2 dB over the range of the environmental conditions. The cor-

responding range of the minimum and maximum communication signal levels

is -87.7 dB and -67.5 dBm, respectively, at the output of this

subassembly.

After the preamplification at the first IF of 647 MHz, the

communication signal is passed through a solid-state diode blanking

gate OSl (.see Section 3.3, Figure 8) and is applied to . the first IF band-

pass filter (BPF 3A). In the communication mode, the gate does not affect



1e

sa

90

the signal. The output of the blanking gate is fed into BPF 3A whose

3 dB bandwidth is 18 MHz. The purpose of this filter is twofold:

(1) to provide sufficient rejection of the S-band spur and (2) to

provide good transient response during the transmit/receive gating

in the radar mode. The output of BPF 3A is applied to a 3 dB power

divider. One cutput port of this power divider feeds the communica-

tion data IF amplifier. The signal emerging at the second output

port of the power divider is summed with the IF signal of the differ-

ence (i.e., o) receiver channel.

The communication data IF amplifier provides a nominal gain

of 56 dB with an estimated variation of ±2 dB. The amplified com-

munication signal, which appears at the output of this amplifier,

leaves the Deployed Electrical Assembly (DEA) and is routed via an

interconnecting cable with 3 dB loss to the Electronics Assembly #1

(EA-1) for further amplification and processing.

The min/max levels of signal-to-noise ratios at the output of

the DEA are shown in Appendix A to be -12.5 dB and 3.6 dB in the

18 MHz bandwidth.

At the input of the EA-1, the 647 MHz second IF signal is

applied to a bandpass filter whose bandwidth is 14 MHz and then to

a balanced mixer which downconverts it to 21.88 MHz. At this point,

the min/max signal-to-noise ratios (Appendix A) are -11.4 dBm and

x-4.7 dBm in a 14 MHz bandwidth.

The combined effect of the automatic gain control (AGC) and

the automatic level contra; (ALC) provide, as explained in Appendix A,

enough signal level of stabilization to reduce the maximum variation

at their output to ±2.5 dB.

Following the AGC/ALC unit, the second signal is applied to

a series of power dividers which distribute this signal to the PN

despreader, PN tracking loop, and Pfd lock detector. The PN despreader

consists of two subsections. One subsection is used for removing the

PPS code from the data. This subsection is followed by the Costas loop.

The second PN despreader subsection is followed by the Costas lock

detector.

The min/max signal levels at the input to the Pfd despreader

subsections are -9.8 dBm and --4.8 dBm, respectively. The min/max

Fr
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levels of the signal delivered to both the PN tracking loop and the

PN lock detector are -12.3 dBm and --7.3 dBm, respectively.

The detailed functional description of the PN despreader and

the carrier Costas loop, as well as their performance, are explained

in Appendix A. It is important to note, however, that the acquisitions

of the PN code and of the carrier are carried out simultaneously and

that the Costas loop can start tracking the carrier before the Pik

despreader has acquired the PN code.

The initial frequency search and carrier acquisition iaust be

performed by the Costas loop regardless of the received TDRS signal

which can be any of the following formats:

(a) CW carrier

(b) Data modulated carrier

(c) Spread spectrum carrier

(d) Spread spectrum plus data modulated carrier.

Figure 41 shows the functional block diagram of the polarity-type Costas

loop used to acquire and track the carrier. The input to the circuit

is supplied by the second IF ACC/ALC circuit and by PN code associated

circuitry.

The Costas loop demodulator searches and acquires the incoming

RF signal. Once the acquisition is completed, the demodulator pro-

vides coherent tra+.king of the phase and the frequency of the received

signal. It must be noted that the initial Costas loop lockup on the

incoming carrier takes place regardless of the PN code synchronization.

This is due to the fact that the arm filters of the Costas loop are

made wide enough to accommodate the bandwidth of the spread spectrum

signal. Thus, the Costas loop handles the PN modulated carrier as a

baseband "data" of 3 Mbps, and it locks up the suppressed carrier of

this spread spectrum signal. The data recovery, which is the primary

function of the Costas demodulator, must be preceded, however, by the

PN despreading.

The capability of the Costas loop to acquire the received RF

signal within a relatively short time (about 350 msec) and without

needing the PN code lock makes the Costas loop the primary sensor

unit for the angular acquisition of the TDRS. Specifically, as the

'1
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Shuttle antenna beam scans past the TDRS, the Costas loop, which is con-
	 M

stantly swept in frequency, locks onto the TDRS signal and signals the

antenna microcomputer to terminate the antenna scan. The advantage of

using the Costas Ioop for acquisition rather than an energy sensor is

that the former uses coherent detection which uniquely identifies the

TDRS signal, thus eliminating possible false lockups due to oarth or

sun intercepts.

The actual sensing of the Costas loop signal acquisition state

is performed by the Costas Iock detector circuit. This circuit develops

the in-phase ("I") and quadrature phase ("Q") components of the

incoming signal and forms an I2-Q2 signal. When the Costas loop is

in lock, or close to it, the condition I 2 >> Q 2 makes the I 2-Q2 signal

exceed a preset threshold. When this happens, the lock detector sends

a "Costas lock" signal to the acquisition and track control logic.

As its name implies, the acquisition and track control logic

performs the function of switching the Ku-band communication receiver

from the acquisition mode to the track mode. Specifically, upon

receipt of the "Costas lock" signal, the logic circuit issues commands

to the antenna microcomputer and to the RF switching circuitry to ter-

minate the antenna scan and to initiate the angle tracking, in addi-

tion to terminating the sweep, narrowing the bandwidth, and initiating

tracking. (For a more detailed discussion, see Appendix A.)

The recovery of the forward link data requires the removal

of the 3.03 Mbps PN code from the received signal when the incoming

signal is in the spread spectrum mode. The removal of the code, in

turn, requires a local replica of a code which is in a near--perfect

synchronism with the incoming code. Consequently, prior to the

recovery of the communication data, the Ku-band receiver must search

out the phase of the incoming code and then lock its local coder to

the phase of the incoming code. Once the initial synchronism is estab-

lished, the local coder must remain in lock with the received code.

The function of both the code acquisition and tracking, as

presented in the PDR [13], is performed by the PN tau-dither

acquisition-tracking and the PN lock detector circuits whose func-

tional block diagrams are shown in Figure 42.
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The PN tau-dither acquisition-tracking circuit is in the

upper portion of Figure 42, while the lower portion shows the PN lock

detector. In the tracking mode, the IF signal is applied to mixer

MAT where it is multiplied with the local reference. This local

reference is time-multiplexed between two bi-phase signals, one modu-

lated by the "early" code (+T/2) and the other by the "late" code

(-T/2). The rate of multiplexing, which is generally referred to as

the "tau-dither" rate, is equal to 5.22 kHz for this particular system.

The output of E AT is bandpass filtered and applied to a

square-law detector. The square-law detected signal is then AC

coupled to the demultiplexer, where the detected IF outputs corre-

sponding to the +T/2 and --T/2 conditions are separated. After

separation, these two components are subtracted and the difference

is filtered and applied via the loop -Filter to the VCXO.

The VCXO is tunable over a limited range, and the code track

error developed by the tau-dither circuit is used to keep the VCXO-

driven code generator in synchronism with the received code.

For the acquisition phase, the scan circuit develops a voltage

which offsets the VCXO frequency from the nominal frequency of the

PN code. This offset causes the local and incoming codes to slip

past each other until synchronism is achieved.

Once synchronism is achieved, the tau-dither tracking func-

tion takes over and the PN code stays in lock despite the scan signal

voltage. This voltage, however, is disconnected once the PN lock

detector declares code lock. (For further discussion of PN acquisi-

tion and tracking, see Appendix A.)

It is important to point out that the PN code search procedure

of the tau-dither acquisition-tracking circuitry described here

utilizes a VCXO frequency offset which causes the code phases to

slide past each other on a continuous, uninterrupted basis. There-

fore, unlike the case of a stepped code search, the probability of

lock cannot be defined on a discrete time basis. This fact compli-

cates the analytical procedure for predicting the PN acquisition

behavior, although it does not affect the actual tested performance [141.

The predictions made for a stepped sequential search performance [15]

should thus be considered as guidelines.
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The signal (E-channel), which is a 216 kbps bi--phase-L code,

is fed into the SPA after PN despreading and carrier tracking is com-

pleted. The signal is controlled by a data-good circuit [13] which
	 tl;

passes the data when the three following conditions are met:

(1) The PN lock detector declares PN tracking (when spread-

ing exists).

(2) The Costas loop detector declares carrier tracking.

(3) No DC level exists.

The third requirement is included to insure that data is present and

not just carrier.

The difference channel (A) signal is generated (Appendix A)

to form (when multiplexed with the E-channel) the required error signal

for tracking purposes in the radar and communication modes. The

A-channel signal processing with the DEA is identical to that of the

E-channel. The multiplexing procedure is explained in Section 3.0

and in [6].

5.3	 Forward Link SPA Modes

Two modes are available in the SPA for the forward I;nk signals—

a special mode which primarily buffers * the data from EA-1 and hands it

over to the NSP (i or 2) on the arbiter or a nominal mode which performs

the following operations:

(7) Bit synchronization of the incoming 216 kbps bi-phase-L

data from the EA-1.

(2) Generation of the 2x216 kbps synchronous clock with the

data and solving the clock ambiguity, as well as the data (midbit,

between-bit transitions).

(3) Bit detection via a bit detector.

(4) Frame synchronization and data (scientific and operational)

decommutation before providing them to the Orbiter at the appropriate

rates.

The mode selection is controlled by the SPA management and hardware

logic.

*Buffering here implies amplification and impedance matching.

w yr- - r ^:r	 '^	
_
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5.3.1	 Bit Synchronization and Ambiguity Resolution 	 ^.

The bit synchronizer and ambiguity resolver simplified block

diagram is shown in Figure 43. The objective of the circuit is to:

(1) Generate a 32X216 kHz (6.912 MHz) synchronous signal

which is used to generate the 216 kbits clock, 2X216 kbits clock,

and various other timing signals used in frame decommutation timing.

(2) Resolve midbit versus bit transition ambiguity of the

216 kbps bi-phase-L data, as well as the 2X216 kbps clock synchroni-

zation ambiguity.

A functional block diagram of the HAC Ku--band bit synchro^,

nizer, suitable for analysis purposes, is illustrated in Figure 44.

The principles of operation of this synchronizer are summarized as

follows. The synchronizer develops its timing waveforms from a

twice.-bit-rate clock (512 kbps), while the ambiguity resolver deter-

mines the correct timing phase of the bit rate clock obtained by

dividing down the twice-bit-rate clock by 2. The input signal is

multiplied by the twice-bit-rate clock and then the bit-rate clock

or its complement, which are both used to gate (in each bit interval)

half-bit segments of the multiplier outputs to in-phase integrate-and-

dump (I&D) circuits. For the midbit I&D, the half-bit integration

symmetrically (assuming perfect timing) spans the midbit position.

Thus, the output of this I&D after 2-bit digitization by Digitizer 1

reflects the polarity of the NRZ data bit stream (or, alternately, the

polarity of the midbit Manchester transition). For the between-bit

I&D, the half--bit integration symmetrically spans the NRZ bit transi-

tion position. Thus, the output of Digitizer 2 is a measure of the

polarity of the NRZ data transition. If no transition occurs, the

output will be nominally zero.

The input bi-phase-L coded signal is also gated by the bit

rate clock and its complement, without first being multiplied by the

twice-bit-rate clock, to between--bit and midbit quadrature I&D cir-

cults, respectively. The outputs of these I&Ds are measures of the

timing offset between the input and the locally generated bit-rate

clock. Multiplying the respective in--phase and quadrature I&D outputs
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and summing generates an error signal suitable for closing the bit sync

E	
loop.

Timing diagrams of the various waveforms formed within the

loop are illustrated in Figure 45a for 0 < A <_ 4 - 2 and 1n Figure 45b

p.

for	
+ 2 < 

A :5- 1-
3 
 where A is the relative timing error (normalized to E

the bit time) between the input and locally generated bit-rate clock.

The corresponding loop error curve (assuming no noise) is illustrated

in Figure 46 and is obtained by statistically averaging the error

signal farmed above over the data sequence (assuming an NRZ transi-

tion probability pt).

Several comments are worthy of note.	 First, the midbit in"phase

F	 and quadrature IN outputs are independent of the between-bit in-phase

and quadrature I&D outputs because of the orthogonality (in time) of 1:

their respective integration intervals.	 This greatly simplifies the

computation of the equivalent loop error curve and the equivalent

noise spectral density at the error control point. 	 Second, all of

the above integrations occur over half-bit intervals. 	 While it is

advisable to "window" the quadrature I&Ds (half a bit in the HAC

design), it is not necessarily desirable to "window" the in-phase

I&Ds.	 In fact, windowing the in-phase I&Ds to half a bit as in the

Hughes design results in a 3 dB SMR penalty for making decisions on the

midbit and between-bit transitions relative to performing full-bit

in-phase I&Ds as is done, for example, in [16].	 In [16], four bit

synchronizer configurations motivated by the application of maximum 4.
F..

a posteriori (MAP) estimation theory are developed and their perform-
A:

ance compared.	 Conceptually, the HAG bit synchronizer.design is

closest to Figure 5c of [16], although fundamental differences between

the two do exist.	 Section 9.2 and Appendix F present a complete per-

formance anal ysis of the HAG design. is

The amniguity resolver uses two 12-bit counters which are I
)i

incremented or decremented by the absolute values of the in--phase

anduadrature- hase integrate-and-dump circuits as follows	 e erq	 p	 g	 p(Qr f ^

to the signals in Figures 	 45a and 45b.);
t.

(I)	 Counter I is incremented by threshold crossing of Q

and decremented by threshold crossing of Q .
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(2) Counter 2 is incremented by threshold crossing of a

and decremented by threshold crossing of ® .

The resolver resolves the ambiguity once one counter overflows

and exceeds the second counter by a certain count (not specified in

the PDR documents). Lock is maintained unless an overflow occurs three

times without exceeding the prespecified difference between the two

counters which results in a signal initiating acquisition and indi-

cating loss of lock. This implies that a long sequence of ones or
zeros would cause the ambiguity resolver to lose lock while an alter-

nate sequence of ones and zeros would help the resolver to achieve

faster lock indication.

The choice of the capacity of the counter is a function of the

duty factor and the expected maximum length of nonvarying data

sequence. A bound on these two quantities has to be specified for

an optimal counter capacity to be.selected.

5.3.2	 Bit Detection

After establishing bit synchronization, a conventional bit

detector is used to detect the 216 kbps bi-phase--L input data and con-

vert it to 216 kbps NRZ data by multiplying it with an in-phase bit-

rate clock and using two orthogonal integrate-and-dumps to detect

alternate data bits, as seen in Figure 47a. The combination of the

two integrate-and-dump circuits is implemented to act as a very fast

single integrate-and-dump circuit. The comparators are used as

threshold devices to determine the bit polarity , and the multiplexer

is used to combine the alternate outputs to form a single NRZ data

stream. The equivalent bit detector is shown in Figure 47b.

5.3.3 Frame Synchronization

The data format of the forward link is shown in Figure 48,

The data is time-division-multiplexed (TDM) in such a way that each

frame consists of 9 bytes and each byte consists of 48 bits. There

are 500 frames per second (216 kbps). The first 32 bits of byte 1 in

a frame consists of a frame code which is used to establish frame

synchronization. The remaining 16 bits in byte 1, as well as the

last 16 bits in every other byte, are reserved for operations data



C
fi; r

107

(2k+ 1)T

Clock	 f2 kT
IP 	 Comparator 1

Clock	 2kT	 Timing

	BiData	
Multiplier	 Timing	

pNRZ

	Data	
Multiplexer	 Data

f

(

 (2k+ 2)T
Comparator 2

2k+1)T

(a)

(k+1)T

	

Bi-^-L	 >	 NRZ

	Data	
fkT
	 <	 Data

Clock

(b)

Figure 47. Bit Detector Block Diagram

^I

3	 '

i

.4	

.^



108
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at a rate of 72 kbps. The first 32 bits of the eight remaining bytes

in a frame are used ' for payload data.

Frame timing (synchronization) is established via a correla-

tion detector, as seen in Figure 49. The detector searches the various

possible code positions in the first 32 bits of the first byte to

detect a correlation. Two possible correlations can be declared;

(1) Positive correlation, when at least 30 bits agree with

the local code.

(2) Negative correlation, when no more than 2 bits agree

with the local code.

This causes the frame synchronizer to shift from the search mode to

the acquisition mode with the proper data sign shift (positive or

negative). If correlation is detected again after one frame time,

the frame synchronizer enters the lock mode and an event counter is

reset to zero. If no correlation is detected, the mode is shifted back

to the search mode. Once the event counter is set to zero, it takes

three consecutive correlation misses (incrementing the event counter

to 3) to switch the frame synchronizer back to the search node. The

forward link timing circuits distribute the data and the required

timing signals to various parts of the frame synchronizer and closes

the bit synchronizer loop by sending bit synchronization timing pulses

to its timing buffer, as shown in Figure 43. The frame decommutator

timing uses the synchronous 6.9 MHz and 432 kHz signals to generate

the required 128 kHz and 72 kHz signals fcr the frame decommutator,

which isolates the operations data and payload data before handing

it to the Orbiter at the appropriate output rate.
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6.0	 RETURN LINK

The return link is used by the Ku-band system to transmit data

from the Orbiter to the TDRS. It has two selectable modes which

multiplex three channels carrying a wide variety of data. The return

link is initiated in the SPA by modulating the data in one of two

modes before being upconverted to Ku-band frequencies by the DEA and

transmitted by the DMA to the TDRS. In the following sections, the

possible data combinations are presented, along with a description of

the modes and the return link signal flow in the various Ku-band sub-

units. Evaluation of the performance of the link using the current

design parameters is also summarized with the detailed analysis pre-

sented in Appendix B.

6.1	 Signal Formats and Modes

There are three channels that can be multiplexed in one of two

modes [17]. The modes are selected by a signal from the management/

handover logic in the SPA, based on Orbiter commands. As seen in

Figure 50, the two lower rate channels are identical in the two modes,

while the higher rate channel differs according to the mode of operation.

Figure 51 illustrates the signal flow block diagram of the

return link in the SPA. The two lower rate channels (Channels I and 2)

are quadriphase-modulated on a squarewave subcarrier whose first har-

monic frequency is 8.5 MHz. The subcarrier is generated by a square-

wave oscillator in the SPA. The power ratio between the two channels

is adjusted to give a nominal 80% to the in-phase channel (Channel 2)

and 20% to the quadriphase channel (Channel 1). This is accomplished

by delaying the output of the squarewave oscillator and its inverse

by a nominal 17.4 nsec, which results in four squarewave carrier

vectors that are located at 0°, 53.2 1 , 180° and 233.2° angles. Chan-

nels 1 and 2, which geometrically form the bisectors to the angles

between the four vectors, are projected (multiplexed) onto these

vectors to yield the appropriate (0.2,0.8) power distribution between

them, respectively. This stems from the fact that cos 2 (53.;/2) =0.799

(-0.8) and sin 2 (53.2/2) = 0.2005 (=0.2). 	 The switching combination

SW1, SW2, SW3 is controlled by the management and handover logic of the

SPA and is used to select the desired signals from those shown in

Figure 50.
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In Mode 1, the generated quadriphase signal is modulated on

the quadrature channel of a carrier frequency of 1.876 GHz derived

from EA--1 while Channel 3, after passing through a convolutional

encoding stage, is modulated on the in--phase channel of the carrier

frequency. The resulting combination is a double quadriphase modu-

lation with a nominal power split of 80%, 16%, and 4% for Channels 3,

2, and 1, respectively.

In Mode 2, the subcarrier quadriphase signal is bandpass

filtered to obtain a sinusoidal subcarrier and then summed with the

4.5 MHz wideband Channel 3. The nominal power ratio in Mode 2 is

35% for quadriphased Channels 1 and 2 and 65% for Channel 3, while

the power ratio in the subcarrier quadriphase--modulated signal remains

as in Mode 1. The composite signal is then frequency modulated to

produce an FM signal with the same carrier frequency as in Mode I

(1.876 GHz) and a maximum peak-to--peak deviation of 34.0 MHz. The

required mode is selected via the mode switch, and the resulting

return link signal is then sent to DEA-A or DEA-B, depending on the

communication enable command, for coherent up-conversion before trans-

mission. The nominal signal level at the output of the SPA subunit

is expected to be 13 dBm for DEA--A and 7 dBm for DEA-B. This is

because there are no radar Iosses through DEA-B.

Before describing the DEA portion of the return link, the

convolutional encoder is described and the effect of the variation

in power distribution between various channels is analyzed.

6.2	 Convolutional Encoder

The convolutional encoder is used to encode Channel 3 in

Mode I at a rate 1/2 and cc;traint length 7, thus converting the

2-, 50 Mbps NR7 data into 4-100 Msps encoded data. This is achieved

by synchronizing a received 2-50 Mbps clock with the equal amplitude,

equal rate data by selecting the proper clock phase via a D flip-flop

utilizing Ixclock and 2Xclock frequencies. The encoder uses a 31-stage

phase shift register with two modulo-2 adders and two 5-bit shift

registers which are loaded at every fifth uncoded input data bit into

a 10-bit buffering output shift register after passing through a

delay line, as shown in Figure 52. Timing plays a very important
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	 role in the operation of the convolutional encoder. Since delay lines 	 !

are used for timing purposes, care must be taken to avoid any dead zones

in the operation. One such dead zone was reported at 10 Mbps.

..	 6.3	 Data Asymmetry

One area of concern in the return link is the data asymmetry

produced by the 50 Mbps rate 1/2 convolutionally coded data channel

over the TDRSS. This is a potential problem which can cause appreci-

able degradation to the demodulated data detection. This degradation

is a function of the amount of asymmetry produced by the SPA return

link circuitry.

The bit error rate performance of the convolutional decoder

depends, among other things, on the symmetry of the modulation. Any

asymmetry in the NRZ symbols entering the symbol synchronizer causes

a misalignment in the symbol synchronization clock which degrades the

integrate-and-dump output and any soft or hard decisions derived from

it for input to the decoder. For a specified degree of asymmetry (in

terms of a fraction of a symbol interval), the bit error rate degrada-

tion is dependent on the transition probability of the data. Clearly,

if the data transmitted was either all ones or all minus ones, misalign-

ment of the bit synchronization clock would have no degrading effect on

the integrate-and-dump output since, for each symbol, this circuit would

integrate up to its maximum value before being dumped. On the other hand,

when the data is an alternating sequence, the worst-case degradation

results, since the transition which occu,^s at the end of each symbol in
e

combination with the symbol synchronization clock misalignment prevents

the integrate-and-dump output from reaching its maximum value.

A detailed analysis of the problem was presented in [18] where

two possible sample detectors were discussed taking into account the exis-

tence of data capacitive coupling which is used to restore any existing

D.C. level, as well as the detector band limiting effects. A summary

of the results is presented here to help in giving a complete evaluation

of the effects of data asymmetry.

The first type of detector, which is the filter-sample type

detector, is shown in Figure 53. Assuming NRZ data, the performance of

the detector is illustrated in Figures 54 and 55, where n represents the

asymmetry defined as the difference in length between the shortest and
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	the longest pulses in the sequence divided by their sum and 
Es/N0 

is the	 1

symbol energy-to-noise spectral density ratio. It could be concluded that,
f

for small values of asymmetry (less than about 10%), the optimum filter

bandwidth--bit time product remains equal to 0.9, and the corresponding

amount of energy-to-noise ratio degradation at a fixed error rate is

virtually independent of whether or not O.C. restoration is present.

	

Using BT= 0.9, the degradation in signal energy-to--noise spectral 	 g

density, which is the additional Es/NO needed to achieve the required

performance, is summarized in Table 9.

Table 9. Es/NO Degradation with D.C. Restoration by
Capacitive Coupling

P E = 10-4 PE = 10-5

n(%) Es/NO (dB) DEs/NO (dB) n(%) Es/NO (dB)
oEs/NO 

(d6)

0 9.97 0 0 11.28 0
2.5 9.99 0.02 2.5 11.30 0.02
5.0 10.02 0.05 5.0 11.32 0.04

10.0 10.12 0.15 10.0 11.40 0.12
15.0 10.25 0.28 15.0 11.54 0.26
20.0 10.44 0.47 20.0 11.73 0.45

The table shows that for asymmetry less than 10%, the degradation does

not exceed 0.15 dB.

The other possible implementation of the data detector is the

gated integrate-and-dump filter shown in Figure 56. Figures 57 and 58
are the corresponding performance curves for this detector. The dotted

line in Figure 58 represents the best achievable performance using the

gated integrate-and dump data detector. In both figures, E represents

the fractional gate interval (relative to symbol time) at each end of

the symbol.

In order to minimize the degradation and to meet the asymmetry

specifications of 10%, NAC has proposed an asymmetry compensator which

S
f: t
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Figure 56. Gated Integrate-and-Dump Filter.
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uses a closed loop compensator detector circuit and a D flip-flop to give

a maximum asymmetry of 10%. A detailed description of the encoder and the

compensator is presented in [17]. No test data pertaining to the perform-

ance of the compensator is available. It is believed, however, that the

compensator output will meet the asymmetry specifications. The effects

of any asymmetry test data on the probability of bit error, however, can

be directly evaluated using Figures 21, 22, 25, and 26.

6.4	 Effects of Deviation From the Nominal Power Ratio in Mode I

The demodulator for the -three-channel (Mode 1) configuration is

a combination of two Costal loops 1191 which are implemented to recover

the carrier and then the subcarrier before the data can be demodulated.

Appendix B presents the detailed analytical discussion of the effect of

change in power distribution between the three channels on the tracking

of the subcarrier loop. These changes are attributed to the inability of

the hardware to maintain the exact nominal power distribution. Using the

current estimates of the system losses of TDRSS, Figures 59 and 60 illu-

strate two cases of interest.

Channel 2 is assumed to be NRZ in the first case and biphase-b in

the second, while Channel 1 is assumed to be biphase-L in both cases. The

ratio of total power to the product of the single-sided spectral density

and Channel 2 rate PT/(N 0R2 ) is taken to be 22 dB, which is the approxi-

mate expected return signal-to-noise ratio. Different signal-to-noise

ratios are shown in Appendix B. In all cases, the carrier tracking loop

is optimistically assumed to be tracking perfectly. The effect of any

carrier tracking error Cp c) is an additional degradation to the rms sub-

carrier jitter of cos t Oc . The selected values of power ratios in the

three channels are typical expected performance values of the return link

modulator in the SPA [20]. Table 10 shows the nominal values, as well as

the ratios used in the calculations. In deriving the values for the rms

phase jitter, Channel 3 data was assumed to be NRZ data.

As is obvious from Figures 59 and 60, the subcarrier rms tracking

jitter changes drastically due to the above variations in power distribu-

tion for all values of B i /R2 s which is the ratio of the two-sided arm

filter noise bandwidth to the Channel 2 data rate. The arm filter in

the analysis is assumed to be a first-order Butterworth (RC) filter with
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Table 10. Power Ratios in Mode 1

( PT = P 1 + P2 + P3;

P3/PT P2/PT PI/PT

Nominal	 0.80	 0.16	 0.04

Case 1 0.82 0.14 0.04 Expected

Case 2 0.78 0.19 0.03 Variations

a typical ratio between its two-sided bandwidth (B i ) and the loop single-

sided noise bandwidth (SL ) of 10 4 . It should also be noted that the per-

formance of the subcarrier tracking loop in terms of the rms jitter is

worse in the case of the biphase-L data in Channel 2 than it is when the

data is NR7.

To obtain the tctal effect of the variation in power ratio distri-

bution on the probabilities of bit error, however, two factors have to

be taken into consideration:

(1) The variations in the loop phase jitter (a 2
Wsc

 ) which, in

turn, affects the probabilities of error. This factor, however, has been

shown in f21] to be less than 0.14 dB under worst-case conditions. In

other words, the deviation from the ideal tracking case is negligible.

(2) The changes in signal-to-noise ratios in the various channels.

To illustrate this effect, a typical expected value of PTT2/N0 = 22 dB is

selected at the input of the subcarrier Costas loop. Choosing R 2 = 2 Mbps

and R1 = 192 kb.ps as an example, Appendix B shows that the resulting design

margins to achieve the specified probabilities of bit error of 10
-4
 in the

lower two channels are still adequate for both cases of interest. Using

an estimated 2 dB for the TURS bit synchronizer loss, the resulting design

margins are summarized in Table 11.

Table 11. Return Link Lower Rate Channels Design Margins

Channel 1	 Channel 2	
R3= 

10 Mbps, R2 = 2 Mbps,

Case 1	 6.55	 2.78	 Rl W 192 kbps

Case 2	 4.19	 4.83	 PTT2/N0 = 22 dB
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1 The example clearly illustrates that, in spite of the expected

variations in the signal powers in the three channels, adequate design

margins exist due to the high return link signal-to-noise ratios.

6.5	 Return Link RF S anal Flow

In this section, the return link signal is traced through the

Deployed Electronic Assembly DEA. Since parts of the PEA are shared

with the radar mode, the main radar signals are pointed out with the

detailed discussion presented in Section 3.0.

The modulated communication signal (Mode I or Mode 2) leaves

the SPA unit at Point C (Figure 51) to be up-converted in the DEA

exciter subunit (shown in Figure 61) to the Ku-band communication

transmitter frequency of 15.003 GHz. This is accomplished by mixing

the incoming 1.876 GHz signal with a 13.128 GHz signal and filtering

it with a bandpass filter (BPF 1). The 13.128 GHz frequency is

generated via a phase-locked loop (PLL) using the 83rd harmonic

(12.972 GHz) of a 156.3 MHz reference frequency from EA-1. The loop

is closed by a mixer which is used to form the difference frequency

between that generated by a swept Ku-band Gunn VCO and the 12.972 GHz

signal. The resulting signal is compared via a comparator whose

reference level of 52.1 MHz which is derived by dividing the 156.3 MHz

signal by 3. Whenever the Gunn VCO tunes to a frequency for which

the output of the mixer MI equals any integral multiple of 52 MHz,

the output of the comparator will be detected by a zero beat detec-

tor (not shown in the figure) which, in turn, will stop the sweep

and phase-lock the VCO. The reason behind this implementation is

to allow easy generation of the five discrete radar frequencies

used in the passive mode by proper bandpass filtering of the output

of Ml. The five radar frequencies are generated by proper VCO

frequency selection which ranges from 13.128 GHz to 13.336 GHz in

steps of 52 MHz and then by mixing with a 651 MHz signal which is

generated from the original 156.2 MHz reference. Switches SWI and

SW2 are used to shift from the communication mode to the radar mode

according to the Comm/Radar Enable command.

It should be noted that the output of the Gunn VCO is also used

as a first LO frequency in the forward link (receiver) and that 573 MHz
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is also derived from the 156.3 MHz reference for use in the radar second

l.0.
The up-conversion is followed in both the radar and communica-

tion modes by a four-stage, low-noise FET amplifier which is used to

increase the drive power of the traveling wave tube (TWT) to 7 dBm

and to reduce any amplitude modulation on the drive signal. Switch

SW3 is then employed to extract a TWT bypass radar signal which is

used in the radar short range operation. The signal is then passed

through an adjustable attenuator which selectively provides 0 dB,

12 dB, or 24 dB of attenuation to the signal. A TWT amplifier, which

operates between K-15 GHz to accommodate both radar and communication

modes, is then used to amplify the signal to a 60W nominal power at its

output (55 watts in the case of the radar).

In order to turn the TWT on, two signals are needed: (1) a

standby or ON command from EA-1 which enables the transmitter high

voltage, the TWT filament and the TWT modulating anode power supplies

and (2) a transmit enable command which enables the modulating anode

after at least a three minute warm--up period following the first command.

There are isolator stages preceding and following the TWT

which constitute part of the transmitter microwave subassembly in

which harmonics outside the radar and communication bands are filtered.

The signal then reaches the first diplexer, DI1, which consists of

bandpass/band-reject filters of multicavity Chebyshev design. DIl

routes the return link signal to waveguide switch SW4 which, according

to the original design, routes the signal to either the DMA wide--beam

antenna in the TDRS acquisition mode or through a second similar

diplexer DI2 to the narrow-beam antenna to transmit the signal to

the TDRS after acquisition. In the original design, a polarization

switch is also implemented to select the proper radar or communication

polarization. Since the TDRSS angle tracking circuits are limited in

the rate of change of received signal power, the switching from wide-beam

to narrow-beam is creating a problem. It was therefore necessary to

adjust the search procedure and use the GPC designate with only the

narrow-beam antenna as the primary mode. Axiomatix therefore suggests

that the polarization of the wide-beam antenna be changed to linear

polarization, which will assist the radar mode in sidelobe discrimination.

..
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The radar signal is routed by DI1 into a radar switching unit (ferrite

circulator switch) which provides an 80 dB guard attenuation during the

receive mode. The output power level of the return link signal during

normal operation is approximately 501 (47 dBm).

Figure 61 shows only the necessary components of the return link.

A separate discussion of the forward link is presented in Section 5.0.

Also not shown in Figure 61 is the low voltage power supply subassembly

[22] which is used to generate all the required DC voltages for operation

of the DEA.

Fi t-
I-
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7.0	 DEPLOYED ASSEMBLY

The DA consists of the deployed mechanical assembly (DMA) and

the deployed electronics assembly (BEA). This section is devoted to

describing the major functions to be performed by these units and to

identifying the major signals between these units and between the Ku-band

system and the Orbiter. In addition, the major potential problems are

summarized wherever they might exist. In order to avoid duplication of

effort and since the signal flow in the various operation modes has been

discussed in Sections 3.0, 5.0, and 6.0, this section only describes the

major functional blocks within each subunit without any effort to analyze

the signal flow within each block. It should also be emphasized that

only the major signals are included to achieve a better understanding of

the system without cluttering the diagrams with extensive details.

7.1	 Deployed Mechanical Assembly

7.1.1	 Antenna System

The antenna system is composed of a 36-inch diameter graphite-

epoxy reflector fed by a quad-ridged circular waveguide radiator. The

present status is that problems exist in achieving the proper antenna

pattern performance on the antenna measurement range. The initially pro-

posed "crossed dipoles in a cup" feed was found to have unacceptable

temperature increases resulting from thL transmitter power levels which

will be used for the integrated radar/communication system.

7.1.2	 Antenna Feed Subsystem

The obvious restriction imposed by the stowage envelope within

the Shuttle bay has resulted in a design with an F/D ratio of 0.28,

which has created some problems in attaining the desired antenna patterns

by standard experimental iteration methods. Because of the limited

space available, the number of available design options and alternatives

has been substantially reduced to the point where only minor adjustments

in dipole spacings, sum feed aperture height above the ground plane, and

effective focal point placement can be readily accomplished. The present

design, with its limitations, has few modification options. A solution

might be subsequently found using the present techniques but it might be

prudent to first assess the existing design and then examine alternatives.
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The present design consists of crossed probes in a quad-ridge

waveguide section spaced such that circular polarization capabilities

were attainable. The quad-ridge waveguide section allows a wider RF

bandwidth and maintains isolation between the orthogonal Iinear polar-

izations. The quad-ridge section tapers into a circular waveguide

section whose diameter is determined to avoid multimoding effects.

The radiating aperture itself is just the open end of the circular

waveguide, with no flaring or other impedance matching techniques used.

This abrupt transition at the circular waveguide-free space interface

is probably a significant cause of the relatively large input VSWR

measured. Also, due to the short feed Iength, mode control is

extremely difficult, and such techniques as corrugations appear to

be impractical. Under these conditions, it appears difficult to

control the illumination taper of the reflector and also determine

the effective phase centers for the feed at the two frequencies

involved except by purely experimental methods.

The incorporation of the four printed circuit dipoles composing

the monopulse tracking function has complicated the design somewhat

because of the mutual coupling effects between the dipoles and the

quad-ridged circular waveguide sum feed, which by reciprocity affects

both patterns. Again, iteration techniques must be employed to

minimize this mutual coupling since isolation is essential for

optimal performance.

The blockage effects of the protruding waveguide runs to the

feed have had demonstrated increased sidelobe contribution effects,

but this is inherent in the design and has been minimized by reducing

the waveguide cross-section to that of the narrow wall, with the three

waveguides stacked on edge. Also, the placement of the waveguide run

is important and seems to have been adjusted accordingly. For the

linearly polarized mode of operation, it is essential that the electric

field vector be perpendicular to electrically conductive pods for minimum

pattern disturbance. This not only applies to the waveguide run but also

to support pods made of graphite epoxy, which is a relatively good elec-

trical conductor. The shape of the pod is also critical, since a diamond

wedge shaped cross-section would have minimized the blockage cross-section

for an electric field vector perpendicular to the pod axis.
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7.1 .3	 Reflector

The RMS surface tolerance and thermal characteristics of the 	 !

reflector itself will not be addressed since the reflector shell is

cast on a precision machined surface. Care must be taken during

separation from the mold to avoid damage, and it is assumed that ade-

quate reinforcing joints are used to satisfy shock and vibration

requirements.

The two points of possible concern for the graphite-epoxy

reflector are metallization of the reflector surface and uncured

resin problems. Since most radar and communications applications

do not require perfect reflection, it is a common practice to use the

high reflection coefficient of the dielectric mismatch of the cured

resin instead of an electrically conductive surface. Graphite--epoxy

is conductive; however, it is highly anisotropic since it depends on

the orientation of the fibers in the fabric material over which the

resin is cast. Therefore, for some applications, it might be wise

to consider metallizing the surface. This would be true for the case

of a wide illumination angle such as 164° since the reflection coeffi-

cient might noticeably decrease at the extremes due to Brewster angle

impedance-matching. A recently declassified materials measurement

report also indicated that graphite-epoxy is not as electrically con-

ductive as has been commonly assumed.

Another problem that has recently arisen and must be closely

monitored is the bubbling of a graphite-epoxy surface due to uncured

resins. This phenomenon, which is obviously deleterious, can be caused

by a number of fabrication problems such as nanstoichiometric mixtures

and nonuniform mixing. Although it appears trivial, it has become

apparent on -flight-qualified reflectors after antenna pattern measure-

ments were taken on the SEASAT /NIMBUS G SMMR programs.

In addition to the above, the specifications require the antenna

sidelobes to be at least 18 dB below the main lobe. The current test

figures show that the sidelobes can be as high as 14 dB below the main

lobe, which is a potential source of problems, especially in the radar

mode.

Finally, since the primary TDRS search mode is now the GPC desig-

nate because of the inability of the TDRS angle tracking circuitry to
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withstand a large rate of siggal power change, it is recommended that

the wide-beam horn polarization be changed to linear polarization. This

would help si del obe rejection capabilities in the radar mode,

7.1.4	 Possible Alternative Antenna Concepts

Although the presently committed HAC-design is probably adequate

and earlier proposal studies explored various other types of feasible

systems, Axiomatix would like to consider some possible modifications

of the existing design.

The immediate concern for the existing design is the absence

of a well-defined null in the elevation (or azimuth) plane difference

channel. This phenomenon might be attributed to the geometrical

relationship of the dipoles to the incoming phase front on which

the monopulse tracking system is based. This phase front problem

would be more apparent for lower F/D ratios of the antenna reflector

systems for one orientation of linear polarization. The incoming

phase front for the case of the linear polarization in the plane of

incidence suffers from a lack of phase resolution since it approaches

the dipole at a grazing angle. Because of this grazing angle of

incidence, the phase itself cannot be well characterized by the

dipole which is of the order of half a wavelength long. An attempt

to pictorially describe this phenomenon is shown in Figure 62a, which

shows that the phase front from the edge of the reflector is incident

on the monopulse dipole at close to a grazing angle. A more detailed

description is shown in Figure 62b, which shows the phase relationship

of the incident wave on the dipole for the ray path designated by A.

It is seen that the phase relationship cannot be well defined for

this orientation of polarization and this particular dipole orienta-

tion. This is not true for the ray path designated B since the

electric field vector would be oriented parallel to the dipole, and

a prominent null would exist. Similarly, the gain is degraded since

the incident electric field vector is not parallel to the dipole.

If this hypothesis is valid, then some corrective measures

could be taken. One would be to use a curved dipole pair elevation

plane monopulse system, as shown in Figure 62c. This configuration

would most closely resemble the focused spherical phase front and
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would thereby avoid the null problem. This technique might be considered

for correcting the present MAC design.

Another configuration which might be considered is the Casse-

grain system. The argument used in the Ku-band PDR (Vol. VI, DMA and

DA, Section 9-7, March 14-24, 1978) assumes that only horns would be

used for the monopulse system and, therefore, because of the spacing

problem, the horns would be widely separated. However, the same type

of printed circuit monopulse four-linear-dipoles system can be used

instead of the additional horns. The resulting Iarger F/D ratio

would help alleviate the null problem described earlier. In addition,

the absence of waveguide blockage would decrease the sidelobe levels.

The 2-inch diameter of the horn is due to the flaring of the hor,,,

which results in a better feed pattern than the abrupt open-ended

0.5--inch diameter circular waveguide, and the improved impedance

matching would result in a much lower input VSWR.

7 , 2	 Deployed Electronic Assembly

A block diagram of the Deployed Electronic Assembly (DEA) is

shown in Figure 63, which includes five major blocks denoted as the

low voltage power supply, the exciter, the transmitter, the trans-

mitter/receiver microwave circuit, and the receiver. The low voltage

power supply receives an unregulated 28 ±4 VDC supply from the main

bus on the Orbiter to provide all the required regulated DC voltages

to the D£A. The exciter uses a 156 MHz reference signal from EA-1 to

generate the communication Ku-band frequencies and the five radar Ku-band

frequencies and to upconvert the modulated communication signal from

the SPA to the Ku-band frequency of 15,003 GHz. In the radar mode,

the exciter receives three main signals from EA-2, namely,

(1) Radar power signal which controls the radar power selec-

tion by inserting 0/12/24 dB attenuation to the :signal power or com-

pletely bypassing the TWIT for proximity operations.

(2) Radar frequency select which chooses the required RF

frequency for frequency diversity purposes.

(3) T/R signal which switches the T/R switches for transmis-

sion and reception.
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The exciter also receives a self-test signal from EA-1 and generates
a radar target which is fed to the DMA for target simulation at four
selectable ranges.

The radar/communication selection is controlled by a signal
from EA-1 which acts as an interface between the Orbiter and the

various subunits. The exciter generates two stable frequencies for
downconversion purposes. The first LO is sent to the transmitter/

receiver microwave to downconvert the received signal to 65I MHz in

the radar mode and to 647 MHz in the communication mode. The second
LO signal is used to downconvert the multiplexed radar signal to

78 MHz. The blanking switch signal is also sent from the exciter

to the receiver diode switches which are used to protect the receiver

from radar transmission leaks, in addition to switching the difference

(p) signal, the sum (E) signal or the multiplexed (Z+ A) signal

according to the mode. The upconverted modulated communication

signal or radar signal is fed into the transmitter where it is amp-

lified by the TWT. The ON/standby transmit command is used to warm

up the TWT and enable the high voltage supply in the transmitter.

Actual transmission does not occur, however, before the reception

of the transmit enable command from the SPA.

The transmitted signal (radar or communication) leaves the

transmitter to the transmitter/receiver microwave block where it is

diplexed and fed into the DA for transmission using the proper

antenna. EA--2 supplies the transmitter/receiver block with three

main signals, namely, the radar off signal, the AGC signal to control

the first bandpass filter limiters, and a transmit gate signal to

assure the proper signal switching by the circulator switch in the

radar mode.

The two received signals (4-channel and z-channel) in the

receive mode are bandpass filtered, gain controlled, and amplified

by low-noise FET amplifiers before they are sent to the receiver

block. In the receiver block, the a-channel and E-channel pass the

blanking diode switches that protect the receiver and receive (1) a

z-channel enable command during radar search, (2) a o-channel enable

command during main/sidelobe discrimination or (3) both commands during

tracking. The communication channel (forward link signal) after the

.p



i	 140

first bandpass filter 0647 MHz) is passed along with the multiplexed

IF (647 MHz) communication track signal to EA-1. The radar signal is

downconverted to 78 MHz and bandpass filtered before handing it to

EA-2. The sample rate select signal from EA--2 is used to select the

bandwidth of the second IF filter as a function of range (10 MHz for

R <_ 0.42 nmi and 3 MHz for R >_ 0.42 nmi). It should be pointed out that

the transmitter/receiver microwave block has not yet been adequately

documented, which limits the ability of analyzing it in more detail

for any potential problems.
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8.0	 ELECTRONIC 'ASSEMBLY 1

This section evaluates the available breadboard test data per-

taining to the Electronic Assembly 1 (EA-1). The general functional

description of EA-1 is presented in Section 8.1. The PN code tracking

performance is analyzed in Section 8.2 and compared to the test data.

Section 8.3 discusses the tracking performance of the polarity-type

(hard-limited) Costas loop which is used to acquire and track the carrier,

while Section C.4 presents lower bounds on the expected pull-in time of

the loop at high signal-to-noise ratios and compares it with the test

data. The Costas loop lock detector performance is presented in Section

8.5. Finally, Section 8. 6 summarizes the areas of concern in the antenna

control electronics and points out the problems that require design

modification.

	

8.1	 Electronic Assembly_ 1_ Functional Description

This unit is responsible for the mode control for the entire

Ku-band system in addition to being the major interface between the

Orbiter and the system, that is, most of the signals from the

Orbiter to the Ku-band system. The EA-1 generates several refer-

ence signals for use in the various subunits, monitors the radar

self-test, downconverts the communication forward link signal from

the DEA receiver, acquires the forward link carrier and despreads

its signal (when PN spreading exists), and generates the angle search

and track servo signals which result from the communication or radar

mode angle error generation. The unit also provides the Shuttle with

the required computation capabilities to perform antenna coordinate

transformations. Figure 64 illustrates the major EA-1 blocks and

the major signals flowing into and out of these blocks.

As in all other subunits, a regulated low voltage supply is

used with a 28 ±4 VDC input from the main bus to supply the unit

with the required regulated voltages.

The reference frequency generator implements a crystal oscil-

lator to generate several needed stable frequencies. A 156 MHz signal

is sent to both the DER and EA-2 and a 1.875 GHz signal is sent to

the SPA. These signals are used by the respective units to generate

various other signals and timing clocks. A 625 MHz signal is sent
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to the forward link sum channel downconverter to translate the sum

channel signal from 647 MHz to 21.88 MHz. The resulting signal is

processed through a swept polarity-type Costas loop to acquire and

track the carrier. A lock detector is used to declare carrier acqui-

sition and starts carrier tracking and, at the same time, supplies

the antenna control electronics (ACE) with a signal detect command

to stop search. When a PN code is used to spread the forward link
signal, a "swept" tau-dither loop is implemented to work in parallel

with the Costas loop for acquiring and tracking the PN code. A Gold

code generator is used to generate the local code. A PN code lock

detector is used to stop the tau-dither loop sweep and declare PN

lock to the Orbiter when code acquisition is completed. A data-good

circuit is added to declare that the carrier is ac quired, despreading

is completed (when it exists), and no residual DC voltages exist.

Once this step is completed, the 216 kbps bi-phase-1_ baseband data

is sent to the SPA for buffering and/or data detection.

The EA-1 unit contains several major interface blocks between

the Orbiter and the Ku-band system. They are represented by two

blocks in Figure 64: (1) the multiplex/demultiplex (MDM) interface

block which interfaces with MDM1 and MDM2 and (2) the analog and

discrete interface which interfaces with MDM3, the displays and

controls (D&C) unit, the ground command interface logic controller

(GCILC), and the antenna deployment actuator. These interfaces send

most of the control and status messages to the Orbiter and receive

most of the command and status signals from the Orbiter before

distributing them to the various Ku-band system units. Figure 64

shows double arrows connecting the interface boxes and the EA-1

program processor, which is basically a microprocessor, to denote

the numerous signals involved. The main signals involved are listed

below (only major signals are listed).

(1) Signals to MDM

-Roll and pitch angle and angle rate

-Range and range rate

-Status Word 1, which includes the communication/raiar
mode, antenna mode, angle data validity, self-test in
progress, and the Ku-band A/B select signals

1

ij
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-Status Word 2, which includes the range and range rate
data validity, target status, data-good, frame syn-
chronization, and radar status signals

(2) Signals from MDM
These include tho GPC acquisition information word
which controls the on/off switching of modes, the
pitch and roll angles, and the range designation
words.

(3) Signals to Display and Controls

These include roll and pitch angle and angle rate infor-
mation, the radar range and range rates, the Ku-band
signal strength, and the search and track status and
scan warning flags.

(4) Signals from Displays and Controls

The main signals from the D&C are the search initiation
signal, radar passive/active mode, radar power selec-
tion, and the roll and pitch slew rates.

The program processor also receives data from EA-2 and sends commands

to EA-2 over a low rate interface. The signals involved are:

(1) Signals to EA-2

These include the antenna ready signal, slew fast or slow
signal, and main or mini scans, provide the test target
signal and the active or passive data signal.

(2) Signals from EA-2

These include the four radar parameters good signals
(range, range rate, angle and angle rate), an angle
track enable signal, a target generating signal in
the self-test mode, and a miniscan signal.

The GCILC receives a forward link data present signal from

the SPA and sends several signals to the SPA (see Section 9.0). The

signals received by EA-1, however, are:

(l) Radar and communication ON/standby signals

(2) GPC designate, GPC acquisition, manual or autotrack

signals.

The last major function of the EA-1 unit, in addition to com-

munications and interfacing is antenna control. The communication

angle track demodulation block receives two clock rates of 739 Hz

and 369 Hz from the PN despreader block, which are the same as those
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used in the DA to multiplex the A+ Z signal. These clocks are used

to demodulate and separate the AAZ and AEL signals. The AAZ and AEL

signals are used by the antenna servo circuits (in the communication

mode) to generate the gyro torque control signals in the tracking mode.

In the radar mode, the antenna servo uses similar signals generated

by the EA-2 unit. There are two angle errors (azimuth and elevation)

in either the radar mode or the communication mode. These signals are

processed almost identically in two separate channels to control the

motor drive and adjust the antenna position. During scanning, the

program processor generates a scanning rate command which controls

the antenna motion and the search pattern.

The program processor also performs the required coordinate

conversion and initiates the required signals to control the self-

test mode.

One aspect of the PSK data demodulator design which requires

closer examination is that of using the 5.92 kHz "dither" signal in

modes other than CW reception. For the CW mode, the dither signal

is obviously required to provide the sideband which can be utilized

by an AC coupled Costas loop for coherent carrier acquisition and

tracking. However, for the case when biphase-L data is being

received, the requirement for a dither waveform is questionable

because the spectrum of the data does not contain DC, i.e., the

carrier, anyway. Locking up to and tracking of such biphase--L

data with an AC coupled loop should not present a problem.

The introduction of an asynchronous dither signal into the

received IF signal by bi-phase modulation and subsequent removal of

this signal from the baseband data by a chopper may result in

"glitches" which, in turn, may degrade BER performance.

Consequently, it is recommended that the function of the

dither signal during the reception of the biphase-L data be reexamined

and, if found not justified, the use of dither in the data receive

mode be discontinued.

As far as the scanning function of EA-1, the data presented

at the PDR points out that the 30% overlap specification is not met.

HAC digital simulation results show that the overlap is about 25% in
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the radar main scan and only 12% in the communications main scan. This

problem deserves spectral attention due to its impact on system perform-

ance in the search mode.

8.2	 PN Tracking Performance

During the spread spectrum mode of the forward link, the

recovery of data necessitates the removal of the 3.03 Mbps PN code

from the received signal. The removal of the code, in turn, requires

a local replica of a code which is in a near-perfect synchronism with

the incoming one. Thus, prior to the recovery of the communication

data, the Ku-band receiver searches out the phase of the incoming code

and subsequently locks the local code generator to the phase of the

received code. After establishing the initial synchronism, the local

code generator remains in lock with the received code by implementing

a tau-dither tracking loop.

The functions of code acquisition and tracking are performed by

the PN lock detector and the PN tau--dither acquisition-gathering circuits,

whose block diagrams are shown in Figure 65. The main emphasis in this

section is placed on the performance of the circuit during tracking.

Specifically, the effect of the code tracking error on data demodulation

loss is considered.

In the spread spectrum mode, as shown in Figure 65, the code

tracking loop supplies the punctual correlation code to the despreader

mixer ahead of the Costas demodulator. The noise error within the code

tracking loop introduces a certain amount of signal degradation, which

ultimately affects the BLR performance.

Quantitatively, the effect of the code tracking error is

expressed as an effective loss LT in dB [23]:

LT = 10 log (1 - I.16 a T ) ,	 (20)

where 
aT 

is the normalized error for the PN loop. This error, in

turn, can be computed from the following expression [24]:

2	
(	 ll2
	 B

T
0.905 (p i ) -1 + 10. 453 - (10Td B i )-l̂  CN N 1! (p i

)-2 
B °	 (21)	 ;.

i=

For a finer analysis of T , see [25]. With optimized bandpass

arm-filter bandwidths, (21) is shown to be optimistic by about 0.9 dB.
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where B  = two-sided noise bandwidth of the IF arm filters

BL = one--sided tracking loop bandwidth

Td = dither frequency period

N = number related to early/late code spacing (N ? 2; for
correlator spacing of ±-r/2, N= 2)

Pi - N B
0	

,signal-to-noise ratio in the IF bandwidth. 	 !
i

To determine the effect of the tracking error on the data per-

formance, we calculate, using (21), the values of 
6T 

as a function of

the C/N O and then substitute these values into (20) to determine the

effect of 
aT 

on the effective data demodulation loss. The parameters

used are those of the Ku-band communication equipment:

B i =1 MHz

BL = 500 Hz (acquisition), 50 Hz (tracking)

Td = 0.168 msec (5.92 kHz)

N = 2 (±1/2 chip spacing) .

Figure 66 shows the plots of both 
6T 

and the corresponding values

of LT as functions of the C/N 
0' 

The measured breadboard test data for

a  
is also shown. This data was obtained by the Ku-band equipment

contractor and reported during the March 14-24, 1978, Preliminary

Design Review [26]. The test data shown is for a temperature of 20°C

only, but it does follow the theoretical curve for BL = 500 Hz rather

well. At temperature extremes, the RMS jitter a  may deviate from the

values shown in Figure 66, but the reduction of the tracking bandwidth

to 50 Hz will provide a 5 dB reduction of the RMS value of the jitter,

thus insuring that it stays below the specified value of 0.022 chips

for the C/NO in the range from 63.5 dB--Hz to 78.9 dB-Hz.

The examination of the L T values shown in Figure 66 indicates

that, even for the tracking loop bandwidth of 500 Hz, the effective

loss is relatively small compared to other typical implementation

losses. Specifically, for BC 500 Hz, the LT is 0.2 dB at the acqui-
sition threshold of 60.8 dB-Hz. At the nominal tracking C/N O of

63.5 dB-Hz, the effective loss is 0.14 dB. With the tracking bandwidth

reduced to 50 Hz, these losses are reduced to negligible values,
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'	 particularly at C/N0 values above 63.5 dB-Hz. Consequently, one may

conclude that the PN tracking loop contributes relatively little degra-

dation to the forward link BFR performance at C/N O values at and above

63.5 dB-Hz.

It is also interesting to note that, with the dither interval

of 0.168 msec (5.92 kHz) and the predetection bandwidth B  of 1 MHz,

the factor (TO Td 
Bi)-1 

is negligible compared with 0.453:

(10Td B i ) -1 = [10)(0.168x10-3)(106- 1 = 5.95x10-4 << 0.4.	 (22)

This considerably simplifies (21) and the corresponding calculations.

8.3	 Costas Demodulator Tracking Performance

The signal-to-noise ratio inside the carrier tracking loop of

the Costas demodulator is an important parameter for considering the

performance of the demodulator as a function of the C/N 
0" 

Therefore,

in this section, we will calculate the loop signaI--to--noise ratio (SNR)

using the parameters of the Costas loop demodulator employed by the Ku-

band forward link receiver. The functional block diagram for this

demodulator is shown in Figure 67, and the simplified diagram of the

Costas loop itself is given in Figure 68.

Note that, as shown in both figures, the Costas demodulator

employs a hard-limiter to shape the I-channel signal applied to the

chopper multiplier. In fact, it is this feature of the Costas loop

which allows the utilization of the chopper multiplier rather than an

analog multiplier, the latter being a frequent source of bias error.

These loops are frequently referred to as polarity-type Costas loops

with passive arm filters.

Consider now the SNR within the Costas loop. The expression

for this SNR is

P1 - NO^B^4}SL'
	

(23)

where	 P ` = signal-to-noise ratio within the Costas loop

BL = one-sided loop noise bandwidth
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SL = squaring loss associated with the baseband multiplier
utilized by the Costas loop.

For an analog multiplier, the expression for the squaring loss can be

written in a closed farm expression [27]:

D
m	

( 24)
SL -	 B^/Rs	

24

KD KL 2RA

where B i /Rs is the ratio of the two-sided arm filter noise bandwidth to

data rate, Rd is the symbol signal-to--noise ratio, and Dm , KL , K  are

factors determined by the data, the type of arm filter, and the combina-

tion of the two, respectively. However, for the Costas demodulator util-

izing a hard-limiter and a chopper multiplier, the squaring loss deter-

mination is more complicated and needs involved numerical computation

techniques. The results of such numerical evaluation have been published

[28] and are used in our calculations.

Figure 69 shows the calculated SNR for the Costas demodulator

as a function of the C/N 0 . These results were obtained by reading out

the values of the squaring loss S L read out from Figures 3 and 4 of [281

and substituting these values into equation (23). For convenience, the

data contained in Figures 3 and 4 are presented here as Figures 70

and 71, respectively. The abscissa in these figures is B i /Rs , where

B i = ufc and Rs is the data rate, which in our case is the 3.03 Mbps

NRZ PN code data. The f c is the 3 dB cutoff frequency of the arm

filters which is set equal to the code rate. Thus, for the case at

hand, B i /Rs = n and the Rd parameter, which is the signal-to-noise ratio

in the code rate bandwidth is

Rd = C/NO - 10 log (3.03x10 6 ) = C/N0 -- 64.8 dB--Hz.	 (25)

As can be seen from Figures 70 and 71, Rd and B i /Rs are the parameters

which determine the value of the squaring loss as a function of C/N 0'

The magnitude of the squaring loss as a function of C/N 0 is shown in

Figure 69.

Examination of the loop SNR shown in Figure 69 indicates that,

at a CA of 60.8 dB-Hz, which corresponds to the acquisition threshold

for the forward link, the loop SNR is about 11.2 dB for the one-sided
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noise loop bandwidth B E of 5.5 kHz. This SNR is sufficient to satisfy

the requirement of 0.99 probability of acquisition of the carrier.

The noise bandwidth of the Costas loop, however, can be as wide as

10 kHz during acquisition [26] with the concomitant reduction in the

loop SNR to 8.6 dB (i.e., a 2.6 dB reduction).

The experimental data, however, indicates that the acquisition

probability of 0.99 can be achieved by the Costas loop at a C/N 0 of

61 dB-Hz over the temperature range of T'.?0 1 C to x-65°C and a frequency

offset of ±150 kHz [261. Consequently, the possible widening of the

Costas loop bandwidth during acquisition does not seem to present a

potential problem.

To determine the effect of the loop SNR on the data demodula-

tion performance of the Costas loop, one has to consider the relation-

ship between the loop SNR and phase noise in the !-channel detector.

For a Costas loop, this relationship is

2	 1
CY	 = 4P , a

where a0 is the RMS phase error (in radians) at the I-channel (i.e.,

data) detector and p' is the loop SNR defined by (23). The predicted

values of cr0 (in degrees) as a function of the CA 0 are shown in

Figure 69 along with the corresponding values of the loop SNR. As
can be seen from this figure, the value of the RMS phase noise is
less than 10 degrees at C/N 0 values above 60 dB--Hz.

The significance of this fact can be understood by examining

the curves given in Figure 72. These curves show the relationship

between the C/N 0 and the bit error rate (BER) as a function of the

I-channel RMS phase error a0 . The losses ahead of the Costas demodu-

lator are assumed to be negligible (see the discussion of the PN

tracking loss) in converting the E b/N
o
 into the corresponding values

of the C/N 0'

It turns out that, as shown in Figure 72, the phase error of

10 degrees or less has a relatively negligible effect on BER degrada-

tion. This degradation is about 0.15 dB at a C/N 0 of 60 dB--Hz, an,'

it decreases rapidly above this point due to rapid decrease of the a0

magnitude with the increasing C/N0 values. The implication is therefore

(26)
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that, with the loop SNR predicted for the Costas loop of the forward

link, the data detection capability of the loop is degraded very little

within the operational range of the C/ N0 values.

Additiona l phase errors of concern in any tracking loop are the

gain imbalance and the phase imbalance in the two arms. In the case

of a hard-limited loop ( .polarity -type), the gain imbalance does not

produce any additional phase errors because of the existence of the

hard--limiter in the in-phase arm. The phase imbalance along with the

phase splitter and the finite DC gains are believed to produce a small

phase jitter which is less than 7 1 . Elaborate analysis can be carried

out but is believed to be unnecessary because the net phase jitter due

to all the above effects is small.

8.4	 Costas Loop Acquisition Time

The hard-limited Costas loop ( polarity-type) used to acquire

and track the carrier i n EA-1 has the following acquisition mode

parameters [13]:

Sweep time ( Tsw )	 40--185 cosec

Sweep frequency range	 x-175 kHz

Loop bandwidth ( B L ).	 5.5-10 kHz

Frequency uncertainty (of)	 x-150 kHz

which implies that the sweep rate S  is in the range of 1.89--8.75 kHz/sec.

It is important to note that the sweep is varied over a range of 4 to I.

This variation is implemented to reduce the probability of false lock

at high signal-to-noise ratios. The retrace sweep time is equal to

5 cosec and thus will be neglected in the following computations.

The analysis of acquisition time for second-order loops in the

absence of noise has been carried out in [29], and the extension of these

results to the Costas loop is discussed in detail in Appendix C. These

results can be used as lower bounds on the acquisition time of the

polarity-type Costas ioop used in EA-1. Equation (27), which is derived

in Appcn dix C, can be used to compute the acquisition time (Tf ) in the

absence of noise as a function of the frequency uncertainty (Af) and

the loop bandwidth (B L ) for a polarity-type Costas loop with a perfect

integrator loop filter.
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Figure 73 illustrates the value of T fBL as a function of Af/BL with

Sf/BL as a parameter for a range of values of interest, while

Table 12 shows the value of T  for the loop parameters implemented

by HAC.

It is obvious from Table 12 that, for the above parameters,

the maximum acquisition time at low sweep rate and narrow loop noise

bandwidth in no noise is approximately equal to 70 cosec. Investigating

the available Costas sweep test data [96] shows that the sweep period

(acquisition time) varies between 60 and 195 cosec as a function of

carrier power to single noise spectral density (C/N 0 ) ratio which is

varied between 60 dB and 80 dB. The sweep period shows little sensi-

tivity to the variations of temperature when the temperature is varied

between --20°C and +80°C.

Since the requirements specify a worst-case acquisition time of

200 cosec and, since the no-noise computations show that the worst-case

acquisition time with the specified Costas loop parameters does not

exceed 70 msec in no -noise, it is believed that the Costas acquisition

time will not present any problem.

Table 12. Acquisition Time of the Costas Loop (T f ) in msec

BL (kHz)

S 
	 (kHz/sec)

8.75 1.89

5.5 16.27 66.33

10.0 12.94 37.40

a
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8.5	 Costas Loop Lock Detector

The primary purpose of the Costas lock detector subunit is to

sense the Costas loop signal acquisition state and send a "Costas lock"

signal to the acquisition and control logic when indeed it decides that

the Costas loop has acquired the signal presented to its input. Since

the initial frequency search and carrier acquisition must take place

regardless of the type of signal format received from the TDRSS, namely,

CW carrier, data modulated carrier, spread spectrum carrier, or spread

spectrum data modulated carrier, the lock detector must be capable of

performing its sensing function under each of these conditions.

The basic carrier lock detector employed by HAC in the Ku-band

design is a dithered-type configuration and is illustrated in Figure 74.

This dithered lock detector, when contrasted with the more conventional

undithered I 2 - Q2 type of lock detector, is not unlike a comparison

between a tau-dither loop and a delay--lock loop for PN tracking in

the sense that, in the former, the carrier reference (PN clock) is

time-shared over a single channel while, in the latter, it is simul-

taneously shared by two quadrature channels. In general, dithered-

type configurations (tracking loops or lock detectors) have the advan-

tage of being insensitive to gain imbalances normally present in two

channel configurations. On the other hand, because of the time shar-

ing of the locally generated reference, they potentially suffer a 3 dB

loss in performance as compared to the more conventional unditkered-

type configuration.

In Appendix D, the techniques used in analyzing a PN tau-

dither tracking loop [251 are applied to analyzing the dithered lock

detector of Figure 74. When the dither frequency is much smaller than

the data rate, the results resemble those obtained by LaFlame in [30],

except for a modification by a factor of 2 of the signal x noise term

in the lock detector signal--to-noise ratio. On the other hand, choosing

a dither frequency much closer to the data rate can overcome much of

the 3 dB loss commonly associated with dither-type configurations.

This conclusion has already been demonstrated in the comparison between

loop signal-to-noise ratios of the PN tau-dither loop and delay-lock

loop made in [25].
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I

The actual HAC configuration includes a soft limiter [31]

inserted prior to the square law detector to assist in discriminating

between strong signals received through high antenna sidelobes and

weak signals received through the antenna mainlobe. This is accom-

plished by desensitizing the front end gain variations in such a way

that the lock detector detects the weakest mainlobe signal but not the

strongest sidelobe signal. This configuration is considerably more

difficult to analyze. It is believed, however, that the addition of

the soft limiter will allow a wider sidelobe discrimination margin and

hence improve the performance of the lock detector.

8.6	 Antenna Control Electronics

The objective of this section is to point out problem areas in

the antenna control electronics (ACE) subunit. A very brief description

of this subunit is presented first in order to clearly identify the

problems. A detailed description of the ACE circuits is presented in

[13]. The operation of this subunit is controlled by a programmed

microprocessor which receives the commands from the Orbiter and sends

commands to the various parts of the subunit to perform the required

task.

The commands of the microprocessor are sent to the gimbal rate

servo circuit which has three major parts: the loop shaping assembly,

the motor drive, and the rate integrating gyro driver (RIG).

The servo loop shaping circuit is used to provide the a and 0

torque commands to the gimbal motor drivers. The a and g channels are

almost identical, with the only essential difference being the additional

gain changing stages in the a channel. Three different error signals

can be shaped to provide the torque command:

I. The a W coarse gyro signal.

2. The a(a) fine gyro signal, which can use either the communi-
cation track error or the radar track error, depending on the mode.

3. The fine gyro signal.

There are four shaping stages and a temperature-sensing bridge which

sends a signal to the microprocessor to turn off the motor drivers in

case of excessive heat. The latest figures indicate that shutting off

cn:
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takes place when the temperature reaches 248°F ±107. Since damage to

the motor can occur at temperatures higher than 250°F, it is recommended

that the current design be changed in such a way as to avoid any possi-

bility of motor damage due to heat.

The motor drivers can also be turned off if the gimbal turning

rate exceeds a given threshold. The current threshold is set at

90 ±24 deg/sec. This is unacceptable because a maximum of 100 deg/sec

is required for the Ku-band antenna. A change in the tachometer cut --off

threshold has to be made for the system to meet specifications.

In addition, it was pointed out at the P0R that the current

design of the servo system is'unstable in the hold mode, which is a

problem that requires a change in the design of the servo loop.

The other two parts of the gimbal rate servo unit are the motor

drive, which is used to torque the gimbal motors, and the rate integrated

gyro driver (RIG), which generates the required timing signals.

r: P
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9.0	 SIGNAL PROCESSING ASSEMBLY

This section discusses and evaluates the performance of the

Signal Processing Assembly (SPA). Section 9.1 presents a general func-
tional description of the SPA. Section 9.2 presents a summary of the

expected performance of the bit synchronizer, derived in Appendix E,

and compares it with the available breadboard test data. Finally,

Section 9.3 presents the performance of the ambiguity resolver. 	 r

9.1	 Signal Processing Assembly Functional Description

The Signal Processing Assembly (shown in Figure 75) performs

data and signal processing for the forward link and return link under

the direction of the management/handover logic. As is the case with

the other assemblies, the SPA has its own power supply that regulates

the 28 VDC it receives from the main bus on the Orbiter. The manage-

ment and handover logic receives the Orbiter commands either directly

from the ground control interface logic circuit (GCILC) or from EA-1
(A or B). It has an input buffer, an output buffer, a memory, an SPA

controller, and a serial interface with EA-1 [17]. The main signals

received from the GCILC are the A/B Ku-band select signal and numerous

signals to control the selection of modes and data in both the for-
ward link and the return link. The SPA management and handover logic

outputs numerous commands to the GCILC and to various parts of the

Ku-band system. The major output commands are:

-Forward link data present to GCILC

-Transmit enable and communications ON to the DEA

-Modulation ON/OFF and mode select to mode selection
and modulation box of the return link for Mode 2 (FM)
control

-A signal used to select a reference frequency from
A or B for QPSK modulation

-Mode select and data select to bit synchronizer for
forward link mode and A/B data selection

-Data selection command to return link switching to
select the required data to be modulated.

In Mode 1 of the return link, the high data rate channel is

convolutionally encoded before being modulated. Once the data is

selected in the return link, three data channels are modulated in
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one of two selected modes. In Mode 1, the three channels are double

unbalanced quadriphase shift keying (UQPSK) modulated. Channels I

and 2 are modulated on a squarewave subcarrier whose fundamental fre-

quency is 8.5 MHz. The resulting subcarrier signal is modulated in

quadrature with Channel 3 on a 1.876 GHz carrier. In Mode 2, the

two lower rate channels are unbalanced QPSK modulated on an 8.5 MHz

squarewave subcarrier as in Mode 1. The resulting UQPSK signal is

bandpass filtered to obtain a sinusoidal subcarrier and then summed

with the third channel before being frequency modulated (EM) on the

1.876 GHz carrier. The resulting modulated signal is sent in either

mode to the DEA exciter for upconversion to Ku-band frequencies.

The 216 kbps forward link biphase-L. data is buffered in

the SPA. One of two modes is selected via a command from the manage-

ment and handover logic. In Mode 2, the data is strictly amplified

and impedance matched (buffered) by line drivers and handed to NSP1

or NSP2 (network signal processor) on the Orbiter, while in Mode 7

the data is detected first before sending it to the Orbiter. The

data detection beg ins by generating a synchronous clock via an error

signal generator loop which outputs a 6.912 MHz clock used in the bit

synchronizer and the frame synchronizer and decommutator timing. An

ambiguity resolver is used to resolve the clock ambiguity and the

bi-phase-L. data transition ambiguity. The bit detector receives the

correct phase from the ambiguity resolver and the biphase_b data

from the Costas loop and uses two integrate--and-dump circuits to

detect the data bits and to convert them to NRZ data before sending

them to the frame synchronizer. The frame synchronization is achieved

by searching for a correlation in a -Frame code. The establishment

of the frame synchronization enables the frame decommutator to

separate the 128 kbps payload data and the 72 kbps operations data

which are then sent to the Orbiter.

The major areas of concern in the Signal Processing Assembly

are:

(1) The bit synchronizer is specified (Rev. A) to perform

with EBINO =0 dB. The Preliminary Design Review presentation con-'

cerning the bit synchronizer predicted that it will not maintain

synchronization except when E bA > 2 dB. This basically is not

believed to be a major problem unless a higher E b/NO is required;
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due to the aging and tolerances of the hardware. In addition there are

a number of other problems pertaining to the bit synchronizer that should

be pointed out:

(a) The integrations in the bit synchronizer design occur

over half-bit intervals. While it is advisable to "window" the

quadrature I&Ds (half a bit in the Hughes design), it is nod, neces-

sarily desirable to "window" the in-phase I&Ds. In fact, windowing

the in-phase I&Ds to half a bit as in the Hughes design results in

a 3 dB SNR penalty for making decisions on the midbit and between--

bit transitions relative to performing full--bit in--phase I&Ds [16].

(b) It is not clear how the counters in the ambiguity

resolver would behave if they have a zero count and receive a

decrementing signal.

(c) No definite number has been defined to what is referred

to by HAC as the PR logic state in the counters when ambiguity reso-

lution is achieved.

(d) The ambiguity resolver counters are 12-bit binary

counters. This number has to be chosen depending on the data duty

factor which has to be bounded to assure adequate performance of the

bit synchronizer and the ambiguity resolver.

(2) The proposed asymmetry compensator should provide ade-

quate means for reducing the asymmetry in the forward link to within

the specified 10%. Test results are needed before passing a final

judgment on the effectiveness of the compensator.

(3) Since the software for the Ku-band is not completed yet,

the available information is not sufficient to evaluate its perform-

ance. Extensive software evaluation effort is needed once it is

completed.

(4) Care must be taken in designing the convolutional encoder

to eliminate the possibility of any dead zones due to timing. One

such dead zone was reported at 10 Mbps.

9.2	 The Bit Lnch-ronizer

The bit synchroni-zeer block diagram with the associated ambi-
guity resolver is shown in Figure 76. A detailed discussion of the
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"	 operation of the circuit is presented in Section 5.3 and the analysis

of the bit synchronizer is presented in Appendix E.

The objectives of the circuit are to:

(1) Generate a 32x 216 kHz (6.912 MHz) synchronous signal

which is used to generate the 216 kbps clock, 2x 216 kbps clock, and

various other timing signals used in frame decommutation timing.

(2) Resolve mid-bit versus bit transition ambiguity of the

2I6 kbps biphase-L data, as well as the 2x 216 kbps clock synchroni-

zation ambiguity.

The principles of operation of this synchronizer are summarized

as follows:

The synchronizer develops its timing waveforms from a twice--

bit-rate clock (512 kbps), while the ambiguity resolver determines

the correct timing phase of the bit rate clock obtained by dividing

down the twice-bit-rate clock by 2. The input signal is multiplied

by the twice-bit-rate clock and then the bit-rate clock or its com-

plement, which are both used to gate (in each bit interval) half--bit

segments of the multiplier outputs to in-phase integrate--and-dump

(I&D) circuits. For the mid--bit I&D, the half-bit separation sym-

metrically (assuming perfect timing) spans the mid--bit position. Thus,

the output of this I&D after 2-bit digitization by Digitizer i

reflects the polarity of the,P1RZ data bit stream (or, alternately,

the polarity of the mid-bit Manchester transition). For the between-

bit I&D, the half-bit integration symmetrically spans the NRZ bit

transition position. Thus, the output of Digitizer 2 is a measure

of the polarity of the NRZ data transition. If no transition occurs,

the output will be nominally zero.

The input biphase--L coded signal is also gated by the bit

rate clock and its complement, without first being multiplied by the

twice-bit--rate clock, to between-bit and mid-bit quadrature I&D cir-

cuits, respectively. The outputs of these I&Ds are measures of the

timing offset between the input and the locally generated bit-rate

clock. Multiplying the respective in-phase and quadrature IN outputs

and summing generate an error signal suitable for closing the bit

synchronizer loop.
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As discussed in Section 5.3, several comments are worthy of note

concerning the design of the bit synchronizer loop. First, the mid-bit

in-phase and quadrature I&D outputs are independent of the between-bit

in-phase and quadrature I&D outputs because of the orthogonality (in

time) of their respective integration intervals. This greatly simpli-

fies the computation of the equivalent loop error curve and the equi-

valent noise spectral density at the error control point. Second, all

of the above integrations occur over half-bit intervals. While it is

advisable to "window" the quadrature I&Ds (half a bit in the Hughes

design), it is not necessarily desirable to "window" the in-phase I&Ds.

In fact, windowing the in-phase I&Ds to half a bit as in the Hughes

design results in a 3 dB signal-to-noise ratio penalty for making deci-

sions on the midbit and between-bit transitions relative to performing

full-bit in-phase I&Ds, as is done, for example, in [167 . In [167, four

bit synchronizer configurations motivated by the application of maximum

a posteriori (MAP) estimation 'theory are developed and their performances

compared. Conceptually, the Hughes bit synchronizer design is closest

to Figure ac of [16], although fundamental differences between the two

do exist.

The timing diagrams, as well as the complete analysis of the

tracking performance of the bit synchronizer, are discussed in

Appendix E.

Figures 77 and 78 illustrate the normalized tracking jitter

coefficient f(n, Rd , pt ) as a function of the digitizer decision

threshold (n) with the bit energy-to-single-sided spectral density

defined as

A E 
Rd = NQ ,

where E  is the symbol energy and N D is the single-sided noise spectral

density as one parameter and the data transition density (p t ) as the

other parameter. The normalized tracking jitter coefficient is

defined in Appendix E as

f(n, Rd , pt ) = 8 Rd/ ( BCT) as ,	 (29)

(28)
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where BL is the loop single-sided noise bandwidth, T is the bit time,

and a. is the RMS timing error normalized by the bit time.

Several observations can be made:

(1) The tracking jitter increases with the increase of the

transition density pt.

(2) For a given in-phase decision threshold (n) and a given

transition density (p t), the tracking jitter decreases with the

increase of the signal-to--noise ratio R d . This is intuitively cor-

rect because better perFormance should be expected at higher signal-

to-noise ratios. It should be pointed out, however, that the test

data supplied by HAC [20] show a reverse trend. One example is that

shown in Figure 79. where the loss which is proportional to the track-

ing jitter is shown to increase with the increase of signal-to-noise

ratio.

(3) The threshold is shown to have an optimal value which is

a function of the signal-to-noise ratio and the data transition density.

This optimal value is illustrated in Figure 80.

Since no threshold value has yet been supplied by HAC, a value

of n= 0.3 has been selected to calculate the signal-to-noise ratio loss

as a function of the input signal energy to single-sided spectral

density (Rd).

Using the available documentations in [271, the random data

case with pt = 0.5 has been selected as an example. Since no value of

the loop bandwidth (B L ) has been quoted by HAC, a typical value of

TBL = 10 -2 is selected for illustration. Table 13 summarizes the loss

of signal-to-noise ratio as a function of Rd.

Table 13. Signal-to-Noise Ratio Degradation (AFb/N0)

as a Function of Rd = Eb/N0 with Threshold

n= 0.3 and a Transition Density p t = 0.5

Rd = E b/No (dB)

2	 4	 6	 10

n = 0.3	 0.75	 0.65	 0.35	 0.30
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The table shows that, for BT= 10 -2 , the degradation in signal-to-

noise ratio due to imperfect bit timing does not exceed 0.75 dB -for

Rd 2 2 dB, which is well below the specification value of I.0 dB and

in agreement with most of the available data. However, test data

taken at 85°C show that, at this high temperature, the loss can be

between 1.0 dB and 1.5 dB. Though such losses are not believed to

present any problem to the overall system performance, a closer look

at the data and the breadboard setting is needed to verify the validity

of the test data.

It is also worth noting that the selection of the value B LT is

a compromise between tracking accuracy and the ability of the loop to

track long streams of ones or zeros.

The material presented in [20] quotes that, in order for the

bit synchronizer loop to acquire and maintain lock over the full temper-

ature range of -20°C to x-85°C, signal-to-noise ratios (E b/N,) of 2 dB

and 5.9 dB might be needed for random data and alternating data,

respectively. The available test data at the same time [21] show

that acquisition is taking place down to 0 dB with a wide frequency

pull-in margin that exceeds by far the specifications of ±22 Hz.

Though a possible small margin of signal-to-noise ratio above 0 dB

might be warranted to allow for component aging, the value of 5.9 dB

is believed to be too high for such tolerances.

An additional area of interest is the pull-in frequency range

test data at various temperatures. As mentioned earlier, the data

shows that the pull-in frequency range has a wide margin that can

tolerate the specified ±22 Hz data rate uncertainty. Some test data,

such as that shown in Figure 81, however, show an unusual behavior

where, at high temperatures, the pull-in frequency range for low

signal--to-noise ratios becomes higher than that at high signal-to-

noise ratios. This behavior is most probably attributed to the test

setup.

9.3	 Results of Ambiguity Resolver Performance Analysis_

The purpose of the Ku-band forward link ambiguity resolver is

to distinguish between midbit transition times and data bit transition

times for the 216 kbps Manchester coded data. Section 9.3.1 describes
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the ambiguity resolver principles of operation, Section 9.3.2 presents

the results of numerical evaluation of the ambiguity performance analysis

described in Appendices F and G, and Section 9.3.3 gives recommendations

for future work on the ambiguity resolver.

The performance of the ambiguity resolver is a function of four

parameters: n, the normalized threshold of the bit digitizer; y, the

counter decision threshold at overflow; P t , the data transition proba-

bility; and-Rd , the bit signal--to-noise ratio. The results presented

show the behavior of the ambiguity resolver with respect to probability

of correct resolution in one pass and the mean time to overflow in one

pass as a function of the four parameters.

9.3.1	 Principles of Operation

As shown in Figure 82, the ambiguity resolver consists of four

integrate-and--dump (I&D) circuits, four digitizers, two counters, and

threshold comparison and decision logic. The input Manchester coded

data signal is mixed with a combination of the bit rate, its complement,

and the twice bit rate clock to form midbit and between-bit in-phase

and quadrature signals. The outputs of the I&D circuits are passed

to the null zone digitizers; the output of a digitizer is 0 if the mag-

nitude of the input is less than n 0 , +1 if greater than n 09 or - 1 if

less than -n0 . For the purposes of analysis, the threshold is normal-

ized to n= n0 /A, with A the input signal amplitude.

The magnitudes of the digitized outputs are used to increment

or decrement counters 1 and 2, as shown in Figure 82. We see that mid-

bit in-phase outputs increment counter 1 while midbit quadrature outputs

decrement counter 1. Counter 2 operates in a similar manner with the

between-bit outputs. The net effect, in the absence of noise and timing

error, is to increment counter 1 and decrement counter 2 at each data

transition, and increment both counters when no data transition occurs.

If counter l overflows and counter 1 exceeds counter 2 by a preset

threshold y, an ambiguity decision is declared and the bit rate clock

is assumed to be in-phase with the data. Similarly, if counter 2 over-

flows first and y is exceeded, the complement of the bit rate clock is

selected. If no decision is made at overflow, both counters are reset

and the process repeats.

j a.j
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The purpose of the ambiguity resolver performance analysis is
t .	 to determine the performance of the ambiguity resolver in the presence

of noise, and the optimum values of n and y, the digitizer and counter

thresholds. Details of the analysis are presented in Appendices F

and 0 and summarized below.

The probability of correct ambiguity resolution in one pass is:

CO

	

P C =	 I P C (K) pc (K) ,	 (30)
K- K

nin

with K)Tiin the point of counter ovee low (4096 for the 12-bit counter

being used).

P C (K)is the probability that the counter difference exceeds y

at overflow on the Kth step, and p c (K) is the probability of overflow

at the Kth step.

Pc (K) = 2	 2 erf 
K in_ y - c(K	 (31)

A 6c(K)

K	
K-

	

^in	 K!
min

P 	 -	 KK+	 -N	 K-K	 -N
N- 93,5...	

2	 ^t	 2 n 	 ^r Nt
	(K+Kmin-N)/2	 (K-K

min-N)/2 N
X p 0	 q0	 r0	 K —' Kmin'	 (32)

p 0	 = erf A0
L
2 erfc A+^ 2 er fc A^ (33)

q 0	 = erf A0 ^7 - erfc A^	 - 1 erfc A^ (34)

r0 =	 erf A0 - (1- 2 erfc A0) [12- erfc e+ 1 erfc A"
J
(35)

A0 = R2 (2-n) , A+	
VR
-d12 (2n+ I) , A R 2 (2n- I )

(36)



183

i
uc(,K)	 KC1 -- 2pt )	 erfc A* + erfc A - erfc AQ̂ 	 (37)

I2 (K) = K Ferfc A3 + Cl - 2 erfc AO ) erfc A+ - 2 erfc A73]
i

2
- K2 (1 - 2pt) 2 ^Z erfc A+ + 2 erfc A- 	 - erfc A'	 (38)

The mean number of steps to overflow in one pass is given as:

00

m g	I KPc (K) .	 (39)
K=Kmin

Thus, given that a correct decision has been made, the mean time to reach

a correct decision in one pass is i c (l) = M 0 /R,  with R the data rate
(216 kbps for the Ku-band system).

For the cases considered in the next section, with relatively

high Rd , the probability of incorrect resolution is zero, to the accu-

racy of the computer. In those cases, the mean time to make a correct

decision is the mean time to overflow per pass, m 0 , times the expected
number of passes to make a correct decision, Nc.

N c = P c + 2(l - P c ) P c + 3(l - Pc ) 2 Pc + ... , with P I = 0 .	 (40)

Thus, Nc = 1/P2 x pc = 1 /P c , and the mean time to reach a correct decision
tc = m0/PcR.

9.3.2	 Results of Performance Analysis

In this section, we discuss the numerical results of the perform-

ance analysis for selected values of Rd , n, y, and Pt . In all cases to

follow, Pt is chosen to be 1/2, i.e., equally likely ones and zeros in
the data stream. The probability of correct decision and mean number of

steps to correct decision are first calculated as a function of y for

fixed fl and Rd ; then, given a suitable y, the calculations are performed
as a function of r far fixed Rd , and finally, given a suitable y and n,
the performance is calculated as a function of Rd.
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In Figure 83, P c is plotted as a function of y for Rd = 10 dB,

Ti =  0.35, and Pt = 0.5. Note that P
c 

is relatively insensitive to y until

y approaches the counter size, 4096. It is reasonable to expect the
probability of correct decision to decrease for very large y, as this

implies little energy in counter 2 when, in fact, we expect counter 2

to be increasing. The mean number of steps has not been plotted, as the

results have shown it is a constant (equal to 5104) for the values of y

selected.

In Figure 84, P c and m0 are plotted as a function of Ti for

Rd= 10 dB, Y= 3500, and Pt= 0.5. P
c 

is a monotonically decreasing func-

tion of n as n increases, where m0 has an "optimum" at T1 = 0.35, at least

for Rd m 10 dB.
Taking into account the results of the analysis as a function of

n, P c and m0 are plotted as a function of Rd for -Y =  3500, n = 0.20, and
PC 0.5 in Figure 85. As expected, the probability of correct decision

increases and the mean number of steps decreases as R d increases.

These results are also summarized in Table 14. The probability

of incorrect decision, which was also calculated, is not plotted, as it

is negligible for the values of R d used.

9.3.3	 Conclusions and Recommendations

The preceding results are intended as a guide to the performance

of the ambiguity resolver as a function of the various relevant param-

eters and a verification of the analysis. The calculations are computa-

tionally intensive and, as a result, use significant amounts of computer

time. In particular, as R d goes below 6 dB, m0 gets very large (over

10,000) and these results are not yet available.

It was hypothesized that additional precision might be needed,

particularly in light of "zero" probability of incorrect decision. Single

precision Fortran has a precision of 7 digits, and the calculations

involve summations of many (small) probabilities. The program was modi-

fied to run double precision (17 digits), and one run was made at

Rd = 10 dB, n = 0. 35, and y = 3500. No significant change in the results
was evident. Since double precision takes longer to run and hence is

more expensive, the remainder of the runs were made under single preci-

sion. However, at Rd lower than 6 dB, we may have to revert to double
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precision. She problem arises at lower R d since the length of the sums

increases and truncaticn errors, which propagate, may tend to dominate

the calculations.

Now that the computer program to calculate the performance has

been debugged and run reliably in both single and double precision,

additional results can be obtained using the JSC computer in batch

mode. It is suggested that additional runs be made at the expected

operating point of the system (R
d = 

0 to 6 dB) to determine optimum

values of n and Y as a guide to HAC and to verify the performance of

the ambiguity resolver when the actual performance data is made avail-

able by HAC.

ry, r



190

	

10.0	 PRODUCT DESIGN CONSIDERATIONS

	

10.1	 General

This section summarizes the product design considerations for the

Ku-Band Integrated Radar and Communication Equipment for the Spare Shuttle

Orbiter. This equipment, as designed by HAC, is comprised of four line

replaceable units (LRU). One of these LRUs is a DA located within the.

payload bay and deployable upon the opening of the payload bay doors.

The other three LRUs are installed in the avionics bay located inside

the Orbiter cabin [3,13,14,22,26].

Figure 86 shows the deployed assembly. As is sbown'Jin,the figure,

the DA consists of two major subassemblies, namely the DMA and the DEA.

The DMA includes all the necessary components for forming and steering

a highly directional antenna beam. These components are the gimbals,

the antenna reflector, and the feed with its support. The DEA houses

the electronics for transmission and reception of the radar signals and

the reception of the communication signals.

Figure 87 shows an overall configuration of an avionics bay LRU.

The three LRUs are EA-1, EA-2, and the SPA. The EA-1 is devoted primarily

to the communication function, but it also includes the servo electronics

for both the communication and radar operations. The EA-2 is used exclu-

sively for the radar function. The processing of the transmitted and

received communications data is performed by the SPA.

With the exception of the connector configuration, the mechanical

configuration of the avionics LRUs is identical.

The sections which follow contain a summarized description of

the product design of the Ku-band system subunits. The details are pre-

sented in Appendix H.

	

10.2	 Deployed Assembly

The DA comprises that portion of the Ku--band radar and communicar

tion system which attaches to the upper face of the Rockwell-supplied

deployment actuator and stows in the limited space betiaeen the payload

bay and the door radiators. Major elements of the DA are the DEA and

DMA. The DEA is a shop-replaceable unit (SRU) of the DA LRU of the

Ku-band integrated radar and communications equipment.

471 1 h
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The DA structure consists of three basic elements: the base

pedestal that bolts to the Shuttle deployment mechanism and contains

the electrical connector interface; a structure frame into which the

DER is secured; and a gimbal Mounting bracket. These three elements

of the structure are electron beam welded together to form a single'

assembly.

All exterior surfaces of the structure assembly are nuar^

with 0.005" silvered tefl on then al~ fi ni s fl material. All lightening
holes in the base pedestal are closed with a film of this material to

prevent the entrance of solar energy (direct or reflected) into the

interior cavities. In addition, the exposed portions of the gimbal'

and antenna support arm are painted with a white silicon thermal con-

trol paint.

Active thermal control is utilized for cold conditions. Sensi-

tive items on the gimbal that need to be kept above the -65°F survival

level are the encoders, the rotary joints, and the waveguide switch.

Heaters and thermal blankets are installed to protect these items.

10.2.1 Deployed Mechanical Assembly

The major components of the DMA are the structure, antenna,

rotary j oints, and gimbals.

The narrowbeam antenna assembly is a prime fed paraboloidal

reflector using a five-element monopulse feed. The 36-inch parabolic

reflector antenna is constructed of epoxy-impregnated graphite cloth

formed over four main supporting ribs. A ring stiffener is used at

the aperture plane. The epoxy-graphite construction provides a light-

weight structure. The antenna shell and -Feed tube weight is 3.7 lb.

The monopod feed support edge mounting prevents the feed from mechani-

cally loading  the reflector surface by attaching to !the same edge
support structure used for the parabolic surface. The overall depth

of the antenna assembly is less than 12.5 inches, allowing the 7iguure'red

envelope clearance on each side of the antenna during stowage. 	 88

illustrates the antenna structure.

Two channels, sum and difference, of RF energy,-,^averse the

dual-axis gimbals. The sum channel remains isolated from the differ-

ence channel in a dual-channel rotary joint, which consists of two
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rotary joint subassemblies, one for each axis. These subassemblies

are available as reliable off-the-shelf components. Only minor modi-

fications in the internal bearings are required to satisfy the Shuttle

temperature and vacuum requirements.

The DA gimbal assembly consists of the two-axis, servo-controlled

rotating mechanical and electrical interface between the deployed boom

structure and the antenna. Included are torquers, bearings, shaft

encoders, waveguides, coaxial cables, and other cabling. A locking

device secures the assembly in the stowed position. Minimal gimbal

cost, weight, and trunnion obscuration are achieved with the edge-

mounted antenna configuration.

The off-center gimbal configuration allows a maximum size (36"

dia) narrowbeam antenna. Disturbance torques due to Shuttle accelera-

tions are negligible; therefore, a centered load is not an operational

constraint.

10.2.2 Deployed Electronics Assembly

The DEA (Figure 89) houses the electronics for the transmission

and reception of radar and communications data. The electronics are

housed in an enclosure 31 inches long, 15.5 inches high, and 4.5 inches

deep. The overall estimated weight is 70.6 pounds. The enclosure is

mounted to the DMA structure by a flange that extends along the perim-

eter of the DEA chassis baseplate; 24 torque set screws hold the flange

in place.

The enclosure is a dip--brazed aluminum structure consisting of

a baseplate that also serves as the prime radiating surface, ribbed

side plates to which are mounted RF connectors, a front plate that

serves as the mounting surface for the power and command input connec-

tors, and a rear plate to which are mounted the waveguide output flanges

and RF connectors for test access. The inside of the chassis is parti-

tioned into cavities by a wall that extends the length of the chassis

and a shorter wall that separates the receiver and exciter subassemblies.

These walls provide mechanical stiffness to the structure and RF shieTd-

ing between the subassemblies.

The cover for the DEA enclosure is a bonded honeycomb structure

consisting of two thin aluminum face sheets, an outer and inner flange,

and an aluminum honeycomb sandwich between the face sheets. The
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enclosure walls and cover, stiffened by the ribbing and honeycomb

construction, prevent excessive bending and displacement from the

pressure differential resulting from the space environment.

The DEA is functionally divided into five discrete SRUs that

fit into the enclosure. The subassemblies are arranged to optimize

the thermal distribution, minimi-o the length of critical RF inter-

connections, and provide access for testing and maintainability. The

five SRUs are plugged in and mounted directly to the base of the chassis

by means of captive hardware.

The walls that partition the enclosure provide RF separation

between SRUs. RF gasketing in the cover and-RF shielded feed-through

terminals in the walls complete the subassembly and unit level RF/EMI

shielding.

Replacement of an SRU in the DEA involves removal of the cover

hardware and cover. Each SRU is independently replaceably. Subassem-

blies are plug-in modules fastened to the chassis baseplate with

captive hardware,,

Active thermal control techniques are utilized in the DER to

provide adequate thermal control. During operation, internal dissi-

pation is radiated to the space environment by the external surfaces.

For nonoperating periods, the DEA will be augmented by thermostatically

controlled heaters to maintain acceptable temperatures.

The present maximum power dissipation is approximately 250 W

at 28 VDC input. The total radiating surface of the DEA is approxi-

mately 8.5 square feet. A silvered teflon finish is used on the prime

radiating surface (base plate) to minimize solar absorptance and

provide high thermal emittance. A white paint finish is used on the

remainder of the external surfaces.

An extensive Hughes thermal analysis of the DEA under specular

radiation from the sun has been conducted. In spite of the fact that

Hughes has been directed to not consider certain flight configurations

that cause the DEA to overheat, it should be emphasized that the use

of some criteria as the upper allowed junction temperature of 125°C

are believed to be highly unreliable. A normal junction temperature

of 105°C would lead to a more acceptable reliability. In addition,

tests on different other DEA modules should be conducted in order to

determine whether more severe thermal conditions exist.

^{ r
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The DEA enclosure incorporates an environmental seal that

ensures compliance to a leakage rate of 10 -4 cc per second when the

unit is filled with inert gas at a pressure of 15.2 psia at ambient 	 ?:

temperature.

The primary seal is made by a gasket molded into a groove

around the perimeter of the cover. Hermetic connectors are sell%ed

at the enclosure interface by 0-rings. Hermetically sealed ceramic

windows are utilized in the waveguide adapter for the waveguide output

flanges. The adapter interface and the enclosure are sealed by means

of a gasket molded into a groove around the perimeter of the adapter.

10.3	 Avionics Bay Assemblies - General Product Design

Chassis

Although the EA-I, EA-2, and SPA chassis are different parts

(different connector patterns and different SRU/wire wrap plate mount-

ing patterns), the general design is the same for the three units.

The chassis is a dip-brazed aluminum structure (see Figure 90). There

is a solid frame around each of the two access openings (SRU and wire

wrap plate access), two solid end panels, and side walls consisting

of two 0.040" aluminum sheets brazed to a corrugated sheet of 0.010"

thick aluminum (606I_T6 alloy).

Provisions have been included in the design to avoid trapping

brazing salts in the hollow side walls. Also, none of the machining

operations cut into a brazed joint, so that brazing salts entrapped in

the joint are not exposed to a corrosive environment.

After machining, the chassis is chromate coated per MIL-C--5541,

CL IA, and the exterior surfaces are primed and painted. The structure

is also sealed per MIL-STD-276, Method B, to ensure against gas leaks

at any of the brazed surfaces.

Wire Wrap Assembly

The wire wrap SRU interconnection plate is machined from 6061-T6

aluminum alloy. The plate is 0.080 inch thick with 0.30 inch high

stiffening ribs between SRU connectors. This design will adequately

limit deflection of the plate when the SRU conractors are engaged with

or withdrawn from the receptacles. (SRU conta,:ts are a flat blade
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design, and the receptacles are a tuning fork design with a 0.025"

square tail).

The wire wrap plate is electrically tied to the chassis, and

separate bus strips are provided for +5 volts and digital return (D-RTN)1
signals.	 Each bus strip is an aluminum strip with a cross--sectional

size of approximately 0.060 x 0.40 inches. 	 The bus strips are bonded

to the plate with epoxy-glass prepreg material. 	 Electrical connection

between each designated contact and the appropriate bus strip is made

by installing a beryllium copper bushing over the 0.025" square contact

tail and pressing this bushing into a hole in the bus strip.(see

Figure	 91).

A separate harness is used for connections between the front

panel connectors and the wire wrap plate. 	 There are three M55302/66-50S

connectors and three M55302/66-60S connectors on the harness for mating

to receptacles (commercially identified as the Airborne WTAV**PW40JL

j series) on the wire wrap plate.	 The receptacle reference designators

are marked on the plate, and the harness will be formed and tied so

as to prevent incorrect engagement of the harness connectors.

The 28-volt input power, motor driver output power, and signals

on coaxial cables are routed directly on separate harnesses without

going through the wire wrap interconnect wiring. 	 These signals each

have special	 characteristics (high current, high frequency, and/or

EMI source/susceptibility) which can be handled best in this manner.

Cutouts in the plate provide for a clearance hookup of all SMA

coaxial	 connectors.	 The coaxial	 connectors extend from the SRU core

through the interconnection plate to facilitate making this connection

using conventional tools (open-end wrench). All wire wrap conductors

are dressed and tied to the plate to prevent cold flow or abrasion

shorting over extended periods of time.

After the plate is wired and electrical integrity is verified,

the wire wrap pins and exposed conducting surfaces are conformal

coated to eliminate shorting in a zero gravity environment by a

foreign object. Rework procedures will allow modification to the

conformally coated pins if such modification is required during the

life of the LRU.
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SRU

The two typical SRUs are shown in Figures 92 and 93. Each SRU
consists of an aluminum care with a printed wiring board (PWB) bonded
to each side and a connector fastened to one edge. The core is a

T-shaped part with two captive mounting screws (commercially identi...
fled as Deutsch HJCT-7800-8-B-2.5) and provisions for supporting the
SRU connector. The two mounting screws provide force for engagement

and disengagement of the SRU connector and for ensuring a good inter--
face for heat transfer. Since the aluminum core is the primary thermal

path for cooling the components, core thickness is dictated by the SRU

power dissipation.

Each PWB is a 5.3 X 8.4 inch multi1ayer board (4, 6, or 8 Layers)	 i
with an overall thickness of approximately 0.60 inches. The boards

are made from polymide-glass laminate material, and the exposed wiring

lines are solder plated (solder subsequently is fused). The boards

are designed for surface mounting of all components, and the plated-
through holes (PTH) are not filled.

The SRU connector is fastened to the core with three screws.
Tails from the connector blade contacts are preformed to fit against
pads on the PWBs, and these contact tails are then reflow soldered

onto the PWB pads.

Each SRU connector has two keying pins which establish a go/

no-go engagement of the connector contacts. In addition to this

mechanical keying :system, there is a color stripe painted on the top

of each SRU core in a manner such as to make a single diagonal line

in the LRU. Also, the SRU reference designator is marked on the SRU

core and on the wire wrap interconnection plate.

Electronic components are attached tj the PWBs by reflow

soldering preformed component leads to the PWB with the polysulfide

adhesive-impregnated material. Larger round-bodied components and

can--type devices are bonded to the PWB with an alumina-filled poly=

sulfide paste (Hughes Aircraft Compan y , HP16-103, Type II). After

SRU test, the PWBs and components are conformally coated with a poly-

urethane coating material.
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Low Voltage Power Supply

The EA-1, EA-2, and SPA low voltage power supplies are basi-

cally the same physical design for all three units. The power supply

module is approximately 9.7 x 5.8x 1.95 inches in size and . ;weight :about
3.0 pounds. Other physical design features include (1) machined

aluminum chassis for structure support and minimum thermal impedance;

(2) single unit connector; and (3) captive fasteners for added main-

tainability.

An extensive effort was made to achieve commonality within

the three modules to both reduce design cost and the number of spare

parts required during the field support period. Over 98% of the parts

are common to all three designs. The linear regulator/logic printed

circuit board is identical in all three designs. The major differences

in the three designs are the converter transformer secondary output

voltage forms which are designed to meet the requirements of each LRU.
	 7
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	11.0	 CUMULATIVE INDEX OF KU-BAND SYSTEM DOCUMENTATION

	

11.1	 Introduction

This section consists of a cumulative index of major HAC documents

describing the integrated Space Shuttle Orbiter Ku-band radar/communica-

tions system. A list of the documents covered is contained in Section

11.2, and the alphabetical index is contained in Section 11.3.

The intent of the index is to provide a cohesive reference to the

various documents describing the system. Information relevant to any one

of the subsystems may be contained in several documents; the index should

help those who are familiar with the system to access needed information

and those who are not to gain an understanding of the functions of the

system.

The documents referenced in the index (listed A through L in order

to make the index more compact) are defined explicitly in Section 11.2.

It is recommended that the index be expanded and updated as addi-

tional documents become available from HAC, as well as from other sources.

In addition, it is suggested that block diagrams of the Ku--band system

and major subsystems, including EA-1, EA-2, SPA and DA, be generated

which include references to the appropriate documents describing the

system. That is, each block would contain a list of the appropriate

references, as would each interconnect and interface.
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11.2 list of Index Documents

Document Title Document No. Date

A Hughes Preliminary Design Review HS237-1531-5 3/14-24/78
Vol. 1, Ku-Band Subsystem

B Hughes Preliminary Design Review HS237-I531 3/14-24/78
Vol.	 II, EA-1

C Hughes Preliminary Design Review HS237--1531-3 3/14-24/78 }
Vol.	 III, EA-2 r

D Hughes Preliminary Design Review HS237-1531-1 3/14--24/78
Vol. IV, DMA/DA

E Hughes Preliminary Design Review HS237.1531-.4 3/14-24/78
Vol.	 IV-A, SPA

E Hughes Preliminary Design Review HS237-1531--2 3/14-24/78'
Vol. V, DEA

G Hughes Preliminary Design Review HS237-890-1 3/14/78 j
Block Diagrams

H Hughes Ku-Band Integrated Com- HS237--686A-1 3/16/78
munications Radar Equipment

I Hughes Specifications, EA-1 HS237-710-3 11/1/78

d Hughes Specifications, EA-2 HS237-712-2 3/2/78

K Hughes Specifications, SPA HS237-713--2 3/10/78

E Hughes Specifications, Radar/ HS237-708-2 3/10/78
Communications DA
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11 .3	 Index

I tem A B C D E F G H I J Y, L

Acquisition,
Orbiter/TDRS 43,45,72,143 30, 37

AGC, OEA 53 76-77

Interface,
OA 42-43

Radar 1.21-1.24 69-73

Ambiguity
Resolver 1.15-1.18 i

AM/P14 Conv. 74

Angle Rate Filt. 111-112
Rate Status 41
Track Proc. 51
Transform,
Antenna 60-63

Antenna
Alignment 1.31-1.32,

9.4-9.7
Cassegrain 9.3-9.4
Gain 20
Narrow Beam 1.4-i.11
Perf, Tests 8.3-8.71
Pitch/Roll
Status 43

Position Data
Interface 62

Scan 42,142.143 162-174
Servo 51-60
Analog Shp`g 56-57
Test Config. 53
Servo Error
Budget 2.31-2.40

Specs 121.122 120-122 94-98
Steering Ctl 1.36-1.53 4-28,32,37 27-35,60
Stow/Unstow 64
Wiggle Test 64,66

Asymmetry, EAl
Clock 110,112
Return Link 1.46-1.53 113-114

NQV



Item A B C D E F G H I J K L

Baseband Data 50

Beacon 139-140
Bit Detector, SPA

1.17,7.21,
9.35-9.40

Bit Error Rate
Degradation 40 50

Bit Error Rate
vs. SHR 106 52 38

Bit Synchronizer 9.4-9.11
Bite, DEA 1.7

EA1 91-96
EA2 74, 86
Radar 167-177 147 97

Blanking, Trans-
91i t 72

Block Diagram,
Ambiguity Res. 1.16

Antenna 1.10
Antenna Servo 138

Bit Detector 9.36

Bit Sync. 9.5

Convol. Encoder 1.37-1.36
Corr. Detector 1.29

Costas Loop, SPA 1.10

DA 35 7
DEA 67

EAl 36 1.3 1.13
EA1 Ref. Gen. 1.7 1.7

EA2 AGC 1.21
EA2 Analog Proc. 1.3

EA2 Angle Proc. 1.31
EA2 Detec. Proc. 1.25

EA2 Filter Proc. 1.14,	 1.17

EA2 Post-Detec.
Integrator 1.19

EA2 Preproc. 1.11,	 1.12

EA2 Processing 77-80

EA2 Range Trackr 1.28

EA2 Veloc.	 Proc. 1.29

Exciter, BEA 1.32
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I tem A (; C 0 E F	 _ G 1{ _ I ,3 K L

Block Oiagram,(Cd
F14 Baseband 1.55

FM Modulator 1.72

FBI Modulator VCO 1.74

Forward Link 34 (1-5) 99

Frame Sync 1.26

Ku System 6 1-9

UPS 1.39

Mgmt & Handover 1.79

Microwave Assy. 1.23

QPSK Modulator 1.77

Rate Sensor, OA 1.28,2.10

Receiver 1.26

Return Link. 55, 57

Self-Test 172, 173

SPA 37 (1-2},(l-5} 100

SPA I/O Buffer 1.8
Transmitter 1.12

Break lock, Radar 158-159

Buffer, SPA 1.54
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Item A 8 C D E F G H I J K [

Carrier Modula-
tion, Nd Link 101

Carrier Recovery 45

Changes, Spec 51-52

Chancels, Return
Link 58-59

Clock, MDM Con-
trol Word 7,	 15

Clutter 137-139,14

Code, Convol. 1.36-1.46, 42, 44

Code, MDM/Ku
Serial Data 7, 10, 14A

Code, PN, For-
ward Link 44 101--103 45-47

Communications,
Data Interfaces 66, 77
Detect. F1aq 50
Performance 33-74 1.11-1.36 97-119 72-8'

Forward Link 33-53 iv 97-110 75-8'

Return Link 54-74 iii 111-119 68-7,

Control Signals,
7-38'48-50

Interface
52-53,63-6 23-36 27-34

Control SPA 51-54

Conv. Encoder
Verif. Data A.1-A.53

Coordinates, DA 86-94

Coordinates, Orb. 10-1
Body 29,	 174-177 61 100

Correlation Det.
SPA 1.28-1.30

Costas Loop Anal, 9.12-9.24

Costas Loop Sim. 9.25-9.34

Costas Loop, SPA 1.28-1.30
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I tern A B C D E F G H I J Y, L

Dr, Block Diagram 35 7

Description 1.3-1.31

Performance 114-123 64-102

Data, Communica-

tions Interfaces 66-77

Data Good Flag 47-48 108-109 50

DEA, Block Diag. 1.2

Description 1.1-1.46

Verif. Data 8.1-8.58

Decommutator,
Frame, SPA 1.33

Delay, RF 65-66,
70,79

Displays/Ctl. 154-165 96-110

DMA Performance 93-102
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Item A R C D E F G H I d K L

EAl, Block Diag. 36 1.3
Ctl/Scat.

Signals 78-87

Definition 1.1-1.5 1.1-1.2 7

Drawings 4.1-4.74
/EA2 Ser-

l Data 87-90

Am Interf. 5.1-5.8.1 13-41
Performance 1.4-1.5 45-111
Ref. Gen.
Ref.	 Gen.,
Block Diag. 1.7

Ref. Signals 1.6 110-113
RF Subunit 1.8-114
/SPA Serial
Data 88

Status/Dis-
play Interf. 96-99

Sys. CU. 86-90

EA2, AGC 1.21-1.24
Analog Proc. 1.2-1.5
Angie Proc. 1.30-1.32
Block Diag. 1.18 7
Definition 6
Detect. Proc. 1.24-1.26
Drawings httachnientl
Filter Proc. 1.13-1.17
Interface 6, B-40
LOG Converter 1.20-1.21
Performance 124-128 41-83
Post-Detect.
Integrator 1.17-1.20

Preprocessor 1.10-1.13
Proc. Seq. 77-80
Range Tracker 1.26-1.28
Status Logic 74,76-77
Tim'g/Control 1.5-1.9
Velocity Proc. 1.28-1.30

EIRP, DA 19 65

EiKEC 23-27

Encoder, DMA 1.26
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APPENDIX A

SHUTTLE KU-BAND FORWARD LINK COMMUNICATION

RECEIVER PERFORMANCE EVALUATION

by

Sergei Udalov

1.0	 INTRODUCTION

The function of the Shuttle Ku--band forward link receiver is

to acquire, track and demodulate the 13,775 MHz communication signal.

Because the primary mode for this signal is that of spread spectrum,

in addition to the bi-phase-L modulation, the received signal must be

despread prior to recovery of the data. Also, the frequency uncer-

tainties caused by oscillator drifts and residual doppler shifts

require carrier frequency search and acquisition prior to recovery

of the received data. Tho purpose of the material presented herein

is therefore to provide a -functional evaluation of the Ku--band

receiver and its various subunits in terms of the specifications
	 I

imposed on this equipment.

2.0	 RECEIVER PERFORMANCE

2.1	 Input Signal and Noise Levels

The performance of the forward link, of which the Ku--band

receiver is one of the major components, depends on the C/N O ratio

at the receiver input. To determine the range of available C/N0

values, one must (1) calculate from the link parameters the signal

levels at the output of the receiver's antenna and (2) determine the

effective system noise temperature based on the RF losses of the

front end and the receiver noise figure. Once the absolute values

of C and NO are determined, the performance of the receiver itself can

also be evaluated in terms of signal amplification and dynamic range

capabilities. Calculations of the C and N O levels are presented in

the following paragraphs.

2.1.1	 Received Signal Power Level Calculations

The received signal appearing at the output of the antenna is

a function of the forward link flux density impinging on the Ku-band

antenna of the Orbiter. Multiplied by the effective area of the



2

antenna, the power density provides the value of the received signal

delivered to the output of the antenna.

The level of power density incident on the Shuttle Ku-band

receiver antenna is a function of the EIRP delivered by the TDRS,

the path loss, and the painting geometry of both the TDRS and the

Shuttle antennas. To provide satisfactory forward link performance,

the Shuttle Ku-band communications receiver must accommodate a range

of received power levels. The purpose of the calculations presented

below is to determine the absolute values of the power density and

power levels expected at the Shuttle antenna over a range of opera-

tional parameters.

The one-way communication range equation provides the values

of the power density and the received signal:

1
Prec r Pt X G  X 4zrR2

EIRP	 Path
Loss

Y

Power Density

where	 Pt = transmitter power (watts)

Gt = transmitter antenna gain (dB)

R = range (in selected units)

Are	 (1)

Effective Area
of Receiver
Antennas

Are 
`2
	 area of receiver antenna (in selected units 2).

Equation (1) shows that (a) the product of the first two terms is the

EIRP of the transmitter (TDRS, in this case) and (b) the product of

the first three terms is the power density incident on the receiver

antenna.

For simplification of the link budget calculations, (1) is

usually written in decibels; thus,

Prec (dBW) = EIRP (dBW) - 11 dB - 10 log (R 2 ) + 10 log (Are ).	 (2)

Path Loss

To proceed with the quantitative estimation of the power den-

sity and the power levels, we compute the expected values of the path
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loss term.	 For this purpose, the range units used for path loss must

' be converted to the same units which are used for calculating the

effective area of the receiver antenna. 	 Because it is convenient to

express the power density in watts/meter 2 , we also select the meters2

as the unit for antenna aperture. 	 Such selection necessitates a con--

version of the range units from nautical miles (used for specifying

system performance) to meters.	 Table I shows this conversion along

with the resulting values of path loss.

Table 1.	 Path Loss Versus Orbiter-to-TDRS Range

Range	 Range	 Path-Loss
(nmi)	 (meters)	 2(dB-m )	 Comment

18,000	 3.34X107	 161.5	 Minimum

22,600	 4.I9xIO7	 163.5	 Nominal

25,000	 4.63xlO7	 164.3	 maximum

Note that the path loss in Table 1 is expressed in units of

dB-m2 rather than in dB.	 The power density can thus be calculated

by u:.ing the first two terms of (2) and the path loss values given

in Table 1.

As an example, let us assume that TDRS EIRP = 48 dBW.

Therefore, for the nominal range of 22,600 nmi, the power density

is

D (dBW/m2 }	 =	 48 dBW - 163.5 dB-m2

_	 -115.5 dBW/m2 .	 (3)

As the next step, the power at the output of an antenna of

effective area Ae is calculated.	 For -this, we compute Ae based on

the measured gain of the Ku--band antenna at the operating frequency/

wavelength of the receiver.	 The expression used is

A2 G
A	 =
e	 4	

(4)
n	 '

where G is the measured maximum gain of the antenna and X is the operating

wavelength.
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For the Ku-band forward link receiver, the values of G and X are

as follows:

G = 38.5 dB (7,080 value)

A = 0.0218 meters (2.18 cm, f c = 13.775 GHz).

Calculating the A  value, one thus obtains

A	
= (0.022)2(7080) = 0.267 m

2	(5)e	 4

or	 -5.73 dB-m2.

For the previously used example of D = - 115.5 dBW/m2 , one thus obtains

the equivalent value of the power level at the output of the antenna:

Prec (
dBW ) = -115.5 dBW/m 2 - 5.73 dB--m2

-121.2 dBW	 or	 -91.2 dBm.	 (6)

Figure 1 shows the values of D and P rec as functions of TDRS FIRP

and path loss. The values of 
Prec 

are for the Shuttle Ku-band com--

munication receiver effective antenna area of 0.267 m2.

The higher values of FIRP, i.e., 50-55 dBW, are character-

istic of a "hot transmitter" (a new tube, start--of-life--cycle oper-

ation) at the TDRS. These values are above a typical "minimum range

case" of -48.5 dBW minimum output [1]. The BIRP levels below the

-x48.5 dBW value correspond to conditions existing when the TDRS

antenna is not pointed directly at the Shuttle. Therefore, the

lower values of FIRP are the "effective" values presented to the

Shuttle antenna. These values typically occur during the spatial

acquisition phase of the Ku--band Orbiter/TDRS link.

Out of the relatively wide spread of flux density and

received power levels shown in Figure 1, the values of -126.9 dBW/m2*

and --113.5 dBW/m2 are used as the minimum and maximum flux densities

with which the Ku-band receiver must meet its specifications [2].

Table 2 shows the conditions resulting in these flux densities and

the corresponding differences. As shown, the two differences are

This value is the Rev. A specification. Rev. B is currently
being negotiated; this value will most probably be increased to --123.5
dBW/m2 and the TDRS minimum BIRP will be 40.0 dBW.

JA-
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Power, P
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-110	 -80

Power
Density, D

dBW/m2 f

-105

-115

f^

--85

--120 -90

i

i;

f

-125 -95

-130 --100

-132

-135 -4-105

R=18

22,600

-120

-110

-115

-125

-130

Ae = -5.73 dB-m2

-135	
30	 35	 40	 45	 50	 55

TDRS EIRP in dBW

Figure 1.	 Power Density at Ku-Band Orbiter Antenna and Corresponding Received

Power Level Versus TDRS EIRP and Range
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11.4 dB due to EIRP and 2 dB due to range difference, resulting in

a total variation of 13.4 dB.

Table 2. Minimum and Maximum Flux Densities
at Ku-Band Antenna of Space Shuttle

Incident
Flux Den ity TDRS EIRP Path Loss Range

(dBW/m) (dBW) (dB-m2) (nmi)

-126.9 36.6 -163.5 22,600
(nominal)

-113.5 48.0 -161.5 18,000
(minimum)

0 = 13.4 dB	 a=11.4 dB	 a=2 dB

The actual signal levels corresponding to the specified minimum

and maximum values of flux density are obtained by taking into consider-

ation the effective antenna aperture and other pertinent loss factors

existing during the acquisition, tracking and minimum range* operating

modes of the Ku-band system. Table 3 shows the respective received

power levels and associated conditions. The two extreme values,

-105.8 dBm and -89.7 dBm, are used in the subsequent evaluations of

the Ku-band link performance in general and the Ku-band receiver in

particular. The intermediate value of -103.1 dBm will be used for

evaluating tracking capabilities of the receiving equipment.

Table 3. Ku-Band Signal Levels at Acquisition,
Tracking and Nominal Link Operation Points

.^ h

Incident Flux Density, dBW/m2
Antenna Area, dB-m
Polarization Loss, dB
Pointing Loss, dB

Received Power, dBW
dBm

Acquisition Tracking Minimum Range

-126.9 -126.9 -113.5
-5.7 -5.7 -5.7
-0.2 -0.2 -0.2
-3.0 -0.3 -0.3

-135.8 -133.I -119.7
(--105.8) (-103.1) (--89.7)

NOTE: A Received Power = -119.7 dBW - (-135.8 dBW) = 16.1 dB
(Max- Min)

The minimum range mode is actually only 2 dB above the nominal
specification parameter mode which is based on TDRS EIRP of 48 dBW and
the nominal range of 22,600 nmi.
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2.1.2	 Front-End Noise Density Calculation

The front--end single-sided noise density N O is calculated from
	

a3

the equivalent system temperature, which is a function of such param-

eters as the antenna temperature, the waveguide losses, and the

equivalent noise temperature of the receiver itself. The correspond-

ing equation for the system temperature is

Tsys = TA + (L- 1) TO + LT e 	 (7)	

a

where TA = equivalent antenna temperature
	 a

L = waveguide losses

TO = waveguide temperature

Te = receiver temperature.

For the Shuttle Ku-band communications receiver, these parameters are:

TA

L^

TO =

Te =

Substituti nr,

Tsys

The correspo

105°K

2.9 dB (1.95 value)

2900K

627°K (i.e., 5 dB noise figure).

these values into (7), we obtain:

= 105 + (1.95 - 1) 290 + (1.95) 627

1600°K	 or	 32.0 dB-°K.	 (8)

nding value of N 0 for the Ku-band receiver is then

N0 = k (Boltzmann's Constant) + 10 log Tsys

-228.6 (dBW/°K-Hz) + 32.0 dB-°K

= -196.6 dBW/Hz.	 (9)

This single-sided noise density is used in the subsequent calculations

of the available C/N0 ratios.

For determining the absolute level of the receiver noise,

however, the noise figure of the receiver is used. Thus, at the input

to the receiver terminal (i.e., output of the antenna), the noise

density is

tNn



r	
8

N 
	 = -228.6 (dBW/°K--Hz) + 10 log (290°K) + NF

= -199 dBW/Hz	 or	 -99.0 dBm/MHz.
	

(10)

From this value, the absolute levels of thermal noise at various

points within the receiver can be determined by taking into account

the amplification (as well as the losses) and the bandwidth. The

noise values can then be compared to the corresponding values of the

signal (in the same bandwidth) to determine signal-to-noise ratios.

2.1.3	 Carrier-to--Noise Density (C/N 0 ) Ratios

Having determined the noise spectral density N O of the

Ku-band communications receiving system, we can evaluate the C/N0.

values available for the various modes of system operation using

the computed values of the received power given in Table 3. Con-

sequently, for the acquisition, tracking and minimum range modes,

we have

Acquisition Mode

C/N 0 = -135.8 dBW - (-196.6 dBW/Hz) = 60.8 dB-Hz

Tracking Mode

CA 	 = -133.1 dBW - (-196.6 dBW/Hz) = 63.5 dB-Hz

Minimum Range Mode

C/N 0 = -119.7 dBW - (-196.6 dBW/Hz) = 76.9 dB-Hz.

The performance of various Ku-band receiver subunits will now be

examined within this range of 
C/N 0 

values.

2.2	 Signal Level Profile

The Ku-band communications signal developed by the antenna

is applied to the input of the receiver where it is filtered, ampli-

fied, downconverted, and applied to a number of demodulation and

tracking functions. As the signal passes through the various stages

of the receiver, its Ievel changes along with the level of the amp-

lified noise. For proper functioning, the active components (i.e.,

RF preamplifiers, mixers, IF amplifiers, etc.) of the receiver must
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operate within their linear ranges to avoid the intermodulation and

signal suppression losses. Also, the level of the amplified noise

must be kept in the proper relationship to the signal to avoid signal

suppression due to noise peaks. It is for this purpose that the

absolute signal levels must be traced through the receiver and com-

pared against the signal handling capabilities of various subunits

comprising the receiver amplification chain.

The specific receiver configuration considered here is that

of the Ku-band Shuttle communications receiver. The basic architecture

of this equipment is that of a two-channel monopulse receiver. One

channel is used for amplifying the sum (E) output of a two-axis mono-
pulse antenna; the second channel amplifies the time-multiplexed AAZ

and oEL signals developed by the monopulse bridge of the antenna. The

receiver utilizes double conversion with all of the data demodulation

related functions performed at the second IF. The time-multiplexed

angle tracking modulation, however, is detected at the first IF to

minimize the overall number of receiver components.

Figure 2 shows the functional block diagram of the Shuttle

Ku-band forward link receiver configured for the communications mode.

The gains and losses of the major subunits and the appropriate signal

levels, both maximum and minimum, are indicated. It is important to

point out that, as shown in this figure, the dynamic range of the

signal levels handled by the receiver is comprised of two components:

(1) the change in the input signal strength and (2) the variation in

the amplifier gains over the tempe rature range. As explained in

Table 3, the change in signal level contributes about 16 dB of the

dynamic range requirement. Furthermore, examination of the prelimi-

nary Design Review data [3] indicates that gain variations of the

receiver subunits contribute an additional 10 dB dynamic range

requirement over the specified range of the operating conditions.

Thus, the total dynamic range requirement imposed on the automatic

gain and level control circuitry is about 26 dB.

2.2.1	 Sum Channel Signal Flow

Consider first the signal flow through the sum channel of the

receiver. The received 13,775 MHz signal power output by the sum
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channel antenna feed, which is a part of the deployed mechanical

assembly (DMA), is passed through the rotary joint and applied to

a bandpass filter (BFA IA) and a limiter. The function of the filter

is to couple the incoming 13,775 MHz signals into the receiver and

to reject the communication transmitter signal. Although the band-

width of the communication signal is less than 10 MHz, the passband

of this first filter is 300 MHz wide to accommodate the frequency-

hopped signal of the radar when the receiver is in the radar mode.

Also, the amplitude limiter is required primarily for the radar mode,

and thus it does not affect the signal amplification in the communi-

cations mode.

The combined loss of the antenna feed, the rotary joints and

the filter/limiter subunit is about 2.9 dB. Consequently, the signal

developed at the output of the sum channel Ku-band antenna is attenu-

ated by this amount prior to reaching the RF low noise amplifier (LNA).

Quantitatively, it implies that the maximum and minimum input levels

of -89.7 dBm and -92.6 dBm are reduced to -92.6 dBm and -108.7 dBm,

respectively.

The low noise RF amplifier (LNA) which follows is a three-stage,

gallium-arsenide (GaAs) field effect transistor (FET) unit. The

salient parameters of this amplifier unit are:

Noise Figure	 5 dB

Gain	 22 dB

1 dB Output Compression Point 	 +5 dBm.

Because the maximum input signal in the communications mode is

--92.6 dBm, resulting in an output of about -70 dBm (input signal

plus amplifier gain), it is evident that this amplifier does not

present a dynamic range limitation to the communications signal.

Furthermore, the 13,725 MHz spur (a sixth harmonic of the 2287.5 MHz

S-band signal) is estimated at about -60 dBm at the input to this

amplifier. This results in a -38 dBm output, which is still signi-

ficantly below the 1 dB compression point. Thus, sufficient dynamic

range is provided for handling the spur as well as the signal.

A bandpass filter (BPF 2A) follows the LNA. The bandwidth

of this filter is sufficiently wide to accommodate the radar signal
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band (about 250 MHz), yet its rolloff is such as to provide at least

20 dB of rejection of the image frequency band.

After preselection by this bandpass filter, the received

signal is applied to a single balanced mixer where it is downconverted

to the first IF of 647 MHz. The output of the mixer is applied to

a first IF preamplifier which compensates for the signal losses

incurred in the prefiltering and downconversion.

The FET LNA, bandpass filter (BPF 2A), mixer, and postconver-

sion preamplifier are contained in a single hermetically sealed sub-

assembly which is physically located close to the input bandpass

filter/limiter unit to reduce RF losses. The overall RF-to-IF gain

of this subassembly (shown by dotted lines in Figure 2) is 23 i2 dB

over the range of the environmental conditions. The corresponding

range of the minimum and maximum communication signal level is from

-87.7 dBm to -67.5 dBm, respectively, at the output of this sub-

assembly. Based on a 300 MHz bandwidth, the min/max thermal noise

levels at this point are -63 dBm and -59 dBm, respectively. The cor-

responding signal-to-noise ratios are -24.7 dB and --8.6 dB.

After preamplification at the first IF of 647 MHz, the com-

munication signal is passed through a solid state diode blanking gate

and is applied to the first IF bandpass filter (BPF 3A). In the com-

munication mode, the gate does not affect the signal and thus the

signal is passed with a minimum amount of attenuation to the filters-

The purpose of this filter is twofold: (I) to provide sufficient

rejection of the S-band spur and (2) to provide good transient response

during the transmit/receive gating in the radar mode. For meeting the

second requirement, the configuration of this filter is that of a

four-pole Bessel type and the bandwidth (3 dB) is 18 MHz. The inser-

tion loss of this filter is 1.5 dB. As a result of the reduction of

the receiver noise bandwidth from 300 MHz to 18 MHz, the signal-to-

noise ratio at the output of the Bessel filter is increased by 12.2 dB.

The output of the Bessel filter is applied to a 3 dB power

divider. One output port of this power divider feeds the communica-

tion data IF amplifier. The signal emerging at the second output

port of the power divider is summed with the IF signal of the differ-

ence (o) receiver channel. (The reason for this is described in the

paragraphs dealing with the difference channel.)
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The communications data IF amplifier provides a nominal gain

of 56 dB with an Estimated variation of ±2 dB. The amplified commun-

ication signal, which appears at the output of this amplifier, leaves

the deployed electronics assembly (DEA) and is routed via an inter-

connecting cable to the electronics assembly #I (EA--1) for further

amplification and processing.

As shown in Figure 2, the min/max levels of the amplified

received signal at the output of the DEA are about -38 dBm and

-14 dBm, respectively. This represents a range of 24 dB, which

includes an 8 dB increase over the received signal range of 16 dB.

The 8 dB increase is due to the receiver gain variations over the

range of the environmental conditions. The min/max levels of the

absolute noise at the output of the DEA are -25.7 dBm and -17.7 dBm,

respectively. The corresponding signal-to-noise ratios are -12.5 dB

and x-3.6 dB. These ratios are referenced to the 18 MHz bandwidth

of the IF filter located within the DEA, i.e., the four-pole Bessel

filter.

From the DEA, the communication signal is fed via a cable to

the input of EA-1. The cable loss is presently estimated at about

3 dB which, at a 0.12 dB/foot cable loss constant, corresponds to

25 feet of cable.

At the input of EA-1, the 647 MHz second IF communications

data signal is applied to a bandpass filter whose bandwidth is

14 MHz. The passage of the signal and noise through this filter

reduces the level of the noise relative to the signal by 1.1 dB.
t

After this filtering, the signal is amplified and applied to a bal-

anced mixer where it is downconverted to the second IF of 21.88 MHz.

The net transfer gain from the first IF to EA-1 to the second IF out-

put is 16 dB ±1 dB. Subtraction from this gain of the 3 dB cable

loss results in min/max signal levels at the second IF output of

about -26 dBm and 0 dBm, respectively. The absolute min/max levels

of the thermal noise are -14:8 dBm and -4.8 dBm at this point. The

corresponding signal-to-noise ratios in the 14 MHz bandwidth are

-11.4 dBm and x-4.7 dBm.

The amplification and conditioning of the second IF communi-

cations data signal continues within the automatic gain control (AGC)



and the automatic level control (ALC) subunits. The function of the

AGC subunit is to compensate for the gain variations of all of the

preceding circuits. This maximum variation is estimated at 10 dB.

The AGC circuit consists of a voltage controlled attenuator

which is operated by a noise level sensor. The sensor is implemented

by sampling the absolute value of the thermal noise within a spectral

region which is relatively free of signal power. The first null of

the PN spectrum is one such frequency region. Thus, within the AGC

circuit, the incoming signal is filtered by a 8.6 MHz wide bandpass

filter to remove undesired spectral components and then a 1 MHz wide

bandpass filter is used to select the "noise" segment of the filtered

spectrum. T^e bandpass filtered noise is detected and its level com-

pared to a preset reference voltage. The difference voltage is used

' • o operate the AGC attenuator.

Because the AGC attenuator is controlled by the noise, it com-

pensates only for the signal and noise level changes caused by gain

variations within the receiver. The function of leveling the output

of the receiver in spite of external fluctuations is performed by

another circuit, namely, the automatic level control (ALC).

The ALC unit compares the level of signal-plus-noise power

to the level of noise power only. The two respective power levels

are developed by detecting the outputs of two different bandpass

filters. One bandpass filter is tuned to the center of the signal

spectrum and the other is tuned to the "signal free" region of the

IF BPF. Both filters are 1 MHz wide. The subtraction of the

"signal-plus-noise" voltage from the "noise only" voltage develops

a control signal which is used to stabilize the signal level at the

output of the ALC unit. The minimum range of ALC correction is 16 dB.

The combined signal stabilization capability of the AGC and

the ALC circuits is at least 26 dB. Out of this total range, 16 dB

is due to signal input level variation and the remaining 10 dB is

due to the aforementioned internal gain variation due to environmental

effects. The residual level fluctuation is ±2.5 dB.

Following the AGC/ALC unit, the second IF signal is applied

to a series of power dividers which distribute this signal to the

PN despreader, the PN tracking loop, and the PIS lock detector.

14
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The PN despreader consists of two subsections. One is used for removing

the PN code from the data. This subsection is followed by the Costas

loop. The second PN-despreader subsection is followed by the Costas lock
f

detector.

The min/max signal levels at the input to the PN despreader

subsections are -9.8 dBm and -4.8 dBm, respectively. The min/max

levels of the signal delivered to the PN tracking loop and to the PN

lock detector are --12.3 dBm and -7.3 dBm, respectively. The corre-

sponding signal-to-noise ratios, referred to the 8.6 MHz bandpass of

the AGC/ALC circuitry, are -9.3 dB and x-6.8 dB.

2.2.2	 Difference Channel Signal Flow

The difference (A) channel signal is developed by the mono-
pulse feed system which is a part of the same high gain Ku-band

antenna as is the sum channel feed. I'n the Shuttle Ku--band receiver,

the difference channel is time--multiplexed between the AAZ and AEL

tracking error signals. This reduces the total number of required

channels from three to only two. However, the requirement for

accurate gain and phase tracking between the sum and the time-

multiplexed delta channels still exists. For this reason, all of

the delta channel front end components which are located in the DEA

are made identical to those of the sum channel, as shown in Figure 2.

Figure 2 also shows that, after conversion to the first IF

and bandpass filtering, the sum channel signal is coupled into the

difference channel. The ratio of coupling is 4 to 1 of sum to delta.

The purrnse of this coupling is to provide a reference carrier to the

delta channel so that the time-multiplexed AAZ and AEL signals can be

envelope--detected linearly. If such a reference carrier were not

present, it would not be possible to determine the polarity of the

delta errors and, furthermore, their detection by the envelope method

would be highly nonlinear.

Because the AAZ and AEL signals are small during perfect

tracking compared to the sum channel signals, the delta signal

levels are not indicated in the block diagram of Figure 2. Instead,

the level of the sum signal which is coupled into the delta channel

is indicated starting with the 6 dB coupler where the sum signal is

injected into the delta channel.
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It must be noted that the absolute level of the thermal noise

is increased by 1 dB at the output of the 6 dB coupler. This

increase is due to the combining of the E-channel and the A-channel

noise components. The combining is as follows:

	

Ntotal ` N
E T NA - N E (I+ ^) = 1.25 N s	(I1)

or	 +1 dB .

The one-fourth factor in the above expression is due to the 6 dB

coupling ratio of the two channels.

Following the 6 dB coupler, the combined A +E signal is

amplified by 60 dB ±2 dB and then applied to a 3-dB power divider.

One output port of this power divider feeds the signal to the radar

second mixer. The second output port feeds the cable which inter-

connects the DER with the EA-1 unit. It is this second output port

that is used in the communication mode to provide the angle tracking

signals.

The combined A+ E signal is applied to the EA-1, where it is

bandpass filtered, gain controlled, and envelope detected. As shown

in Figure 2, the min/max signal at the input of the EA-1 is -40.2 dBm

and --16.1 dBm, respectively. The corresponding noise levels at the

input to the EA-1 are -26.7 dBm and -18.7 dBm. Prior to the 8.6 MHz

bandpass filtering, the signal-to-noise ratios are +2.6 dB and - , 13.5 dB.

After passing through the 8 MHz filter, the signal-to-noise ratios

are increased by 3.5 dB, resulting in a range of SNR between x-6.1 dB

and -10.0 dB at the input to the envelope detector. The nominal out-

put of the envelope detector is 0.5 volts peak-to-peak across I ku.

The time-multiplexed AAZ and AEL data appear as amplitude modulations

superimposed on this average voltage.

2.3	 PSK Data Demodulator

2.3.1	 General Description

The PSK data demodulator unit of the Shuttle Ku-band communi-

cations receiver performs the following functions:

(1) Initial frequency search and acquisition of the RF

carrier.
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(2) Tracking of the RF carrier.

(3) Coherent demodulation of the received bi-phase modulated

data.

The initial frequency search and signal carrier acquisition

must be performed by the demodulator unit regardless of the type of

received TORSS signal, which can be any of the following formats:

(1) CSI carrier

(2) Data modulated carrier

(3) Spread spectrum carrier

(4) spread spectrum plus data modulated carrier.

Figure 3 shows the functional block diagram of the PSK data

demodulator, which is comprised of five subunits:

(1) Costas loop demodulator

(2) Costas lock detector

(3) Acquisition and track control logic

(4) Demodulator output circuit

(5) Voltage controlled crystal oscillator (VCXO).

The inputs of these subunits are supplied by the second IF

AGCJALC circuit and by PN code associated circuitry.

The Costas loop demodulator searches and acquires the incoming

RF signal. Once the acquisition is completed, the demodulator pro-

vides coherent tracking of the phase and frequency of the received

signal. It must be noted that the initial Costas loop lockup on

the incoming carrier takes place regardless of the PN code synchroni-

zation. This is due to the fact that the arm filters of the Costas

loop are made wide enough to accommodate the bandwidth of the spread

spectrum signal. Thus, the Costas loop handles the PN modulated

carrier as a baseband "data" of 3 Mbps and locks up the suppressed

carrier of this spread spectrum signal. The data recovery, which is

the primary function of the Costas demodulator, must be preceded by

PN despreading, however.

The capabilities of the Costas loop to acquire the received

RF signal within a relatively short time (about 350 msec) without

needing the PN code lock makes the Costas loop the primary sensor unit
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for the angular acquisition of the TDRS. Specifically, as the Shuttle

antenna beam scans past the TDRS, the Costas loop, which is constantly

swept in frequency, locks onto the TDRS signal and signals the antenna

microcomputer to terminate the antenna scan. The advantage of using

the Costas loop for acquisition rather than an energy sensor is

that the former uses coherent detection which uniquely identifies

the TDRS signal, thus eliminating possible false lockups due to sun

or earth intercepts.

The actual sensing of the Costas loop signal acquisition state

is performed by the Costas lock detector circuit. This circuit

develops the in-phase ("I") and quadrature-phase ("Q") components

of the incoming signal and forms an I 2-Q2 signal. When the Costas

loop is in lock, or close to it, the condition I 2 >> Q2 makes the

I 2 -Q2 signal exceed a preset threshold. When this happens, the lock

detector sends a "Costas lock" signal to the acquisition and track

control logic.

As its name implies, the acquisition and track control logic

performs the function of switching the Ku-band communications receiver

from the acquisition to the track mode. Specifically, upon receipt

of the "Costas lock" signal, the logic circuit issues commands to

the antenna microcomputer and to the RF switching circuitry to ter-

minate the antenna scan and to initiate the angle tracking. In addi-

tion, the logic unit commands the Costas loop to (1) terminate the

frequency sweep, (2) switch loop bandwidth from wide (acquisition)

to narrow (track), and (3) initiate the DC tracking of the carrier

phase error. Also, the logic unit provides a "data good" signal

which indicates that the TDRS/Shuttle communications link has been

established and that the data received is valid. The "data good"

signal is generated when the following three conditions are met:

(1) Costas lock established.

(2) PN lock established (or no PN used)

(3) Incoming bi-phase-L data is properly demodulated (no

DC component).

The sensing of the DC component (or absence thereof) is per-

formed in the demodulator output circuit. This circuit accepts the
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I-channel raw data from the Costas loop and conditions it for trans-

mission to the signal processing assembly (SPA) for further processing.

Furthermore, the demodulator output circuit develops the AGC voltage

used by the Costas demodulator for stabilizing the data amplitude.

The demodulator output circuit also samples the DC component of the

demodulated data to determine the validity of the data format received

from the Costas loop demodulator. Because the Ku-band forward link

data is always in a bi--phase-L format, no DC component should be

present at the output of the demodulator when it operates properly.

The VCXO is the fifth subunit of the PSK data demodulator.

The VCXO provides a stable, yet tunable (over a limited range) source

of local IF signal reference for generating the I and Q signals

required by the Costas loop demodulator. A compromise between the

conflicting requirements of stability and tenability is achieved in

this particular design by mixing the output of a stable 4.12 MHz

voltage-controlled L-C oscillator with the 26 MHz output of a crystal

oscillator. The resultant difference of 21.88 MHz is used as the

local reference for the Costas loop. The tuning range of this VCXO

is 1220 kHz and the residual uncertainty of the nominal VCXO frequency

is ±35 kHz. This residual uncertainty is well covered by the acqui-

sition sweep range of ±175 kHz.

2.3.2	 Subunit Functional Description

2.3.2.1 Costas Loop Demodulator

Figure 4 shows the functional block diagram of the Costas loop

demodulator. The salient features of this demodulator are (1) AC

coupling of the signals used for developing the carrier tracking error

and (2) hard--limiting of the 1-channel signal. These two techniques

minimize the DC bias component of the carrier tracking error, thus

providing for reliable loop operation over a wide range of input

signal-to-noise ratios and environmental conditions.

The input to the demodulator is the 21.88 MHz second IF signal

supplied by the ALC circuit. At the demodulator unit, this signal

is passed through the balanced mixer U 6 and is then applied, via power

divider U3 , to the I-channel and Q-channel mixers U 2 and U4.

^: P
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The primary role of mixer U 6 is to provide PN code despreading

for the data after the completion of the acquisit i on phase. The

secondary role of this mixer is to impose the 5.92 kHz dither modu-

lation onto the CW signal, which is one of the signals to be handled

by the Costas loop. The presence of the 5.92 kHz modulation eliminates

the requirement for DC tracking capability during the reception of

the CW signal.

In mixer U2 , the IF signal is mixed with the 0 0 -phase (in--phase)

of the local reference oscillator. Therefore, when the demodulator

loop is in lock, i.e., it is tracking coherently the phantom carrier,

the output of the I -mixer is a bipolar signal whose amplitude is
proportional to the amplitude of the received signal. Depending on

the nature of the received signal, the output of U 2 is either an NPZ

PN c,ude (3.03 Mbps) or a bi-phase-L data stream (up to 216 kbps) or

a 5.92 kHz squarewave. The latter, of course, is the result of

biphase modulating the received CW signal (if that is the mode) with

a 5.92 kHz "dither" squarewave.

The mixing of the incoming signal with the 90 -phase (Q--phase)

local reference is performed in mixer U 4 . It is this mixer, therefore,
which develops a signal proportional to the carrier tracking phase

error. The error signal developed by the Q-mixer, however, changes

its polarity according to the polarity reversals of the incoming

signal, whether it be a PN code, a data stream, or a squarewave modu-

lated carrier. Consequently, to remove these polarity reversals, the

error signal developed by U4 must be multiplied with the I-mixer output.

This multiplication is performed by the chopper multiplier.

Prior to the application of the I and Q signals to the chopper

multiplier, both of these signals are passed through the lowpass

filters to remove the out-of--band noise and the higher harmonics of

the IF signal. The lowpass filters are 2-pole Butterworth designs

with a 3 dB cutoff frequency of 3.0 MHz, this frequency being deter-

mined by the bandwidth of ine PN code.

In addition to lowpass filtering, the I-channel data is passed

through a hard-limiter prior to application to the chopper multiplier.

It is this limiting which permits the so-called "third multiplier" of

the Costas loop to be replaced by the chopper unit. The chopper
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implementation is simple and therefore provides Fewer problems with

DC drift, signal asymmetry and distortion.

It must also be noted that the I and Q signals are AC coupled

to the chopper multiplier. Such coupling removes all the OC bias

errors developed by the circuitry which precedes the chopper multi-

plier. Furthermore, during acquisition, the error signal developed

by the chopper multiplier is also AC coupled to the control terminal

of the VCXO. This removes the residual DC noise components present

during the frequency search. Upon acquisition of the signal, the DC

coupling is restored by the command from the Costas lock detector

circuit.

The loop filter which determines the noise bandwidth of the

loop during the acquisition and tracking phases is an active device

with a transfer-function

S T + 1
F(s)	

ST S + 1	
(72)

7	 3

where	 Tl = 0.84 msec

T 2 = 0.13 msec

T3 = 0.33 usec .

Because T3 <<'r l and T21 the loop is predominantly second-order,

and the function of T3 is primarily to remove the high frequency

"hash" from the control line to the VCXO.

Together with all other pertinent loop parameters, the time

constants T l and T2 determine the noise bandwidth B L (one-sided) of

the Costas loop during acquisition and tracking. The respective

values of BL are 10 kHz and 7 kHz. The reduction of the bandwidth

is accomplished by lowering the gain of amplifier AR  upon command

from the Costas 1 o:' ', detector.

The loop filter, being primarily an integrator, is used to

generate a sawtooth voltage required for the frequency sweep of the

VCXO output during acquisition. The sawtooth voltage is generated

by applying a squarewave to the loop filter/integrator. The limits

of the sawtooth voltage thus developed are sampled and used to reverse

the sweep direction when the sweep control signal reaches its excursion



limits. The quantitative parameters of the frequency search circuit

are:

Acquisition sweep range 	 x-175 kHz

Forward sweep time	 40 to 180 msec

Retrace sweep time	 5 msec.

It is important to note that the forward sweep time is variable over

a range of at least 4 to 1. This variab i lity is implemented to reduce

the probability of false lock at high values of C/N.. The forward

sweep time is thus controlled by summing the sweep voltage with the

signal strength indicator voltage.

In concluding the functional description of the Costas loop

demodulator, the consideration of the power levels at the input: of

the loop is in order. The levels up to and including power divider

U5 have been followed through in the earlier discussion on the signal

profiles (see Section 2.2.1). Thus, at point A, the signal and noise

levels, as well as their ratios, are as indicated in Figure 4. Note

that these ratios correspond to the maximum signal level of -5 dBm

and the maximum noise level of -0.7 dBm. Consequently, the noise

power is the one that has to be handled properly by mixers U 2 and U4

without: causing their saturation.

The -0.7 dBm noise level, however, is reduced by about 1.5 dB

in mixer U 6 and by another 3 dB in power divider U 3 . Thus, at inputs

to U2 and U4 , the noise level is about -5.2 dBm. The local reference

power level applied to these mixers is +8 dBm, resulting in a differ-

ential of 13.2 dB in favor of the local reference. This is consistent

with the safe design rule which requires that the level of the L0

drive be at lust 10 dB above the rms noise level at the mixer IF

input port.

Table 4 summarizes the Costas loop design parameters as they

were presented by the Ku-band system contractor [3].

2.3.2.2 Costas In-Lock Detector

The functional block diagram of the Costas in-lock detector

is shown in Figure 5. The signal applied to the detector is the

21.88 MHz second IF, which appears at the output of the power splitter

U5 shown in Figure 4. Consequently, the signal and noise levels, as

24
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Table 4. Costas Loop Design Parameters [3]

Characteristic	 I Maximum I Minimum

General Parameters

Input C/NO for acquisition, dB-Hz

Input C/NO for tracking, dB-Hz

Acquisition sweep range, kHz

Forward sweep time, ms*
	

I85

Retrace sweep time, ms
	

7

Maximum input signal level variation, dB
	

±2.5

Maximum loop gain variation (including
dynamic range), dB
	

+3.9

VCXO sensitivity (nominal), kHz/V

DC loop gain (tracking)

Quadrature phase error, deg	 ±2.3

I/Q arm frequency response (13 dB, MHz) 	 3.2

59.5

59.0

x-175

40

3

2105

I 1.0x101

i

a

2.8

Acquisition Parameters (C/NO = 60.8 dB-Hz)

Phase detector gain, mV/rad 160 71

Loop stress, rad 0.15 0.06

Loop natural frequency, rad/sec 1.56x104 1.04xiO4

One-sided loop noise bandwidth, kHz 10 5.5

Loop signal -to-noise ratio, dB 12.7 10.1

Loop damping factor 1.05 0.70

Tracking Parameters (C/NO 	 63.2 dB-Hz)

Phase detector gain, mV/r.ad 70 32

Loop natural frequency, rad/sec 1.04x1O4 7.0x103

Loop damping factor 0.70 0.47

Loop noise bandwidth, kHz 7.0 5.5

Loop signal-to-noise ratio, dB 17.5 16.4

Static phase error, deg 9.3

RMS jitter, deg 5.6

*
Depends on input C/NO



-90 0 Reference

0° Reference

i

2.96 kK

Costas
Loc k
Signal

-7 dBm ±2.5 dBm
Ml	M2	 Lowpass	 Soft

IF Input	 Filter	 Limiter
1.65 MHz	 A2

+8 dBm
PN Code/Bias

Phase

Squarelaw
Detector

3

Figure 5. Costas Lock Detector Functional Block Diagram

N



27

well as their ratios, are the same as those at point A (see Figure 4)

which is the input to the Costas loop demodulator.

Depending on the presence or absence of PN spectrum spreading,

the incoming IF signal is either passed through mixer M I unaffected*

(PN present) or is spread by the locally generated PN (PN absent).

The reason for this function is to ensure that the detector circuitry

always handles nearly the same signal regardless of the modulation

mode of the received signal.

The second mixer M^ multiplies the IF by the time-multiplexed

local reference signal, which alternates between the 0 0 and -900

phases. Mixers M3 and M4 , driven by the complementary phases of the

1.48 kHz dither waveform, provide the required time--multiplexed,

phase--orthogonal reference signals.

Because the signal and noise levels of the input to mixer M2

are the same as those of the Costas demodulator and because the

reference level supplied to M 2 is +8 dBm, the operation of this

mixer is satisfactory over the expected range of input signal

variations.

The output of M2 is lowpass filtered to 1.65 MHz, amplified

and applied to a soft--limiter. The function of the soft-limiter is

to provide for a better discrimination between the main lobe and

sidelobe signals which are applied to the detection decision threshold.

Specifically, at low C/N O values, the noise dominates the linear

aperture of the Iimiter; thus, the signal is suppressed along with

clipping of the noise peaks. At higher C/N O values, the maximum

amplitude of the signal is relatively steady, and thus the signal

"slides under" the limiter boundary without being considerably

affected by clipping. The limiter is fbllo y.pd by amplifier A3.

Because the baseband signal is bipolar from the output of M2

to the output of amplifier A3 , regardless of the data mode, this

signal has to be "rectified" before its average value can be measured

to determine the "in-lock" condition. The squarelaw detector provides

this rectification. The rectified output of the squarelaw detector

is passed through an 18 kHz lowpass filter and is applied to a switch

It is only attenuated by about 1.5 d6.
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driven by the 1.48 kHz dither signal. The function of the switch is

to provide the DC restoration to the filtered output of the squarelaw

detector and to gate the I 2-Q2 peaks into the prethreshold lowpass

filter whose bandwidth is 5.4 Hz.

The filtered I 2-Q2 output is fed to the threshold detector,

which is actually a voltage comparator IC. The detector compares the

magnitude of the I 2_Q2 signal against a preset threshold and outputs

the "Costas lock" signal when the threshold is exceeded. To prevent

the output signal "chatter" due to noise, the comparator is provided

with a small amount of hysteresis between the setting of its "ON" and

"OFF" thresholds.

2.3.2.3 Acquisition and Track Control Logic

The block diagram for the acquisition and track control logic

is shown in Figure 6. This logic unit receives, processes, generates

and buffers various signals and commands required to control the

acquisition and tracking modes associated with the receiving of the

Ku-band forward link communications signal. The primary functions

of the acquisition and track control logic unit are:

(1) Supplying the local, on--time PH code to the Costas loop

PH code/dither mixer.

(2) Providing either the PH code (spread spectrum OFF) or

the bias (spread spectrum ON) to the PH code/bias mixer of the Costas

lock detector.

(3) Generating the 5.92 kHz signal for the Costas loop dither

mixer and for the chopper of the demodulator output circuit.

(4) Controlling of the Costas loop bandwidth and AC coupling.

(5) Determining the "data good" status from the "Costas
lock" and DC present signals.

Supplying of the local PH code to the Costas demodulator

circuit takes place only after the PH lock signal is received. Before

leaving the logic unit, the PH code is multiplied with the 5.92 kHz

dither squarewave signal. The multiplication logic (actually

modulo-2 addition) is such that, regardless of the presence or

absence of the code, the dither modulation is supplied to the Costas

loop demodulator. The 5.92 kHz dither waveform is developed in the
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logic circuit by dividing by 2 the incoming 11.84 kHz signal supplied
	

a

by the PN master timing circuit.

The delivery of either the PN code or a bias signal to the

balanced mixer located at the input of the Costas lock detector

unit (Mixer Ml in Figure 5) is determined by the status of the

spread spectrum ON/OFF command input to the logic unit. When the

received forward link signal is spread, which is the primary mode

for this link, the logic unit is commanded to provide a bias to

Mixer M1 . This bias makes the mixer act as an RF gate in the "ON"

state and thus the incoming spread spectrum signal is applied to the

in-lock detector.

Because the in-lock detector is optimized for the spread spec-

trum signal, its input must be deliberately spread when the link is

operating in the CW or "data only" modes. Application of the locally

generated code accomplishes this function.

Table 5 summarizes the signals applied to the mixers preceding

the Costas demodulator and the in-lock detector.

Table 5. Costas Loop and In--Lock Detector Mixer Drive Signals [3]

Costas Demodulator In-Lock
Mixer Detector Mixer

Spread 6 kHz*
Spectrum Parameter 6 kHz*	 Plus PN DC Bias	 PN

Costas
X X

Off
Acquisition

Costas Track X X

Costas
X X

Acquisition

Costas Track. X XOn

Costas Track
X X

and PN Lock

*
Actual value is 5.92 kHz.
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Both the Costas Ioop bandwidth and the AC coupling control

are determined by the Costas lock signal. The bandwidth control

causes a narrowing of the Costas loop bandwidth after the initial

signal acquisition. The AC coupling control provides for AC coupling

of the carrier tracking during acquisition and, upon receipt of the

Costas lock, restores DC coupling to the loop.

The "data good" logic provides the "data present" signal to

the SPA. This signal is generated if, and only if, the following

signals are present:

(1) Costas lock

(2) DC Present

(3) PN Lock or PN OFF.

The significance of the first two signals is self-explanatory. The

third signal, however, results by OR--ing the two alternate conditions.

Thus, if the system is in the spread spectrum mode, "data present"

does not appear until the PN lock is established. If the system is

in a mode other than spread spectrum, the first and second conditions

are the determining factors for declaring the "data present" condition.

2.3.2.4 Demodulator Output Circuit

Figure 7 shows the block diagram for the demodulator output

circuit. The primary function of this circuit is to process the

I-channel data received from the Costas demodulator and to deliver

this data via a balanced, differential line to the SPA.

As shown in Figure 7, the incoming I-channel data is passed

through a phase inverter (splitter) followed by a chopper multiplier

which removes the dither modulation from the data. The "undithered"

data is then passed through an active, 4-pole Butterworth lowpass

filter and is supplied to the following three circuits:

(1) Data output driver

(2) ACC detector and amplifier

(3) Data detector.

The data output driver is a differential unit which supplies

the balanced data signal to a 71--ohm cable. The outputs of this

driver are protected from momentary shorts of the output lines to

high voltages.
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I

M1

The AGC detector senses the amplitude of the I-channel data

"	 signal with a pair of temperature-compensated diodes.	 The data applied

to the amplitude detector is prefiltered by a single-pole filter with

a 414 kHz 3 dB bandwidth. 	 After detection, the AGC data is passed

through an active integrator circuit whose unity gain is at approxi-i
mately 10 Hz.	 The ACC voltage smoothed by the integrator is delivered

to the gain control unit of the Costas data demodulator.

The data detector consists of two voltage comparators whose

outputs are wired to provide an "OR-ed" signaI. 	 The thresholds of the

comparators are set in such a manner that any positive or negative

voltage exceeding a sma/l/margin`gives an output indication of the

presence or a positive or negative DC component of the 216 kbps

bi-phase-L. data.	 The data applied to the comparators is passed

through a 3 Hz iowass filter which provides a high degree of data
F'

smoothing.

2.4	 PN Code Acquisition and Tracking Circuits

2.4.1	 Functional	 Description'

The recovery Hof the forward link data requires the removal

of the 3.03 Mbps PN cipde from the received signal when the incoming

signal	 is in the spread spectrum mode. ,	The removal of the code, in

turn, requires a local replica of a code which is in near-perfect

synchronism with the incoming code. 	 Consequently, prior to the

recovery of the communications data, the Ku-band receiver must

search out the phase of the incoming code and then lock its local

code generator to the phase of the incoming code. 	 Once the initial

synchronism is established, the local code generator must remain

in lock with the received code. i<

The functions of \5ot^h code 4cquisi.tion and tracking are per-

farmed by the PN tau-dither 	 quisit^ on-tracking and PN lock detector

circuits, whose functionalibl\gck diagrams are shown in Figure 8. 	 The f:'

PN tau-dither acquisition- hacking circuit is in the upper portion C

of the figure.	 Consider fitst the tracking made of this circuit.

The IF signal is applied to^nixer MAT , where it is multiplied with s`,

the local reference.	 This l cal reference is time-multiplexed between

two bi-phase signals, one modulated by the "early" code (+T/2) and F'

a
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the other modulated by the "late" code (-T/2). The rate of multiplex-
ing, which is generally referred to as the "tau-dither" rate, is

equal to 5.92 kHz for this particular system.

The output of MAT is bandpass filtered and applied to a square-

law detector. The squarelaw-detected signal is then AC coupled to

the demultiplexer, where the detected IF outputs corresponding to

the fT/2 and -T/2 conditions are separated. After separation, these
two components are subtracted and the difference filtered and applied

via the loop filter to the VCXO.

The VCXO is tunable over a limited range, the code track error

developed by the tau-dither circuit is used to keep the VCXO-driven

code generator in synchronism with the received code.

For the acquisition phase, the scan circuit develops a voltage

which offsets the VCXO frequency from the nominal frequency of the PN

code. This offset causes the local and incoming codes to slip past

each other until a synchronism is achieved.

Once synchronism is achieved, the tau-dither tracking function

takes over and the PN code stays in lock despite the scan signal

voltage. This voltage, however, is disconnected once the PN lock

detector declares code lock.

As shown in Figure 8, the PN lock detector also uses time-

multiplexing for developing the lock signal. The signals used for

the time-multiplexed local reference are the "on-time" and the "late--

late" codes. The latter is displaced from the on-time code by 1.5

chips. The multiplication of the IF signal with these two local refer-

ence signals takes place in mixer MLO . The output of this mixer is

bandpass filtered and rectified by a squarelaw detector. The detected

signal is AC coupled to the demultiplexer. Both multiplexing and

demultiplexing are done at the 739 Hz rate.

During code acquisition, both detected time-multiplexed

signals provide the same voltage, namely, that due to thermal-plus-

uncorrelated PN code noise. Upon code lock, the on-time signal pro-

vides considerable output, which exceeds the threshold of the threshold

detector. When this happens, PN lock is declared and the scan voltage

is removed from the VCXO control terminal. The bandwidth of the code

tracking loop is also narrowed down for the track mode.



r

k F
fy	

,

It must be noted that the timing generator, which is driven

' i	by the VCXO, develops all the required dither signals for both the

PN code tracking/lock detection circuit (5.92 kHz and 739 Hz) and

the Costas lock demodulator (11.84 kHz and 2.96 kHz).
1

2.4.2	 PN Tracking Performance

In the spread spectrum mode, the code tracking loop supplies

the punctual correlation code to the despreader mixer ahead of the

Costas demodulator. The noise error within the code tracking loop

introduces a certain amount of signal degradation, which ultimately

affects the BER performance.

Quantitatively, the effect of the code tracking error is

expressed as effective loss L T [41:

LT = 10 log (I - 1.16crT )	 (13)

where aT is the normalized error for the PN loop. This error, in

turn, can be computed from the following expression [51:

21	 1	 N 2	 -2 BL 	 (14)
aT -	 0.905 (p i )	 + [0.453- (IOTd 

B i) - ] (N-1) (¢ i )	 8i
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where B 

BL

Td

N

Ai

Two-sided noise bandwidth of the IF arm filters

One-sided tracking loop bandwidth

Dither frequency period

Number related to early/late code spacing (N >2; for

*-r/2, N = 2)

C
NOBi

To determine the effect of tracking error on the i a , a perform-

ance, we calculate the value of aT at C/N O = 63.5 dB-Hz, using the

following parameters:

B i = 1 MHz

BL 
= 500 Hz

Td = 0.168 msec (5.92 kHz)

N = 2 (±1/2 chip spacing).
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Substituting the above parameters into (14), we obtain a  = 0.019, or

1.9%. Substituting this value into (13), we obtain a degradation of

only 0.19 dB. Consequently, one may conclude that the PN tracking

loop contributes relatively little degradation to the forward link

performance at C/N O values at and above 63.5 dB-Hz.

3.0	 SUMMARY AND RECOMMENDATIONS

The performance of the Ku-band forward link receiver has been

examined from the standpoint of functional interaction between its

subunits and also with respect to the flux density variations'at the

a henna.

It appears that the receiver architecture, including the data

demodulation and PN despreading circuits, is consistent with meeting

the required performance within the specified range of incident flux

densities from --126.9 dSW/m 2 to -113.5 dBW/m2.

One aspect of the PSK data demodulator design which requires

closer examination is that of using the 5.92 kHz "dither" signal in

modes other than CW reception. As was shown in Table 5, the 5.92 kHz

dither signal (labeled as "6 kHz" in the table) is applied to the

mixer preceding the Costas demodulator in all modes of received

signals.

For the CW mode, the dither signal is obviously required to

provide the sideband which can be utilized by an AC coupled Costas

loop for coherent carrier acquisition and tracking. However, for the

case when bi-phase-L data is being received, the requirement for a ..

dither waveform is questionable because the spectrum of the data does

not contain DC, i.e., the carrier, anyway. Locking up to and tracking

of such bi--phase-L data with an AC coupled loop should not present

a problem. However, the introduction of an asynchronous dither sigral

into the received IF signal by bi-phase modulation and subsequent

removal of this signal from the baseband data by a chopper may result

in "glitches" which, in turn, may degrade BER performance.

Consequently, it is recommended that the function of the dither

signal during reception of bi-phase-L data be reexamined and, if found

not justified, the use of dither in the data-receive mode be discontinued.
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APPENDIX B

EFFECT OF POWER RATIO FLUCTUATIONS IN MODE 1
ON THE RETURN LINK SUBCARRIER TRACKING

by

Marvin K. Simon

1.0	 INTRODUCTION

This appendix presents the analysis of the effect of power ratio

fluctuations in Mode 1 on the return link subcarrier tracking of TDRS.

Three channels exist in Mode 1, with a nominal power distribution of

80% for the highest rate channel (Channel 3). The remaining 20% is

split, with 80% going to the next highest rate channel (Channel 2) and

20% to the lowest rate channel (Channel 1); equivalently, P 1 /PT = 0.04,

P2/PT = 0.16, and P3/PT = 0.80, where P i is the power in the ith channel

and PT is the total power. The two higher rate channels (Channels 2

and 3) represent independent data channels, with Channel 3 being NRZ

data with data rate R3 up to 50 Mbps while Channel 2 has a rate R2 that

does not exceed 2 Mbps but can be either NRZ or bi-phase--L data. Chan-

nel 1 consists of bi-phase-L operational data at a rate R 1 of 192 kbps.

Due to hardware components uncertainty, actual power ratios will differ

from nominal values. Two extreme expected cases are. (1) P l /PT = 0.04,

P2/PT = 0.14, P3/PT = 0.82; and (2) P l /PT = 0.03, P2/PT = 0.19, P3/PT = 0.78.

The effect of this power ratio fluctuation on the tracking jitter of the

subcarrier loop and the resulting error probability performance in

demodulating the data are investigated.

2.0	 THREE--CHANNEL MODULATIONS

The structure of the modulator in Mode 1 forms an unbalanced

quadr •,phase signal wherein the high data rate signal P m3 (t) is biphase
modul«ted on the in--phase carrier	 sin w0t, and the sum of the two

lower rate signals	 m2 (t) and P ml (t)(after being demodulated onto

squarewave subcarriers sin wsc t and cos wsct, respectively) is biphase

modulated onto the quadrature carrier F cos w0t. The resulting signal,

now a multilevel signal s(t), is then bandpass hardlimited and power

amplified, as shown in Figure 1.

The modulation procedure is carried out at the SPA unit of the

Ku-band communication/radar system with a carrier frequency f 0 = 1.876 GHz

generated in EA-1 and a squarewave subcarrier first harmonic frequency

of 8.5 MHz generated by a squarewave oscillator in the SPA unit.
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Figure 1. Three--Channel Quadrature Multiplex Modulator
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The signal generated by the modulator is

s(t) = F [C(t) cos wat f S(t) sin wOt]

where C(t)2 m
2
 (t)sin wsCt P ml (t) Cos wsct

P s 2 (t) + P s 1 (t)	 (1)

S(t)	 P m3 (t) ° P s3 (t) 	 (2)

It was shown in [1] that, due to the hardlimiting effect on the signal,

the power distribution at the output of the amplifier is different

from that at the input. Assuming equal output and input powers, the

output signal can be written as [1]:

z(t) = 2P 
[Cl 

P2 1P -- CZ P7^ s2(t) 
[Cl P
	 - CZ P ^ s 1 (t)r cos mot

+ 2P C l P^ s 3 (t) - C2 PP p s l (t) s 2 (t)s 3 (t) sin wat	 (8)

ZM = r	 S3 (t) -r sI(t) S 2 (t) S3 (t)sin W 
0 
t

+ F 
TP2  s

2 (t) + ,,^P l s  (t) Cos w0t ,	 (4)

where the new signal powers are

P3 = P3 C12

^-	 2
P2 = 

C 1 P - CZ P

2
P3	

C l ` P - 
C2 

YP2]

Pd = P
3 C. 	 (5)

Pd represents the power in the cross--talk signal s l (t)s 2 (t) s3 (t). In

the nominal case, for example, P 3/PT = 0.8, P2/PT = 0.16, and P1/PT = 0.04,

which yields P3/PT = 0.8157, P 2/PT = 0.1508, P 1 /PT = 0.0287, and P d/ PT =
0.00529. If the power distribution due to hardware considerations

become (as in Case 2) P 3/P l = 0.78, P2/PT = 0.19, P3/PT = 0.03, then the
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output power distribution is P
3 
/P
T
 = 0.7936, P

2 
/P

T
 = 0.1818, P

I 
/P

T
 = 0.02003

and P
d
 /P

T
 = 0.0046.

The resulting signal is upconverted to a Ku-band frequency

of 15.003 GHz and transmitted to the TDRS.

3.0	 THREE-CHANNEL DEMODULATION

The demodulation is carried out in two steps: (1) recovering the

carrier by a Costas loop, and then (2) using the quadrature arm signal

as an input to a subcarrier Costas tracking loop to recover the sub-

carrier and allow for the demodulation of the two lower data rates

m2 (t) and ml.(t).

Figures 2 and 3 -illustrate the carrier Costas loop and the sub-

carrier Costas loop, respectively. The bandpass filter in Figure 3,

if included to recover the first harmonic of the subcarrier, results

in a loss of (8/7x2 ) 2 in signal power. Detai l -.d discussion of the

implementation considerations is presented in [2].

Since the subcarrier recovery is more sensitive to power ratio

changes, its performance in terms of the rms phase jitter is treated

next. The effect of the power ratio variations on the carrier loop

is considered in [1].

To avoid repetition, the results of [3] are quoted here and

applied to find the numerical evaluation of the rms phase jitter in

the subcarrier loop. The rms phase jitter on the subcarrier output

data streams is given by

2	 _	 1	 (6)
'Ps c
	

P SL

where, as derived in [3], p is the loop signal-to-noise ratio of a

phase-locked (CW) loop operating on the total power PT 
a 

P I + P2 + P3 + Pd

or

PT
(7)P = No BL s

with BL denoting the equivalent single-sided loop noise bandwidth.
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Figure 2. Costas Loop for Carrier Tracking
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Figure 3. Costas Loop for Subcarrier Tracking
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is the loop squaring loss. The following definitions are used in (8):

	

n.	
P^	

i = 1,2,8	 (9)
	7 	 PT

	

n 	
Pa	

(l g}
	d 	 PT

K o
f 	 I 2-	

11m	 ( }

	

L	 ^..CO IGa(jW) 
1 1

D ° j sm, ( W ) j yjW) 1 2 dwTr i = 1 ,2	 (12)

1112j

CO

S. ( W) sm (W) IGa(j W)
 14 

2w	
(13)

z	 1

A = t ) n2 fm^5m ( W ) I Gp( jo I ,	 f nl ^ 5m1 (W ) I G 11 ( JW ) I 2n
2

co'03
	 Sm (W) IGGj(W-Wsc14 2n
-^ 3

m

M
+ nd 	S (	 jGQ[j(W-Wsc)^I4 

2	
(14)

d

In equations (11) through (14), the transfer function G 11 (jW) repre-

sents the cascade effect of the bandpass filter H(jW) and the lowpass

filter G(jW) in the subcarrier loop, and the arm filter bandwidth B 

is defined by

CO

	

Bi ° 2T	 IG 11 (jW)1 2 dW	 (15)

In the above equations, Sm i and 
Smd 

represent the power spectrums

of the signals s i lt) and sd (t), respectively.
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It is easy to see from (8) that the main effect of the carrier
h

tracking loop on the subcarrier phase jitter is a degradation of
^.'	

cos2 Vc in the rms jitter of the subcarrier loop, where V c is the

phase error in the carrier loop.
4

In order to evaluate (6) numerically to find the value of the

subcarrier rms tracking jitter 64nsc for a fixed ratio of arm filter

noise bandwidth to loop noise bandwidth ( B i /B ), three assumptions

are made:

(a) The carrier loop is tracking perfectly, thus, cp c = 0.

(b) The bandwidth of H(m) is much wider than that of the

i ` 	arm filter G(jw).

(c) The arm filters GM are assumed to be single-pole

Butterworth (RC) filters, or

IG(j)I 2 --	 1	 (16)
y 7 + (W/Wc)2

where we is the cutoff frequency in radians.

For illustration purposes, two sets of performance curves

are drawn to demonstrate the effect of power ratio variations at the

transmitter on the rms phase jitter of the subcarrier loop. Figures

4 and 5 illustrate the nominal power ratio case (P
I
 /P

T
 = 0.04,

P2/PT - 0.16, and P 3/PT = 0.80) with the signal-to-noise ratio

(PTT2/NO ) as a parameter. It is observed that the changes in the

subcarrier rms tracking jitter as a function of B i/R2 are more obvious

when m2 (t) and m l (t) are both Manchester codes (Figure 5) than when

m2 (t) is NRZ and m l (t) is Manchester.

Figures 6 through 9 illustrate the rms phase jitter for the

two power ratio cases of interest, namely, Case 1 (P
3
 /P

T
 = 0.82,

P2/PT = 0.14, P1/PT = 0.04) and Case 2 (P 3/PT = 0.78, P 2/PT = 0.192

P 1 /PT = 0.03) for two values of P TT2/N O and R2 as a parameter. The

chosen values of ITT 2/N 0 , though extremely pessimistic when compared

with the actual link values, serve to illustrate the behavior of the

demodulator under consideration. Figures 6 and 8 illustrate the

case when m2 (t) is NRZ, while Figures 7 and 9 illustrate the case

when m2 (t) is a Manchester code with m l (t) and m3 (t) being Manchester

and NRZ, respectively, for all figures, as is actually the case in
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the Ku-band return link. It is obvious from the figures that the

power ratio change greatly affects the subcarrier rms phase jitter;

hence, care must be undertaken in designing both the transmitter and

receiver to minimize the variations and to assure adequate recovery

of the data in the three channels.

4.0	 PROBABILITY OF ERROR PERFORMANCE

The error probability performance of unbalanced QPSK demodu-

lators is discussed in detail in [4]. This section is devoted to

obtaining numerical values for the probability of error in demodu-

lating the data in Channels I and 2 with R
2
> RI for both cases of

power ratios. To detect the data, the outputs of the phase detectors

in the two arms of the subcarrier tracking loop are used as inputs

to the channel data detectors which are assumed to be matched filters.

Denoting the ratio of the two data rates by

YT = R2 /Rl z 1 ,	 (17)

the probabilities of error in the two channels are shown in [4] to be

R Y n`
PEI = 2 erfc RT2 YT n1 + 2	

T2 ^T 1 exp {-RT2 YT n7) I + 2 
RT2 n2 m12 a^O

sc

R	 n'
PE2 = 2 erfc,JRT2 tit	 T 

IT 
2 exp (- RT2 n2) I + 2 RT2 n 1 m12  cO	 (1B)

sc

where a2

	

	is the phase jitter calculated using (6), n i is defined as
sc

P.
TI i	 =	 I 	 i = I,2	 {19)

Pi + P2

and R72 is the total signal-to-noise ratio in the high subcarrier	 F°°

data rate bandwidth defined by

R	 = (P1 + P2) T
T2	 EIO	 2

The factor m72 , which is a cross-modulation factor, is defined in [4]
3Y

and shown in Table 1. I

`j

j
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Table 1. Evaluation of m 2 ; T 1 /T2 n yT > 1

m2(t)

Manchester

[yT -Y +12 -6yT1 s
T

	

Manchester	 Rl `— R2 5-

2 Y; 	 R2 2- 2R1
T

ml(t)

	

NRZ	
7

6-YT

NRZ

1	 2	 1
YT - 6 YT -1 + 3 

Y
R1 < F.2 < 2R1

7 - Y ; R,̀  > 2R1
T

1	 1
3
YT

The variation of the power ratio distribution has two effects

on the probabilities of error given in (18):

(1) It causes variations in the loop phase jitter (a Vsc)

which, in turn, affects the probabilities of error. This effect,

however, has been shown in [41 to be less than 0.14 dB under worst
conditions. In other words, the deviation due to phase jitter from

the theoretical value with ideal tracking is negligible.

(2) It causes changes in the signal-to-noise ratios in the
various channels [the first terms in (18)]. To illustrate this

effect, a typical expected value of P TT2A0 = 22 dB is selected at

the input of the subcarrier Costas loop [5]. Choosing 
R2= 

2 Mbps

and R  = 192 kbps as an example, Table 2 summarizes the resulting bit

energy-to-noise spectral density in the two cases of interest.

Table 2. Bit Energy-to-Noise Spectral Density Ratio
at the 5ubcarrier Loop (dB)

Channel 1	 Channel 2
	

R3= 10 Mbps, R 2 = 2 Mbps,

Case 1	 16.95	 13.18
	

R
I
 = 192 kbps

Case 2	 14.59	 15.23
	 PTT2/NO = 22 dB
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Since 8.4 dB of signal energy-to-noise spectral density is

needed to achieve the specification probability of error of 10 -4 , a

wide margin exists in both cases in spite of the expected fluctuation 	 3.

in power ratios. Using an.estimated 2.0 dB for the TDRS bit syn-

chronizer loss, the resulting design margins are summarized in
f ='

Table 3 for the chosen data rates.

Table 3. Return Link Lower Rate Channels Design Margin

Channel 1 Channel 2 R3 = 10 Mbps, R
2 = 

2 Mbps,

Case 1	 6.55 2.78 Rl = 192 kbps

Case 2	 4.19 4.83
PTT2/N0 = 22 dB

To summarize, it could be concluded that, although the fluc-

tuations in the power ratios between the three channels produce

appreciable changes in the subcarrier phase jitter, adequate design

margins are still expected due to the high existing signal-to-

noise ratios in the return link.
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ACQUISITION TIME PERFORMANCE OF POLARITY-TYPE COSTAS
LOOPS OPERATING IN THE FREQUENCY SEARCH MODE

by

Marvin K. Sidon

l .:'O	 INTRODUCTION

A report by the author [1] considered the frequency acquisition

performance of polarity-type Costas loops in the absence of acquisition

aids of any type. As such, the initial frequency uncertainty was

required to be within the pull-in range of the loop (expressions for

which were derived in [1] as functions of the loop parameters). Under

these conditions, equations were developed for the frequency acquisition

time of second-order polarity-type Costas loops with imperfect integrating

loop filters. Specific numerical results were presented for the important

practical case of single-pole arm filters and both NRZ and biphase-L

data formats.

More often than not, the carrier loop is required to acquire

over an initial frequency uncertainty range much greater than the pull-in

range of the loop itself. The loop is then said to operate in the

"frequency-search mode" and an appropriate acquisition aid is employed

to drive the loop voltage-controlled oscillator (VCO) toward the fre-

quency of the incoming signal. The most common form of frequency

acquisition aid consists of adding a ramp voltage e(t) = Dt to the output

of the loop filter (input of the VCO) where S. A K 
V 
D is referred to as

the "sweeping rate" in rad/sec/sec with K  the VCO gain in rad/sec/V.

The problem then is to derive closed-form expressions (if possible) for

the frequency acquisition time of a second-order polarity-type Costas

loop as functions of the initial loop detuning or uncertainty, the loop

parameters, e.g., loop filter time constants, loop noise bandwidth, and

the sweeping rate.

In the literature, one finds two approaches which are helpful

in solving this problem. The approach taken in [2] follows that used

by the same author [3] to derive the acquisition performance of unaided

generalized tracking systems. It was also used in [1] to derive the

unaided frequency acquisition performance of polarity-type Costas loops.
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Unlike [2], however, the results in [3] apply only to the case of a

perfect integrating loop filter. In [4], the quasi-stationary approach

suggested by Richman [5] is used to analyze the frequency acquisition

time performance of second-order tracking loops with arbitrary phase

detector characteristics and either perfect or imperfect integrating

loop filters. Since this approach is " Fimewhat more general in that it

allows computation of acquisition time performance for either type of

loop filter, we shall follow it in our attempt to characterize the

acquisition performance of polarity-type Costas loops. It should be

pointed out that both approaches ([2] and [41) have the limitations

concerning the absence of noise and the hypothesis of a large difference

between the initial frequency of the input signal and the quiescent

frequency of the UCO. Nevertheless, analogous to what was done in [1],

we can partially account for the effect of noise in the case of the

polarity-type Costas loop by treating it as though it were free of

additive noise but possessing a phase detec tor characteristic which

is signal-to-noise ratio dependent. With regard to the large initial

loop detuning requirement, it has been found that both approaches give

accurate results (when compared with the numerical solution of the differ-

ential equation of loop operation) as soon as the initial loop detuning

is several times greater than the equivalent noise bandwidth of the loop.

2.0	 IMPERFECT INTEGRATING LOOP FILTER

In the absence of noise, the differential equation of a second--

order, sweep-aided, tracking loop with arbitrary phase detector charac-

teristic g(x) is given by (in Heaviside operator notation);

PA Z = 92 - A K F ( p ) g ( ^ Z ) - 5Q t ,	 (1)

where Q is the loop phase error, A2 is the power in the synchronizing

signal, K is the total open loop gain, P 'is the initial frequency

detuning, and F(s) is the loop filter transfer function which, for an

imperfect integrating loop filter, has the form

2
F(s)	 -,

+  , s -	 (2)
1

^, r

:
a,	

^



A	 S2

Y AK FO

a	 SDT1
u - AK FO ^Ym)

^_ 0m
Ym 	 AKF0

e T2
F0 = T1 (4)

3

Applying the quasi-stationary analysis approach in [21, we arrive at a

general result for frequency acquisition time performance (see (10) of

[21) which when rewritten in the notation of [1], becomes

Yc"))

Ym 2

m Ym^Y 	—-^^ 1 	
f 4

3u { 
Y T	 Ym 2

 
4-3 1Y^ 	 4-3(Y^

1211 
(Y)Ym 	 T f 4 - 3 (Ym^2
^ ex 

	^TI )
	

4	
^ 1 ^	 (3)

4-3(Y)
where T  is the acquisition time, Sim is the radian pull-in range of the

unaided loop, and

Since (3) is transcendental in nature, the solution for T fft, must be

found by iterative methods.

If the sweep aiding is removed (i.e., u = 0), then (3) can be

solved in closed-form with the result

Tf	 4 (YmY) 
2
	 1

In	 (5)

T1	 4^Y 2 - 3	 1.. 4` Y 2...3
M	

1Ym

Clearly, (5) results in real values for Tf/TI only when Y/Ym s 1,
i.e., the initial loop detuning is within the pull-in range of the

loop.

To allow comparison with the results for the unaided loop

given in [11, it is convenient to renormalize T f by the loop bandwidth

BL rather than the loop filter time constant T l . Since, for a second-

order loop with imperfect: integrating loop filter, we have that {see

(5) of [l]):



1 4

	

B 	 r+ I _ 
N—FO

+ I I	 (5)

	

L r 4T2 	 ) Ti

then,

Tf
Tl - BLTf r+ '

1	 ^	
g	 (7)

 1^

where r 
o 
A K FO T2 is a parameter proportional to the loop damping.

Also, from the definition of p in (4), we have that

(r+ IN

	

p^

Ym

	

	 S^ T I	 $^ 4 Fa
y) - AKFC Y r	

s2 
L

S^ r

4F

+ I
B 2 ^6

L	 (g)

P/BL

(alternately, in terms of the loop natural frequency wn , which is
related to BL by

^n =	 r 2 (16BL),	 (9)
(r+ 1 J

equation ( 8) becomes

	

( Ym 	'nr	 I—	 2	 )

	

p 1Y	 - ^,2 2) ^r+l^)W'BL)	
(76

n/

Finally, from (4), Ym/Y can clearly be written as

	

Ym	 sam/BL

	

Y - n/BL	
(11)

Applying the results of (3), (5), (10), and (11) to the

polarity-type Costas Ioop, we note the following replacements,

S  + 2S1	Q  -+ 41T facq ;	 o + 47r Af ,	 (12)

!;
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where fac is the actual pull--in or frequency acquisition range of

R
the loop see Figure 2 of [1]) and of is the initial frequency offset.

In terms of these replacements, (10) and (11) become

	

^Y	 (13)

	

Y	
2 
/2/ r+ 1 (a^ F (of/Bt 	 1 0^ l

and

Ym	
f

a--^Is^-	 (l4)
Y = Of/BL

Finally, substituting (7), (13), and (14) in (3) gives the desired

result for B LTf as a function of F0 , r, 4f/B
b3
 facq/Bb , and S62/(wn/2).

Figures I through 4 illustrate B bTf versus normalized frequency offset

qf/Bf for fixed values of r and 
F0 

with normalized sweep rate S
S2
/(wn /2)

as a parameter. Also held fixed is the normalized unaided frequency

acquisition range facq/BL which can be related to the loop parameters

r and F0 3 data format, arm filter bandwidth-to-data rate ratio, and

detection signal-to-noise ratio as per the results in Figure 2 of [1].

Figure 5 illustrates the acquisition time performance of the sweep-aided

polarity-type Costas loop for a fixed sweep rate and several values of

unaided frequency acquisition range. Clearly, as the initial frequency

uncertainty 4f far exceeds the pull-in range facq , the acquisition time

performance becomes independent of the latter quantity and primarily

dependent on the sweep rate. In fact, asymptotically for Iarge qf,

we would have that

	

Sn T f = 27r pf 	 (15)

or, in normalized form,

qf/B

B LTf ^	

^(r4rl 2
	 ^	

(16}

S,,/( Wn /2)

For example, for r = 2  and S
Q
/(wn /2) = 0. 2, (16) yields BbTf = 618.5 for

of/B L = 35 which agrees well with Figure 5.
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2^
BLTb = S^/g2

zr(r+ 12
4r

S92
/(Wn /2)

(19)

I 

3.0	 PERFECT INTEGRATING LOOP FILTER

For the perfect integrating loop fiber described by the

transfer function

I + s z
F ( s ) =	

s T 

2 
:1(17)

I

the frequency acquisition time can be found as a closed-form expression

(rather than by iterative solution). Again applying the quasi-stationary

approach -o the differential equation of (1) gives the general result

(see (12) of [21 rewritten in our notation)

B T = B T	 _	 2r	 + 16 r2<g 2^x)> (B T )2
L f	 L b2^ BL ^	 n r+ 1	 2	 3	 L b^

(r
+ 1 )

2

sr+1) + <
g 2(x)>

X In	 ,
	Tr 

2 
(r 

+ 1 3 ( ^ ^

16 r2	
2^r 

gL 
BLTb

where T  
o 

2 1rBL/S
IQ
 is the time the VCO would take to sweep the band-

width BL if the Ioop were open. Thus,

^. F

(18)

For a tracking loop with perfect integrating loop filter as

in (17), it is possible to determine the maximum sweep rate to guarantee

lock (in no noise) with a given probability [4,71. In particular, to

guarantee 100% lock, we require that

S	 < wn <9 2 ( x )>	 (20)

Furthermore, in order to acquire frequency Iock at all, it is necessary

that

SS2 
< 2co2 <9 2 ( x )> -
	 (21)
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Applying (18) and (19) to either the conventional or the

polarity--hype Costas loop requires that we first make the replacements

of (12). When this is done, (18) simplifies to

-1	

V
2

B T =	
r -^ 

l 2 Sa	 of	 r	 + (Lr+ l	 '92 2
L f	 4r	 2	 ^ BL } n r+ l	 X 2 2 <9 ( 2 f )>

n	 n/

2

	
+ <g2(2

x In	 (NS 
n(r+ l) bf 

s 
n	

+ <9 2 ( 2 ! )>
r	 (EL ) w 

n 
2/2

Then, for the conventional Costas loop (assuming no noise), we have

that [11,
n

< g2 ( 2 0)> = 2n	 9 2 (2 0) d(2 0 ) = 2

with the further requirement that

S
S2
	

1

w /2 ' 2

for 100% lock, and

S	
< I

w12

for frequency acquisition at all. For the polarity-type loop, we

observed in [1] that (assuming no noise),

< g2 ( 2 ^)> = 2

and thus, from (20) and (21) with the replacements of (12),

SR_Z7 2

W  
/2

(22)

(28)

(24)

(25)

(26)

(27)
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for 100% lock and

	

P
	 < 4	 (2B)

wn /2

for frequency acquisition at all. Substituting (26) into (22) and, in

addition, letting r= 2 (the case of most practical interest) gives the

frequency acquisition time performance of the sweep-aided polarity-

type Costas loop with perfect integration loop filter, namely,

97r	
SP -1 	 2	 3	

S
P
 -2

B LTf	 $ w

2

 2 [(Af

	

BL^ - ,^
	

2 w 2 2
n / 	n/

Sa + 2
2

^bjnx In 	 S	 (29)

	

3Tr qf	 52 + 2
2 BL wr2/2

Figure 6 illustrates B L T f of (29) versus of/BL with Sf/BL =( B/9w) x

(S9/(^►n /2)) as a parameter. (NOTE: S f = Sa/2w is the sweep rate in

Hz/sec.) The corresponding results for the conventional Costas loop

as computed from (22) together with (23) are illustrated in Figure 7.

Clearly, the polarity-type loop offers superior frequency acquisition

time performance relative to the conventional loop.

All that remains is to present the theory for the unaided loop

frequency acquisition time performance corresponding to the curves so

labeled in Figures 6 and 7. From (5) of [6], we have the general result

that, as F0 -}0 and AK F0 remains finite (limiting case of perfect inte-

grating loop filter),

2

Tf =	
F0 1 

Y	 (30)
2<9

2 (x)7

Recalling the definitions of Y and BL given in (4) and (6), respectively,

we obtain after some simplification,
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B	
= (r+1) 31) 3 	1	

ilff s^ 
2	 X31}

t	 L
T f	 r2	 ( l28<g 2 (x}^lIBL 

i

	

	 Applying (31) to the Costas loop (conventional or polarity), we simply

let 9 4-raf [as was done in (12)] and x = 20  which results in

B T	 _	 r 1 3	 1{{4f 
2.	

(32)L f	 r2 (8<g (2 ^5) ( B L)

Finally, the unaided loop curues of Figures 6 and Tare obtained'by

using either (26) or (23) far < g 2 (2 f)> in (32).

We conclude by noting that, analogous to the approach Laken

in [1], one can from (22) and (32) evaluate the frequency acquisition

time performance of a polarity-type Costas loop with perfect integrating

loop filter in the presence of noise. All that is necessary is to

once again use the appropriate expression for <g2 (2 f)> which is a

function of data format, detection signal--to-noise ratio, and arm

filter bandwidth-to-data rate ratio. We once again point out, however,

that the noise is accounted for only insofar as its effect on the loop

S-curve and not its additive effect.
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APPENDIX D

IN-LOCK PERFORMANCE OF THE KU--BAND COSTAS LOCK DETECTOR

by

Marvin K. Simon

1.0	 INTRODUCTION

The PSK data demodulator unit of the Shuttle Ku-band forward

link communications receiver is comprised of five subunits, one of which

is a Costas lock detector. The primary purpose of this subunit is to

sense the Costas loop signal acquisition state and send a "Costas lock"

si gnal to the acquisition and track control logic when indeed it decides

that the Costas loop has acquired the signal presented to its input.

Since the initial frequency search and signal carrier acquisition must

take place regardless of the type of signal format received from the

TDRSS (CW carrier, data modulated carrier, spread spectrum carrier, or

spread-spectrum data modulated carrier), the lock detector must be

capable of performing its sensing function under each of these conditions.

The basic carrier lock detector employed by Hughes Aircraft

Company (HAC) in the Ku-band design is a dithered type configuration

and is illustrated in Figure 1. * This dithered lock detector when con-

trasted with the more conventional 1 2 - Q2 type of lock detector illu-

strated in Figure 2 is not unlike a comparison between a tau-dither

loop and a delay-lock loop for PN tracking in the sense that, in the

former, the carrier reference (PN clock) is time--shared over a single

channel while in the latter it is simultaneously shared by two quadrature

channels. In general, dithered type configurations (tracking loops or

lock detectors) have the advantage of being insensitive to gain imbalances

normally present in two channel configurations. On the other hand,

because of the time sharing of the locally generated reference, they

potentially suffer a 3 dB loss in :performance as compared to the more

conventional undithered type configuration.

The actual HAC configuration includes a soft limiter inserted
prior to the square--law detector to desensitize this detector to front
end gain variations [3]. A detailed analysis of the dithered lock detector
with soft limiter is considerably more difficult than that treated here
and will be discussed in a future report. Suffice it to say that the
basic analysis technique used here to account for the effect of the
dither can also be employed for a lock detector with soft limiter.



:k

zti on

Reference
Threshold

Figure 1. Dither-Type Costas Lock Detector

N



sit, .ock

,tlon

Figure 2. Conventional I 2 - Q2 Type Costas Lock Detector

w



4
^^ r

In this report, we apply the techniques used by the author in

analyzing a PN tau-dither tracking Ioop [1] to analyzing the dithered

lock detector of Figure 1. When the dither frequency is much smaller

than the data rate, then the results resemble those obtained by LaFlame

in [21 except for a modification by a factor of two of the signal x noise

term in the lock detector signal-to-noise ratio. On the other hand,

choosing a dither frequency much closer to the data rate can overcome

much of the 3 dB loss commonly associated with dither type configurations.

This conclusion hab already been demonstrated in the comparison between

loop signal-to-noise ratios of the PN tau-dither loop and delay-lock

loop made in [1].

2.0	 DITHERED LOCK DETECTOR MODEL AND ANALYSIS

Consider the dithered lock detector illustrated in Figure 1

whose operation is described as follows. The received signal plus noise

is alternately (as opposed to simultaneously) correlated with quadrature

(90° phase shifted) versions of the reference signal generated by the

carrier tracking loop VCO. The correlation so produced is lowpass

filtered, square-law detected, and alternately inverted by the dither

signal q(t). This gives rise to a signal which, when further lowpass

filtered to remove the dither frequency and its harmonics, is (in the

absence of noise) proportional to the cosine of twice the phase error

between the input signal s(t,e) and the VCO reference. Comparison of

this signal (in noise) against a reference threshold allows determination

of whether the loop is in-, lock or out-of-lock. The remainder of this

section is a mathematical characterization of the above statements.

For the purpose of analysis, it can be shown (analogous to the

approach taken in [l]) that, when the dither frequency is low relative

to the noise bandwidth of the lowpass filter preceding the square-law

detector, then the dithered lock detector has the equivalent loop model

illustrated in Figure 3. The received signal x(t)= s(t,e)+ n i (t) can

be modeled as*

We pursue in detail here the case where the input signal is a
data modulated carrier. All other cases corresponding to the other
possible input signal formats can be easily deduced from the results
derived and presented here.
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x(t) _	 m(t) sin ^(t) + n i (t) = s(t) + n i (t) ,	 (1}

where D(t) Q wOt + e(t) with w6 the radian carrier frequency and
e(t) = s?gt + 0  the input phase to be estimated, S is the average signal

power, rn(t) is the-'data modulation (a +1 digital waveform), and n i (t) is the

additive channel noise which can be expressed in the form of a narrowband

process about the actual frequency of the input observed data, i.e.,

n i (t) = ,12— IN 	 cos ^P(t) - Ns (t) sin *)} ,	 (2)

where N c (t) and N s (t) are approximately statistically independent, sta-

tionary, white Gaussian noise processes with single-sided noise spectral

density N  W/Hz and single-sided bandwidth B< w G/2w. Since the equiva-

lent of the dithered reference signals, namely, r l (t) and r2 (t), can

be represented as

rl (t} _ if2— Kl sin $(t)

r2{t) _	 Kl cos (D	 (3)

then letting K. denote the input multiplier gain and ignoring second

harmonic terms, the signal input to the lowpass filter with transfer

function H(s) is given by

e(t) = z 1
(t) - Z2(t)

K1	 2 Sm2 ( t ) [q l ( t ) cos 2 	--^(t) 	 q 2 {t} sin g1^ 	 ^M]
+ Ki ^^ h2 {t ) [ a l (t) sing gt) - q 2 (t) cos 2 gt)]

+ N 5 ( t ) [q l (t) cos 2 ^ (t) - q2 (t) sin g ^ N ]

+ NC (t) R
s 
(t) sin 2^(t)

- 2 V_S m(t) [ 1 (t) cos ^(t) (Nc (t) sin ^(t) + ,y s (t) cos 0(t))

+ q 2 (t) sin 0(t) (NC (t) cos 0(t) - Ns (t) sin 
^(t))^

(4)



7

where ^(t) 
n 

4,(t)- $( t) is the phase error between the input signal

s(t,e) and the equivalent VCO reference r I (t), and the "hats" on m(t),

Nc (t) and N S M denote filtering by the lowpass filter with transfer

function G(s). The signal component of e(t) [the result of passing

e(t) of (4) through H(s)] is easily seen to be

g ( 20) = S K
1 
 Km' 

<m2(t)> 
`[q l (t) cos t 0(t) - q2 (t) sin' O( t)]> (5)

where the overbar denotes statistical expectation and <> denotes time

averaging produced by the lowpass nature of H(s) relative to the data

rate of m(t) and the fundamental dither frequency fd = I/Td of ql(t)

and q2 (t). Since the loop bandwidth is ordinarily designed to be much

narrower than the dither frequency, we can ignore the time dependence

of 0(t) relative to that of q l (t) and q2 (t). Furthermore, it has been

previously shown that, for m(t) a random pulse train, i.e.,

m(t) _	 I an p ( t - nTs) a	 an = ±1
n=-^

E lan am} ^ dmn ,	 (6)

with p(t) denoting the symbol pulse shape, time limited on the symbol

interval (O,T s }, then

<m2(t)> 
o p

m = f Sm(f)IG(j2uf)1 2 df ,	 (7)

with Sm(f) denoting the power spectral density of m(t). Thus, since

from the illustrations of q l (t) and q 2 (t) in Figure 3, it is obvious

that

<ql ( t)> = `92 ( t)> = 2 s	 (8)

we have, after combining (5), (7) and (8), the result

g ( 2^) = K^ [ 2 S 5m (
co

s' )	 (gl

The equivalent signal for the conventional 1
2 
-Q 

2  
lock detector of

Figure 2 would be identical to (9) except multiplied by a factor of 2.



Y r

i

8

3.0	 STATISTICAL CHARACTERIZATION OF THE EQUIVALENT NOISE

The equivalent noise component of e(t) (ignoring the self--

modulation noise) is easily seen to be*

ne(t) = K, Kn ne(t)
	

(10)

where

ne(t) = M q 2 (t) ^ (t) + q I (t) NS (t) .. 2 ^q I (t) m 	 Ns 	 .
	

(11)

The power spectral density N  of the equivalent noise process

at the input to the threshold comparator can be determined by approxi-

mating ne(t) as a delta-correlated process with correlation -Function

Re(T)	 <ne(t) ne t +T

ERqI (T) + Rg2 (T)1E2 R- (T) + RN (0)1

- 
Rh (0) [Rqjq2 (T) 

+ Rq 
2Iq (Td + 4S PM-( ,r) Rq 1 (-r) RA (T)	 (12)

where

Rq 
1 
(T) = q l (t) ql(t+T)

Rq 
2 
(T) 

e 
q2 t q2 t + T

R

glg2 (T) 
a q  t q2 t +T

R
g2gl 

(T) a q2 t ql t +T
	

(13)

and
2 j 2^rfT

'M	 ^r^,(t) ^( +T)^j = j S(f) (j27rf) f e	 df

R A (1r ) 4 N c (t)NC (t+T) = N s (t) N s (t+T) = 2	 ^C^(j2wf)l 2 ej2nfT dT .	 (14)

Since the carrier loop signal--to-noise ratio is typically large,
it is only necessary to evaluate the equivalent lock detector noise at

0.



9

Then,

Ne = K7 Km4 Ne = Kl Km4 2 	 Re' (T) dT	 (l 5)

From the defining illustrations of q 1 (t) and q 2 (t) in Figure 3 and
their autocorrelation and cross-correlation functions illustrated in

Figure 4, we find that

R	 (T) - R	 (^)
g l g2 	 g2gT

RgI (T) = Rg2(T) = 2 - Rglg2(T) A Rq (T)	 (16)

Substituting (I6) into (12) gives

Re(T) = (4Rq (T) -1) RA (0) .+ 4Rq (T) RA (T) + 4S Rm(T) R q (T) Rh (T) ,	 (17)

Noting that

ro

J	
(4Rq (T) -- 1) dT = 0	 (18)

and using parseval's theorem gives the alternate frequency domain inter-

pretation of N namely,

Ne = 8
f

ĉ [S (f)*S (f)1 S q (-f) df + 8S + m ^Sm(f) *5h (f)i S q (-f) df ,	 (1-9)

where the asterisk denotes convolution and

Sh(f) = 4'{RA(T)} =	 01G(j27rf)12

S^(f) = .9-{RM.(T)} = sm (f) fGij2nf)j2

2
sq(f) _°-{ Rq ( T ) t =	 s(f)	 ^n a^f -	 }	 (20)

n--m	d
n odd
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Figure 4. Autocorrelation Functions of q l (t) and q2 (t) and Cross--
Correlation Function of q l (t) and q2(t)
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Substituting (20) into (19), we obtain, after much simplification,

K`
K' +	 L
D Pi 

^	 SN002	
m ,
	 (21)

m

where

W	

RT)
2

KDrKD	 2 n-I , 3
£

5... 	 KDn

m	
22

K 	 _ KL	
2 n =1,s5 ... l

n^r KLn

f S (f) IG(j2zrff 2 G j27r(
' n

 - f	 2df

K 

J	 m	 Td^
 -

n 	 Sm (f) IG(j27rf) ( 2 df

I G(j 2,rf) f 2 ^ G L21r (_Td - 
f !^ df

K 
	 -	 ^ I	 (22)

n	 f..^ IG(j2wf) 1 2 df

wi th

m

a^m Sm (f) IG(j27rf) 
I4 

df

KD	
J

W

Sm(f) IG(j2zrf) 2 df

^G(j2zrf) 1 4 df

K^ ^ ff^,^ 	 (23)
l Y^ IG(j27rf) l 2 df

and B  denoting the two--sided noise bandwidth of the arm filter

G(j21tf) , i .e. ,

CO

^2B i	 IG(j2uf)df .	 (24)
CO
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Also, in (21),

	

_o	 S
Pi — NO 

B 

denotes the signal-to-noise ratio in this bandwidth.

4.0	 OUTPUT SIGNAL-TO-NOISE RATIO

Since the single-sided noise bandwidth B  of the output low-

pass filter H(s) is much less that the dither frequency f d , then the

output e(t) of this filter (threshold comparator input) is a Gaussian

random variable with mean 9(t)= g(^) [se e (9)] and variance ae = N  B 

K 
4 Km

 
 Ne BH where N^ i s given by (21) . Thus, the lock detector

output signal-to-noise ratio P 0 , which determines the possibility of

detecting lock when the carrier loop is indeed in lock, is given by

	

Le 
t 2 -	 S2 Dm cos t 2^

P 0 =	
CYK'

	 KL

2 D P i _Dm

4SNODm	 Dm	 BH

= I(
ffoS

S^`cos t 2^
 H

where

	

a	
Dm

SL 

Kb P i 
"L

Im

is the dithered lock detector "squaring loss" factor. The equivalent
r

expressions for the conventional I - Q 2 lock detector would be

00 = 4 IN	 / S
L cos t 2^

1 0 H/

where

D

	

SL =	
mK L

	
(29)

KD P
i 

Dm

(25)

(26)

(27)

(28)
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Thus, a comparison of the performances of the dithered and undithered

(conventional) lock detectors depends simply on the ratio of S' to SL,

namely,

K

	

SL	 KD 
P4

sm

L

	

SL	

KD p 

K D

^ m

Clearly, from the definitions of 
KDn 

and 
KLn 

as given in (22), we see

that KDn < K  and KLn < K  for any n , in particular, n odd and Td

finite. Thus, from (22),

	

K; < KD	
2	

E	 KD = 2KD

Tr	 n=1,3,5... n

	

K^ < K 	
__§2_	 t K 
	 = 2KL .	 (31)

,r n=1,3,5... n

Substituting the bounds of (31) into (30), we find that

S^ > 2
L

or equivalently, the output signal-to-noise ratio of the dithered lock

detector is, at worst, 3 dB poorer than that of the undithered type.

Equation (32) approximately holds with equality when the dither fre-

quency is chosen much lower than the data. This appears to be the case

corresponding to the present Hughes Aircraft Company Costas lock

detector design where the dither signal is a 1.5 kHz square wave and

the data rate for a data modulated carrier is 216 kbps. Thus, for

this situation, we have from (26) and (32) that

	

PO	
2 4̂ ^N 

SB 
SL cos t 201 ,	 (33)

0 H

with SL given by (29). This result agrees with that obtained by

LaFlame in [2] if the signal x noise term in his squaring loss (not

(30)

(32)
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the same definition as used here) is divided by 2. The reason for this

discrepancy between the two results is that LaFlame upper bounds the

output noise rather than computing it exactly. Thus, despite the fact

that he recognizes that the signal x noise term in the output noise "is

absent during the second half dither period" (see page 10 of [2]), he

fails to divide its contribution by 2 to account for this effect.

In conclusion, we reiterate the fact that the dithered lock

detector is 3 dB worse in output signal--to-noise ratio only when the

dither frequency is much less than the data rate. If the dither fre-

quency is raised to be on the order of (but still less than) the data

rate, then analogous to the results obtained in [1], the 3 dB "dither

penalty" can be significantly reduced.
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APPENDIX E

PERFORMANCE ANALYSIS OF THE KU-BAND FORWARD LINK
BIT SYNCHRONIZER

by

Marvin K. Simon

1.0	 INTRODUCTION

The Signal Processor Assembly (SPA) for the Ku-band forward

link performs data and signal processing in one of two (special/nominal)

operating modes. An important part of the signal processing function

is the establishment of an accurate bit synchronization reference clock

in order that data detection be accomplished with a small signal-to-

noise ratio (SNR) degradation. Since, in the nominal mode, the data

is a 216 kbps biphase-L (Manchester coded) waveform, then the bit rate

clock established by the bit synchronizer will possess a half-bit phase

ambiguity, i.e., the loop can lock with equal probability either

in-phase or half a bit out of phase with respect to the input

biphase-L waveform. Thus, the SPA must also include a phase ambiguity

resolver whose purpose is to resolve which of the two possible bit

rate clock phases is indeed in-phase with the input data waveform.

This appendix presents an analysis of the performance of the

bit synchronizer which is proposed and being implemented by Hughes

Aircraft Company (HAC) for the Ku-band forward link to the Space

Shuttle Orbiter (SSO) vehicle. Preliminary analysis results obtained

by members of the Space and Communications Group of HAC were reported

in June 1977 [1]. A description of the principles of operation

of the bit synchronizer and ambiguity resolver also appeared in that

document and later in the SPA Preliminary Design Review [2]. We shall

begin by reviewing these principles of operation (see also [3]) and

then proceed to characterize the average loop S-curve and power spectral

density of the equivalent additive noise which are both necessary to

represent the bit synchronizer as an equivalent phase-locked loop.

Finally, the steady-state tracking performance of this loop will be

given.
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2.0	 BIT SYNCHRONIZER PRINCIPLES OF OPERATION

A block diagram of the Hughes Ku-band bit synchronizer suitablet̂

for analysis purposes is illustrated in Figure 1. 	 Assuming SPA nominal

node of operation, the input is a 216 kbps Manchester coded data wave- 	 '.

f; form plus additive white Gaussian noise with single-sided power spectral

density NO .	 The synchronizer extracts its timing information directly

from the above in put (data--derived or self-synchronization) and produces

a twice-bit-rate (612 kHz) clock as a timing reference.	 The bit rate
1

clock and its complement are obtained by dividing down the twice-bit-

rate clock by a factor of 2.	 These three clocks (twice -bit-rate, bit-

rate, and bit-rate-complement) are used to process the input in

in-phase and quadrature channels whose outputs when multiplied form

the components of the loop error signal. 	 The details of this process-

ing are described as follows.
f

The input signal 	 is multiplied by the twice-bit-rate clock and	 '.

then the bit-rate clock or its complement which are both used to gate

(in each bit interval) half bit segments of the multiplier outputs to'

two in-phase integrate-and-dump (I&D) circuits. 	 For the midbit I&D,

the half-bit integration symmetrically (assuming perfect timing) spans

the midbit position.	 The output of this I&D is two-bit digitized by

Digitizer 1 in a way which is equivalent to null-zone detection of the

polarity of the NRZ data bits (alternately, the polarity of the midbit

Manchester transition).	 For the between-bit I&D, the half--bit integra-

tion symmetrically spans the NRZ bit transition position. 	 Thus, the

output of Digitizer 2 is equivalent to null--zone detection of the NRZ

data transitions.

The input Manchester coded signal plus noise is also gated by

the bit-rate clock and its complement, without first being multiplied

by the twice-bit-rate clock, to between-bit and midbit quadrature I&D

circuit., respectively. The outputs of these I&Ds are noisy measures

of the timing offset between the input and the locally generated bit-

rate clock. Multiplying the respective in-phase and quadrature IN

outputs and summing their sample-and-hold values generate an error

signal suitable for closing the bit synchronization loop.

Timing diagrams of the various waveforms formed within the loop

in the absence of noise are illustrated in Figure 2a for O < A< I -n/2
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Figure 1. Bit Synchronizer Functional Block Diagram
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and in Figure 2b for 4 < X s 2 - n/2, where X 'is the relative timing error
(normalized to the bit time) between the input and locally generated bit-

"{	 rate clock and n is the threshold (normalized to the signal amplitude)

of the null-zone detection. The corresponding loop error curve is

illustrated in Figure 3 and is obtained by statistically averaging the

error signal formed above over the data sequence (assuming an NRZ

transition probability p t). For the more realistic case where additive

noise is present, a more detailed analysis is required to specify the

bit synchronizer performance. This analysis is the subject of the next

section.

3.0	 STEADY-STATE TRACKING PERFORMANCE OF THE BIT SYNCHRONIZER

The techniques that will be employed in carrying out the steady-

state tracking performance analysis of the HAC Ku-band bit synchronizer

`	 are analogous to those given in [4] where they are used to characterize

the comparable performance of symbol synchronizers (with Manchester

coded inputs) motivated by the maximum a posteriori (MAP) estimation

approach. Similar techniques were previously used by the author to

characterize the performance of symbol synchronizers with NRZ inputs [5].

Namely, under the assumption that the input timing offset E is essen-

tially constant over a large number of bit intervals and the usual

assumption that the loop response E is very slow with respect to a

bit time T (i.e., B LT << 1, where B L is the single-sided loop noise

bandwidth), the bit synchronizer of Figure I can be mathematically

modeled as the continuous phase-locked loop given in Figure 4. Develop-

ing the equivalence between Figures I and 4 relies on finding (1) the

average loop S-curve g(A) as a function of the normalized timing error

A^ (e-s)/T, and (2) the two-sided power spectral density S(w,x) of the

equivalent additive noise n^(t). Once having determined these quanti-

ties, the steady-state performance can be found by application of the

Fokker-Planck equation [5].

Referring to Figure 1, the signal and noise components of the

various I&D outputs can be expressed mathematically as follows:
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In (1) and (2), the function "sgnull x" is the input-output character-

istic of a "dead-zone" hard-limiter and is defined by

I ; X no
sgnul l x =	 0 ; -n0<_ x < n0 	(3)

-1 °	 x < -n0

Also, the input signal s(t,E) is the random pulse train

m

s(t,E) = A

	

	 do p(t - nT - E) _	 (4)
n=-

where A is the pulse amplitude, p(t) is the unit Manchester pulse

P (t) =
1; 0<`t`T

-1; Zit<T	 (5)

and d o is the polarity (±l) of the nth NR7 data bit. The sequence

{dn } is assumed to be composed of uncorrelated bits, i.e.,

1,	 m 
E{dm d

n} = dmn W

0 ;	 m n	 (6)

with a priori probabilities p 
o 
Prob 

{dn 
= 1}, and q A- Prob {d n = -1}.

Thus, the transition probability pt of the NRZ data sequence is given

by pt = 2pq.

The noise random variables v k , P k$ vk, u^ are all zero mean

Gaussian with variance 6 2 = N 0/4T. Also,

Elv kv k+m} = E{vkvk+mj = E{u ku
k+m

} = E{u^u^+m} = 0 for all m # 0

Elv
kvk+m} = Ejvlcuk+m} = E{u

ku^+ml = E{u kv^+m} = 0 for all m

	

E{v ku k+m J = Ejv^uk+m} = 0 for all m .	 (7)

The actual loop error signal t(t) is a piecewise continuous

function (see Figure 3) which is -Formed by summing the multiplications

of the sample-and-hold values of the in-phase and quadrature I&D output



corresponding to the midbit and between-bit positions.. In particular,

if we define

13

e 	 e 

e l (t)	 e^

then

9(t) = e(t) + e'(t)

ek + ek_l a 9k

ek + ek A= ^k

(k-I)T+ <_	 (k+')T+s

(k4- )T+ e < t < (k+4)T+ 	 (8)

(k. t)T + < t < (k+4)T+e

( k + 4)T+ E C t C ( k+I) T+ E	 (g)

These relations will prove useful in deriving the equivalent loop

S-curve and noise power spectral density perturbing the loop.

3.1	 Characterization of the Loop NonIinearity

We define the loop nonlinearity (S-curve), g(x), by

En,s {(e k + e k- 1 )1;`{ ; ( k ' 4)T+ e < t < (k+ )T+ E
g	 En,sW t)la} _

E
n,s

{(e k +e')Ia}	 ; (k+)T +e <_ t	 (ka 4)T+

where En,s {xlx} represents the conditional expectation of x on X both

with respect to the additive noise and the signal (bit sequence). W.e

begin by computing the midbit component of g(A), namely,

gmb W	 En^s{ekla}.	 (Tl)

Performing first the average on the noise, we have from (1) that

En {e k 1AJ = b 
k 

E 
n 

{sgnull (ck+vk)} + En { ^ k sgnull (c k +v k )}	 (12)

If x is a (O,ax ) Gaussian random variable, then from the

definition of sgnull x given in (3), it is easy to show that 	 F
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Po 
+a	 n

° 
a

Ex {sgnul1 (a ±x) } - - 1 erfc	 + 1 erfc	 (13)
2	 2	 Xaxj

erfc x	
2

VT  f
xexp (-t2 ) dt	 (14)

is the complementary error function.

Applying (13) to the first term in (I2) gives

bk En {sgnull (c k + vk ) }	 - erfc n 0
-^ ck 

+ erfc n0 - ck	 (15)

Furthermore, since from (7),	 uk and vk are uncorrelated, then

En 
{Pk 

sgnul 1	 ( ck + vk ) } -	 En { u k } En {sgnul l	 ( c k + vk ) I

0 .	 (16)

Thus, substituting (15) and (16) into (12), we get

	

En f e k ia} = 2k -erfc naf ck + erfc n0- ck	 (I7)

It now remains to average En NIXI over the signal distribution.

From (1), together with (4) and (5) (also see Figure 2), we find that

Adk(2a)	 0 `— x <— I

bk	 Ad k (1 - 2a) ; if dk=dk l 	 1	 1
Ad k (2)	 ; if d 2 =-d k.1	

4	 2

Ad k (Z - 2A)	 0 < x < 1

ck	 A dk tdk_1 1_ 
2a	 1	 a < 1	 (18)

2	 ^2	 4	 2

Substituting (18) into (17) and averaging over all (four) possible

sequences formed from the bits d k_ l and d
t(

, we get the desired result:



(22)

e
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	 a

4

AX - erfc [YrR- 	(2n+ 1 - 4a)^ + erfc [R/2 (2n - 1 + 4A)^ y	
°

0

4.	 gmb(a) -
	

A(1 - p)

2 t (I - 24 - erfc [AR (2n ^-1 --4X --erfc [Rd (2n - 1 +4a J ;

	

4t---^--<2

	 (19)

where n VA and Rd 
a 
A2T/N

0
 is the detection signal-to-noise ratio. 	 Y;

Note that gmb (X) is independent of k .

Similarly, the between-bit compinent of g(x), namely,

	

gbb (x)	 En,sIglAl ,	 (20)
1.

can be found by applying similar averaging techniques to those used

in deriving (19) from (11). In particular, the average over the noise,

distribution results in an equation analogous to (17), namely,

	

{,1	 nn+C	 i

	

En{e^^a} = Z - erfc "	 + erfc n0 - 
ck	

(21)

	

2	 IF.
Again, combining (1), (4), and (5), we can arrive at expressions

for the between-bit signal components of the in-phase and quadrature

integrate-and-dump outputs, namely,

-Ad k (2a)	 if d  =d k+l 	 1
0<a<_

bk =	-Ad k (2)	 i if d k 
= -dk^7	

4

-Ad k (1 - 2a) ;	 C a

ck -	 f	
/

 (

-Ad (2 - 2a) 	 2

Substituting (22) into (2I) and averaging over the four possible

sequences formed from the bits d  and d k+l gives the desired result:



1

	

16

k
	

AX (1 - pt )	 erfc [v'—R 	 (2n+ 1 - 4a)] + erfc [A
d
/2 (2n - l + 4a)^

0 s.A s
gbb(a)	

A l 227
	

- erfc [ 	 (2n+ 1 - 4a)l + erfc [AR 	 /% 2T,-  1 + 4a)^

	

4 ` A 
:5. 

2	 (23)

which is independent of k .

Finally, adding (19) and (23), we get the loop nonlinearity

defined in (10) or, normalizing by the signal amplitude,

9w A

2a l - 
2 

/ - erfc [R2 (2n + 1 - 4a ^ + erfc [/R-
d
/2 (2n - 1 + 4A) f ;

0	 4

(1--2a) 1-
 pt) 	 +erfc R2(2n-1+4a)

4<a<	 (24)

..	 Also, it is straightforward to show that g( -A) = -g(a). Note that, as

Rd 	 (no noise), (24) simplifies to

	

2(2a)^l - fit)	 ;	 0 :S. a `—- 2

-2(1 -- 2a) (ln2 1 	 < a <_ 2	 (25)

For small values of a, 9 n (a) of (24) can be approximated by the

linear function Kg A, where Kg is the slope of the normalized loop

S-curve at the origin, namely,

Kg	 i 2t 1 	 [IRd	 a	 + erfc [R2 (2n- 1	 (26)= 2 1 - --^-	 -erfc 	 { 2n 1)
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3.2	 Characterization of the Equivalent Noise Spectral Densit

The two-sided spectral density S(w,x) of the equivalent additive

noise n A(t) is defined by

	

R(t,^r;^}	 En,s {na(t) n.(t+T )Ia} 	 (27)

where the symbol ar denotes the Fourier transform operation, the symbol

< > denotes time average, and the equivalent noise process n^(t) is

defined by

n x ( t ) = E(t) - En's W t}f A} = g (t) - g ( X ) •	 (2-8)

Substituting (28) into (27), we see that

R(t,z}a) = En os I^(t) C(t +r) JAI  - g 2 (X) .	 (29)

Evaluation of the conditional expectation needed in (29) requires [see

(9)] that we study the discrete correlation functions Enos K ^ k4 X}

En,sfy +M Ia} , and En,s jt 	+mja} . Using the definitions given in

(9), it is straightforward to show that

Enos{ek
2
 J a} + En,s{ek 

2
2 (A} ; m= 0

En,s
Iy 

k}m Ia} _

0;	 m0

En,s{ekIX} ;
	 m=0

	

En,s { Ec 9[+m^ a} =
	 En,s{ek-

2 
1 X} ; m= -1

0 ;	 m ^ 0,-1

2	 ,2	 m= 0
Enos {e^ ^a} + Enos {e^ ^a}•

En,sN c^+M a} =

0;	 m 0	 (30)

ti

,

i.
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Since n ,(t) is conditionally cyclostationary (i.e., its autocorrelation

function R(t,T;X) is, for fixed T and a, periodic in t with period T),

it is sufficient to evaluate R(t,T;a) over a T-sec interval. Thos,

for 0 5 T s T/2,

En,sI^k(X} - g2(X) ;	 (k- 4)T +E <t	 (k +4) T -T +E

E n,s 1^ CO X} - g 2 W ;	 ( k +4)T- T +E <_t <_ (k+4)T+ E

R(t,T;a)	 En^sIk21a}	 g 2 (a) ;	 (k+t)T +E<t : (k+t)T-T+E

En,s{kk+l^^} - g2 (a) ; (k+ 3)T- 	 <_ (k+4)T+^

(31)

and

	

R(T; a) = < R{t, T; a}> = 
T 

^	 R(t, T; X) dt
(k-1/4)T+€

[En's C k IXI+ En,s{Ck21A	
2g2(A)1( 2	 T)

	

+ [^n,sl	 jlj + En,sN ^WIXI -2g
2
 (A )]  T ; 0 :s- T ` 2

(32)

Similarly, for 2 < T < T ,

En,sl^k gl x l - g2(a)

0;

E n,sN ^k+l 1AI - g 
2 
M

0;

(k-4)T+E <t < (k+4)T-T +E

	

(k+4)T-.T+E_t	 (k+4)T+e

	

(k+t)T4 <t	 (k+^)T-T+€

(k+hT-T+E <t<_ ( k +4)T+ E

(33)

and, correspondingly,

-



n
z t
	 ?-	

1 9

R( T ; a) = C	 1 ^k	 II}	 F	 {	 ^	 } .. 2g2(a}^
n,s k k	 n,s k k+l	 T

	

s 
7 
sl	 (34)

s
Finally, for T >_ T ,

41

R(T;a) = Q.	 (35)

Also, R(T;a) is an even function of T. Thus, from the definition of

S(w,a), we have that

f

T
S(w,A) = 2 	 R(T;A) Cos WT dT

Q

T/2
	 I((112	 R(0;a)  - T^ + 

R 12 ; ^1 1 T } cos WT dT
0

+ 
2 T	 R 12 ; a 1 (2 - T ) COS 	wT d T ,	 (36)

fT/2

where, front (32) and (34) ,

R(0 ;a) = 2 L 	 ^1}	
6n,s

{^k2,a11 - g2(a)

R^ 2,a) - 2 [En, J{ k Ek XI + 
Fn,s IE k C l ^^^ - g 2 (a)	 (37)

Since, as before, it is assumed that BL  << 1, it is sufficient to con-

Sider only the value of S(w,A) at zero frequency—that is, S(Q,A) —and

assume a flat spectrum of this value for all frequencies of interest

(within the bandwidth of the bit synchronization loop). From (36), we

get

TF^ (0;A)
y	 + 2R(I ;x	 (38)

Furthermore, since in any practical system little data degradation due

to imperfect symbol synchronization can be tolerated, then extreme

accuracy is required in establishing symbol synchronization. Since
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this implies very large loop signal-to-noise ratios, then the value of

S(0,A) is essentially the noise spectral density seen by the loop at

A= 0, viz., S(0,0). Thus, we have that,

s(a,a) = 2 2 [En,s { kI I + 
Enssl^^	

+ 
En,s{^k 

^P + E n,$ { k ^ k+l }

_ 2 CzEn ,
s{ek e	 2 En9s{e 1	 2 En,S {ek2^ ,	 (39)

where, for simplicity of notation, we have dropped the dependency of

the conditional expectations on a, understanding that we are now speci-

fically referring to their evaluation at A= 0, and also recall that

g ( a ) = 0.
From the definition of e  given in (I), we compute the mean-

squared value as

E n9s le 2 1	 = En'sJ(bk+uk)2 sgnull 2 (ck+vk)}

= bk En}s {sgnull 2 (c k +v k)I + 2b Enxs {^, k sgnull 2 (c k + vk

	

+ Enos 1 11 sgnull 2 (ck +vk )}	 (40)

Evaluating first the average on the noise and recalling u k and v  are
uncorrelated, we have that

En {ek}	 _ (bk +Q2) 	 En {sgnull 2 ( c k + vk )}	 (41)

Analogous to (13), it is straightforward to show that

+a
Ex {sgnul 1 2 (a ± x)	 = 2 erfc n0	 + 2 erfc

 [V2—

r(42)
y ax	 Q

Thus, applying (42) to (41) with x= v k and a = c k gives the desired
noise average

2	 bk + 
a 2	

n0 
+ 

c k 	

n0 - a
E n {ek } _ [	 1 erfc	 + erfc	 . (43)

1 2	 rF2	 rQ

4
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Since from ( 18) we have that ( at a=0)

b  = 0 ;	 ck =Ad k  T ,	 (44)

then

2 
r

En,s {ek } =2	 a 
erfc 

C 
/2 	 1)^ + erfc [TR_Cr12 (2n - 1	 (45)

which is independent of k .

Similarly, for the between-bit error signal component, we have

that

2	 bk2 + a2	 n0 + c k	 n0 - ck
En {ek } =	 erfc	 + erfc	 (46)

2	 a	 v2 a

and from ( 22) evaluated at a = 0,

bk = 0 ;	 ck = -A ^ dk 
+ d 

k+*l  
2	 (47)

2 ) (L )

Combining ( 46) and ( 47) and performing the average over the data gives

2

En,s {ek2 ^ = 2 
I
pt erfc [v'Rd /2 (2n)] + (1 - pt)

X (erfc [V-R- 	 (2n +I d + erfc [FR 	 (2n - 1 J	 (48)

which is also independent of k. Finally then, substituting (45) and

(46) into (39) gives the desired result for the equivalent noise spec-

tral density, namely,

S(010) 	 22
 erfc [IRd (2n^ + (l -- 2

p 

(erfc  L 	 (2n+ 
1
	 + erfc [,7R-d /2 (2n - 1	 .

11 (49)

s
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3.3	 Ap2lication of Fokker-Planck Technique to Obtain Performance

The stochastic differential equation which describes the loop

illustrated in Figure 4 is

a = -KF( p ) [g ( A ) + n XMI 1	 (50)

where p is the Heaviside operation, the dot denotes differentiation

with respect to time, and K is the loop gain. In writing the above,

we have assumed zero static timing error.

In dealing with equations of the above form one can, at best,

hope to find the probability distribution of a(t), viz., p(a,t), from

which the mean-squared timing jitter a (t) can be calculated. Under

the assumptions previously made regarding the equivalent additive noise

process n a (t), the solution for p(a,t) can be found via the Fokker-Planck

method. In particular, for the first-order loop case, i.e., F(p)=1,

AM is a first-order Markov process whose probability density function

satisfies the diffusion equation [5]:

ap(a
°^ t) + ax [K1 (^° ,t) p(ao,t)]	 2 

a 2[K2 (a ° ,t) p(cost)	 (51)
at	 o	 aao

where Kl (aO ,t) and K2 (a ° ,t) are defined by the conditional expectations

Kl (XO ,t) =	 1 im 
at 

F I[A(t +at) _' a(t)I I a(t) = AO}

At-* °

K
2

(a05t) =	 lim 
of 

E I[a(t +pt) - A(t)]21a(t) = A 
01 .	 (52)

At -)- o

Of interest is the case where p(a,t) converges, with time, to a station-

ary probability density function independent of the initial condition,

which can be used to evaluate the steady--state behavior of the symbol

synchronizer. Denoting

pa {a) =	 lim p(a,t)	 (53)
t-}00

we obtain from (51) the stationary equation
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2

	

d [Kl () p^(^)] - 2 d 2 CK2 (^) p^(^)]	 (54)
da

where

Kl (,Q = -Kg(a)

K2 (A)= K2 S(O,A)	 K2 S(o,0).	 (55)

Substituting (55) into (54) and solving gives the probability density

function

2 f g (a) dA	 1
P XM = C l exp - K 5 0, 0	 0 ` a :L2

px(- a )	 PX M	 (56)

where C l is a normalization constant chosen such that

[

1 /2

-1/2 P
A (X) da	 7 .	 (57)

Upon examination of Figure 3 and the general expression (in the

presence of noise) for the loop nonlinearity g(A) [see (24)], we

observe that g(a)= g(x±Z). Thus, p ,,(a) as defined by (56) on the

interval - <	 < 2 would be bimodal, i.e., the loop can lock up at

X = 0 or X= 4with equal probability. After resolution of this half-bit

timing ambiguity by the ambiguity resolver (i.e., determining that,

indeed, a = 0 is the correct lock.point), it is appropriate to talk only

about X modulo l2, which has the probability density function 2p ;,W on

the interval -	 A <_ 4 .	 For convenience of notation, we shall herein

use A to represent the modulo 2 reduced random variable and ignore the

factor of 2 in front of pa (X) since, instead, we can choose the normal-

ization constant such that (57) holds when the ±2 integration limits

are replaced by ±) .

Recalling that g(A) =Ag n (X) =A Kg (g n (A)/Kg) , where gn (a) /Kg is

now a nonlinearity with unit slope at the origin, then the argument of

the exponential in (56) becomes



4

24

gn(A)

2 f g ( ,x ) da	 2 A Kg f K	 da

KS(0,0)	 r	 NOK rS
(58)

`	 0

Noting that the single--sided loop bandwidth for a 'first-order loop is

given by

BL = A	 9 	 (59)

then (58) can be rewritten as

gn(h)

2 f g (;^) da	 A2T	 K2	 f K	
dx

KS(0,0)	
2 N

O AK gT	 S Q,0
NO

g (J^ }

R
d 

K
g 
2	 f K g dA
1 

W	 2	 BST	 S 0,0

N0

gn{A}

R s K2 f K	
da

= 1 

d 9	 9 _	
(6Q}

``	 2	 S(0,0 )- '
N0 )

where 8 6 l/BLT is the bit rate-to-loop bandwidth ratio. For large Rd 

(but not necessarily large R d ), it is sufficient to replace g n (x) by

K9 ; thus, under these conditions, (60) simplifies to

2 f g{a} da	 Rd d Kĝ 2

K S 0,0	 2S 0,0	 2	 (61)

NO

and, substituting (61) into (56), p a (X) is approximated by a Gaussian

distribution with variance

2 IS 0' 0

Cr 
2	 k NO

(62)

f

l
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Finally, substituting (26) and (49) into (62) gives the desired result

for the mean-squared tracking jitter, namely,

Cat - ` 8 R d ) f (n ' Rd' pt ) '	
(63)

d

where

R
pt erfc	 d (2n) +(I - pt erfc 

Rd 
{2n+1) + erfc	 d {271-1)

{1 W p2) - erfc R2 
(2n+I ) + erfc 

R 
(2n-1)

(64)

4.0	 NUMERICAL. RESULTS

Figure 5 illustrates the normalized tracking jitter coefficient

f(n,Rd ,pt ) as a function of the in-phase decision threshold n with

detection signal-to-noise ratio Rd and NRZ data transition probability

pt as parameters. Clearly, for given values of Rd and pt , an optimum

[in the sense of minimum f(n,R d ,pt ) or a	threshold exists. Figure 6

is a plot , of this optimum threshold versus Rd for three values of pt.

Several observations can be made from the results in Figure 5. First,

we note that the mean-squared tracking jitter is considerably more

sensitive to values of decision threshold greater than , opt than it

is to n < nopt . Second, this sensitivity itself diminishes with

decreasing p t and increasing Rd . Finally, at fixed Rd , one concludes

that the mean-squared tracking jitter decreases with decreasing p t (NOTE:

decreasing NRZ transition density implies increasing between-bit transi-

tions in the Manchester coded waveform; in fact, pt = 0 results in a

square-wave data waveform at twice the bit rate).

Illustrated in Figure 7 are the normalized loop S--curves for

random data (pt = 0.5) and detection signal-to-noise ratios of 0 dB,

5 dB, and 10 dB. The values of detection threshold were, in each case,

chosen equal to the optimum values as determined from Figure 6. We note

the continuity of the S--curves when noise is present in comparison with

the discontinuous no-noise S-curve of Figure 3 as described by (25).

Also, it is clear that the slope of g n (a) at the origin (namely, Kg)
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and hence the equivalent loop gain, degrades with decreasing R d . In
fact, for small Rd , we have from (24) and (26) that

4a t l ..	
J 

2Rd (I - 47^)	 0	 4gn(x) =

	

11`

2(l-2A) l-- z 2R̂d 0-0 ; 4 _a < 2 	 (65)
/^

and

Kg = 4 (l - 2t^r (66)

which are both independent of the detection threshold n.

We conclude by noting that a complete performance analysis of

the accompanyinq phase ambiguity resolver will follow in a future

report. Clearly, since the bit synchronizer and phase ambiguity

resolver work hand in hand, a complete understanding of both devices

and their interaction is essential to the overall performance specifi-

cation of the SPA.
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PERFORMANCE ANALYSIS OF THE KU-BAND FORWARD LINK
AMBIGUITY RESOLVER

(Part I -- Selection of the In-Phase Bit Rate Clock)

by

Marvin K. Simon
Waddah K. A1em

	

1.0	 INTRODUCTION

The Signal Processor Assembly (SPA) for the Ku-band forward link

includes a timing phase ambiguity resolver whose purpose is to resolve

which of the two possible bit rate clock phases (spaced half a bit apart)

is indeed in phase with the received data waveform. * While the purpose

of Appendix E was to document the performance analysis of the bit syn-

chronizer on this link, this appendix proffers the companion analysis

for the phase ambiguity resolver. Such performance characteristics as

probability of counter overflow before ambiguity resolution, probability

of incorrect (or correct) ambiguity resolution, and appropriate choice

of counter difference threshold setting will be discussed.

	

2.0	 AMBIGUITY RESOLVER PRINCIPLES OF OPERATION

A block diagram of the Hughes Ku--band ambiguity resolver suit-

able for analysis purposes is illustrated in Figure I. Assuming SPA

nominal mode of operation, `.he input is a 216 kbps Manchester coded

data waveform s(t,e) plus additive white Gaussian noise n(t) with

single-sided power spectral density N 0 . This total input is correlated

with combinations of the bit rate clock, complement of the bit rate

clock, and twice bit rate clock and proces!ad by integrate-and-dump

circuits (I&D) to produce the midbit and between-bit in-phase and

quadrature signals necessary for forming the bit synchronizer error

signal. Threshold crossings (positive or negative) of the midbit

in-phase I&D output, as detected by digitizer 1A, increment counter 1,

*
A	 Other functions of the ambiguity resolver are to detect bit

synchronization lock and loss of lock. The performance analysis of
these functions will be covered in a future report.
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Figure 1. Timingng Phase Ambigui tyty Resolver M
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while threshold crossings (positive o-r negative) of the midbit uadra-

ture I&D output, as detected by digitizer 2A, decrement counter 1.

Similar statements can be made for the between-bit I&D outputs with

respect to counter 2. Thus, in the absence of noise and timing error,

counter 1 is incremented and counter 2 is dncremented each time there

is a data transition. The net effect of this is to cause an increase

of two counts in the contents of counter 1 relative to that of counter 2.

When no data transition occurs, both counters are incremented by one

count and thus the difference between the contents of the two counters

is unaffected. When counter 1 overflows and the contents of counter 1

exceeds that of counter 2 by a preselected difference threshold, then

a timing phase ambiguity decision is declared and the bit rate clock

is assumed to be in phase with the input data stream. If counter 2

overflows and the contents of counter 2 exceed that of counter 1 by

the same preselected threshold value, then the bit rate complement

clock is chosen as being in phase with the input. If, however, the

difference threshold is not crossed (positively or negatively) at the

time either counter overflows, then both counters are reset to zero

and the ambiguity search continues.

In determining the performance of the ambiguity resolver, we

shall use the same notation as that used in Appendix E to characterize

the bit synchronizer. Wherever possible, we shall refer to results

obtained in Appendix E relative to the statistical averages of the

various I&D and digitizer outputs.

3.0	 PERFORMANCE ANALYSIS

3.1	 Statistical Characterization of the Differenced Counter Output

Referring to Figure 1, the various digitizer outputs can be

expressed mathematically as follows:	
4

1	 -

I k = sgnull ( c k + 1J )	

-:

Jk = sgnull (b
k + Pk)

I^ = sgnull (ck + v )

J^ = sgnull (bk + u )	 (1)
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where the signal and noise components of the midbit in-phase and quad-

rature IN outputs, namely, ck : vk , bk , and s, are defined in (1) of

[11 and the corresponding between-bit components ck, vk, bk, and u^

are defined in (2) of [1]. Further, the function "sgnull x° is the

input-output characteristic of the digitizers and is defined in (3)

of [1]. The inputs to counters 1 and 2 are the absolute values of the
v°.	

I&U outputs. In order to compute the ambiguity resolver performance, we

shall need the statistical averages of these signals over the noise and

data modulation probability distributions. Proceedings as in [1], we

first evaluate the average over the additive noise distribution. Thus,

En11I01	 En{isgnull (ck+vk) I} = En Isgnul1 2 ( ck+vk)}

	

n + C	 r^ -c
=	 erfc g	 k + 2 erfc 0	 k	 (2)

	

a	 ,^2

where n o is once again the decision threshold in the bit synchronizer

digitizers. Similarly,

	

+b	 n b
En JJJ k 1} = 2	

n
erfc	 g	

k+ 
2 erfc	 0	

k

	

r5E	 [V2—a

	

n + C	 n _ c'

t	 En^^Ik^}	 2 erfc	 k ^- 2 erfc	 g	 1.

	^ a	 27a

	

n f b	 n	 b'
End ^J ^} = 2 erfc	 k ^ ^ erfc	 0 

_ 
k	 (3)

	

^^	 ,To

Averaging (2) and (3) over the signal distribution (see (18) and (22)

of Ell) evaluated at x = 0,*

(!R—	 r R

En,s 1Ik^) = 2 
erfc	 2 (2n+ 1) + 2 erfc	 2 (2n -1)	 (4a)

For  simplicity of analyses, we shall assume perfect bit synch
insofar as the ambiguity resolver is concerned. This avoids the addi-
tional average over the probability distribution of the bit sync timing
error.



F- (2Tj	 (4b)n,s k	 [JzE 	 erfc 

r FLd (2n+1E	 p	 F Rd rj) + 0 pt
of n,sIIVk 11	

t erfc	 (2—2	 ) 2 erfc	 2

+ 1 erfc	
Rd 

(2n I)	 (4c)

	

2	 2

ll'	
(I - pt ) erfc	 d 

(2n} 
+	 erfc	 2n +In s0 1 	 [j 	—2 pt 2	 2

+ 2 erfc:	
d 

211 -11	 (4d)

Defining

sk	 IIkI - Ijkl

	

- lj^l	 (5)

then the outputs of the two counters in Figure I are, respectively,

K
Y(K)

	

	 Y 0k
k=l

K
Y I (K)	 (6)

k=l

where K denotes the number of bit intervals which have elapsed since
the time the counters were last reset. Finally, the difference of
the counter outputs is simply

K
Z(K)	 Y(K) - YI(K)	 ^kk=l

K

11 
1 
[ I kI - Ij k] - [NI Iq 11	

(7)
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Substituting (4) into (7), it is straightforward to show that the mean

Of ^k is

En}S { ^ k } = 2pt - erfc	 2d (2n) + 2 erfc 	
ftd
2 

(2n 1)

R

	

+ 2 erfc	 2 (2n - 1)

(g)

which is independent of k. Thus, from (7), the differenced counter

output has mean

Enss {Z(K)} = 2Kpt - erfc	 2d (2n) +- 2 erfc	 2d (2n+1)

R

	

+ 2 erfc	 (2n - 1)	 (g)

which in -the absence of noise (R d -^) reduces to 2K pt , namely, two

times the average number of NRZ transitions in K bits.

The variance of Z(K) is given by

^Z	 Enos 
C( K

)
 
- En,s {Z(K)

K K	 _
En,s	

C^k W ^^C Q -	 (10)
J1-1

From the definitions of I k , J k , 1^, and Jk, we observe that

En,s { I l k ll i k4} 	 =	 0 m	 0

En, s II J k II J k+mII	 =	 0 m	 0

En,s{ I I k I N+m II	 =	 0 m, 0

En , sII O kII J ^+m II	 =	 0 m^0.	 (11)

Z._.
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Thus, from (5), we have that

E n,sls k a k+m} = E{s ^B^+m} = 0	 m# 0	 (12)

Similarly, since for X= 0, 1  and I^+m are uncorrelated for all m and
likewise for J  and Jk, we further have that

En,s{s k s k+m} = 0	 for all m .	 (13)

Thus, since from (6) and (7), ^k is defined by ^k = O k --0^, we conclude

that ^k and CQ are uncorrelated for k^9. 	 In view of this, (10) simpli-
fies to

2	 K	 2	 2-2

	

az = En,s k^0^k
	

- K

K	 2	 2-2

= k1  En,s {ck } - K C

K
k1 [En'slok } + En's {0k2} - 2En,s {a k} E ',s jo^d - K2 T2 .	 (14)

From the definitions in (5), we require evaluation of the mean

square values of 1I k i, fJ k I, II^j, and JJkj at a= 0. Since 1lkl2 = IIk^

and similarly for IJ k j, IIkj, and IJ^I, we trivially obtain the results

Rd-
in 	RE	 {^I ^ 2 } = E	 {^I ^} = 1 erfc 

	
(2^-1) + ^ erfc	 d (2n-1}

n,s	 k	 n,s	 k	 2	 22	 2

(15a)

R

En'sIlikI2} = En,s {^J k ^} = erfc	 2 (2n)	 (l 5b)

R	
F!^—Enas{ I^12} = En,s{ ICI } = pt erfc 	 z (2n) } (1 - pt) z erfc 	(2n+ I }

R

+ 2 erfc	 2 (2n -1 } ( (150
1
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F-_

/Td	 R
En's{ I J kl 2 } = Enos{ 1Jk1} _ ( i - pt ) erfc	 (2n) + 

pt 2 erfc	 2 (2r , + 1 }

+ 2 erfc	 2d (2n - 1)	 0 5d)

The last evaluation that we require to obtain 
aZ(K) 

from (14) is the

correlation of 1 1 k with 1 Jk1 and similarly the correlation of I l kl with
1Jk1- while it is true that 1 1 k and 1 JkI are noisewise uncorrelated

and similarly for I I 'I and 1J^1, these same pairs of random variables
are not uncorrelated with respect to averaging over the signal distri-

bution. Thus, from (3) and [1: (18), (22)], we have

E E 11 J 1} = E	 { I I ` I I J ' 1} = erfc	 ^Rd (2n)	 l erfc	 Rd 
(2n+1)n,s	 k	 k	 n,s	 k	 k	 ,^ 2	 2	 2

R

	

+ 2 erfc	 (2n -1)

(16)

Combining (15) and (16) together with the definitions of 
ak 

and sk

given in (5) produces the results

2-

En,s{ak}	 = En,s IEIkl - IJ
k 11 	= En, s{ I I k l 2 }	En,s{ IJ kl2}

- 2En,s{I lk llJkl}

erfc	
Rd 

(2 9 ) +	 erfc	
Rd 

(2n + 1) + j erfc	 Rd (2n -1 }
2	 2	 2

- 2 erfc
[F2

(2n) l erfc	 Rd (2n + 1) + erfc	
Rd 

(2n - 1) 2	 2

(17)

and

^2
Enos {^ k 1 = Enos{a 

2
k } (18)
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where both (17) and (18) are independent of k. Finally, substituting

(8), (17), and (18) into (14) gives the desired result:

R	 R	 R
aZ = 2K 1 -2erfc	 2 (2n)	 2erfc	 - (2n + 1)	 zerfc	 {2n- 1)

R
+ 2K erfc	 2 (2n )

- 2K [i - 2pt + 2K p	 2	
R	 R

erfc	 2 (2n + l } + 2 erfc	 (2n -l 	 )

2
- erfc	 2d (2T,	 (19)

For large accumulation size (K), the random variable Z(K) is
s

approximately Gaussian distributed with mean given by (9) and variance

given by (19). Similarly, when X= 1/2,  namely, the equiprobable stable

lock point of the bit sync loop which is half a bit shifted from the

true lock point, Z(K) is once again (for large K) Gaussian distributed

with mean equal to the negative of (9) and the same variance as in (19).

3.2	 Evaluation of Ambiguity Resolution Probabilities

As previously mentioned, an ambiguity decision (correct or

incorrect) is made whenever the differenced counter output Z(K) exceeds

a preset threshold y where K is now a random variable which specifically

represents the number of bit intervals at which either counter first

overflows. In particular, the ambiguity decision algorithm may be

stated as follows. If counter 1 overflows when X = 0 (i.e., the bit

rate clock is in phase with the input NRZ data transitions), then if

counter 1 minus counter 2 exceeds the threshold y, a correct ambiguity

decision is made in favor of the bit rate clock. If counter 1 overflows

when x = 1/2 (i.e., the complement of the bit rate clock is in phase with

the input NRZ data transitions), then if counter 1 minus counter 2

exceeds y, an incorrect ambiguity decision is made in favor of the bit
7

rate clock. If when counter 1 overflows, counter 1 minus counter 2 	 ";a

does not exceed y, then both counters are reset to zero and the test

^i.
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continues. In a similar fashion, if counter 2 overflows, then if y is

exceeded by counter 2 minus counter I, an ambiguity decision is made
r^	

in favor of the complement of the bit rate clock. This decision will

be correct if it occurs when X = 1/2  and will be incorrect if it occurs

when A = 0. Again, if counter 2 overflows and the differenced counter

outputs do not exceed the threshold, then both counters are reset to

zero and the test for an ambiguity resolution continues.

Because of the symmetry in the above algorithm with regard to

the overflow of counters 1 and 2, it is straightforward to show that

for each independent trial following reset of both counters, the con-

ditional probability of correctly resolving the ambiguity after K bits

(K large) assuming A = 0 is given by

Pcl (K) = Prob {Z(K) > y Ia = 0, Y(K) = Kmin ) -	 (20)

Similarly, the same unconditional probability assuming X=1/2 is given

by

Pc2(K) = Prob {-Z(K) > y JA = 1/2, Y' (K) = 
Kmin ) -	

(21)

In (20) and (21), Y(K) and Y' (K) are, respectively, the outputs of

counters 1 and 2 at the time of overflow and K min is the capacity of

each counter before overflow. For the Hughes Ku-band ambiguity resolver,

Kmin = 212 (12 bit storage capacity for each counter). Since from (7)

we have that Z(K) = Y(K) - Y(K), then (20) and (21) can be rewritten as

P cl (K) = Prob {Y' (K) < Kmin _ YJ X = 0, Y(K) = Kmin)	
(22)

P c2 (K) = Prob {Y(K) < Kbin - y la = 1/2, Y' (K) = Kmin ) .	 (23)

From the results of the previous section, Y(K) and Y'(K) are

both Gaussian (for large K) random variables wit-h conditional means

[see (4)1

P C
 (K) A E{Y' (K) J a = Of = E{Y(K) Ja = 1/2)

= K(l - 2 pt) 
2 

erfc A+ + 2 erfc A - erfc AO	 (24)
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and conditional variances

6 c (K)	 El[Y`(K)-Ic(K)12jX=0} = E{[Y(K)-pc(K)]21X=1/2}

K {erfc A0+ 0 - 2 erfc A0 ) (2 erfc A+ + 2 er fc A--)}

- K2 (1 - 2 pt)2 d- erfc A+ + 2 erfc A - - 2 erfc 	 AD 	 (25)

where

	

[L2AO 
	
(2n)

ft
A+ -	 2 (2n+I

	

_	 R

Thus, from the foregoing and the symmetry of the decision algorithm,

we have that Pcl (K) = P c2 (K)	 P c (K), where

-Y-u (K)
Pc(K} _ 1 + 2 erf Kmin	 (27)

4{K)

To obtain the unconditional probability P c of correctly resolving
the ambiguity in "one pass," we must average (22) and (23) over the

probability distributions' (frequency functions) of K for counters 1

and 2. Letting

pcl (K) = Prob {Y(K) = 
Kmin l ' = 01

p c2 (K) = Prob {Y' (K) = Kmin" = 1/21	 (28)

then since X = 0 and ^ = 1/2 are equally likely (each has probability of

The frequency functions of the number of bit intervals to
first cause an overflow of counters 1 and 2 will be discussed in the
next section.



12.

q

occurrence equal to one-half) and p
cl (K) = p c2 (K)	 pcM , we have the	 $3

f'
desired result;

1
CO

P
2 	( K ) p ( K ) +	 E P ( K ) P (K)c	
2 K^	

c1	 cl	 2 
K=K	 c2	 c2

Kmin	 min

CO

- 

K-

	

	
PC(K) p c ( K ) •	 (29)

i n

a
By similar reasoning, the probability of incorrectly resolving

the ambiguity in "one pass" is

00

P T =	 E P 1 ( K ) P l ( K )	 (30)

K Kmin'

where

P^(K) = Prob Z(K) > y	 1/2, Y(K) = Kmin

1 ^ 	 S= Prob -Z(K) > y = 0, Y (K) = K
min }
	 (31)

or

PT (K) = Prob {Y' (K) < Kmin ` y { x ` 1/2, Y(K) - Kmin}

Prob {Y(K) < Kmin - y) a = 0 , Y' (K) = Kmin}	 (32)

and

pl(K) = Prob {Y(K)= 
Kminl' 

1/21

Prob {Y' (K) =K1  = 0} .	 (33)
Mill

From the results of the previous section, the conditional means

of Y(K) and V M required to evaluate (32) are

µ 1 (K) = E{Y' (K) I = 1 /21 = E{Y(K)f a = 0

Kr2 erfc n^ + 2 erfc A - erfc Al l	 (34)
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and the corresponding conditional variances are

Crr (K) °-- EI CY = (K) -- u I (K)] 2 1x =1 /21 = E{ [Y(K) - p l (K) 
]2

1A = o}

K{erfC n0 + (1 - 2 erfc A O ) ( Z erfc A+ + 
2 

er fc A- ) }

- K2 {2 erfc A+ + erfc A - - I erfc A0 1 2	 (35)

Thus,

P I (K) = 2 + 2 erf 'min - ^"I (K	 _	
(35)

ffI(K)

Finally, the probability of not making an ambiguity resolution

when counter 1 or counter 2 overflows for the first time is

m	 00

P =	 Pc K Pc (K) +	 I	 P I K p I (K) 9	 (37)

K=Kmi n	 K=Kmi n
where

Pc(K) A= Prob {Z(K) < y I x = 0, Y(K) = Kminj

= Prob {-Z(K) < y I a = 1/2, V (K) = Kmid	 (38)

and

PI K	 = Prob jZ(K) <yja = 1/2, Y(K) = Kmid

= Prob {-Z(K) < y jx = 0, Y' (K) = Kmid	 (39)

Clearly, since P c K = 1 _P c (K)  and P I (K) = 1 - P I (K), we have that

P = 1 - Pc - P T .	 (40)

3.3	 Probability Distributions of K (The Number of Bit Intervals
at Which Counter I or Counter 2 First Overflows)

We begin this section by characterizing the random variables sk

and 0k which increment counters i and 2, respectively. Since the digi-

tizer outputs (see Figure 1) 1V 1k, J k , and J can take on values 0,+1,
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then from the definitions of O k and 0k in (5), we observe that they too
•	 take on the same values. Thus, the outputs of counters l and 2 behave

Y
like a particular type of random walk wherein for each bit interval, their

values either remain unchanged or are incremented by +1 or -1 in

accordance with the corresponding values of a k and s.
We have already evaluated the mean and variance of a k and a

see, for example, ( 8), (17), (18), (24), anu (34)] under the hypothesis

of x = 0 and x = 1/2.  The probability distributions (frequency functions)

of these random variables under the same hypotheses are readily found

as follows. betting

PX0 = Prob is k = +l Ia =a0}

r.
	 = Prob {o k = 01 X = X0
0

q^ 0 = Prob Ig k = -I jX = A 0}	 (41)

and

p^ Q = Prob {sk=+11a=X0}

rl	 = Prob to = 0 1X = a01X 0

q;k'
0 

= Prob	 -11 A = h 0 1	 (42)

where 0 =0 or 1/2, depending upon whether the bit rate clock or its

complement is in phase with the input data stream, then

k I,A = a0	 Q ^^	 = 1 x p N + 0 x r  +-1) x q^	 = pa - qX

	

0	 0	 0	 0	 0	 0

E E o 2Ja=a 0} _ & = 1 2 Xp^ + 02X ra 
+(-1) 2 xq^	 - p^ +qa

	

0	 0	 0	 Q	 o	 Q

PX 0 qX 0 	 A0

Solving for p , q , and r 	 gives
X c	X0	 X0



75
1^

P	 2

	

_ 1	 2
qxO - 2 s 

2 - ^aa

r1=	 -0 2	 (44)
x 
	 ^U .

Similar relations to (44) hold for pxl , rx and qaU in terns of O^0

and s O. Using the relations previously developed, we find that

p0 = erf A  Py erfc A+ + 2 erfc 
A1

rU = erf AU (1 - 2 erfc A a ) pe,  erfc A+ + 2 erfc A^

qa = erf AU L - z er fc A+ - 2 erfc 
A1

and

Pi/2	 qU

ri /2 = ro

g712 = pU

Also,

P; = (erf A0 - pt )	 erfc A+ + 2 erfc A^ + pt erfc A 

r^ W erf AU - (1 -2 erfc A U )F erfc A+ + 2 erfc A^

qa = (erf AU -- 0 - pt ))[ erfc A
+
 + 2 erfc A

J 
+ (1 -pt ) erfc Aa

and

17

i

;s

(45)

(45)

(47)

p1/2 = q 0 ,	 rl/2	 = ra ;	 ql/2 = p6 -
	

(48)
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From the definitions of A+ , A0 , and A- in (26), we observe the

following limits at Rd -} CO:

p0 -)- 1	 pp	 (1 - pt)

q0 r 0	 q0 pt

r0 ^0	 r6 0	 (49)

Using these probability distributions -For the random walk random vari-

able, we desire to compute the probability distributions of the number

of bit intervals (K) at which counter 1 or counter 2 first overflows.

Two approaches to this computation are discussed in Appendix D. The

principal result of these discussions is as follows. IF "m in denotes

the overflow level of either counter (e.g., 2 12 for the Ku-band ambi-

guity resolver), then

Kmin

K-
in

K1
p c(K)	

-	 K 4...
N. r O K ^ Kmin - N

K
in - N

r	 r	

N,_

X 1,3,5... 2 2

'+K
min

-N	 K-K
min

-N

" p0
2

q0
2	 N

r0
K >_ K	 (50)

min

and

in K1_
 (SLn

P I (K)	 K
0,2,4...

K^-	 - N
'-min

 -- Nlin
N-{1,3,5... 2

(K-
r	 r	 r

2	
N.

K}Kmin-N
	 K-K 

min -N

_	 X pa
2	

q6
2	

r6 
N

^. ^
	

(51)K	
in '

where the sum of N runs on the even integers if K- K min is even or on

the odd integers if K-kmin is odd.
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3.4	 {dean Time for Ambiguity Resolution

As discussed in the introduction, the ambiguity resolver declares

an ambiguity decision whenever the difference between the counter that

overflows in a particular pass (trial) and the other counter exceeds a

threshold y. If, however, no ambiguity decision is made, then both

counters are reset to zero and the ambiguity search is continued with

a new independent pass. The process is continued until ambiguity reso-

lution is achieved.

The probability of resolving the ambiguity in n passes becomes

P `j ( n) = PD + (1 - PD ) P D + ... + (1 - p)n-1 P D 	(52)

which is a geometric series with a sum

PR ( n )	 = 1 - (1 -- P O ) n	 (53)

where PD is the probability of resolving the ambiguity in one pass

whether correctly or incorrectly; that is,

P D = P I + Pc	(54)

where Pc and P I are given in (29) and (30), respectively.

In order to find the mean time to achieve an overall ambiguity

resolution probability in n passes P R(n), we must find the mean time

for a decision per pass tD . It is easy to show that

(Pcmc + P I MI)
t  =	 R

where me and m  are the means of the probabilities of overflow of the

counter leading to a correct decision and an incorrect decision, respec-

tively, that is,

me =	 I	 K P c (K)	 and	 m i =	 E	 K P I (K) ,	 (56)

K=Kmi n	 K-Kmi n

where Pc (K) and P I CK) are given by (50) and (51), respectively. P c and

(55)

t^
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PI are the unconditional probabilities of making a correct decision and

incorrect decision given by (29) and (30) respectively, and R is the

data rate which is also the rate at which the counters are incremented.

or dncremented. For the Ku-band ambiguity resolver, R = 216 kbps. The

numerical evaluation of the probability of correct ambiguity resolution,

incorrect ambiguity resolution, and a-verall probability of resolution

in n passes will be presented and compared to i{RC test results in a

future report.





APPENDIX G

MARKOV PROCESSES, RANDOM WALKS, AND THEIR APPLICATION
s;	 TO THE PERFORMANCE CHARACTERIZATION OF THE

KU--BAND BIT SYNC AMBIGUITY RESOLVER

by

Waddah K. Alem
Marvin K. Simon

.	 Charles L. Weber

1.0	 INTRODUCTION

Markov processes have for a long time been extremely useful as

models for physical systems exhibiting random behavior. Many important

features of these processes, which have emerged from their application,

are best illustrated by the so-called "random walk." In most random walk

problems discussed in the applications literature, the mathematical model

is physically described by an individual who takes a series of steps.

Each step moves one unit to the east and either one unit to the north

or one unit to the south. This individual decides the direction of his

walk (northeast or southeast) by making a Bernoulli trial with probability

p of success and q= 1--p of failure. Arbitrarily, it is assumed that

he goes northeast on a success and southeast on a failure.

A typical question of interest in such a random walk is: How

many steps does it take for the individual to first reach a certain dis-

tance to the north (or south)? It is desirable to characterize this

so-called "first passage time" problem by such measures as the probability

distribution (frequency function) of the number of steps to first reach

the boundary and the mean and variance of this distribution. Note that

after n steps, the individual will be n units to the east of his starting

point. His distance north relative to his starting point will be the net

number of successes minus failures during the n step walk. Also, the

number of successes plus failures must, of course, be equal to n . We

shall shortly see that these simple properties, which come from physical

reasoning, are extremely useful in a particular mathematical approach to

solving the first passage time problem.

In investigating the performance of the Ku-band bit synchroniza-

tion ambiguity resolver for the Space Shuttle Orbiter (SSO) Signal Pro-

cessor Assembly (SPA), it became apparent that the solution to a somewhat
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more complicated random walk problem was required. In physical terms,

this problem can be described by an individual who once again takes a

series of steps. Now, however, in addition to going east on each step,

he moves one unit to the north with probability p , one unit to the

south with probability q , or neither north nor south (i.e., due east)

with probability r= I - p- q. As before, we are interested in the proba-

bility distribution of the time to first cross a given boundary and the

mean and variance of the distribution.

It is surprising that, to the authors' best knowledge, this type

of random walk and its first passage time behavior have not been formally

treated in the applications literature. This appendix is an attempt to

fill this gap. Several approaches for mathematically modeling this

problem will be discussed and the ensuing results will be shown to be

equivalent. To begin, we shall illustrate the approaches by first apply-

ing them to the classical random walk mentioned in the beginning of this

introduction.	 4e

2.0	 APPROACH BASED ON THE REFLECTION PRINCIPLE

2.1	 Classical (Two-Way) Random Walk

Consider the typical random walk path illustrated in Figure 1

which originates (n= 0) at S0 = i and terminates (n= m) at the boundary

Sm = i+ K. Here, n denotes the number of steps taken to the east, m is

the value of n at which the random walk first reaches the boundary,

which is K units above the originating point, and S  is the value of the

random sum at the nth step of the walk. In mathematical terms,

n

Sn
 = kI0 x

k ,	 (l)

where xk is a random variable which takes on values of +1 and -1 with

probability p and q , respectively. Letting N+ represent the number

of positive steps and N the number of negative steps in any given path

from i to i+K, then from the properties previously discussed, it is

clear that

N+ - N_ = K
	

(2)



i +K

i

n

S

Figure 1. Typical Random Walk Path

w
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and

N+ + N_ = m •	 (3)

Solving (2) and (3) for N+ and N - gives

N	
m+ K	

N = 
m- K	

(4)+	 2 '	 -	 2

Since each positive step occurs with probability p and each

negative step with probability q , then the probability of any path

originating at 5
0
 = i and terminating at Sm = 1 +K is

pN.-j- q - _ p (m+K)/2 (l _ p) (m--K)/2 •	 (6)

The only question that remains in order to compute the probability

distribution of m is: Now many paths, with probability given by (5),

originate at S  = i and reach for the first time the level i+K at n= m?

The total number of paths Ni,i+K(m) originating at SD = i and

ending at Sm = i+ K ( irrespective of whether S,= i +K for any n< m) is

equal to the number of ways of having N + successes in m Bernoulli trials,
i.e.,

	

m	 m

Ni,i+K(m)	-	 m+K	 (6)

+)	 ( 2

where 
(k) 

is the binomial coefficient defined by

(n) 	 n!	
(7)k 	 k E n-k 1

To obtain the number of paths with S 	 i, Sm = i+K, and S n <i+ K for all

n <m, we must subtract from (6) the number of paths which reach the

boundary prior to n= m. Actually, rather than do this, we can simplify

the problem one step further. Since every path which reaches i+K for

the first time at step m must have come from i+K-1 at step m-1 and also
i+K-2 at step m-2, we can first compute the total number of paths origi-

nating at i and terminating at i+K-2 at step m-2 [a smaller number of

paths than Ni,i+K(m) of (6)] and then subtract off those for which S n = i+K

for any n< m-2. This total number of paths is clearly



rs
5

m-2	 m-2

N
i, i+K-2(m-2)	

m-2+K-2	 m+K	

(8)

2	 2	 2

We next compute the number of paths for which S 0 = 1, Sm_2 = I+K-2,

and S n = i+K for one or more values of n <m-2. For each such deviant path,

we can select the smallest value of n (say n 0) for which 
Sn0 

= i+K and

reflect the portion of the path preceding this value of n about the

Sn = i+K axis (see Figure 2). The reflected portion, together with the

original portion having n >n 
0  
will form a new path with S 0 = i+2K and

Sm_z = i+K-2. However, every path with S 0 = i+2K and Sm-2 = i+K-2 must

have Sn = 0 for some O< n< m-2.  Thus, there is a one-to-one correspon-

dence between each deviant path between i and i+K-2 and every path

between i+2K and i+K-2. Thus, the number of deviant paths between i

and i+K-2 is

m--2	 m-2

Ni+2K,i+K-2 (m-2) = (m-2 + K--2 - 2K =	 m- K	 (9)

	

2	
2 - 2

Subtracting (9) from (8) gives the number of paths which originate at i

and cross for the first time the boundary i+K at n= m, -I.e.,

m-2	 m-2

N =	 -	 (l0)
M+

2 K - 2	 m2K - 
2

Finally then, the probability distribution of m (the number of steps to

first cross the boundary K units above the originating point) is

m- 2	 m- 2

P (m ) =	 _	 p(m+K)/2 (7 _ p) (m-K)/2

m 
2 
K - 2	 El K - 2

m = K, K+2, K+4, ... 	 (71 }

The number of paths N as computed by (10) can be simplified to

s



l

n

i+2K

i+K

C

7

Figure 2. Deviant Path and Its Reflected Portion

m
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M
K	 K	 m!	 ( }

	

- m +K - m m^m-K i	 12

	

m	 (2)(2}

	

z	 ,
A

Thus, the final form for the probability distribution is

m

P(m) = K
	 p(,,+K)/2 (l - P) (m-K)/2
m m+K

2

	

m = K, K+2, K+4, ...	 (13)

The probability of first reaching the boundary in aL number

of steps is

	

P	 =	 P(m)	 (i4)

	

b	
m=K,K+2,..

Substituting (13) into (14) and letting i = (m-K)/2 gives

I	 2i+K i+K	 i

	

P b = h 1 ( 2i +K} i+K P	 (l - P)
i^0

CO

= Kp K 	 (2iTiT. K
-11i

 1 [P( l - P)]i
i=0

2
= p  1 + K p(l -p) + K(K+3) [ p(l2 L

	

+ K(KI-4)(K+5) [	 i	 3

	

(13 	 + .. )	 (15)

From [1, pp. 34-35, Series No. (187)], we have that

	

1 + 
ny + n n+3 y2 + n(n+4)^(n+5) y3 +	 1 +	 y	 16..	 1	

-1.	 (	 )2!	 3.	 2-n 

Comparing ( 15) and ( 16) and letting n r- K, y= p(1 -- p), gives

K

	

P b =	 -- 2p	 (17)
I + 1 -- p(1 - p

Figure 3 illustrates P b versus p for K= 10,  100. Note that, for p< 1,

there is always a finite probability of not reaching the boundary given



10- 2

Pb

10-3

10-4

0 0

0	 S
10

10-1

K=10	 K=100

.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 i.
p

Figure 3. Probability of Reaching Boundary Versus Probability of Positive Step

r
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by 1 -P b*  Furthermore, as K gets Iarge, the probability of reaching

the boundary becomes an extremely sensitive function of p.

2.2	 Three-Way Random Walk

Consider now the random walk at each step can proceed in one of

three directions, namely, northeast with probability p, southeast with

probability q , and due east with probability r= l - p- q. An example
of this type of walk is illustrated in Figure 4. Once again, the net

number of positive steps to reach the boundary is given by K, i.e.,

(2) still applies. However, the total number of steps m must now include

the number of steps during which no advance in the north or south direc-

tion is made. Letting N O denote this number of flat steps, then the

equation corresponding to (3) would be

	

N+ + N- + NO = m	 {lg}

Solving (2) and (18) for N + and N- (dependent now also on NO ) gives

N	

m+K - NO	

N	

= m - K - NO	

(l g)+	 2	 -	 2

Since now each positive (north) step occurs with probability p , each

negative (south) step occurs with probability q , and each zero (due

east) step occurs with probability r , then the probability of any path

originating at 5 0 = i and terminating at S, = i + K is

N+ N - N O 	(m+K-NO)/2 (m-K-N O)/2 NO
p q r	 p	 q	 r	 (20)

Once again, to compute the probability distribution of m , we must find

the number of paths which originate at i and first reach the boundary

OK at step n = m.

The total number of paths N i,i+K000) originating at S O = i

and ending at SM = i+ K ( irrespective of whether S n = i+ K for any n< m)

is a trinomial coefficient, namely,

N i ,i+K (m ' N0 ) = N+ ! N 
^!

N 0 1 =	 m+K
-NO 	

mr- K-N0
	 (21)

2	 ^I^	 2	 ^i N0E



a-.
'	 y

i

n

i+K

S

` 	 °	 6	 10
	

12	 m

Figure 4. Typical Random Walk Path

0
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Also, the minimum value of m for which a path can reach the boundary

is m= K+NO.

As in the 4o-way random walk, each path which reaches i+K at

step m for the first time must have come from i+K-1 at step m-l. Now,

however, at step m-2, the random walk could be either Sm_2 = i+K-2 or

Sm-2 = i+K-1. The total number of paths originating at 1 and terminating

at i+K--2 is Ni,i+K-2(m-2;NO). Using the reflection principle once again

(see Figure 5 for an example of its application), the number of deviant

paths with S O = i and 
Sm-2= 

i+K-2 is Ni+2K,i+K-2(m-2;N0). Thus, the

-^	 number of paths Nl with SO - z , 5m_ 2 = i+K-2, and 5n < i+K for all4 "-

i <n <m-2 is

Ni = Nisi+K-2(m-2;N0) - Ni+2K,i+K-2(m-2'No)

(M-2) 1 	 _	 (m-2) 1
m+K-N	 m-K-N	 m-K-N	 m+K-N

2 O -2 !^	 2 O ^ ! N O !	 2 O -2) !^ 2 g
1 t No

J	 (22)

By applying similar arguments as those above, the number of paths N2

with SO= i ' Sm-2 = j+K-1 and S  < i+K for al 7l <_ n < m-2 is

N2 = N
isi+K-1

(m- 2 ;No-l) - Ni+2K,i+K-1(m- 2;NO-1)

(m-2)1	 _	 (m-2)1	
(23)m+ K-NK N 

2 O -1)!V 
m- 

2 O ! ( N O-1)!	 2 O -1i[	 2
m+K-N 

g
1

! (NO-1)E

Thus, the total number of paths N which reach the boundary for the first

time at step m is N= N1 +N
2 . 

and the corresponding frequency function

of m (conditioned on NO ) is

(m+K-N Q )/2 (m-K-NO )/2 NO
P(m;NO ) = N p	 q	 r	 (24)

Finally, the unconditional probability distribution of m is obtained

by summing over N O , i.e.,

_

-	 Y
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n

i+2K

i+K

S
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Figure 6. Deviant Path and Its Reflected Portion

N



:r

13

m-K
p(m;NO )	 m - K odd

L, N0=1,3,5,..

P(m ) _
m-K

( 25)

p (m;Np) m - K even
Np=0,2,4,..

' The defining expressions for Nl and N2 given in (22) and (23),

respectively, can be simplified and combined to yield

,,.
N	 N	 W=	 l ^' N2

K^	 m
m	 m+ K--N p	 m` K-N0 (2b )

t	 t N o !
2	 2	 °

i which is analogous with (12).	 Combining (24),	 (25), and (26) gives the

final desired result

K	 m-K m1 (m+K-Np)/2	 (m-K-NO )/2 N 
m 

N=1,3,5,..0
r

m+K-N	 m-K-N	 P

°l!^	 ° j! Np!

.

fi 2	 2I	 I
m= K+l,K+3,...

P(m) _ (27)

K	
m-K

m^	
+K Np)/2	 K-Np)/2p(m q (m- Np

m N02 4_,,,..0^
m+ -Np	 m-K-NO	r

f	 E Np

.
'

2	
1	 2

m = K, K+2, K+4,. . .

The probability of first reaching the boundary in a_,..Y.number of

steps is

Pb

CO

=	 P(m) (28)
m=K

After considerable algebraic manipulation, (28) can be put in the form
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Unfortunately, however, the authors have been unable to arrive at a
closed form expression for (29) analogous to (17).

3.0	 PROBABILITY DISTRIBUTION OF THE DURATION OF THE RANDOM WALK
USING THE GENERATING FUNCTIONS METHOD

The probability distribution of the duration of the random walk

is determined by use of generating functions [2]. The random walk is

assumed to have absorbing barriers at 0 and A. The barrier at A will

be allowed to extend to infinity after the probability distribution

has been determined.

Assuming, as in Figure 6, that a particle starts at a height K

with probability p of making a positive step to a height K+1, proba-

bility q of making a negative step to a height K-1, and probability

r m I-p-q of remaining at the same height K , the probability of reach-

ing the zero height in m steps is developed with a finite A and then

with infinite A which reduces the problem to that solved using the

reflective principle approach.

It should be noted, however, that in the end result the roles

of p and q should be interchanged to obtain the results in (27).

This is due to the fact that, as is obvious in Figure 6, in this

approach p is the probability of moving away from the crossing level,

contrary to the assumption made in the first approach.

Figure 6. flotation for Generating Function Approach for the
Random Walk Problem
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Definition: Let 
pK,m 

be the probability that the random walk

described in the previous section and in Figure 1 will terminate at 0

in m steps, given that the particle (or register setting) was initially

placed at K, with K and m positive integers.

Definition: Let a O , al , a2 , ... be a sequence of real numbers.

if

G(s) = co 
X a  sk

k-0

converges in some interval Isl<s o$ then G(s) is called the generating

function of the sequence ja k }. The variable s itself has no significance.

Definition: Let PK(s) be the generating function for the set

of probabilities {PK'mI for a given K . In particular,

P K(s)	 PK 
n 

sn .	 (32)
n-o

Given that the random walk started at position K at m W o,

after the first step the position is K+1, K, or K-1. As a result, we

conclude that, for 1 < K < A--1 and m > I ,

	

P K,m+l = PP K+l ,m + q PK-1,m + r PK, m .
	 (33)

This is a homogeneous difference equation depending on the two variables

K and m , where K is analogous to amplitude and m is analogous to time.

The boundary conditions are

PO'm = 0 ,	 m > I

P0,0 - 1

PA,m - 0 ,	 m ? 0

PK,0 = 0 ,	 K > 0	 (34)

If the generating function for the set of probabilities IPK,mI

is P K(s), then the generating function for the set IPK,m+lI is

^t

(31)



1 6

p
	 PK (s)

G (IPK,m+7 ^)
	 r1=0PK,n+7 s n =	 Ks	

(35)

u

With (35), the generating function for both sides of the differ-

ence equation in (33) can be written, with the result that

P K(s) = s CP P K+l (s) + q P K_ l (s) + r P K ( s )]	 (36)

The boundary conditions in (34), when converted to generating

functions, lead to the following boundary conditions on PK(s):

PO (s) = l

PA (s) = 0	 (37)

The evaluation of the homogeneous generating function (36) with

the boundary conditions in (37) can be carried out as follows. Assume

a solution of the form

PK( s) = I X ( s )] K 	(38)

for some function a(s). Substituting (38) into (36), we find that a(s)

is the solution of the quadratic equation

s p a 2 (s)	 0 - rs) x(s) + s q = 0 ,	 (39)

which has solutions

A l (s) = 3 - r s	 (7 - r s) - 4 p q s2	 (40a)
2 p s

and

a2(s) 	 r s - (1 - r s) 2 4 p q s2	 (40b)
2 p s

Therefore, the solution for the generating function is of the form

P K(s) = c l (s) Ex, (s)] K + c 2 ( s ) Ea 2 ( s )] K 	 (41)

F,



17

where the coefficient functions of s , c i (s), i= 1,2,  are to be deter-

r,	 mined from the boundary conditions in (37). Via direct substitution,

PO(s) = 1 = c 1 (s) + c2 (s)	 (42a)

and

PA(s) = 0 = c1(s) 
IN! (s)I + c2 (s) C^ 2 ( s ) ]A	 (42b)

from which we obtain

[X2(s)1A

cl 

s	

Ex2(s) A - [al(s)]A	

( Q.3a}

and

c ( s ) =	 -
^al(s)^A	

(43b)
2	 EX2(s)]A _ Ey s)]A

Substitution of (43) into (41) yields

P 
(s	

_ CX 2 (s))A D'l ( s ) I K - Cxl (s)]A [X2(s)]K	
(44)

K )
	 EX2(s)]A - [XI(s)] 

where A i (s) are given by (40). Using the relationship

X1 (s)A2(s)	
P 

11	 (45)

this simplifies to

P(s) 
r	 a K CX l ( s )lA K - [X2(s)]A` 

K	

(46)
K

( PI)	 Ohl {s}1A - LYs)]A

This is the generating function for the probability of reaching

o level (probability of ruin or probability of absorption at 0) at the

mth step. If PK(s) could easily be expanded into a power series as in

(32), then the coefficient of s  in (46) would be P
K,m . 

Unfortunately,

expanding (46) into a power series does not lend itself to being

tractable.

^i
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4.0	 SOLUTION BY THE METHOD OF PARTIAL.FRACTIONS

The generating function in (46) depends formally on a square

root but is actually a rational function. To see this, note initially

that an application of the binomial theorem to the denominator in (46)

reduces the denominator to the form

CS I (5)^A - C^2 ( 5 )^A = 2ps A (l- rs4pgs	 E
k-1

k odd

k-1

x (1 - rs) A-k 
C (l - rs) 2 - 4pg s21 2

tz s-A
	

(i - rs) 2 - 4pgs 2 PA (s)	 (47)

where PA (s) is an even polynomial of degree A-I when A is odd and of

degree A-2 when A is even. The numerator is of the same form except

that A is replaced by A--k. Therefore, P K(s) is the ratio of two poly-

nomials in s whose degrees differ at most by I. Consequently, it is

possible to develop an explicit expression for the probabilities P
K,m

by the method of partial fraction expansion.

The computations simplify greatly by the introduction of an

auxiliary variable ^, which we define in terms of s via the relationship

s = [2p q cos 0 + r]	 (48a)

or, equivalently,

cos ¢ =	 l - rs	 (48b)
2 s pqq

Upon substitution of (48) into (40), we obtain the simplifications

and

al (s) =g p eXp	 {. i) (49a)

X2 ( s ) = g p exp	 (^ i) . (49b)
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As a result,

P (s)	
q K/2 sin [(A-- K) ^7	 (50)K	 ^p	 sin A

j
It

The roots s 0 ,s l , ...'s 
A-1 

of the denominator in (50) are all

simple and hence there exists a partial fraction expansion of the form

P(s) _K	 (p)	 sin A

A-1 P
a+bs^+ Y	 v	 (51)

	

v=0 s	 sV- 

In principle, the linear contribution a+bs must be formally

written to account for the fact that the degree of the numerator may be

one larger than the degree of the denominator. Since a and b con--

tribute only to 
PK,O 

and PK,1 , respectively, which are both zero if

K.?- 2,  we know a = b = 0. Also, we should only consider the roots sv of

the denominator which are also not roots of the numerator. If an s

is such a root, however, then P K(s) is continuous at s= sv and the

corresponding pv = 0. Since such canceling roots do not contribute to

the right side of (51), we need not treat them separately.

The roots s 0 ,s l , ..., SA-1 correspond to the roots

sin (A 0) = 0 ,

which has solutions

^v = R
	 v = 0,...,A-1	 (52)

No additional roots need be considered, since any other values of v in

(52) will not produce any new values of s in (48). Therefore,

1
sv = [ 	 cos (wv/A) + ]- ;	 v = 0,1,...,A-1 .	 (53)

This expression is not valid when r= 0, A is even, and v= A/2. If such

is the case, however, then 
^V 

is also a roof of the numerator and this
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root vanishes in the final result. This lack of validity can therefore

be ignored.

Since all of the roots are simple, 
p  

can be computed from the

following:

P v =	 1 i ( sv - s) PK(s)
s -} s v

1 im (s - s) G K/2 sin [(A - K)

	

s-+ s	 v	 p	 sin A f
v

- 
g

K/ 2	 (s-  s )

	

\p)	
sin (KO

K/ 2

 sl-+.s sin A	
(54).

v

The last limit can be determined from L'Hospital's rule and

using implicit differentiation of (48), with the result that

	

d	 1	 (55)

	

dt	
2 pgs2 

sin 
0

and

K/2

pv	
sin (K ^ v ) lim

^ 	-
1	

d	
(56)

	

p	 s- s	 A cos (A0 - `
V	 ) dt

Substituting (55) into (56),

pv = ^ K/2 2	 sin (K^ ) s2 sin	 v)

V = 0,1,...,A--1 .	 (57)

Note that, since 0 0 = 0, n 0 = 0, and the v= 0 term can be neglected.

The generating function P K(s) therefore has the representation

A-1 o v	 A-1 pv/sv

P (s) =	 -	 -	 /	 (58)K	
v=l sv s	

v-1 
1- s sv

Each term in the above sum can be expanded into the power series
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Av/sv	 (LV O0 5 m

	x 	 (59)

	

I - s/sv 
r	 sv m=0 sv

Substituting (59) into (58),

iP (s) ' 

	Ax	

V	 s  .	 (60)
M=O v=1 sv

Comparing the power series representation of P K(s) in (60) with that in

(32), we have that the probability of absorption is given by

A

	

V
PK,m = 

v 1 sm*l
	

(6I)

V

Substituting (40) and (43) into (61), this probability reduces

to

	m 
mfK m-K A-I	 m-1

2	 2	 2
	 (MI)
	 ( ^ry K)	 Iry	 r

PK,m - A q	 p	 = sin A sin l A ) cos A	 (62)
V= 1	 2 pq

This is the probability of absorption at 0 at the mth step, when starting

at K , with an additional barrier at A> K.

The barrier at A is eliminated by passing to the limit as A--} m,

with the result that

m-K m+K 
I	

m-I

PK,m = 2m p 
2 q 2	 sin (Trx) sin (K,^x)	

r	
dx .	 (63)cos (,rx}

0	 2 P4

This can also be written as

	

m-K m+K m-1	 m-I-k 1

PK,m 

= 2M  2 q 2	 (mkI	 r	
sin (Trx) sin (KTrx) [cos (Trx)] k dx .

	

k= 0	 2 pq

	

fo
(64)

This is the probability of absorption at zero at the mth step, when

starting at K , and no other absorbing barrier.



rr
k

F	 ^"

2n 
1

fo
cos n-1 (max) sin (7rx) sin (zrix) dx

0 ;	 n+i odd

0	 n < i

i.
(,n

+l n	
n+i even

2

a:

As discussed before, interchanging the role of p and q and using (65)

results in

m+K m-K	 m-1	 m-7-k	
k+l

P	

m2 (M-1)	 r	 -k^-1	 K
K'm = p q	

k=K-1 	
k 2 P

q	

2	
K	 K+1 .

k+K+l even

Changing the summation variable to N C =m-1-k reduces (66) to (27),

namely,

m-K	
m-+K-NO m-K-NO N

P K,m - p W -	 m+ -N m-1-N O 	 P_ T_ q__2_ r 0
	 (67)

	n=0,2..	 0 , 	 I

	

or n=1,3..	 2	 2	 'N0

5.0	 NUMERICAL RE=SULTS AND SPECIAL CASES

Using (27), the probability of reaching the threshold K in m

steps is plotted in Figures 7 and 8. Figure 7 assumes a threshold K= 10

and p - 0.7 and varies q and r such that p+q+r =1. The mean and the

variance in each case is also shown in the figure. It is obvious from

these calculations that, for a constant K and p , the mean and the vari-

ance increase with the increase of q (the probability of taking a step

in the wrong direction) and the decrease of r ;the probability of taking

a step parallel to the threshold). In Figure 8, the probabilities p, q

and r are held constant and the threshold is used as a parameter.

Figure 9 illustrates the cumulative probability of crossing a

threshold (K= 10) versus the number of steps for a given set of proba-

bilities p, q and r . The cumulative probability P Kum is defined as

(66)

I

I

•' a
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cum	 m-K
PK,m = 7EK PK,i .

Two interesting special cases can be derived; the first is the

classical two-way random walk problem and the second is a two-way random

walk problem with q (the probability of going in the wrong direction)

equal to 0.

A. Case I: r = 0

Substituting r = 0 into (63) and using (65) results in
Jp

m+K m-K
(r=0)	 K	

m	
2	 2	 m= K, K-.+2 !, K+4 .. .

PK,m	 = m(M+K p	 q

2

which is identical to the expression in (13).

B. Case 2 • q = 0

Substituting q= 0 in (67) and realizing that all the terms in

the summation are 0 except when N O = m-K results in

P (q-0) = h 
m 

p K rm-K .
K,m	 m (m-K)

Equations (68) and (69) represent the two special cases of a two-way

random walk derived from a three-way random walk.

G;

,A

(68)

(69)
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A APPENDIX H

PRODUCT DESIGN CONSIDERATION

by

Serge! Udalov

1.0	 INTRODUCTION

Y

	

	 This appendix describes the product design considerations for the

KU-Band Integrated Radar and Communication Equipment for the Space Shuttle

Orbiter.

This equipment, as designed by the contractor (Hughes Aircraft

Company), is comprised of four line replaceable units (LRU). One of

these LRUs is a deployed assembly (DA) located within the payload bay

and deployable upon the opening of the payload bay doors. The other

three LRUs are installed in the avionics bay located inside the Orbiter

cabin.

Figure 1 shows the deployed assembly. As is shown in the figure,

the DA consists of two major subassemblies: (1) the deployed mechanical

assembly (DMA) and (2) the deployed electronics assembly (DEA). The DMA

includes all the necessary components for forming and steering a highly

directional antenna beam. These components are the gimbals, the antenna

reflector, and the feed with its support. The DEA houses the electronics

for transmission and reception of the radar signals and the reception of

the communication signals.

Currently, in the baseline, each Orbiter will be equipped with

two deployed assemblies, i.e., deployed assembly. A and deployed assembly

B. The mechanical portions of the two deployed assemblies are identical.

The electronic assemblies of the A and B equipments, i.e., DEA-A and

DEA-"B, have identical configurations except for certain shop--replaceable

units (SRU) which are radar-related. Because the B configuration equip-

ment is used only for the reception of the communication signals, the

radar-related components are removed from the B assemblies. It should

be noted that there is no work being done at Hughes on the , B assemblies,

and NASA is reviewing the need for the B assemblies.*

-

	

	 At the time of this report, NASA has deleted Comm B and hence
the deployed assembly B. Therefore, any discussion of the B equipments
reflects REV A and not future specifications.

s
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Figure 2 shows an overall configuration of an avionics bay LRU.

The three such LRUs are electronics assembly 1 (EA--1), electronics

assembly 2 (EA-2), and the signal processing assembly (SPA). The EA-1

is devoted primarily to the communication function, but it also includes

the servo electronics for both the communication and radar operations.

The EA--2 is used exclusively for the radar function. The processing of

the transmitted and received communications data is performed by the SPA.

With the exception of the connector configurations, the mechanical con-

figurations of the avionics LRUs are identical.

The detailed description of the product design for the Ku-band

system subunits is presented in the sections which follow. The material

included in these subsections is abstracted from the Contractor's Pre-

liminary Design Review documents, dated March 1978.

2.0	 ASSEMBLY DESCRIPTION

2.1	 Deployed Assemblies

The deployed assembly (DA) comprises that portion of the Ku--band

radar and communication system which attaches to the upper face of the

Rockwell-supplied deployment actuator and which stows in the limited

space between the payload bay and the door radiators. Major elements

of the DA are the deployed electronics assembly (DEA) and the deployed

mechanical assembly (DMA).

2.1.1	 Deployed Electronics Assembly

The DEA is a shop-replaceable unit (SRU) of the DA line replace-

able unit (LRU) of the Ku-band integrated radar and communications

equipment.

2.1.1.1 Physical Description of DEA

The DEA (Figure 3) houses the electronics for the transmission

and reception of radar and communications data. The electronics are

housed in an enclosure 31 inches long, 15.5 inches high and 4.5 inches

deep. The overall estimated weight is 70.6 pounds. The enclosure is

mounted to the DMA structure by a flange that extends along the perim-

eter of the DEA chassis baseplate; 24 torque set screws hold the flange

in place.
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Figure 3. Deployed Electronics Assembly

2.1.1.2 Enclosure

The enclosure is a dip-brazed aluminum structure consisting of

a baseplate that also serves as the prime radiating surface, ribbed

side plates to which are mounted RF connectors, a front plate that

serves as the mounting surface for the power and command input connec-

tors, and a rear plate to which is mounted the waveguide output flanges

and RF connectors for test access. The inside of the chassis is parti-

tioned into cavities by a wall that extends the length of the chassis

and a shorter wall that separates the receiver and exciter subassemblies.

These walls provide mechanical stiffness to the structure and RF shield-

ing between the subassemblies.

The cover for the DEA enclosure is a bonded honeycomb structure

consisting ot two thin aluminum face sheets, an outer and inner flange,

and an aluminum honeycomb sandwich between the face sheets.

Manufacturing techniques for the DEA enclosure involve numeri-

cally controlled machining and dip-brazing procedures. The forms are
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Figure 4. UEA Enclosure
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6.	

utilized in fabrication of the mounting baseplate so that SRU mounting

2
	

bosses and heat flux patterns can be incorporated. Numerically con-

trolled machining is also used in fabrication of the rib structure of

the two side walls to achieve a maximum strength--to-weight ratio. The

machined flange and baseplate provide the necessary jigging to position

the four sides and internal partitioning for the dip-brazing process.

The Mange also serves as the sealing surface for the RF and environ-
a	

mental seal in the cover.

Tile enclosure walls and cover, stiffened by the ribbing and

{
	

honeycomb construction, prevent excessive bending and displacement from

the pressure differential resulting from the space environment.

The UEA is functionally divided into five discrete SRUs that fit

into the enclosure as shown in Figure 4. The subassemblies are arranged

to optimize the thermal distribution, minimize the length of critical

RF interconnections, and provide access for testing and maintainability.

The five SRUs are plugged in and mounted directly to the base of the

chassis by means of captive hardware.

(DIMENSIONS ARE IN INCHES)
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The walls that partition the enclosure provide RF separation

between SRUs. RF gasketing in the cover and RF shielded feed-through

terminals in the walls complete the subassembly and unit level RF/EMI

shielding.

Replacement of an SRU in the DEA involves removal of the cover

hardware and cover. Each SRU is independently replaceable. Subassem-

blies are plug--in modules fastened to the chassis baseplate with captive

hardware.

2.1.1.3 Thermal Design Concept

Active thermal control techniques are utilized in the DEA to

provide adequate thermal control. During operation, internal dissipa-

tion is radiated to the space environment by the external surfaces.

For nonoperating periods, the DEA will be augmented by thermostatically

controlled heaters to maintain acceptable temperatures.

The present maximum power dissipation is approximately 250 watts

at 28 VDC input. The total radiating surface of the DEA is approxi-

mately 8.5 square feet. A silvered teflon finish is used on the prime

radiating surface (baseplate) to minimize solar absorptance and provide

high thermal emittance. A white paint finish is used on the remainder

of the external surfaces.

Hughes has extensively analyzed the thermal design of the DEA

under specular radiation from the sun. It was found that, for certain

Orbiter attitudes and DA positions, the solar radiation was great enough

to cause the DEA to overheat. Hughes has since been directed to not

consider these few Orbiter attitudes and DA positions that lead to the

deleterious solar radiation in the thermal design. Therefore, Hughes

is analyzing the normal operating temperatures and the qualification

temperatures to determine if the thermal design is adequate. It is

important for Hughes to use the right criteria for analyzing the thermal

design. In previous analyses, Hughes used a junction temperature of

125°C as the upper limit allowed. However, this high a temperature

during the normal thermal environment will lead to greatly decreases!

reliability. A normal junction temperature of 105% would lead to a

more acceptable reliability.
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2.1.1.4 Environmental Sealing Techniques

The DEA enclosure incorporates an environmental seal that

ensures compliance to a leakage rate of 10 -4 cc per second when the

unit is filled with inert gas at a pressure of 15.2 psia at ambient

temperature.

The primary seal is made by a gasket molded into a groove around

the perimeter of the cover. Hermetic connectors are sealed at the

enclosure interface by 0--rings. Hermetically sealed ceramic windows

are utilized in the waveguide adapter for the waveguide output flanges.

The adapter interface and the enclosure are sealed by means of a gasket

molded into a groove around the perimeter of the adapter.

Internal module mounting is accomplished with blind hardware

in the baseplate.

2.1.1.5 DEA--B Configuration

The DEA-A and DEA-B configurations are identical except for the

Exciter, Receiver, and Transmitter Microwave SRUs. In the B configura-

tion, the radar-related components are deleted from these subassemblies.

Physically, the subassemblies retain the same interconnections

and mounting interface dimensions so that identical chassis and related

hardware can be utilized.

Externally, the CEA is symmetrical with the exception of LRU

electrical connectors. Mounting of the DEA-B to the DA boom is accom-

plished by rotating the unit approximately 180 degrees about its Y axis

so that the RF output waveguide flanges remain oriented toward the

antenna. The difference in the DEA-A and DER-B installation is a minor

shift in LRU connector locations.

2.1.2	 Deployed Mechanical Assembly

The DMA descriptions are separated into discussions of antenna,

rotary joints, structure, and gimbals.

2.1.2.1 Antenna

2.1.2.1.1 Narrowbeam Antenna

The narrowbeam antenna assembly is a prime fed paraboloidal

reflector using a five-element monopulse -Feed. The 36-inch parabolic

s
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antenna is constructed of epoxy-impregnated graphite cloth formed over

four main supporting ribs. A ring stiffener is used at the aperture

plane. The epoxy-graphite construction provides a lightweight structure.

The antenna shell and feed tube weight is 3.7 pounds. The monopod feed

support edge mounting prevents the feed from mechanically loading the

l	 reflector surface by attaching to the same edge support structure used

for the parabolic surface. The overall depth of the antenna assembly

is less than 12.5 inches, allowing the required envelope clearance on

each side of the antenna during stowage. Figure 5 illustrates the

antenna structure.

2.1.2.1.2 Monopulse Feed

The radiating feed elements are printed circuit dipoles. Thin

copper clad stripline material is etched to firm the dipole on one side

of the dielectric and the balun circuit on the other side.

The monopulse elements and sum feed are shown in Figure 5. The

four monopulse elements are single dipoles giving fixed linear polariza-

a quarter of a wavelength above

housing for the monopulse cir--

probe fed horn. This quadridged,

inch diameter aperture and fits

channel dipoles and is flush with

tion. They are located approximately

a ground plane formed by the aluminum

cuitry. The sum element is a crossed

circular waveguide radiator has a 0.5

into the opening between the tracking

the ground plane.

2.1.2.2 Rotary points

x.

Two channels of RF energy traverse the dual-axis gimbals. The

sum channel remains isolated from the difference channel in a dual-

channel rotary joint, which consists of two rotary joint subassemblies,

one for each axis. These subassemblies are available as reliable off--

the--shelf components. Only minor modifications in the internal bearings

are required to satisfy the Shuttle temperature and vacuum requirements.

All rotary joint interconnections are interior to the gimbal

assembly housing to minimize length and provide environ.ental protection.

All exposed surfaces are gold plated and the interior of the gimbal is

vented through desiccant filled filter cartridges. Dry sealed, lead

coated steel bearings with lead-tin-bronze retainers are used. Pres-

sure release vents are provided on both sides of the bearings to minimize

r`.
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Figure 6. Antenna Feed

air in--rush across bearings during reentry pressure equalization. Wave-

guide windows at input and output prevent circulation of dust beyond the

unsealed area.

2.1.2.3 Structure

The Deployed Assembly structure consists of three basic ele-

ments: the base pedestal that bolts to the Shuttle deployment mechanism

and contains the electrical connector interface; a structural frame into

which the DEA is secured; and a gimbal mounting bracket. These three

elements of the structure are electron beam welded together to form a

single unitized assembly.

The U channel of the frame provides the DA cable harness wire

paths, the gimbal connector bulkhead, and supports the thermal shields

located around the periphery. Attachment of the DEA within this frame

is by 24 bolts passing through both the DEA radiator plate and the frame

lip, and held by self-locking nuts in 19 places. The remaining five DEA-

to-frame fasteners are blocked by the base pedestal or the gimbal mount

and threaded into blind hole installed locking inserts.
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All exterior surfaces of the structure assembly are covered

with 0.005" silvered teflon thermal finish material. All lightening

holes in the base pedestal are closed with a film of this material to

prevent the entrance of solar energy (direct or reflected) into the

interior cavities.

In addition, the exposed portions of the gimbal and antenna

support arm are painted with a white silicon thermal control paint.

Active thermal control is utilized for cold conditions. Sen-

sitive items on the gimbal that need to be kept above the -65°F survival

level are the encoders, the rotary joints, and the waveguide switch.

[eaters and thermal blankets are located to protect these items.

2.1.2.4 Gimbals

The DA gimbal assembly consists of the two-axis, servo-controlled

rotating mechanical and electrical interface between the deployed boom

structure and the antenna. Included are torquers, bearings, shaft

encoders, waveguides, coaxial cables, and other cabling. A locking

device secures the assembly in the stowed position. Minimum gimbal

cost, weight, and trunnion obscuration are achieved with the edge-

mounted antenna configuration.

The off-center gimbal configuration allows a maximum size (36"

diameter) narrowbeam antenna. Disturbance torques due to Shuttle accel-

erations are negligible; therefore, a centered load is not an operational

constraint.

Cabling used to pass through the gimbal is a printed circuit

flat ribbon carrying 55 conductors (20 shielded groupings), and two

RG 178 coax leads. The cable terminates at a terminal board on the

gimbal output where the hook-up is made for distribution to the various

locations on the gimballed load.

2.2	 Avionics Day Assemblies

2.2.1	 General Product Design

2.2.1.1	 Chassis

Although the EA-1, EA-2, and SPA chassis are different parts

(different connector patterns and different SRU/wire wrap plate mount-

ing patterns), the general design is the same for the three units. The

r
r:
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chassis is a dip-brazed aluminum structure (see Figure 7). There is

a solid frame around each of the two access openings (SRU and wire wrap

plate access), two solid end panels, and side walls consisting of two

0.040 aluminum sheets brazed to a corrugated sheet of 0.010 thick

aluminum (6061-T6 alloy).

Provisions have been included in the design to avoid trapping

brazing salts in the hollow side walls. Also, none of the machining

operations cut into a brazed joint, so that brazing salts entrappdd

in the joint are not exposed to a corrosive environment.

A machined datum A is shown upon which the interconnection plate

ultimately will be fastened. Both the upper and lower surfaces are

machined from the A datum with a surface roughness compatible for the

environmental seal integral with the two covers. Two holes that accept

nonconductive registration pins are drilled in the A datum plane. These

two holes constitute a datum point and line for all subsequent holes

numerically machined for bushings or connectors in the chassis structure.

After machining, the chassis is chromate coated per MIL-C-5541,

CL 1A, and the exterior surfaces are primed and painted. The structure

is also sealed per MIL-STD-276, Method B, to ensure against gas leaks

at any of the brazed interfaces.

The two nonconddctive pins also align the SRU guide structures

during the bonding operation, as well as the interconnection plate when

installed. This control ensures precise alignment within allowable

tolerance buildups. A fixture is used during the bonding operation to

ensure accurate alignment with respect to the tooling pins for the wire

wrap SRU interconnection plate.

All fastener holes for the enclosure covers are either outside

the walls or terminated as blind holes. Self-locking inserts of the

Rockwell International MD115-2002 series are used throughout. The only

holes that penetrate the cavity walls are for hermetically sealed front

panel connectors.

2.2.1.2 Wire Wrap Assembly

The wire wrap SRU interconnection plate is machined from 6061-176

aluminum alloy. The plate is 0.080 inch thick with 0.30 inch high stif-

fening ribs between SRU connectors. This design will adequately limit
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deflection of the plate when the SRU connectors are engaged with or

withdrawn from the receptacles. (SRU contacts are a flat blade design,

and the receptacles are a tuning fork design with a 0.025 square tail).

The wire wrap plate is electrically tied to the chassis, and

separate bus strips are provided for +5 volts and digital return (D-RTN)

signals. Each bus strip is an aluminum strip with a cross-sectional

size of approximately 0.060x 0.40 inches. The bus strips are bonded

to the plate with epoxy-glass prepreg material. Electrical connection

between each designated contact and the appropriate bus strip is made by

installing a beryllium copper bushing over the 0.025 square contact tail

and pressing this bushing into a hole in the bus strip (see Figure 8).
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Finish on the plate and both bus strips is a Type II anodic coat-

ing per MIL-A-8625, except for the holes and selected areas on the plate

which have a Class lA chromate coating per MIL-C-5541. The anodic coat-

ing is applied before bonding, and the chromate coating is applied after

bonding and drilling.

A separate harness is used for connections between the front

panel connectors and the wire wrap plate. There are three M55302/66-50S

connectors and three M55302/66-60S connectors on the harness for mating

to receptacles (commercially identified as the Airborne WTAV**PW40JL

series) on the wire wrap plate. The receptacle reference designators

are marked on the plate, and the harness will be formed and tied so as

to prevent incorrect engagement of the harness connectors.

The 28-volt input power, motor driver output power, and signals

on coaxial cables are routed directly on separate harnesses without going

through the wire wrap interconnect wiring. These signals each have

special characteristics (high current, high frequency, and/or EMI
source/susceptibility) which can be handled best in this manner.

Cutouts in the plate provide for a clearance hookup of all S MA

coaxial connectors. The coaxial connectors extend from the SRU core

through the interconnection plate to facilitate making this connection

using conventional tools (open-end wrench).

All wire wrap conductors are dressed and tied to the plate to

prevent cold flow or abrasion shorting over extended periods of time.

After the plate is wired and electrical integrity  is_ veri fied,_.
the wire wrap pins and exposed conducting surfaces are conformal coated

to eliminate shorting in a zero gravity environment by a foreign object.

Rework procedures will allow modification to the canformally coated pins

if such modification is required during the life of the LRU.

2.2.1.3 SRU

The typical SRU (see Figures 9 and 10) consists of an aluminum

core with a printed wiring board (PWB) bonded to each side and a'connec-

tor fastened to one edge. The core is a T-shaped part with two captive

mounting screws (commercially identified as Deutsch HJCT-7800-8-B-2.5)

and provisions for supporting the SRU connector. The two mounting

screws provide force for engagement and disengagement of the SRU
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connector and for ensuring a good interface for heat transfer. Since

the aluminum core is the primary thermal path for cooling the components,

core thickness is dictated by the SRU power dissipation.

Each PWB is a 5.3 x 8.4 inch multil ayer board (4, 6, or 8 Iayers)

with an overall thickness of approximately 0.60 inches. The boards

are made from polymide-,glass laminate material, and the exposed wiring

lines are solder plated (solder subsequently is fused). The boards are

designed for surface mounting of all components, and the plated through

holes (PTH) are not filled.

The PWBs are simultaneously bonded onto the core, in front-to-

back registration under heat and pressure, maintaining electrical isola-

tion from the metal core but retaining thermal conduction, with a poly-

sulfide adhesive-impregnated material (Hughes Aircraft Company, HMS 16-1965,

Class 1). This material provides the bonding agent and also an insulator

between wiring lines and the SRU core. Other considerations are rela-

tively low cure temperatures (200°F or less) and low bonding pressure

(not more than 15 psi). These factors make it practical, if necessary,

to remove and replace one PWB on a completed SRU without damage to the

assembly or the components on the opposite PWB.

The SRU connector is fastened to the core with three screws.

Tails from the connector blade contacts are preformed to fit against

pads on the PWBs, and these contact tails are then reflow soldered onto

the PWB pads.

Each SRU connector has two keying pins which establish a go/no-go

engagement of the connector contacts. In addition to this mechanical

keying system, there is a color stripe painted on the top of each SRU

core in a manner such as to make a single diagonal line in the LRU.

Also, the SRU reference designator is marked on the SRU core and on

the wire wrap interconnection plate.

Electronic components are attached to the PWBs by reflow solder-

ing preformed component leads to PWB pads. Flatpacks and other flat-

bodied components are bonded to the PWB with the polysulfide adhesive-

impregnated material. Larger round-bodied components and can-type

devices are bonded to the PWB with an alumina-filled polysulfide paste

(Hughes Aircraft Company, HP16-103, Type II). After SRU test, the PWBs

and components are conformally coated with a polyurethane coating material.

p
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2.2.1.4 Low Voltage Power Supply

The EA-1, EA-2 and SPA low voltage power supplies are basically

the same physical design for all three units. The power supply module

(see Figure 11) is Ppproximately 9.7 x 5.8 x1.95 inches in size and weighs

about 3.0 pounds. Other physical design features include (1) machined

aluminum chassis for structural support and minimum thermal impedance,

(2) single unit connector, and (3) captive fasteners for added maintain-

ability.
An extensive effort was made to achieve commonality within the

three modules to both reduce design cost and t11e number of spare parts

required during the field support period. Over 98 of the parts are

common to all three designs. The linear regulator/logic printed circuit

board is identical in all three designs. The major differences in the

three designs is the converter transformer secondary output voltage

forms which are designed to meet the requirements of each LR1.l.

Internal to each module are heavy magnetics, rectifying diodes,

and power transistors. Certain portions of the circuit are packaged

using printed circuit board (PCB) techniques, while the heavy components

and most of the high thermal dissipating devices are mounted directly to

the aluminum chassis. Those circuits which are mounted directly to the

chassis are the line filter, pass stage and driver transistor for the

linear regulator, the converter transformer and switching transistors,

and the inductors used for the filtering of the converter transformer

outputs.

Four PCBs are also used in each unit. These boards are the
ei

interconnect board, linear regulator/logic, rectifier and resistor/

capacitor. The interconnect PCB is the hub of the design because it

serves to distribute voltage forms to various physical locations

throughout the unit, including the inputs and outputs through the con-
nector to which it is reflow soldered. The rectifier PCB contains the

rectifiers for the output voltages of the converter transformer, while

the resistor/capacitor PCB contains the capacitors for the same output

voltages. Also included on the resistor/capacitor PCB are bleeder and

test access resistors.

D
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2.2.1.5 SRU, Chassis, and hire Wrap Plate Interface

Figure 12 shows details of the interfaces between the SRUs,

chassis and wire wrap plate. Two edges of the SRU. are held in the

chassis guides which locate the SRU relative to the wire wrap plate.

Details of the guides are shown in the inset section A-A. The guides

consist of aluminum extrusions containing a low coefficient of friction

sliding interface and a resilient backup material to accommodate adjust-

ments in tolerance buildups. As mentioned earlier, the precise location

of the bonded extrusions is fixtured from the two index holes in the

A datum plane.

Details of the SRU edge connector mating with the wire wrap

plate mounted connector are shown in the other inset of Figure 12. The

force for engagement and disengagement of the connector is developed

with No. 8 jacking screws on the SRU. The jacking screws engage captive

inserts in the LRU chassis edge. They also insure good thermal contact

from the SRU to the chassis.

The wire wrap pins are recessed below the chassis flange to

prevent damage to the pins during bench handling.

2.2.1.6 Environmental Sealing

As described in the chassis section of the general product

design previously, the chassis is sealed at the brazed structure and

all fastener holes are outside the wails or are blind holes. O-ring

seals are used at the front panel connector openings. The covers have

seals molded into channels milled around the two cover perimeters.

The LRU is filled with a gas mixture of 99% nitrogen and 1%

helium. Internal pressure is 15.2± 0.3 psia. Sealing has been designed

to achieve a leak rate of less than lxl0
-4
 cc/sec of nitrogen in the

pressure environment. The avionics equipment bay pressure environment

specified while operating is 12.36 psia continuous, 8.0 psia for less

than 165 minutes, and 18.0 psia maximum. For nonoperating conditions

of transport (at 36,000 feet altitude), it is 3.28 psia and 35.8 psia

during Orbiter cabin leak test.

2.2.1.7 Thermal Analysis

Heat generated in the EA-1, EA-2 and SPA LRUs is dissipated to

the Shuttle cold plate. The path the heat energy takes to this sink



SRU CONNECTOR

IE-WRAP
ATE

IEPREG
SULATOR

JS STRIP

ING

L-MAJ

WALL

'w.

T	

:7

1M	 Jq	
+r	 do	 •	 +

ALUMINUM EXTRUSION
(BONDED TO CHASSIS WALL)

.025 SQUARE
WIRE-WRAP TAIL

N

Figure 12. SRU Chassis Wire Wrap Plate Interface	 ^'



23

was analyzed to determine the resultant temperAture. A model analysis

modeling the thermal resistances is illustrated in Figure 13. Heat is

conducted from the SRI! core to the thermal interface at the jacking

screws of the SRU. From there, it goes into the chassis side walls to

the LRU cover through a dry cover to chassis interface. Thence, the

heat spreads laterally through the LRU cover while being simultaneously

shunted to the Shuttle cold plate, also a dry interface. Both df •these

dry interfaces are influenced by the number of fasteners available to

help conduct the heat.

Specifications for the Shuttle cold plate in the avionics bay

while operating are 35°F to 120°F. A summary of the expected tempera-

ture rise given to thermal conductances of about an order of magnitude

range and operating voltages of 28 and 32 volts is given in Table 1

for the EA--2 SRUs.

2.2.2	 EA-1 LRU

An EA-1 LRU side view showing the 10 SRU modules in place is

given in Figure 14. Mechanical details of component heights, connectors

and module enclosures are shown.

2.2.3	 EA-2 LRU

The EA-2 LRU is similar to that of EA-1 with 9 SRUs. No similar

mechanical drawing was available for detail.

2.2.4	 SPA LRU

The SPA LRU side view is shown in Figure 15. Nine SRUs and other

mechanical details are shown.

3.0	 SUMMARY

The above sections are a condensation of reports and engineering

data which describe the product design of the deployed and avionics bay

assemblies. Five basic units covered are the DEA, DMA, EA-1, EA-2, and

SPA. Consideration is given to the mechanical design, produceability,

thermal design, and environmental sealing.

Many of the proc:uct design -Features are used in common and thus

are described in general sections rather than duplicated in describing

each subunit.
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Table 1. Summary of EA-2 SRU Temperature Rises

Chassis/14odule 	 Interface
Power AT Above Cold Plate

Dissipation
(watts) h= 0.549 W/in 2 °C h= 5.1	 W/in 2 	 °C

Module Assembly
Designation Module Name Number 28V 32V 28V 32V 28V 32V

A l Analog Processor 3555610 8.0 8.0 4 4 1 l

A 3 Preprocessor Control 3555620 7.0 7-nu 9 9 4 4

A 4 Digital	 Timing 3555630 5.0 5.0 10 10 5 5

A 5 Filter Processor 3555640 2.0 2.0 10 10 4 4

A 6 Mag.	 PDI/Log Control 3555650 1.0 1.0 10 10 4 4

A 7 Detect.	 Disc.	 & ACC 3555660 2.0 2.0 10 11 4 Q

A 8 Range & Velocity 3555670 1.0 1.0 10 11 4 4

A 9 Angle & Serial	 Data 3555680 2.0 2.0 11 12 4 4

A13 Low Voltage Power Supply 3555690 38.05 44.35 27 31 13 15

TOTAL POWER 66.05 72.35

N
U7
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