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	1.0	 INTRODUCTION AND OVERVIEW

This is the final report for Phase I of a study task directed

towards developing a conceptual design of a small, lightweight range and

range rate radar sensor system to meet NASA's requirements for accurate

short-range and velocity measurements in an orbital environment [1]. Within

the context of the requirements, the "short" range implies system oper-

ation at 0 m to 1850 m (6000 ft) and "accurate" implies a range measure-

ment to within la accuracy of 0.20 m (0.67 ft) and a range rate (velocity)

measurement to within la accuracy of 0.01 m/sec (0.033 ft/sec).

	

1.1	 Phase I Objectives

Phase I of this program is the first phase of a two-phase con-

tractual effort. The objectives of Phase I were fourfold:

(1) To evaluate various sensor concepts

(2) To make feasibility investigations

(3) To perform trade-off assessments, and

(4) Based on the findings of (1), (2) and (3), to provide a

technical recommendation for a baseline system.

As indicated by the contents of this report, all of these objec-

tives have been met and, consequently, the Phase II task dealing with the

actual fabrication of a breadboard model can continue along the proposed

schedule. The major portion of the Phase I effort was performed by

Axiomatix with support from Kustom Electronics. Phase II of this pro-

gram will be carried out primarily by Kustom Electronics, with partial

support from Axiomatix

	

1.2	 Phase I Feasibility Study Methods

To accomplish the objectives of Phase I, the Axiomatix technical

staff used a combination of several methods available to them. These
included:

(1) Literature search and vendor contact

(2) Mathematical analysis, and

(3) Design trade-off evaluation.

The primary purpose of the literature search was to determine if

any of the state of the art techniques are applicable to the design of

a
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the sensor system. A secondary purpose was to eliminate from consider-

ation the techniques which were incompatible with either the sr.ecifica-

tions or a cost-effective approach towards achieving these specifications.

Vendor contact provided the necessary inputs for assessing the state of

the art of the microwave sensor technology.

Mathematical analysis was one of the most powerful tools in

determining quantitatively the impact of various system parameters upon

the system performance goals. The scope of the analysis ranged from

such system performance-oriented problems as the effect of phase noise

on the CW radar performance to such ^,,.^ecific implementation-oriented

tasks as an analysis of a phase-locked loop response to a frequency step

input.

Of the greatest importance for accomplishing Phase I objectives

was the the system design trade-off evaluation. This evaluation was

based on the results of the literature survey, examination of the analy-

sis data, and expertise of AXiomatix and Kustom Electronics personnel in

the area of radar sensor development and design. The synergetic inter-

action between the scientists and engineers of the two companies resulted

in a baseline design compatible with state of the art technology.

1.3	 System Parameters Summary

The baseline system which resulted from the efforts of Phase I

Is a K-band FM-CW radar system utilizing an all solid--state design. A

summary of the salient system parameters is presented in Table 1.

Table 2 provides a comparison between the measurement accuracies speci-

fied by NASA and those estimated for the breadboard performance. It is

important to point out that all system performance parameters and, spe-

cifically, the measurement accuracies (NASA and predicted) are based on

radar performance with an idealized 10 m2 (107.7 ft2 ) target.

From the data presented in Table 2, it appears that the velocity

accuracy requirement can be met at the maximum system range of 1850 m

(6000 ft). The detailed breakdown of velocity error contributions to

the total velocity error is given in Table 8. Paragraph 2.6.2 provides

a detailed description of the sources of velocity error.

Estimates of the range measurement accuracy indicate that, at

the maximum range (1850 m), the specified accuracy cannot be met.

A	 --	 h



Table 1. Ranging/Tracking System Parameters Summary
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Performance Characteristics

Detection Range(P
D
=0.90 for 10 m2

g  
	 ideal target):

Velocity Capability:

Acquisition Time:

Accuracy (3a)

Range (Table 7):

Velocity (Table 8):

Readout Update Range:
Range
Range Rate

System Characteristics

Operating Frequency:

Polarization:

Antenna:

1850 m (6000 ft)

x-6.1 m/sec (±20 ft/sec)
<30 sec

0.80 m (2.62 ft) at 1850 m (6000 ft)
0.61 m (2 ft) at 1240 m (4067 ft)

0.02 cm/sec (0.62 ft/sec) at 1850 m
(6000 ft)
and V= x-6.1 m/sec (20 ft/sec)

One per second
One per second [V ? 0.1 m/sec (0.33 ft/sec)]
One per 10 seconds (V< 0.1 m/sec)

24 GHz

Ci rcul ar

Type	 Horn
Beamwidth (conical angle, 3 dB)	 120
Gain	 25 dB
Scan	 Manual

Transmitter Characteristics

Average Power:	 200 mW

Frequency Stability	 x-2.5 x 10 - 3

(Long-term and temperature):	 (Of= ±50 MHz at 24 GHz)

Receiver Characteristics

Receiver Type:	 Homodyne (Zero IF)

Receiver Noise Figure:	 22 dB at 1 kHz
(For details, see Figure 10)

Frequency Modulation Program

Modulation Format: Linear FM-CW

Deviation (AF): 100 MHz p-p

Repetition Frequency:
R< 500 m 12 Hz
500 m< R< 1850 m 3 Hz

Modulation Slope:
R< 500 m 2400 MHz/sec
500 m < R < 1850 m 600 MHz/sec

r^
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Table 2. Comparison of Specified and Predicted System Performance
With an Ideal 10 m2 Target

Specified Predicted for
Parameter DO Breadboard (3a)

Range 0.61 m 0.80 m

Accuracy (2 ft) (2.62 ft)

0.61	 m

(2 ft)

Velocity 0.03 m/sec 0.02 m

Accuracy (0.1	 ft/sec) (0.62 ft/sec)

Comments

At R= 1850 m (6000 ft),

i.e., maximum range

At R= 1240 m (4067 ft)

At R= 1850 m (6000 ft)

and ±V= 6.1 m/sec

(20 ft/sec), i.e.,

maximum velocity

NOTE: Both range and velocity predicted accuracies are based on 0.5 sec

averaging time interval and an update rate of one per second.

^:....	 ..ir	 ..^-^	 ;^.a:^:1J'+4G:.^:^f"'_._^"^'^?i.'.:fi}r'_'.!-...+li.i',- •c•-^«.+—..,...._..,.^..s..- ^,._..,_...^..._,^...,, M.._,,. 	 ,J
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The major contribution to the excessive error is the random fluctuation

caused by mixer flicker noise; in other words, this is a signal-to-noise

ratio limitation. As shown in Table 2, the required range accuracy can

be met at a closer range of 1240 m (4067 ft). Considering that the

range measurement error generally is proportional to range, such range

error behavior is not uncommon. R detailed discussion of the range

error contributions is given in Paragraph 2.6.1.

1.4	 Functional Description of the Proposed Radar Sensor System

1.4.1	 Block Diagram Description

Figure 1 shows a functional block diagram of the proposed radar

sensor system. Basically, the system is an FM-CW solid-state K-band

(24 GHz) radar which extracts both the range and velocity information

from the baseband signal:; (i.e., tones) appearing at the output of a

homodyne (i.e., 0 IF) receiver. Generation of all the timing signals,

as well as processing of the raw received data, is performed by a micro-

processor which forms the System Controller and Data Processing (SCDP)

unit.

The transmitter portion of the radar sensor system is comprised

of a modulation waveform generator, two Gunn K-band oscillators, a

microwave mixer and a counter. The modulation waveform generator pro-

vides the waveform required for varying the frequency of the radar

transmitter. The waveform is a triangular function whose frequency is

selected according to the mode of the radar operation. This waveform is

applied to the frequency control terminal of a K-band voltage-controlled

oscillator (VCO), thus resulting in a frequency modulation of the oscil-

lator's output.

The frequency-modulated K-band carrier is then applied via a

turnstile diplexer to the radar antenna. The nominal (unmodulated) RF

frequency of the K--band transmitter is 24 GHz and the baseline output

power is 200 mW.

To provide for accurate control of the transmitter frequency

deviation 4F (nominal AF= 100 MHz), the RF output of the transmitter VCO

is sampled and mixed with an RF signal developed by a stable, high-Q

Gunn-type lock local oscillator (LO). The frequency of the LO is such

.	 1
-	 J.
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a	 that the lower difference frequency between it and the frequency-modulatedn

VCO varies between 500 and 600 MHz, approximately. The difference fre-

quency is applied to a 16-bit counter which determines the lower and

k
upper extremes of the frequency excursion of the transmitted signal.

The frequency counts corresponding to the lower and upper extremes are

performed upon the "Frequency High" and "Frequency Low" commands devel-

opedby the modulation waveform generator. These commands are delivered

to the system controller which, in turn, commands the modulator to

either continue the frequency sweep in the opposite direction or hold

the transmitter in either high- or low-frequency extremes. By such con-

trol of the transmitter mn Aulation waveform, either an FM-CW or a simple

rW signal can be provided by the transmitter. As explained in Para-

graph 2.5.2, the CW signal can be used to provide accurate velocity

readings at moderately short ranges.

The exact time duration measurement of both the frequency up and

frequency down swings is provided by counting the number of pulses devel-

oped by a time-base generator during the frequency sweep interval. This

number is measured by time-sharing a single 16-bit counter between the

RF frequency and the time-reference pulse counts. The purpose of the

precise time interval measurement is to obtain an accurate value of otm

which, combined with an accurately measured value of AF, can provide

the data processor with all the information required to calculate the

frequency sweep slope S in MHz/sec, the latter being defined as AF/Atm.

Because the slope plays an important role in determining the accuracy of

the proposed system, such "dynamic" determination of the slope eliminates

the major bias inaccuracies associated with component value changes in

the FM-CW transmitter circuitry. This is explained in more detail in

Paragraph 2.6.1.3.

The receiver of the proposed radar sensor system is a homodyne

'

	

	 receiver, also known as a "0 IF" receiver. As shown in the block dia-

gram, the receiver consists of a mixer followed by an amplifier. The

amplifier also includes the required filtering and an Automatic Gain

Control (AGC) function. A particular set of modulation formats and the

range of doppler frequencies encountered with a 24 G11z radar system

places the range of the filtering requirement of the receiver amplifier

at near--zero Hz to about 9000 Hz.

^— — -ate.	 Y +. - ^.	 _.._.. r.._.-,-_. ..,.. ^....+.w+.i.^rr:^•`	 v_^=F-._. .e'l, !!:Y.	 ^. ^`fv X3+'^1-:^^y.^^...!+^!^rr 	 .t .....,. :i_	 ....	 .._ _^.....,.. ._... _., _.^	 ..^ _ ..._^.._ _._.__...__. _.
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As shown in Figure 1, the receiver mixer has only one RF input.

This is because the second signal, i.e., the local oscillator, is an

attenuated fraction of the transmitted signal itself. The controlled

degree of the transmitted signal attenuation is provided by the turn-

stile diplexer unit. This unit delivers the 1100 output to the antenna

and couples only a small fraction of the transmitted signal to the

receiver mixer. There this local reference is mixed with the signal

received from the target, thus resulting in the baseband tones which are

applied to the receiver amplifier and filter.

The initial acquisition of the baseband tones (or a single tone,

as the case may be) is performed by the two frequency tracking units.

These tracker units are under the control of the microprocessor and,

upon completion of target acquisition, output to the processor the

frequencies of the target tones being tracked. As described in Sec-

tion 2.1, the output of the receiver may be either a single tone for

the case of a stationary target or two tones for the case of a moving

target. With CW modulation, a single tone indicates a moving target.

The frequency information obtained by the frequency trackers is

analyzed by the microprocessor for the signal quality and, if the latter

exceeds a preset criterion, the frequency information is converted into

the range (R) and range rate (R) signals. These processed and scaled

signals are then applied to the display, which permits viewing of the R

and f information along with the direction indication for R. The "Data

Good" indicators are also included as a part of the display.

Note that, except for the "Initiate Measurement" command and the

"Known Range" data, the sensor system does not require any external com-

mands. This is because all the system timing and data processing is pe r

-formed by a microprocessor--based System Controller and Data Processing

unit. The algorithm controlling the operation of this unit is described

below.

1.4.2	 System Controller Floe Chart Description

Figure 2 shows the simplified flow chart for the system control-

ler algorithm. As shown in the figure, the first step of the algorithm

deals with the system power turn-on procedure and initialization. This

is carried out before any other information, such as the "Initiate
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Measurement" (IM) command and the "Target Range" (TR) data (if known

a priori), can be entered into the controller.

Following initialization, the system controller is ready to

accept the external commands and/or data. Specifically, upon receipt

,i

	

	 of the IM command, the system performs an automatic range search for the

target signal. As described in Section 2.4, in the absence of a priori

target range information, the radar system automatically searches for

targets over a range interval from 0 m to 1850 m (6000 ft), the latter

being the maximum specified range of the system. This search is per-

formed sequentially over the following three range intervals:

(1) 0 - 50 m (164 ft)

(2) 50 m - 500 m (1640 ft)

(3) 500 m - 1850 m (6000 ft).

For each of these intervals, an optimum modulation format is selected by

the controller and an optimum search strategy is used. The total search

time (T 1 ) is less than 30 seconds.

If the target is not detected on the first pass of the multistep

search, the entire search routine is repeated as long as the IM command

is present.* When the target is detected, the frequency trackers deliver

a Frequency Lock signal to the controller. The controller, in turn, sets

the parameters of the trackers to the TRACK mode, thus initiating the

range rate (velocity) tracking. Meanwhile, the data processor analyzes

the tracked data for consistency (i.e., "quality") over a period of T2

seconds.

If the data is Consistent over each consecutive one-second data

update interval, the data processor makes a "Data Good" decision and pre-

sents the computed range and rang;; rate information, along with the cor-

responding "Data Good" flags, to the display. If the data good criterion

is not met after the transition to the tracking mode, a signal search is

initiated over a limited frequency region surrounding the frequency at

which the initial target detection took place.

Reacquisition of the target within a preset interval of time

r

One can visualize the IM command as a signal generated by an
operator pushing on or holding down a trigger--like switch. while the
operator aims the antenna at the target.
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	 returns the system to the track initiate phase with the subsequent test

for data quality and presentation to the display. Conversely, a failure

to reacquire the target brings the system to the beginning of the main

`	 search routine.

In addition to the short-term data-good test for T 2 seconds (one

second), a longer test of the quality of the data is performed. The time

g

	

	 constant, T39 of this test is nominally 5 seconds and is chosen to elim-

inate display responses to operator movements which may accidentally

result in a loss of signal strength due to considerable antenna miss-

4

	

	 pointing. In other words, this additional time constant prevents the

fluctuation of the display during momentary short-term signal fades. If

the "data good" criterion fails for more than 5 seconds and if the IM

signal is still present, the system is returned to the starting point

(point (D) 
of the main search routine and the entire search procedure

is repeated.

Again, it must be emphasized that the acquisition of the target

is predicated upon the availability of angular (i.e., direction) infor-

mation to the target. This means that either an operator points the

antenna at the target and generates the IM signal or the vehicle on

which the sensor is mounted is oriented so that the antenna is directed

at the target and the IM signal is generated remotely.

In comparison, the other target information, such as range and

range rate, is not required by the system for the purpose of target

acquisition. However, if a priori range information is available for

target acquisition, the system controller algorithm will make use of

such information to shorten the initial acquisition search sequence.

The degree of such reduction of the acqusition time will depend, of

course, on the actual range to the target.

1.5	 The Report Overview

Section 2.0 which follows contains the major portion of the

detailed technical material of this report. Section 2.1 presents a

discussion of the modulation formats selected for the sensor breadboard.

Various parameters associated with the linear FM--CW radar are defined

and their relative significance with respect to the system operation

is explained.

y,
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Section 2.2 presents the system range equation and corresponding

power budget estimates for system operation at various RF frequencies

ranging from X-band ( = 10 GHz) to V-band ( = 70 MHz).	 The advantages of

S operating the proposed breadboard at a K-band frequency ( = 24 GHz) are

described.	 Also included in Section 2.2 is a detailed discussion of

the various noise mechanisms affecting FM-CW homodyne radar.	 There

z it is explained why the mixer flicker noise is the dominant limiting

I' factor rather than thermal noise.	 The estimated values of the power

received (P r) over the flicker noise density [Np(t)] are computed and

plotted for the purpose of modulation format optimization.

This geometrical aspect of the range and range rate measurement

configuration involving the radar sensor and a target are described in

Section 2.3.	 From the postulated geometry, the order of magnitude of

the time available to acquire a moving target and to output the range

and range rate estimates is determined.

Section 2.4 contains a detailed description of the techniquesr
used for detecting a moving target and for locking on to the appropriate

spectral components (i.e., the range and velocity tones) present at the

receiver output. 	 The target detection and acquisition algorithm is

explained in terms of the three-step range search procedure proposed

r for the radar sensor breadboard. 	 The estimates of the times required to

complete each of the steps are derived and, from these estimates, the

total search time of about 30 seconds is calculated.

The target tracking, which follows the target detection and

_ acquisition phase, 	 is described in Section 2.5. 	 Specifically, the

target design philosophy is explained and the tracker performance esti-

mates are presented.

Section 2.5 describes the various system errors which affect

the accuracy of the range and range rate (velocity) measurements.	 Pro-

posed methods for minimizing these errors are outlined and explained.

A tabular summary of these errors is presented.

The system implementation details are presented in Section 2.7.

Specifically, the implementation of such critical 	 subunits as the trans-

mitter and modulator, receiver amplifiers and filters, and frequency/phase

tracker are described.

Section 2.8 addresses the special problem areas unique to the

c
^.-



f	 13	 `,!

proposed system. The specific areas requiring particular attention are

the near-zero velocity and near-zero range measurements. Methods for

resolving these problem areas are presented.

Section 3.0 of this report contains the conclusions and recom-

41	 mendations based upon the findings of the study.

In addition to the main body of the report, several appendices

are provided. These appendices contain the detailed analysis used for

the support of the proposed radar sensor design philosophy. Appendix A

contains the analysis of the effects of phase noise on the performance

of an FM-CW radar. Appendix B presents a mathematical development for

analyzing spectral components of the FM-CW radar signal. The response

of a phase-locked loop to a frequency step is analyzed in Appendix C.

Appendix D presents the analysis of the linearity requirements for the

frequency modulation ramp waveform. The phase noise of a phase-locked

Gunn oscillator is given in Appendix E. Appendix F describes an experi-

mental test conducted by Axiomatix to verify the low velocity measure-

ment potential of a CW K-band radar. A recommended specification for

the performance of the Phase II breadboard is given in Appendix G.

Finally, Appendix H provides the bibliography of the literature sources

examined by Axiomatix personnel during the literature survey of the

program.
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2.0	 SYSTEM DESCRIPTION AND PARAMETER DEFINITION

2.1	 System Block Diagram and Modulation Formats

2.1.1 Functional Block Diagram Description

The proposed baseline system for ranging and tracking is a radar

which utilizes a linear FM-CW signal as the basic modulation format.

Figure 3 shows a functional block diagram of the proposed system. As

indicated in the block diagram, the frequency of a tunable transmitter

is modulated in accordance with a baseband waveform f i (t), the latter

being generated by the transmitter modulator unit. The FM-CW output,

T(t), of the transmitter is applied via a circulator to a common trans-

mit/receive antenna. Also, a portion of the transmitted signal, r(t),

is attenuated by an RF coupler and is applied to a mixer, where it is

utilized as the Local Oscillator (LO) signal.

The signal radiated by the antenna reaches the target, which scat-

ters and reflects it. The small portion of the reflected signal reaches

the transmit/receive antenna and is applied, via the circulator, to the

mixer. In the mixer, this received signal, y(t), is multiplied by the

relatively strong L0 signal, f(t). The result of this multiplication,

or mixing, is a baseband signal* whose frequency components extend from

0 Hz to some higher frequency defined by the modulation waveform, the

target range and the target velocity. 	 Because the LO frequency (with

the exception of the doppler shift and the shift due to the target round

trip time) is equal to the transmitter frequency, this type of receiver

is known as a "homodyne," or a "zero IF" receiver. The latter descriptor

implies that no intermediate frequency (i.e., IF) is used for the recov-

ery and amplification of the received signal.

The baseband output, X(t), of the mixer is lowpass filtered to

remove the out-of-band noise and is applied to the range and velocity

(i.e., range rate) estimators. The estimators extract the range and

velocity information from the baseband spectrum and output the processed

estimates of these parameters to a display. Both the transmitter signal

and the estimators are controlled by the system timing unit which provides

the required modulation format for the detection and tracking of targets

at the various ranges.

*
The double RF frequency term is filtered from the output of the

mixer.

^: ". ,.., ."..- —	 ^'r' ^. b"	 _--	 ^..w,..,_	 •.r•a	 ^.•:^-.^r^ „.^r:^"^'ii.^ 'r?r:.^:r^z_;»^n^^-^,^.... ....^..,.. T....,,. 	 _ ,.._s_,.^...^..^, ...y_.__. ^_._..._,,.	 ._._.. ,..



F

Circulator

fi (t)	 Tunable	
T(t)

No K--Band
Transmitter	 r—I

Antenna	
Target

r(t)I	 IY(t)

Velocity	 V(t)

Transmitter	 Mixer	
(Range Rate)

Modulator	 Estimator	 C(t

	

X(t)
	 Filter	 To Display

System	 Range

Timing	 Estimator	 R(t)

Unit

Figure 3.	 Functional Block Diagram of Radar Ranging and Tracking System

:r^



16

2.1.2 Modulation Formats

Consider, now, the modulation formats to be used with the proposed

radar sensor. These formats belong to the general class of linearly

varying FM-CW signals. The use of a sinusoidal modulation waveform is

not being considered for this system because of a potential difficulty

in resolving and tracking multiple targets [2].

2.1.2.1 Linear Triangular Modulation

Figure 4 shows the frequency-time pattern in an FM-CW radar

which uses the linear triangular modulation. Part (a) shows the rela-

tionship between the transmitter and the received signals. Because of

the homodyne configuration of the proposed system, the transmitted and

the local oscillator signals are the same (except for the power level)

and, therefore, the time-frequency relationship shown in part (a) also

applies to the LO signal/received signal pattern.

As a result of the mixer action, a beat note appears at the base-

band output of the mixer. For the case of a stationary target, such as

the case being illustrated in Figure 4, the frequency of this beat note

is proportional to the slope of the transmitter frequency modulation

waveform and to the round-trip time to the target. Expressed quantita-

tively, this relationship is

AF	 (2R _ 4R maFfr
= 1/2fm 1 c -	 c	

(la)

STd
	

(1 b)

where

f = frequency of the baseband beat note proportional to target
r range, henceforth referred to as "range frequency" or "range

tone"

fm = modulation waveform repetition frequency

R = target range in meters

c = 3 x 108 meters/sec.

Td = target round-trip delay time

AF = peak-to-peak frequency deviation, Hz

S = linear FM modulation slope, Hz/sec.
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It must be noted that, because of the periodicity of the linear

modulation waveforms shown in part (a) of the figure, the beat note

has two discontinuities for each full cycle of modulation. These

periodicity-related discontinuities in the time domain result in a dis-

crete line spectrum for the beat note in the frequency domain. Such a

discrete line structure of the target return spectrum ([31, also anal-

yzed in Appendix B) gives rise to what is generally referred to as the

"quantization error" of a linear modulation FM radar. The effect of

this quantization error on the system accuracy is discussed in para-

graphs 2.6.1.2 and 2.5.2.2 of this report.

When the target is moving and its motion has a radial component

along the direction towards the radar, the reflected signal will be

shifted in frequency by the amount quantitatively defined by the fol-

lowing expression:

2
fd T 2V	 c

Vf
+	 g	 (2)

where fd is the apparent shift in target velocity, V is the target veloc-

ity in m/sec (along a radial to the radar) and fo is the transmitter

frequency. The frequency shift fd is commonly referred to as the "dop-•

pler shift" and, depending on the direction of the velocity, this shift

can cause either an apparent increase or a decrease in the received

signal.

When the target is approaching the radar, the frequency of the

received signal is higher than the transmitted frequency. Therefore,

the output of the mixer, which is the difference frequency between the

transmitted signal and the received signal, contains a component propor-

tional to the doppler shift. Thus, for an approaching target and during

the positive-slope portion of the angle, the output of the mixer is

L	 I	 d	 2cfa
f	 St - S(t-T )

2Vfg
ST - c	 for V and S positive 	 (3)

-	 fr -fd .

The absolute brackets are used to indicate that, with a zero IF receiver,
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all the RF shifts appear only as positive frequencies at the baseband.

During the negative-slope portion of the cycle, the beat note

frequency for an approaching target is:

2Vfa
fU =	 -St - -S(t-Td) + c

2Vf0
- ST - c	 for, V positive and S negative

2Vf0
STd + c

	

-- f r + f d .	 (4)

The situation defined by (3) and (4) is shown in Figure 5. Part (b)

of that figure is particularly indicative of this time--frequency rela-

tionship at baseband. As shown there, the frequencies f  and FL refer

to the upper and lower frequencies observed for a particular target

situation.

For a receding target, the frequency-time relationship at base-

band is the reverse of that for an approaching target. Specifically,

the higher beat note will be developed during the positive-slope portion

of the cycle and the lower beat note will appear at the output of the

mixer during the negative slope. This "role reversal" relationship

between fU , fL , and the positive and negative slopes of the modulation

cycle provides the information required to determine the direction of

the target motion.

The range and doppler frequencies are extracted from f  and f  in

the following manner:

fU+fLfr =	 2	 (5a)

and

fU'f L
fd =	

2	
(5b)

The above equations indicate that some form of processing must be

performed on the output of the mixer prior to display of the range and

the velocity information. From part (b) of Figure 5, it is also evident

that fr and f  do not appear simultaneously, a fact which permits a

time--multiplexed estimate of these two frequencies to be carried out.

I r

W	 s
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The estimate of the required f r and fd can then be performed at the end

of the allowed averaging period.

For the system considered here, the range and velocity estimates

must be presented once every second during the actual ranging and track-

ing. This implies that about 0.5 second is available for determining f 

and fU . During the acquisition, however, the measurement intervals may

be longer due to the requirement to search out the initial range and the

doppler uncertainties. The subject of acquisition is described in detail

in Section 2.4.

Another modulation waveform which is commonly used with the linear

FM-CW radar is shown in part (a) of Figure 6. This waveform is usually

referred to as a "sawtooth" and it is characterized by a relatively fast

retrace cycle during which no valid data measurement is performed. With

the direction of the frequency deviation being one--sided, the doppler

shift cannot be separated from the composite range/velocity tone output

by the mixer. Consequently, to obtain the doppler tone, per se, the saw-

tooth FM waveform is supplemented by periods of pure CW transmissions.

During these periods, the radar system reads only the frequency shift due

to target velocity. This shift is then either added to or subtracted

from the composite tone measured during the sawtooth-modulated periods of

radar system operation.

Dote that the operation of either an addition or subtraction

implies a priori knowledge of the direction of target motion. Because

of this requirement, the sawtooth modulation is generally used for target

tracking in the cases where the target motion is either known or has been

determined by means other than a unidirectional sawtooth modulation.

Among the advantages of the linear sawtooth waveform are the ease

of generation and of slope control as well as certain unique spectral

characteristics of the target return tone signal. Because of these advan-

tages, the linear sawtooth modulation may be considered for use in the

Ranging and Tracking System to perform specialized functions, as described

elsewhere in this report.

To make the description of the sawtooth modulation complete, one

must explain the significance of the "flyback tone" indicated in part (b)

of Figure 6. As shown in the figure, this tone is generated right after

the retrace portion of the waveform, and is due to the mixing action of
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the "new" transmit cycle waveform and the target return due to the "old"

transmit cycle. For the system considered in this report, however, the

duration of the flyback tone cycle will be on the order of a few micro-

seconds ( R !5 2000 m), while the duration of the modulation cycle T  (i.e.,

1/fm) will be an the order of a few milliseconds (i.e., fm < 1000 Hz).

Consequently, during the period over which the flyback tone occurs, the

range and velocity estimators must be disconnected from the mixer output

to prevent spurious readouts.

2.1.3 Parameter Scales Definition

In the preceding paragraph, the operation of a linear FM-CW radar

system was described. It Was specifically pointed out that, with such a

system, both the range and the velocity information are contained in the

frequency of the baseband tone(s) which appears at the output of the homo-

dyne mixer. Consequently, to extract the necessary range and velocity

information, one must define the scales associated with both the range

and velocity tones.

2.1.3.1 Target Range Scale Considerations

For the target range tone, the scale is expressed in Hz/meter and

is obtained by multiplying the slope factor S by the round-trip time

required to travel to a target located at a 1 meter normalized distance.

Thus,

Range Scale = S 2R = S 
(2)_(I)

c	 3 x 108

	

= S x 6.7 x 10 -9 (Hz/m) 	(6)

where S is the FM slope in Hz/sec. Note that one can also define the

inverse range scale which is expressed in meters/Hz. In the design of a

linear FM ranging system, the scale is generally selected first, then

the appropriate slope is determined to provide the required range scale.

For example, let us determine the slope required to provide a range scale

of 4 Hz/m. Rearranging (6), we obtain

4

a'

s
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S = Range Scale* =	 AR	 _	 4

6.7 x 10-9	6.7 x 10 -9 - 6.7 X 10 9

5.97 x 10-8 Hz/sec

597 MHz/sec.	 (7)

Once the required slope is calculated, the minimum modulation fre-

quency can be determined by considering the practical limitations of the

transmitter. Of particular importance is the maximum frequency deviation

capability of the transmitting device.

In general, for the purpose of reducing the quantization error,

the total frequency deviation AF must be made as wide as possible and the

duration of the ramp as Iong as is practical. But, with a finite AF cap-

ability of the transmitting device, these requirements can be met only

with restrictions. For example, let us consider the case where the trans-

mitter deviation is limited to 

'

AF= 100 MHz. This may be typical of

solid-state Gunn oscillators [41, such as those considered for the pro-

posed system. Also, let us assume that we wish to operate the radar

with the aforementioned range scale of 4 Hz/m** which requires a slope of

597 MHz/sec. Referring to part (a) of Figure 4, one writes the expres-

sion for the lowest modulation frequency:

S
AF

- 1/2fm - 2f
m AF

or

f = S = 597 MHz/sec
m	 2AF	 2 x 100 MHz

= 2.985 Hz.

Thus, the minimum repetition frequency would be about 3 Hz. Note that

this is a lowest frequency, for there is no restriction on the higher

rates except that of the quantization error. Specifically, the range

scale could still be maintained with the higher repetition rates and

the same slope. The maximum deviation AF, however, would be reduced

accordingly.

In this report, the range and velocity scales are represented
by symbols A R and AV , respectively.

The corresponding inverse scale is 0.25 meter/Hz.

r

(8)
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or, 40,

NIL

2.1.3.2 Target Velocity Scale

The velocity scale for the radar system is determined by the

operating frequency of the radar as defined by (2). For the radar sys-

tem described in this report, the nominal operating frequency is at

24.0 GHz. Thus, the velocity scale is

Velocity scale = 2 
c 
0 = 2(lm/sec) 2.4 x IOIOHz

c	 3x 10$ m/sec

160 mHz c = AV	(9)

The corresponding inverse velocity scale, i.e., (A V ) -1 , is

0.00625 ( m/sec)/Hz.
It must be noted here that, with the exception of the carrier fre-

quency, which is generally determined by many other factors in addition

to the velocity scale, the designer does not have a simple control over

the velocity scale as he has over the range scale. This forces the

designer to pay particular attention to the absolute values of the dop-

pler shift tones generated by the receiver mixer. For the system con-

sidered here, the maximum target velocity is +6.1 m/sec. Therefore,

the relationship between the target velocities and the corresponding dop-

pler velocities is as shown in Figure 7. Note that, because of the homo-

dyne mixing, the positive and negative velocities appear on the same

(i.e., positive) side of the velocity axis. Consequently, determination

of the direction of the target motion must be performed by means other

than the simple doppler velocity measurement. Such means are described

elsewhere in the report.

2.2	 System Range Equation

2.2.1 The Range Equation

The range equation is the starting point of the design of a radar

system. Into this equation are entered all of the known or well--predicted

parameters. From this equation, the available received power, P r , is

determined as a function of the range and it is compared to the estimated

level of the system noise density, N O . The overall ratio P r/NO is then

used to characterize all other pertinent system performance predictions.
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The basic form of the range equation is given below:

PG 2  a2aL
`t	 Prec - (4n) 3 R4

where

Prec = received power (dBm)

t	 P = transmitter output power (dBm)
.7

!	 X = carrier wavelength (m)

R = range (one-way, m)

a = target radar cross-section (m2)
i

L = RF losses (dB)

From this basic range equation, the power budgets for the radar system

operation can be prepared in terms of the pertinent factors. Tables 3,

4, and 5 show the power budgets for a radar system operating at the K,

X, and V bands, respectively.

Although the K-band system is the primary candidate for the pro-

posed radar sensor system, the sample power budgets for the other bands

are included for comparison. In all three tables, the gain of the antenna

is assumed to be 23 dB, which corresponds approximately to a 12 0 beam-

width, i.e., the beamwidth used by the existing K-band equipment which

will be utilized for the breadboard construction. Also, all power budg-

ets shown are for the maximum radar operating range of 1853 m, i.e.,

1.0 nmi.

Although, from the standpoint of the received power, the X-band

system (Table 5) appears favorable, its dimensions are about 2.5 times

greater than those of the K-band system. Furthermore, the X-band dop-

pler velocities are 0.4 the value of those for the K-band and, thus,

they are subject to about 4 dB more flicker noise*.

At the other extreme, the 70 GHz V-band power budget estimate

shows at least a 17 dB disadvantage with respect to the K-band operation.

The -iajor portion of the apparent V-band disadvantage is that, for an

idemical beamwidth, the V-band antenna has a much smaller receive aper-

ture than that of an equivalent beamwidth (and gain) antenna at a lower

For discussion of the flicker noise, see paragraph 2.2.2.2.

z	 ..
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Table 3. Power Budget for a K-Band FM-CW Radar

Parameter Value Budget Entry

P 200 mW + 23 dBm

G 23 dB + 46 dB

A 0.0125 m (24 GHz) - 38.1 dB-m2

R 1853 m -130.8 dB-m4

(47r) 3 Constant - 33 dB
a 10 m2 + 10 dB

L 1.5 dB -	 1.5 dB

Prec
Power at input to mixer -124.3 dBm

Table 4. Power Budget for an X-Band FM-CW Radar

Parameter Value Budget Entry

P 500 mW + 27 dBm

G 23 dB + 46 dB

A 0.0286 m	 (10.5 GHz) - 30.9 dB-m2

R 1853 m -137.7 dB -m4

(47r) 3 Constant - 33.0 dB

a 10 m2 + 10.0 dB

L 1.0 dB -	 1.0 dB

Prec
Power at input to mixer -112.6 dBm

Table 5. Power Budget for a V-Band FM-CW Radar

Parameter Value Budget Entry

P 50 mW + 17 dBm

G 23 dB + 46 dB

X 0.0043 m (70 GHz) - 47.4 dBm-2

R 1853 m -130.8 dB-m4
(4,r) 3 Constant - 33 dB

a 10 m2 + 10 dB

L 3 dB -	 3 dB

Prec
Power at input to mixer -141.2 dBm
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IF frequency. The restriction of keeping the same beamwidth of z 12° for

all bands is due to requirements for the manual angular acquisition of

`	 the target. Narrower beamwidth (and higher gains) would make the manual

pointing of the radar beam rather difficult. In addition to this, the

s cost of V-band equipment is considerably higher than that of the K-band

system. Therefore, it appears that, for the breadboard, the K-band sys-

tem offers the most cost-effective approach to feasibility demonstration.

i In addition to the estimate of the received signal level, the cal-

culation of the noise level is required to predict the performance of the

system at the maximum range. As discussed in the paragraphs which follow,

there are several types of noise which contribute to the composite "noise

floor" of the radar receiver. Thus, one proceeds to determine this com-

posite noise floor in terms of an equivalent dBm-Hz level, then one com-

putes the Pr/NO value accordingly. For example, if the overall receiver

noise figure (NF) is 10 dB, then the P r/NO can be computed using the

K-band system power budget (i.e., Table 3) as follows:

Pr (dB-Hz) = P r (dBm) - E-174 (dBm-Hz) + NF (dB)]
No

= -124.3 (dBm) + 174 (dBm-Hz) -- NF (dB)

= +39.7 dB-Hz
	

01)

To determine the actual signal--to-noise ratio (SNR) in a band-

width of a particular device (say, a range tracker), one uses the avail-

able Pr/NO to obtain the SNR value:

P
SNR (dB) = Nr0 (dB-Hz) - 10 log70 B

where B is the noise bandwidth in Hz of the device under consideration.

Thus, for example, a tracker of a noise bandwidth B= 200 Hz has the SNR

of

SNR = +39.7 dB-Hz - 10 log 10 (200)

= +39.7 dB--Hz -- 23 dB-Hz
= +16.7 dB
	

(13)

Calculations such as shown above, although numerically rather simple,

form the basis for the prediction of the system performance during the

(12)

Ts-'
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various phases of its operation. Consequently, these equations appear

frequently throughout this report. All of them, however, involve the

received power value P r , estimated as shown in Tables 3 through 5, and

the system noise floor N 0 . The estimate of the N0 value for the proposed

system is described below.

2.2.2 System Noise Considerations

For the homodyne radar system as described in this report, the

following three sources of system noise must be considered: (1) thermal

noise, (2) mixer flicker noise, and (3) self-noise. The nature of these

noise sources and their relative significance in determining the overall

noise floor of the system are presented in the following paragraphs.

2.2.2.1 Thermal Noise

The thermal noise is generally considered the fundamental limiting

factor of most radar and communication systems. This is particularly

true of the systems which utilize preamplifiers and several stages of

nonzero frequency IF amplification. For these systems, the receiver

thermal noise density N0 is determined primarily by the noise figure of

the preamplifier; thus,

N0 = -174 (dBm-Hz) + NF (dB)	 (14)

where -174 dBm-Hz is the reference noise floor of a 0 dB noise figure

front-end at 290°K, and NF is the noise figure of the preamplifier which

precedes th^l mixer.

With a preamplifier of noise figure NF  and gain G A placed ahead

of the mixer, the contribution of the noise figure of the mixer is

reduced considerably:
NFM-I

NF0 = NF  + GA

where NF  is the overall system noise figure and NF  is the noise figure

of the mixer. Thus, with the receiver having a preamplifier NFA = 3.0 dB

and GA = 20 dB, a mixer noise figure of 10 dB degrades the overall noise

figure NF  by only 0.2 dB.

The use of a low-noise, high-gain preamplifier to reduce the mixer

noise is generally reserved for large, relatively complex and expensive

(15)
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systems. In our case, however, the requirement for portability and

cost-effectiveness precludes the use of a preamplifier. Consequently,

we must consider the noise figure of a crystal mixer type receiver

front-end, such as represented by Vie simplified block diagram of Fig--

,	 ure S. As shown in this figure, the RF signal received by the antenna

is applied directly to the mixer (assunni ng necl i gi bl a receiver RF

losses) where it is converted to an intermediate frequency which, for a

homodyne receiver, may be as low as 0 Hz. The mixer introduces a con-

version Ioss, Lc , and is characterized by a noise temperature ratio,

tr . Also, the amplifier following the mixer is characterized by a

noise figure, NF 
A' 

The corresponding expression for the overall noise

figure of a mixer front-end receiver is

F0 = Lc (tr f NF  - 1)	 (16)

Note that the temperature ratio t r plays an important role in determin-

ing the overall noise figure of a crystal mixer receiver. The tempera-

ture ratio is related to the flicker noise, which is generally referred

to as "l/f" noise of a mixer. At mixer output frequencies above 100 kHz,

the value of tr is constant and is typically between 1.2 and 2.0. Thus,

with a 1.5 dB noise figure amplifier, tr = 1.4 (ratio, not dB), and the

mixer loss of 6 dB, the overall noise figure of the crystal receiver

would be 8.6 dB, provided that all of the received signal components, or

the IF amplifier, are centered above 100 kHz. In this case, the receiver

performance is generally referred to as "thermal noise limited" and the

mixer noise temperature ratio, although appearing in (16), is not consid-

ered a determining factor. This is because most practical amplifiers

have a noise figure on the order of 2 dB to 3 dB, thus introducing a dom-

inant term into (16).

Crystal mixer RF reception with mixer output frequencies lower

than 100 kHz is therefore considered "flicker noise limited." Conse-

quently, the flicker noise characteristics of a crystal mixer receiver

are of great importance for estimating the performance of the homodyne

radar system described in this report.

2.2.2.2 Mixer Flicker Noise

The homodyne receivers operate with the RF signal components mixed
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down to a low frequency range which, in most cases, is confined to the

region from 0 Hz to Iess than 100 kHz, and quite often to an even nar-

rower region with the upper frequency on the order of 10 kHz. Conse-

quently, the output of a crystal mixer homodyne receiver is essentially

a	 confined to what is usually referred to as the "audio" frequency range.

The initial investigations (conducted in the early 1940's and

throughout the 1950's) of the flicker noise performance of the crystal

mixers indicated that the flicker noise increases below 100 kHz at a

rate proportional to 1/f. Consequently, if a noise figure for a signal

component above 100 kHz was measured to about 8 dB to 9 dB, it was

observed to increase to about 25 dB at 10 kHz, 35 dB at 1 kHz, and to

50-60 dB in the 100 Hz to 10 Hz range [2]. Such behavior, experiment-

ally verified [5] for a typical X-band mixer is shown in Figure 9.

This 1/f behavior of the flicker noise below about 100 kHz presented a

formidable obstacle to obtaining high sensitivity performance for the

homodyne receivers.

However, with the advent of police radars in the late 1950's,

considerable interest was generated in the improvement of the flicker

noise performance in the audio range, i.e., at frequencies in the I kHz

to 10 kHz range. Consequently, the mixer technology has followed suit,

and advances were made in reducing the mixer flicker noise at the audio

frequencies. Another strong impetus for improving the flicker noise

performance of the microwave mixers was provided during the late 1960's

by the ever-increasing use of the personnel motion detectors, i.e., the

intrusion alarms. These homodyne systems require low-noise performance

in the subaudio frequency range (5 Hz to 100 Hz, typically) to detect

slowly moving or crawling intruders.

Figure 10 shows the typical flicker noise performance of a contem-

porary (circa 1978) microwave mixer operating in the RF frequency range

from 13 0Hz to 25 OHz. For purposes of comparison, the 1/f portion of

the curve shown in Figure 9 is also included. From these two curves,

it is evident that, for the modern mixer, the so-called 1/f "break point"

has been moved down from about 100 kHz to approximately 1 kHz. Such a

two-orders-of-magnitude break point frequency reduction results in the

lowering of the noise figure in the subaudio range (5 Hz to 100 Hz) by

15 dB to 18 dB. Furthermore, at I kHz, the improvement is about 13 dB

^•^'"	 v	 ^Y Lam:.	 _	 ^	 _	 ^:.^'C^.f!r`^^^^.s^ _ J J"$^'	 i^ja^^.'i.}^'^^-4'J'^.^ •^.n. ^^.. ^._.......r _^^__._.
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and, at 10 kHz, it is about 5 d8. The absolute values of the noise

figure across the frequency range of interest are also reduced. As a

result of such marked improvement in the microwave crystal mixer technol-

ogy, the homodyne radar receivers now offer a low-cost alternative to the

receivers employing IF amplification. The latter require generation of a

local oscillator signal other than the transmitted signal, thus increasing

the complexity of the receiver portion of the radar system.

The impact of the crystal mixer flicker noise on the performance

of the homodyne radar sensor system can be estimated by calculating the

Pr/N O values for the 'target return at various ranges. Figure 11 shows the

plots of Pr/NO (f) versus target return tone frequency (either range or

velocity, or both) and the target range. The value of P r used for these

calculations is obtained from the power budget in Table 3, and the values

of the noise density NO (f)* are derived from the data in Figure 10.

The data presented in Figure 11 serves as the basis for determining

the modulation waveform(s) for the operation of the radar in the various

modes (i.e., target detection, acquisition, and tracking). For example,

it is evident from the plot for R= 1850 meters (maximum range) that select-

ing a modulation format which places the target tones at frequencies above

I kHz provides more favorable P r/NO (f) ratios than a modulation format

which restricts these tones to less than 1 kHz. However, as the target

moves in, the P r/N O (f) increases in its absolute value and, consequently,

one has more control over the modulation format to be used for a particu-

lar radar function. The details of such a modulation technique optimiza-

tion are discussed in subsequent sections of this report.

2.2.2.3 System Self-Noise

The salient feature of the homodyne radar receivers, namely, the

translation of the received signal to "zero Hz" IF frequency by m—ing

with a portion of the transmitted signal, often raises a question about

the effect of the transmitter's FM noise sidebands** on the reception of

*
It must be noted that the conventional meaning of symbol N0 is to

define a power density of a flat-spectrum thermal noise. In this report,
however, the NO (f) denotes the s pectral power density of the flicker noise
at any given frequency "f," i.e., it is frequency-dependent.

**
There are also AM sidebands present, but they are several orders

of magnitude below the FM sidebands and, thus, they generally are not a
threat to system performance.

IL
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the weak signals. At first glance, one would suspect that the FM noise

from the transmitter falls directly into the frequency band of the

received signals and thus generates a "self-jamming" process.

The detailed analysis of the homodyne mixing, however, indicates

that, for the short-range targets, there exists a correlation between

the target echo signal and the local oscillator signal (a portion of the

transmitter output) which provides for cancellation of the FM noise.

The exact analysis of this correlation effect is carried out in

Appendix A of this report. It is shown there that an rms error associ-

ated with the measurement of a particular audio tone is bounded by

(^Ta	

Bmax	
1/2

of `-	 RTGf (f) df	 Hz	 (17)
b	 v	 0	 N

where

of 	rms error of a frequency tone measurement (velocity or
b	 range)

TRT = round-trip time to target

Tav = averaging time of the frequency counter

Gf (f) = frequency noise power spectrum (Hz 2/Hz) of the
N	 transmitter/Iocal oscillator device

f = noise spectrum frequency

f  = refers to the mean value of the tone frequency measured

It must be pointed out that (17) holds true for 0 2000 m and

f `1000 Hz, both of these conditions being satisfied for the radar

sensor under consideration.

The measurement of the FM spectra of the actual Gunn oscillator

RF sources indicates that, at frequencies less than 1000 Hz away from

the carrier, the FM noise has a form

Gf ( f ) = 3N 
where K is a constant unique to the type of device used and the operating

RF frequency. Using the measured data on actual Gunn diode oscillators

[41, we estimated, for f0 = 24 GHz, the value of K= 2450 Hz 2/Hz at f= 1 Hz.

Solving, for B= 100  Hz and using the near-zero f-spectrum approximation

shown in Figure 12, one obtains

(18)

4	 ^•
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RT	
60.6 Hz.	 (19)

v

Consequently, for R= I850 m (1 nmi) and T av = i sec, we obtain

f	
2 x 1850 x (60.6)	 (20)
3 108 )

= 7.47 x 10-4 Hz

Considering the range and velocity scales involved (inverse scales, in

this case), the frequency error is negligible. Thus, it can be concluded

that, for the system under consideration, the self-noise is not a limiting

factor.

2.3	 Measurements Geometry and System Parameters

2.3.1 Geometrical Considerations for Target Acquisition

The geometry of the target/radar relationship existing at the

onset of the acquisition sequence is the major determining factor for

acquisition timing parameters. To establish the bounds for the target

dynamics as determined by the acquisition time limitations, and vice

versa, let us consider the following model:

(1) Maximum target velocity is +6.1 m/sec (+20 ft/sec) along

the radial (towards the radar) direction and is +6.1 m/sec in the trans-

verse (with respect to the radar beam) direction.

(2) The radar antenna beamwidth is 12° between the 3 dB points

(i.e., similar to the antenna of the K-band breadboard).

This model is depicted in Figure 13.

Using the radar/target geometry shown, we can postulate two

velocity-related parameters:

(1) Time to Collision, T 	 =	 R	 (21)
C	 VRA (max)'

(2) Time to Traverse	
2R tan 6°	

(22)
the beam, TB = VTR max

where V RA and VTR represent the radial and the transverse velocities,

respectively. Using (21) and (22) and assuming, as stated previously,

that VRA (max)= VTR (max) = +6.1 m/sec, one obtains the corresponding plots
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for T  and T  as a function of range. This plot is shown in Figure 14. 	 s

From the plot of T
B.
	 is evident that, unless tracked in angle,

the target will be within the beam for only about 64 seconds when at the

maximum range. At shorter ranges, the time within the beam decreases

accordingly, thus driving the requirement towards shorter acquisition

times at closer ranges.

On the other hand, if one takes into consideration the fact that

the entire acquisition sequence may take about 30 seconds, one comes to

the conclusion that, if the target does indeed approach the radar at

6.1 m/sec velocity, there may be no time left to undertake a preventive

action against a collision after the target has been acquired.

Thus, it appears reasonable to assume that the maximum velocity

component of 6.1 m/sec will not be present at all ranges but, below a

certain range, will decrease in proportion to the range. Axiomatix pro-

poses to adopt the following velocity model for the target:

VRA ` 6.1 m/sec

VRA - K 1 R x 6.1 m/sec

VTR < 6.1 m/sec

VTR <- K2R x 6.1 m/sec

for 200 m< R< 1850 m

(656 ft)	 (6000 ft)

for O < R < 200 m

for 1000 m < R < 1850 m

(3281 ft) (6000 ft)

for 0 < R < 1000 m

and

where K 1 and K2 are constants. The effect of such a proposed velocity

restriction is shown by dotted lines in Figure 13. (The constants K 

and K2 are 0.035 sec -I and 0.029 sec -I , respectively.

2.3.2 Target Velocity and FM Slope Requirement

To provide for a nonambiguous estimate of the range and velocity

information on the target, the relationship between the doppler shift

tone f  and the range tone f  must always be such that f r > fd(max).

This requirement applies, of course, to all ranges up to the maximum

detection range.

Because the range frequency f  is, for any range, determined by

the slope S, one can establish the requirement for the minimum value of

S to satisfy the f r > fd (max) condition at any given range. For this,
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we consider the following two relationships:

2VRA(max) f0
fd (max) =	 (23)
c 

and

fr = S R 	 (24)

where VRA (max) = maximum radial target velocity (i.e., +6.1 m/sec)

f0 = carrier frequencey

R = target range

S = FM slope

Combining (23) and (24) for conditions such that f r > fd , we obtain

S -	 R	 f0
> VRA(max)	

(25)

as the requirement for the slope. Figure 15 shows the slope require-

ments for the case of a 24 GHz radar and V
RA

(max) = +6.1 meters. The

effect of the target velocity profile, as proposed by Axiomatix, is also

indicated in this plot as the reduced slope requirement for the target

ranges less than 200 m.

2.4	 Target Range and Velocity Acquisitio n

2.4.1 Overview of the Target Acquisition Strategy

Although the operation of the radar sensor system with a priori

range information is being considered as one of the operating modes, the

baseline design is based on the assumption that, at the onset of system

operation, neither the range nor the velocity information is available.

Such an assumption provides a realistic and all-inclusive driver to the

system design philosophy. Carrying out the baseline design according to

this driver results in a ranging/tracking system which can be operated

with complete autonomy as well as with the support of external information

generating equipment.

Because of the compactness of the system under consideration, the

automatic angle (i.e., target direction) search and acquisition is not

provided and therefore, in this dimension, the system has to depend on

an external sensor. For most cases envisioned, such a sensor may con-

sist of an operator who visually, by means of a boresight, points the
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antenna at the target of interest. Beyond the target direction

information, the operator's judgment can be deceiving and thus be only

qualitative, such as "target far away" or "target near" or "target

pretty close." In darkness, however, when the operator may be sighting

only on a beacon light and the target's features are not discernible,

the judgment of the distance may be either nearly or totally unavailable.

All of the aforementioned arguments point to the fact that the target

acquisition strategy must be such that the system, after being pointed

in the required direction, automatically searches over the uncertain-

ties of the range and velocity dimensions.

The target range and velocity acquisition algorithm which satis-

fies this requirement is shown in Figure 16. A corresponding simplified

block diagram for implementing such an algorithm is shown in Figure 17.

For clarity, only the pertinent receiver and baseband processing sub-

units are shown there.

As indicated in Figure 16, the proposed algorithm, which provides

for the acquisition of the target range and velocity, consists of four

segments, or subroutines. These segments and their corresponding range

search coverages are as follows:

(1) Short-range search: R -̀ 50 m (164 ft)

(2) Medium-range search: 50 m- R -̀ 500 m
(164 ft) (1640 ft)

(3) Long-range search: 500 m ` R < 1850 m
(1640 ft) (6000 ft)

(4) Velocity-only search: R= designated.

Despite the fact that only the reference to the range is indicated

in the listing above, the velocity search and detection are performed

simultaneously with the range search. Specifically, because the triangu-

lar modulation waveform is used for the search and acquisition sequence,

the solution for the velocity information in the case of a moving target

is related to the target range as explained earlier in Section 2.1.2.

Although the labeling of the range search segments, such as "short

range," "medium range," and long range," is arbitrary and primarily

descriptive, the numerical subdivision is not. The purpose behind the

indicated subdivision was to eliminate a significant portion of the

mixer flicker noise contribution (i.e., the flicker noise below l kHz)

from the circuitry used for the medium-range and long-range search
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acquisition. This suppression is performed by an appropriate selection

of the range scales (and of the corresponding FM slopes) as described

below.

In the absence of a priori target range information, the sequence

of search subroutines shown in Figure 16 corresponds to the range (and

velocity) search "outwards," i.e., from the zero range to the maximum

range.	 This appears to be a logical procedure for the case where no

a priori range information is available and, consequently, all ranges

are equiprobable.	 Such may be the case, indeed, when the sensor is

mounted on an unmanned spacecraft which is controlled remotely. 	 There-

fore, after the system power-up and initialization and, in the absence of

a priori range information, the baseband data is examined for the pres-

ence of the f 	 and f 	 tones.	 This examination is performed in the 0 to !}

1000 Hz region and, as shown in Figure 17, is implemented by a counter.
y

The latter can be used in this case because of the relatively high SNR

associated with the close targets. 	 The outcome of this search, which cov-

ers ranges of up to 50 meters, is either a "Target Acquired" decision and r^

a command to initiate track, or an instruction to proceed with the search

across the next range interval. Tz

The next search interval, i.e., "medium" range, covers the nominal*
V

interval from 50 meters to 500 meters. 	 As described in the subsequent x

paragraphs, the implementation is not by means of the counter but by means

of a pair of frequency trackers which are essentially tuned bandpass fil-

ters capable of detecting and indicating the frequencies of the range/

velocity lines.	 The outcomes of this search routine are similar to the
^r

one before.	 In other words, the target is either detected and track is
z^

i

initiated or the search subroutine transfers control to the next phase.

The next and the last phase of the acquisition algorithm is the

long-range search covering the range interval from 500 meters to the max-

imum specified range of 1850 meters (1 	 nmi).	 Similar to the medium-range;

scale, the long-range search utilizes two frequency trackers for detecting

the frequency lines of a moving target.

The range scale (and the slope), however, are changed to map the

expected target lines into approximately the same frequency region as for

the "medium-range" scan. 	 Such scaling provides for maximum commonality

*
Actually, the range searches overlap to preclude "blind zones"

at the crossovers.
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and component savings for the frequency tracker implementation. This

sequential time-sharing of the frequency trackers for the short-range

and long-range search modes is indicated in the block diagram shown in

Figure 17.
The long-range search algorithm, per se, as shown in Figure 16,

results in either the declaration of the target acquisition (i.e., an out-

come similar to the previous two sear,;h routines) or a declaration of an

acquisition failure. In the latter case, the algorithm causes the search

sequence to recyle, thus repeating the entire sequence.

In the case of a priori range information, the control logic

selects the proper range scale and pre-positions the frequency trackers

at initial locations required to cover the frequency uncertainty only.

This speeds the target acquisition process.

The salient parameters of the entire target acquisition process

are summarized in Table 6. The detailed quantitative discussions leading

to these parameters are presented in the paragraphs which follow.

2.4.2 Detailed Acquisition Sequence Description

2.4.2.1 Short-Range Acquisition

The algorithm for the short-range acquisition is shown in Fig-

ure 18. Figure 19 shows the corresponding range/frequency plot. Note

that this plot reflects the assumption (see Section 2.3.3) that the most

probable range of velocities of targets closer than 200 meters will be

confined within an envelope proportional to R.

The scale selected for this search range is a compromise between

the range resolution and the frequency range to be examined. With the

scale of 16 Hz/m, the corresponding frequency sweep slope is

S =	 A
9 =
	 16 9 = 2388 MHz/sec	 (26)

6.7x10 - 	6.7x10

or a design value of 2400 MHz/sec. Reference to Figure 15 indicates

that this satisfies the requirement of a nonambiguous range and velocity

readout.

With the scale of 16 Hz/m, the 50-meter range corresponds to 800 Hz.

Upon this frequency must be superimposed the velocity component* of

fv	 1-	
2 a/ (976) _ X244 Hz

^' f f

(27)

Assuming the target velocity profile proposed in Section 2.3.1.



Table 6. Summary of Target Acquisition Performance for K-Band Radar Sensor System

Range Designation FM Range
Search B
(see

SNR
In Search

SNR
Estimated:
Search

Probability
of

and Interval Slope scale
Note 1) BW

Margin
Time Acquisition

Comments

Short Range/velocity

R< 50 m 2400
MHz/sec

16 Hz/m 1000 Hz +30 dB +24 dB 2 sec 0.99
tones acquired
by counting f0

(164	 ft) and f 

Medium Range/velocity

50 m< R< 500 m
MHz/secMH

z
z/s

16 Hz/m 100 Hz +13 dB +12 dB 6 sec 0.99
acquired by
quency searc h

(164 ft)	 (1640 ft)
(B L) with two trackers.

Long Same method as

500 m< R` 1850 m 600
MHz/sec

4 Hz/m
50 

Hz
(BL)

+11	 dB + 1 dB 16 sec 0.99 used for the
medium range.

(1640 ft)	 (6000 ft)

Total	 24 sec

mote l

For the case of short-range acquisition, the BW defines the bandwidth of the filter. For the case of

medium--range and long-range tracking, BW refers to the one-sided noise bandwidth, B L , of the frequency

tracker.
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Figure 18. Short-Range/Velocity Acquisition Algorithm
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The resultant span of range/velocity line location for a target at

50 meters thus extends from 550 Hz to 1050 Hz. Thus, passing the

received signal through a lowpass filter with a cutoff at 1100 Hz will

insure that only the targets at ranges less than 50* meters will be

examined by the algorithm selected. The block diagram of Figure 17

indicates the use of such a lowpass filter.

Because of the relatively high signal-to-noise ratio associated

with the near-zero range targets, a frequency counter is used for deter-

mining the values of f  and f L . This frequency counter is time multi-

plexed between the f  and f  measurements because these two frequencies

appear at the alternate slopes of the modulation waveform (see Figure 5),

The stability of the f  and f  readings is tested by a number of succes-

sive comparisons. With the SNR of about +30 dB in the measurement band-

width, the frequency estimate is expected to be limited by a quantization

error (see Section 2.7) rather than the random (thermal and mixer) noise

error.

Also, because of the relatively high SIR for this mode, the time

required to declare an acquisition, if the target is present, is expected

to be less than 2 seconds.

2.4.2.2 Medium-Range Search Sequence

Figure 20 shows the algorithm for both the medium-range and

long-range acquisition sequences. As is evident from the figure, the

major portion of the algorithm is the sa ge for both of the searches, with

the exception of the scale and slope changes for the long-range sequence.

The range/frequency plot for the short-range search is given in

Figure 21. From the frequency scale of this plot, it is evident that

the major portion of the frequency uncertainty region lies above 1 Khz,

i.e., in the region of the lower mixer noise. The close-range targets do

extend the required frequency coverage down to about 500 Hz, but the tar-

get return power at these ranges is more than adequate to provide reliable

target line detection. It most also be noted that the convergence of the

f  and f  boundaries towards zero is implied below the range of 200 meters.

This is in accordance with the assumptions postulated in Section 2.3.1.

*The exact mature of the range limiting is a function of the lowpass
filter cutoff frequency and of the rolloff.

t
r
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Figure 20. Short- and Long-Range/Velocity Acquisition Algorithm
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The upper limit of the frequency range to be searched is at

	

f0 	= AR max+ fd(max)
max

(16)(500) + 976

9000 kHz.	 (28)

Similarly, the lower search limit frequency can be computed:

_ Rmin

fLmin - 
ARmin	

200 fd(max)

= 50 (16 - 200

560 Hz.	 (29)

For the purpose of covering this range, two frequency trackers will

be used. One will start at the upper frequency search limit and will

start sweeping downwards, i.e., towards the region of lower frequencies.

The second tracker will start at the lower search limit and scan upwards

in frequency.

In practice, the frequency tracker implementation may consist of a

phase-locked loop (PLL) which is time-multiplexed between the upper and

lower scan positions. Figure 22 provides a qualitative demonstration of

the two-tracker frequency search implementation. Although the figure

depicts a target which is almost in the middle of the frequency search

range (thus implying that both trackers will acquire their lines at about

the same time), resulting in a minimum search time, in actuality, one must

consider the case of the maximum search time.

Examination of the range/frequency plot of Figure 21 indicates that

the maximum search time will occur at the close-range end of the scan

where the upper tracker is required to move from fUmax to a frequency

defined as

	

q	 = 50 ^16 + 200	 (30)
min

1144 or 1150 Hz, nominal

The corresponding frequency range traversed by the upper tracker is

SF = f0	 -
 

fit
min

= 9000 - 1150 = 7950 Hz.	 (31)

Prr
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Let us compute the time required to search out this frequency range

with a phase-locked loop. With the phase-lock loop (PLL), the search

time is directly proportional to the SF and inversely proportional to the

square of the loop bandwidth. Furthermore, in order to provide a reason-

able probability of lock, the SNR in the loop noise bandwidth must be at

least +10 dB.

Quantitatively, the required relationship is

T = aF

s	 Af

where of is the maximum allowable sweep rate to provide a "reliable"

acquisition. In terms of one-sided loop noise bandwidth, B L , the of

can be obtained from a modified (and simplified) version of (4-33) in

[7] which, for a second-order loop and C= 0.707, is

Af	 = 0.566	 7 -	 '	 B 2 Hz/sec	 (33)
max	 S	 L

where SNRL is the signal-to-noise ratio in the loop.

To find out what maximum SNR L is available to us for the short-range

sweep, let us consider the lowest P r/N O consistent with our search mode.

From Figure 11, one determines at 560 Hz and the range of 500 meters a

Pr/NO value of 48 dB-Hz. Thus, for SNRL = 10, the BL 
can be

P
2BL (0) = N  (dB-Hz) - SNRL(dB)

0

= 48 - 10 = 38 dB-Hz , or 6300 Hz 	 (34)

This value is way too wide for the problem under consideration. A more

practical value would be B L = 100 Hz, which is commensurate with the

tracker design. With this B L , the SNRL is

P

SNRL = Nr - 10 log
l0
 200

0

= 48 - 23 = 25 dB , or 316 value.	 (35)

Substituting this into (33) and solving for the value of afmax, 
we obtain

(32)

^-	 -^'"""' _.	
_	 _	

_	 yl, w, f'*k" Sri,-,:Tl" w""Y"_a•^^x- - .^,..r-..^



1.77 5250
(100)2

= 0.925 radians (37)
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'a

r	 = 5250 Hz/sec	 (36)

With this sweep rate and B L = 100 Hz, the phase error ea , which develops

in the loop after it acquires the signal but before the frequency sweep

is terminated, is calculated to be

ifmax
ea = 1.77	 2

BL

radians

This error is considered excessive and one must either reduce the sweep

rate or increase the BL.

If the former approach is taken, it is customary to reduce the

^ f
max by a factor of 2 to 4*. Using a reduction of 4 as a very conser-

vative number, the search time becomes

_ dF _	 7950 Hz
Tss	

if 
r 5250 Hz/sec

4

= 6.06 seconds
	

(38)

Therefore, one concludes that the time required to detect and acquire the

target will be on the order of 6 seconds.

The system margin to consider is that of required SKIR L in the loop.

If one considers that (36) holds for SN R -'10 dB, we have, according to

(35), about a 15 dB margin. Assuming that we wish to keep SNR L z 13 dB in

a B
L = 

100  Hz loop, the margin is reduced to 12 dB, which is still a

reasonable value.

2.4.2.3 Long-Range Search Sequence

With the exception of a few system parameter changes, the algorithm

used for the long-range acquisition is identical to that used for short

short-range acquisition. Figure 20 shows both algorithms. As indicated

there, the major change is the change of the slope to 4 Hz/m with the con-

comitant reduction of the slope to 600 MHz/sec. The modulation rate is

Such reduction assures a 99% probability of lock-on to the line.
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also reduced to 3 Hz.

Figure 23 shows the range/frequency plot for the long-range mode.

The upper and lower search limits are computed to be 8.4 kHz and 1 kHz,

respectively. The maximum search range for either tracker is 5.4 kHz.

Now consider the acquisition time for this mode. From Figure 11,

we see that, at 1000 Hz and for R= 1850 m, the Pr/N0 is 31 dB. For

SNR = +10 dB, the maximum B L is

P
2BL (dB-Hz) = Nr - SNRL(min)

a

31 -- 10 = 18(dB--Hz)
or

BL = 63 Hz.
	

(39)

The maximum frequency sweep rate commensurate with this B L and SNRL = 10

is

`	 Afmax = 
0.566	 1 - 

1	
(63)2

= 1536 Hz/sec	 (40)

The corresponding phase error after lock-up is

a	 = 1.77 

o fm
a	 (BL)2

= 1.77 
(1536)	 - 0.685 rads	 (41)
(63)2

Reduction of this error to at least 0.5 rad will require a of reduction

as follows

of = 
0.500 

X 1536 = 1120 Hz/sec 	 (42)
0.685

Further reduction of this rate by a factor of 2 will result in a sweep

time of

TSL - 600 = 9.65 seconds.
	 (43)

Consequently, it may be concluded that the long-range search phase will

require at least 10 seconds. The SNRL of +10 dB used in this case, how-

ever, leaves no system margin. To provide some margin for the long-range

_ ._	 ..__.	 -	 ,...u._.h..^.._ ...: ^<._...-.-:^--^.-^ ate-•{,,--s^'°.k_^-^^:J.. 	 _	 r
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acquisition phase, one should narrow the loop bandwidth. With B b = 50 Hz

(down from 63 Hz), the SNRL will be +11 dB, thus providing about l dB of

positive margin. Tip-, search time, however, will be increased accordingly

to 15.3 seconds. Thus, a 16-second search time for the long-range inter-

vat should be considered as a design value.

2.5	 Target Tracking

2.5.1 Tracker Design Philosophy

Once the presence of the target range/velocity tones is detected,

an accurate estimate of the frequencies of these tone(s) is carried out.

Then, after the appropriate scale conversion, both the range and velocity

are J splayed. For the case of the short-range acquisition, the

signal-to-noise ratio (SNR) is sufficiently high so that a continuous

tracking of either the range or velocity line does not appear necessary

to improve the SNR. Consequently, unless dictated for reasons other than

the random noise reduction, target tracking in the short-range mode is

not mandatory. Instead, a direct frequency estimate with a frequency

counter appears to be the most cost--effective method for providing the

range and velocity display at short ranges. Special means to reduce the

quantization error and to accommodate the stationary targets may have to

be provided, however. The targets at medium and long ranges require fre-

quency tracking to improve the SNR of the signal whose frequency is being

measured and displayed as the range and velocity information. Basically,

the function of the tracker is to keep the frequency of the tracked tone

within some relatively narrow bandwidth, thus optimizing the SNR for the

frequency measurement.

We have already discussed the trackers in Section 2.4 in conjunc-

tion with the frequency acquisition. In Figure 22 , the trackers were

qualitatively represented as tunable bandpass filters whose center fre-

quencies could be tuned to provide for a "capture" of the received target

tone(s) within the bandpass of the tracker. Once such "capture" takes

place, a target acquisition is declared and, subsequently, the function

of the tracker is to keep the bandpass filter essentially "centered" around

the line(s) of the received signal. In addition to this band-centering

function, the frequency tracker must provide an output which is a close

replica of the signal being tracked. This replica is then applied to the

I
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frequency estimator(s) to determine either the range or the velocity

or both for the target being tracked. Consequently, an ideal tracker

should be a device capable of performing: (1) the initial target acquisi-

tion and (2) the post-acquisition tracking of the target's range/velocity

tone(s).

Figure 24 shows a generic block diagram of an acquisition/tracking

unit capable of performing both the initial frequency search and the sub-

sequent tracking of either a range or a velocity tone.

As shown in the figure, the baseband frequency f B , which may be

either fr , fv , fU , or fL ,* is mixed with the output signal of a voltage-

controlled oscillator (VCO). This mixing process generates an intermed-

iate frequency signal, f I , which is applied to a bandpass filter of

bandwidth B i . During the initial target acquisition phase, the frequency

of the VCO is varied according to the waveform generated by the frequency

sweep circuit. The VCO frequency is varied (i.e., "swept") in such a man-

ner that the baseband tones appearing at the output of the homodyne RF

mixer (not shown in Figure 24) are sequentially applied to the bandpass

filter placed at the output of the translation mixer.

When a tone does appear at the input of the bandpass filter, the

envelope detector connected to the output of the filter converts the

energy of the tone into a do voltage. This do voltage is compared against

a preset threshold and, when the tone is well within the bandwidth of IF

filter, the do voltage exceeds the threshold. Such crossing of a preset

threshold is an indication that a strong tone is present within the band-

width B and, therefore, a tone acquisition can be declared.

The crossing of the tone acquisition threshold generates a Stop

Frequency Search command. The purpose of this command is to terminate

the frequency sweeping of the VCO before the tone is "tuned-out" of the

bandpass at the f i . Once the VCO frequency sweep is terminated, the

error developed by the frequency discriminator" forces the VCO to adjust

its frequency in s^!ch a manner that the tone frequency f  is translated,

after mixing, to the center of the S-curve of the discriminator. With a

properly designed tracker, the center frequency of the discriminator is

also a center frequency of the bandpass filter. Thus, during the
*

All of these being the outputs of the homodyne RF mixer.
**

The frequency discriminator action can also be implemented by
a phase-lock loop (PLL) as described in Section 2.7.

f
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tracking, the SNR is optimized automatically by keeping the IF signal in

the peak region of the bandpass amplitude response.

When the centering of the translated f D is accomplished, the error

developed by the frequency discriminator, or an equivalent device, falls

below some minimum level, thus indicating an accurate track of the fD.

As a result of low error level, an "Error Minimum" flag* is generated by

the discriminator circuit. This flag is logically "and"--ed with the

"Tone Present" flag, thus forming the "Data Good" flag. The latter ini-

tiates the action of the frequency counter which then counts the VCO fre-

quency for an averaging period of T av seconds. In addition to averaging

the VCO, the counter subtracts the f
l
 frequency from the frequency of

the VCO, thus outputting the signal whose estimated frequency is

f 	 - fVCO - f  .

As the tone frequency f 5 changes at the output of the RF mixer, the VCO

corrects for this change and keeps the f  translation to the f  constant.

To accomplish this, the VCO adjusts its frequency, thus providing for the

tracking action of the received range/velocity tone.

If there are two tones present, such as may be the case for both

f  and fL , the tracker can track both of them by means of time multiplex-

ing. Such time multiplexing is possible in the case of the f  and f 

tracking because of the nonsimultaneous generation of their frequencies

at the output of the RF mixer. The time multiplexing aspects of a fre-

quency tracker circuit are to be worked out as one of the tasks of the

breadboarding phase of the radar sensor.

2.5.2 Tracker Performance Estimate

The tracker considered for the proposed system is a frequency

tracker which follows the varying frequency** of the target range and/or

velocity tone. The generic implementation of such a tracker was presented

in the preceding paragraph. Considered below are the quantitative charac-

teristics of such a tracker from the standpoint of random noise error.

For the case of a target whose aspect angle changes relatively

slowly with respect to the radar, the central line of the return spectrum

*
The "flag" signal is a logic level generated by the logic devices

used for the control function of the radar sensor.
**
Phase tracking in addition to the frequency tracking is also

possible with certain tracker configurations.
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has a small bandwidth (on the order of 1 Hz) and, consequently, the

frequency error produced by the tracker is primarily a function of the

tracker bandwidth and the SNR in this bandwidth. The SNR is, in turn,

a function of the system Pr/N0.

The rms error of a frequency tracker which works with a frequency

averaging counter is approximated by the expression [8].

2-1/2

(0.078) BT 1 + S'
f	 /	 (44)

(
Q	

Tav lI { S/N)1 2

where

Crf = rms frequency error in Hz

BT = tracker one-sided noise bandwidth

Tav = averaging time of the counter

S/N = signal-to-noise ratio in the two-sided bandwidth of the
tracker.

Figure 25 shows the plot of of versus Pr /N o for several values

of tracker bandwidth. The averaging time is 0.5 sec for all of the plots

shown in that figure.

The range of values of P r/N0 shown in Figure 25 is typi,.al for a

target at the far end of the system range, i.e., at 1200 m to 1850 m (see

Figure 11).

Furthermore, the averaging period of 0.5 seconds is characteristic

of the proposed system owing to the requirement for updating both the

range and velocity readings at I-second intervals. Specifically, if the

range and velocity are obtained by measuring (i.e., tracking) f  and fL,

only 0.5 seconds are available for estimating the value of each of these

frequency components. Consequently, at the end of a I-second interval,

there are two frequency tracker outputs available, each with its own of.

The resultant error for the composite (derived) frequency estimate of

either the fr or f  tone is

of 
2+ 

^f 
2

_	 U	 L	
(45)crfr =Ofv2

For the case where the system operation is in the relatively "flat" por-

tion of the flicker noise and when the separation between f  and f  is

t
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small, the above expression can be approximated by Qfr = fffv - Uf
/V2-'

where of is computed by taking the average value of the Pr/N 0 W between

f  and f  with reference to the data in Figure 11.
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2.6	 System Error Budget Estimate

For estimating the total error budget for the radar ranging and

	

	 i
i

velocity measuring system, the following generic types of errors must be

considered:

(1) Errors caused by system parameter values variation.

(2) Errors caused by the inherent properties of the modulation

technique selected for the range/velocity measurement.

(3) Errors caused by the random noise fluctuations at the input

stages of the receiver.

The first type of error is generally referred to as the "bias"

error because the rates of fluctuations for the bias error range from

minutes to hours (i.e., like the thermal drift of an oscillator); these

errors can be corrected, at least in principle, by self-calibration. The

errors caused by the modulation techniques are known as "quantization"

errors; the methods for their correction or reduction consist of adding

certain refinements to either the modulation method itself or to the

method of modulation recovery. Finally, the random noise fluctuation is

one of the most fundamental and, consequently, the methods for its control

involve such fundamental parameters as those included in the power budget,

system noise and averaging time of the parameter measurement.

In addition to the aforementioned sources of the system-originated

errors, there are errors due to the target. These are called the target

effects errors. However, because, at this point in time, the physical

characteristics of the sensor's targets have not been established, the

error estimates presented below do not include the target effects.

2.6.1 Ranging Errors

2.6.1.1 Random Noise Error

The worst-case random noise error is at the maximum range of the

radar operation. This error can be estimated using the data presented in

Figures 11 and 25.

From Figure 11, we determine that, for R= 1050 m (6000 ft), the

P r/N0 (f)= 32 dB at 7400 Hz.*

This is the range tone corresponding to a target at 1850 m with
the range scale of 4 Hz/m: f r = 4 X 1850 = 7400 Hz.
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Assuming the tracker bandwidth of 50 Hz, we then determine from

Figure 25 that the corresponding of = 1.4 Hz for the 0.5 second interval.

For two consecutive estimates, the rms range error is afr = 1.4/ 	 1.0 Hz.

Converting to range error

Qr = afr " p = 1 Hz a 4 Hz/m = 0.25 m > 0.20 m (0.66 ft)	 (46)
R

Thus, we see that, with a 50 Hz tracker bandwidth, the system accuracy is

not met at the maximum range.

One method to reduce this error would be to narrow the tracker

bandwidth. This, however, will make the tracker behavior "sluggish" with

respect to target dynamics. An alternate approach would be to let

1a = 0.33 m (1.1 ft) at R=1850 m. With a 50 Hz tracker bandwidth, this

would allow a 3 dB margin in system operation. Thus, at a shorter range,

i.e.,` 1500 m, where the signal increases by at least 3 dB, one can rein-

state the original 1a = 0.20 m for R5 1500 m (4920 ft). We wi11 use this

argument in suggesting specification modification for the breadboard model.

2.6.1.2 Range Quantization Error

The quantization error stems from the fact that, with a periodic

modulation waveform such as that shown in Figure 5, the averaging counter

can read only those values of the range frequency which are multiples of

the modulation frequency fm . To determine the magnitude of the quantiza-

tion error, consider the expression for the range frequency. For this,

we repeat (la):
4Rf AF

fr =	
c	

(47)

But, because of the aforementioned restriction on the values of the range

frequencies, fr = nfm . Substituting the latter relationship into (47) and

rearranging terms, one obtains

`	 R = n 46F
	

(48)

But we can also state that the counter can output an adjacent frequency

line which will represent a different range:

R'	 (nil)	 4c	
(49)

I
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a

The maximum range quantization error is thus obtained b 	
b'

g q	 y subtracting

(48) from (49)=

	

AR 
9 -
	 (n±l) - n 

4AF	 4oF
c 	 c	 (50)	 !,

	

^ 	 i_

Equation (50) represents the maximum quantization error. The

average error will thus be one--half of that, i.e.,

oRq = 8C
	

( 51)

With our baseline assumption of AF= 100 MHz, the AR  becomes

AR  =
	 3 x 10 8 5 = 0.38 m (1.25 ft)	 (52)

8x100x10

This error exceeds the specification value of 0.2 m. Furthermore, it is

independent of range and thus does not diminish at closer ranges. The

quantization error, however, applies only to the direct counter readings

of the range frequency. If the range tone is first frequency-tracked, as

described in the preceding paragraphs, then applied to an averaging counter,

the quantization can be reduced [2] by a factor of at least 5 [8].

This means a 
AR  

of 0.08 m (0.26 ft), which is well below the specified

value of la= 0.2 m (0.56 ft).

The potential reduction of the quantization error provided by the

frequency tracker/counter combination suggests that, at short ranges,

such frequency tracking may have to be used to meet the range accuracy

specifications. Such use differs from the use of a tracker for the pur-

pose of the signal--to-noise ratio improvement as in the case for the

long-range targets.

2.5.1.3 Modulation Format Error

The modulation format error consists of the variation in either

the frequency deviation of or the modulation period T m , or both. The

effect of either one of these parameters, or of the combination thereof,

changing with time and/or temperature results in a change in the frequency

sweep slope. Because, t•rith an FVs CW radar, the sweep slope determines the

range reading, the slope error results in a range error. The relationship

V,
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between the slope error and the range error is

AR = l S R	 (53)

where

AR = range measurement error

S = F.' ,I-CW modulation waveform slope, in MHz/sec

R = target range

AS = slope error, in MHz/sec

It is important to emphasize here that the slope error considered

in this case is not a nonlinearity error, such as a deviation from a

straight line, but the error in the slope as defined by end points of AF

and the T  parameters. As pointed out in Appendix Q, the shape of the

modulation waveform does not affect the average range reading as long as

the end points defining S are constant. Thus, it is the effect of the

end points errors on the AS that we are defining here.

Figure 26 shows graphically how the timing error sT and the fre-

quency deviation error Sf alter the slope of the nominal waveformlD

defined by AF/(Tm/2) or AF/tm . As shown in the case of waveform (2), the

error is in timing only. In the case of waveform 3	 both timing and

frequency deviation errors are present.

To define quantitatively the effect of df and ST, consider the

worst-case slope error occurring when

S' = S + AS = AF + SF
	

(54)

t 
	 dt

The right-hand side of (54) can be expanded as follows:

AF + Sf _	 AF	 8F	 _	 1	 _ /AF	 sF 1 	 6t)
tm - st	 ( tm 	 tm ) 1 - 

AT	 ltm	 tm !	E ^tm 
k=0

AF + F	 1 + t+ t t ) 2+. (55)

m	 m	 m	 m

Neglecting the higher-order terms, one can reduce the above equation to

the following four terms:
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r
	 S + AS = AF + ^F + AF st + 6F 6t	

(56)
tm tm	 tm2 	 tm2

l	 J

S	 AS

Dividing both sides by S, one obtains

AS = 	Lt 	 St	 (57)
S 
	 F { tm * AF tm

The last term in (57) can be neglected because, for a reasonably accurate

system, this term will be negligible compared to the other two terms on

the right-hand side of the equation. Therefore, we finally obtain the

desired result, i.e.,

AS = aF	 at
5	 F } t
	

(58)

m

The significance of (58) is that it tells us that the fractional

slope error is simply a sum of the fractional errors in the AF and tm

parameters.

As described in Section 2.7.1 dealing with the implementation of

the frequency modulation, the accuracy of both AF and tm will be deter-

mined by a 16-bit binary digital counter. The accuracy of such control

is 1/2 16 . Therefore, the effect of the slope error on the range accuracy

at the maximum range of 1850 m (6000 ft) can be calculated:

AR =(2 16 + 2 7 6} 1850 m = `65 536 1850

= 0.056 m or 5.6 cm (0.185 ft)

This bias error is relatively small compared to the lQ value of

20 cm (0.67 ft) specified for the ranging error. Furthermore, any sig-

nificant changes in 6F and dt will be sensed and corrected for by the

system control microprocessor.

2.6.2 Velocity Errors

2.6.2.1 Random Noise Velocity Error

The estimate of the velocity error due to random noise proceeds

along the same lines as that of the range error. The only differet,.:e is
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the conversion factor from o f to Qv. Specifically, if we use the same

number as in the previous example of range accuracy estimate, we obtain

Cyfvz 
1.0 Hz. Converting this to the velocity error, we obtain

	

-I- 	 1.0 X	
1	 (59)

	

6V - Cr
fV 

x AV 	 160 Hz/m/sec

0.00625 m/sec (0.021 ft/sec)

This estimated value is better than the lcr = 0.01 m/sec (0.033 ft/sec)

specification value.* Converting the difference between the estimated

(I
v 
and the specification value, one observes, using the curve for

B1.= 50 Hz in Figure 26, that there is about +5 dB margin available in

system performance at the far range.

2.6.2.2 Velocity Quantization Error

Similar to the generation of the range quantization error, the

periodic nature of the linear FM-CW waveform gives rise to-.the velocity

quantization error. Therefore, the reasoning used for obtaining the

velocity quantization error is analogous to the one used for the deriva-

tion of the range quantization error. Let us recall the familiar expres-

sions for doppler frequency due to target motion:

2f 
0  
v

fd y	 c

where v is the target velocity (m/sec), f0 is the carrier frequency (HZ)

and c is 3x108 (m/sec). Solving for an estimate of v, i.e., v, we obtain

V 
= 2f

0
 f 	

(61)

The general expression for the quantization error thus follows:

	

qv = 2 Cf
	

q 	 (62)
0

where q d is the error caused by the line structure of the 
d 

return.

Because the line structure is related to fm and, on the average, the

quantization is to the nearest line, we have

*
A tracker bandwidth of 50 Hz is assumed, as in the case of the

range noise.

(60)

i
v,

°s
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/^\	 1

Afb - _2T 
m

Substitution of (63) into (62) results in

AV =	 c
4f 0 Tm

OL	
But

S	 F = 2AF
T	 Tm

and

1	 _	 S
T^	 26F

Again, substituting (65) into (64), we obtain the required expression:

v = o- H8AF)	 (66)To

This equation is similar to (51) for the range quantization error. The

important difference, however, is the direct proportionality of the veloc-

ity error on the frequency sweep slope S.

Using (66), let us evaluate the magnitude of the velocity quanti-

zation error for FM slopes of S= 600 MHz/sec and 2400 MHz/sec. These

slopes correspond to long-range and medium/short-range acqusition modes

respectively. For both of these slopes, f 0 = 24 GHz and AF= 100 MHz.

Case 1: S= 600 MHz/sec

	

nv	 = 5	 ( c 1 - 600x 106	(3 x108)	 (67)I
	 f0 MAT)- 24 x 10	 (8x 100x 106

= 0.0094 m/sec (0.031 ft/sec)

Case 2: S= 2400 MHz/sec

AV  = 4 AV  = (4)(0.0094) = 0.0375 m/sec (0.123 ft/sec)
	

(68)

The results above are rather interesting because they show that,

for the long-range mode, the quantization error is less than the speci-

fied velocity error and yet, for the medium- and short-range modes, the
4

quantization error exceeds the specified accuracy.

This result requires that methods for reducing quantization error

r

.,

(63)

(64)

(65)

5

LI
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at the medium ranges and particularly at the short ranges be employed.

Frequency tracking in combination with frequency counting will reduce the

quantization error by a factor of at least 5. Thus, at short and medium

ranges, the tracking is expected to reduce the quantization error to less

than 0.0075 m/sec (0.0246 ft/sec) which is within the specification.

An alternate technique would be to modify the modulation waveform

to include intervals of unmodulated CW transmission. During these inter-

vals, the velocity estimation can be performed without any quantization

errors. Implementation considerations for the utilization of this

approach are presented in Section 2.7.

2.6.2.3 Transmitter Frequency Shift Effects

Consider now the effect of the transmitter frequency variation on

the accuracy of the velocity measurement. Suc., frequency variations may

be caused primarily by temperature changes in the sensor environment.

Let us start with the conventional expression for the doppler fre-

quency due to target motion with velocity v:

fd = f0 (2v̂ (69)

where f0 is the initial, unchanged value of the transmitter frequency.

When the transmitter frequency changes by an amount equal to Lf, a

different doppler frequency appears at the output of the receiver mixer:

fd ' _ ^f0 + of	 e f - f 0 (ICV^ l + 111(70)
a

From (70), it is evident that the change in the doppler frequency is pro-

portional to the normalized frequency drift of the transmitter frequency.

Rewriting (70) in a form which shows the apparent velocity change, we

obtain

fd ' = f0 
(2	

v + V (Af	 = f0 (2)  [V + AV]	 ( 71 )
L	 T

Equation (71) indicates that the apparent velocity change (i.e.,

the error) is proportional not only to the normalized transmitter fre-

quency drift but also to the velocity itself. Using this relationship,

we can solve for the allowable normalized frequency drift at the maximum

11
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velocity of 6.1 m/sec (20 ft/sec).

Av = 0.03 m/sec = 6.1 m/sec f
f0

or

of _ 0.03 = 0.005 or 0.5%	 (72)
f 	 6.1

For a carrier frequency of 24,000 MHz (24 GHz), this corresponds to a

maximum Af of about 120 MHz. A frequency drift of an fanstabili.zed

varactor-tuned, wideband Gunn diode VCO may be 1 MHz/°C. This means

that the device temperature can vary over the temperature range of . I'C

(say, from -40°C to x-80°C) without causing the velocity uncertainty tc

get out of specified tolerance range.

Temperature compensation of the oscillator, if required by more

severe environmental conditions, can reduce the drift by a factor of

5 to 10, thus permitting operation over the extended range.

For the breadboard model of the radar, the environmental tempera-

ture variation is not expected to be a problem. Also, self-calibration

techniques utilizing a stable crystal oscillator will be considered

during the breadboard phase to insure that the future space-qualified

model of the sensor possesses adequate stability for operation in a

space-type environment.

2.6.3 Range and Velocity Error Summary

Tables 7 and 8 present the summary of the ranging and velocity

errors, respectively.

t.
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Table 7. Range Measurement Errors

16 Error

Error
Fluctuating

Source Fixed Random (Noise) Comments

Random 0.25 m (0.82 ft) This error is for the maximum range of

Error -- (R = 1850 m)
1850 m.	 At a range of 1240 m (4067 ft),
this error is 0.18 m (0.59 ft)

Quantization 0.08 m Frequency tracking is utilized for

AF = 100 MHz (1.25 ft) minimizing the quantization error.

Modulation

Format Error
0.056 m Modulation slope is calculated from

(Slope)
(0.185 ft) monitored values of of and tm.

Total RMS (a R
)=
	 (0.25) 2 + (0.08) 2 + (0.056) 2 = 0.268 m (0.88 ft) at 1850 m (6000 ft)

CO
CD
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Table 8. Velocity Measurement Errors

is Error
Error

Fluctuating
Source Fixed Random (Noise) Comments

Temperature coefficient of 0.1 MHz/°C

Transmitter 0.00029 V nominal	 temperature range (0 to 70°C)

Frequency For V = ±6.1 m/sec --- assumed for breadboard.	 Low temperature

(0 0 to 700S)
PV= 0.00177

m/sec
compensation coefficient achieved by tem-

perature compensation and self-calibrate,-n

Quantization 1.	 Triangular waveform modulation and
0.0019 m/sec tracking used for range interval of

S =600 MHz/sec
([1.00623	 ft/sec) --- 200 m to 1850 m.

AF =100 MHz 0 (due to CW)
2.	 For O< R< 200 m, triangular waveform

alternates with CW at 50% duty cycle.

Random Error 0.00625 m/sec At maximum range with tracker bandwith

(Flicker Noise) --- (R= 1850 m) (one-sided, noise bandwidth) of 50 Hz.

Data Double--precision	 (16-bit)	 processing

Processiog
Negligible Negligible

keeps this error at a negligible level.

Total RMS (c V ) = ^(O.CO625 )2 + (0.0019) 2 + (0.0029V)2

For	 V= -6.1 m/sec (max) QV= 0.007 m/sec (0.022 ft/sec)

R=1850 m (Pia x)

f'.

Z

CO

fs
.a3^



82

2.7	 Implementation details

The designs and implementation trade-offs to synthesize several

of the critical radar functions presented in the report are discussed

in this section. In general, the designs reflect the motivation to

achieve a small, lightweight radar that is relatively inexpensive yet

meets NASA's performance goals. The most critical of the radar func-

tions and, consequently, the ones discussed here are frequency modula-

tion synthesis, FM sweep waveform generation, audio amplification (zero

IF), and frequency/phase tracking.

2.7.1	 Frequency Modulation Synthesis

The originally proposed method for linearly sweeping the Gunn

oscillator, as shown in Figure 27, has been studied in detail. As a

review, the method of sweeping the Gunn oscillator is to change the

divider index in the phase--locked Gunn oscillator , loop in small steps.

Thus, from Figure 28, it can be seen that, if the divider index is

changed from N to N+l, the frequency output of the divider will change

from Nf0/N= f0 to Nf0/(N+1). Since the output of the divider must be

equal to f0 , the Gunn VCO must change frequency by N/(N+1)f0 for the loop

to stay in lock. By adjusting the response time of the loop, e.g., nar-

rowing the loop bandwidth, the VCO frequency can be made to change
It 	 thus approximating a linear ramp. This principle is illus-

trated in Figure 29. The corresponding time history of the divider

index is shown in Figure 30.

The size of the divider index step change must be chosen care-

fully. Too large a change will cause the loop to lose lock. Reference

to Figure 4 of Appendix C shows that, for a step change in counter index,

the frequency changes approximately linearly for a normalized time given

by

wnt 0.5	 (73)

where w  is the loop undamped natural resonant frequency. Reference to

Figure 3 of Appendix C shows that the normalized loop error at this

value of time is

dm o = 0.25	 (74)

where dw is the magnitude of the frequency step and e is the loop error.

rz,`^'
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The time t is related to the number of steps by

	

t = f	 (75)

where T is the time duration of the linear ramp and N is the number of

steps or counter index changes. Similarly,

dw	
N
	 (76)

where ow is the total frequency excursion for the linear ramp (or saw-

tooth). If e= I  radian is allowed (loop will remain locked because of

no noise), and (73), (75), and (76) are substituted into (74), the number

of steps, N, is found to be given by

N = owT
	

(77)

For the case of T= 1/6 second and of= 100 MHz, N is found to be approxi-

mately 7000 steps. Thus, considering the highest practical input fre-

quency to a divider network to be 500 MHz, the stable oscillator refer-

ence frequency is found to be f= (500 MHz)/7000= 71 kHz. Since the

divide index must change 7000 times in 1/6 of a second, the detailed

design of this technique must be investigated further.

The preceding discussion of Gunn oscillator frequency sweep gen-

eration was based on a requirement for a linear sweep. However, it has

heen shown in Appendix D that, with certain restrictions, the sweep

shape does not affect the accuracy of the range measurement. The restric-

tions are that the sweep function must b y monotonically increasing and

that, at time T, the frequency must be equal to %f Hz, where ,J/T is the

slope used for the accuracy calculations. This fact has led to the fre-

quency sweep implementation shown in Figure 31.

This technique differs from the previous one inaSfCUO as this

technique is an open-loop sweep of the varactor -tuned Gunn oscillator.

The previously discussed technique is a closed-loop technique. The

principle of operation of this technique is as follows. A linear ramp

voltage is applied to the tuning terminals of the Gunn oscillator, caus-

ing the frequency to sweep more or less linearly. 	 linearity depends

I



88

^-CW
tpUt

Set
Sweep

LimiLs

Phase
L0r

,
Set Sweep Slope

Figure 31. Alternate Sweep Generation Technique



89

'i

on the frequency versus voltage tuning curve for the Gunn oscillator.

The output of the Gunn is nixed with an LO Gunn so that a maximum fre-

quency of approximately 500 MHz is applied to the counter input. The

output of the divider is fed to a phase-locked frequency tracker or

discriminator. A 1 MHz stable reference is also fed into the disc rim-

inator, This discriminator has the characteristics shown in Figure 32.

When the input frequency to the tracker from the divider output reaches

AF, the output voltage saturates. At this point, a logic-generated

pulse is applied to the circuit that is generating the sweep voltage.

This pulse dumps the integrator, causing the sweep to stop and, at the

same time, applies a voltage of the opposite polarity to the input of

the integrator. This causes the sweep to start in the opposite direc-

tion, but with the same slope. The slope is determined by the magni-

tude of the voltage applied to the integrator. This is easily adjusted

by means of the digital-to-analog converter (DAC). The sweep limits

are adjusted by picking the appropriate divider index.

The two frequency sweep techniques discussed above are designed

to precisely control the sweep modulation slope by precisely setting AF

and AT. An alternate approach is to allow the slope to be less precise

and accurately measure the actual slope by independently measuring AF

and AT. A functional block diagram of this approach is shown in Figure 33.

A waveform generator is used to generate the triangular waveform that

tunes the varactor-tuned Gunn oscillator. The result is that U e total

frequency deviation of the sweep is nominally the design value and the

time intervals of the up and down sweep are nominally the design values.

However, the counter is used to accurately measure each time interval

during the sweep so that nT is precisely known. At the peak of the

sweep, the counter stops measuring the time interval and measures the

peak frequency. Thus, ',F is precisely known and, consequently, the slope

S= aF/AT, is precisely known. This information is utilized by the micro-

processor to convert the beat note to range data. Details of the wave-

form generator are discussed in Subsection 2.7.2.

A counter with a binary resolution of 18 bits is required to rep-

resent the maximum sweep interval of approximately 167,000 ,.sec and ^.F of

100 MHz. H r,wever, since only i6 bits are utilized by the microprocessor,

a 2.55 psec time resolution and a 1500 Hz frequency resolution ^esult.
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The range resolution or range quantization error- resulting from the

16-bit quantization is shown in Subsection 2.6.1.3 to be 5.6 cm (0.135 ft).

This is a reasonable value for quantization error.

	

2.7.2	 FM Sweep Waveform Generator

i

	

	 The purpose of the sweep generator is to provide a waveform

required for the frequency deviation of the Gunn oscillator transmitter.

Figure 34 shows the detailed diagram of such a precision sweep generator.

As shown in the figure, a voltage reference diode develops a precision

reference voltage V R . This voltage is also divided to a second, lower

voltage. The original V  and its reduced fraction kV are applied to

separate voltage followers whose outputs are therefore two precision

reference voltages 
VRl 

and VR2 , respectively, with the relationship

being 
VRl" VR2 . VR1 and V

C2 are then applied to a selector switch. For

the high sweep rate, this switch selects 
VRl 

and, for the low sweep rate,

the switch selects V R2 . The reference 
VRl 

is also applied to the upper

limit detector comparator. Furthermore, the polarity-inverted value of

VRl is applied to the lower limit detector comparator. The voltage

selected by the sweep rate select switch is applied to an integrator

where it is converted into a precision ramp. Note that either a posi-

tive or negative version of the precision reference sel ected is avail-

able for the generation of either- the positive or negative section of

the sweep waveform, respectively.

When the ramp generated by the sweep integrator reaches its

limit (either high or low), a corresponding comparator provides a pulse

which inhibits further sweep in the same direction. Also, a corrrnrand is

sent to the microprocessor indicating the end of the sweep in that par-

ticular direction. The microprocessor then makes a decision (based on

the mode of operation) to either: (1) open the alternate transmission

gate and initiate the sweep in the opposite direction or (2) let the

integrator output voltage "coast." at the constant value, thus enabl ing

the transmitter to generate a CW waveform.

	

2.7.3	 tiasehand Amplifier/Filter and AGC Unit
i

Figure 35 provides a functional schematic of an amplifier/filter

and AGC unit. The purpose of this amplifier unit is threefold:

0
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(1) to bring the level of the detected baseband range/velocity

tones to a level suitable for signal processing,

(2) to provide lowpass and highpass filtering of the received 	 1

range/velocity tones, and

(3) to provide automatic gain control (AGC) function for the

purpose of minimizing the variation of the absolute level of the signals

applied to the baseband signal processor.

As shown in the figure, the first stages of amplification are

provided by a discrete component circuitry. Specifically, transistors	 A`

Q1 andQ2 are selected for best low noise performance. The result of

such selection is the amplifier overall noise figure of 2.0 to 2.5 dB.

The discrete-component amplifier stage also provides the iowpass and

highpass filtering which is implemented as an active filter. Resistor

RM provides for setting the bias current through the homodyne RF mixer

diode CRM . The discrete--component amplifier section provides about 15 dB

of gain.

Following the discrete-component amplifier are the gain-controlled

amplifier stages. These stages are comprised of IC I and IC 
2' 

The maxi-

mum and minimum gain provided by these stages is 100 dB and 12 dB,

respectively. The voltage for controlling the gain of this amplifier

is developed by an absolute value rectifier circuit.

The voltage developed by the rectifier circuit is filtered and

applied to a light-dependent resistance cell. This cell provides for

linear control of the amplifier gain. The AGC reference voltage deter-

mines the level at which the gain control function is actuated.

2.7.4	 Frequency/Phase Tracker

The basic measurement process involved in the radar is the deter-

mination of the frequency of a beat note(s). Since, for much of the

operating range of the radar, the beat note is a noisy signal, it is

necessary to filter it prior to frequency measurement. The method cho-

sen as a baseline design is a phase--lock tracker. A block diagram of

the tracker is shown in Figure 36. The noise filtering is accomplished

by virtue of the fact that the frequency measurement is made of the loop

VCO. Since the loop has a relatively narrow noise bandwidth, typically

50 Hz (one-sided), the frequency and phase fluctuations of the VCO are

minimized.
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From Figure 36, it is seen that the phase-lock tracker is a

classical I and Q tracker in which the I channel is used to generate

lock indication and coherent AGC control voltage. The tracker acquires

by means of an acquisition sweep voltage that tunes the VCO across the

frequency uncertainty. When the I channel develops the "in-lock" signal,

'

	

	 the signal developed by the coherent amplitude detector (CAD) is used to

stop the sweep.

A similar phase-lock tracker is presently being used in the Kus-

tom police radars. This design will be examined in detail in Phase II

to determine its suitability for NASA space proximity missions.

2.8	 Special Problems

2.8.1	 Near-Zero Velocity Measurement

The analysis of the radar's velocity performance presented in

Section 2.6 demonstrates that the NASA velocity accuracy measurement

goal can be met. However, this analysis did not consider the limitations

of the specific frequency counter implementation used to f,-,easure the

doppler frequency. If one considers the desired measurement update

interval of 1 second, it can be seen that there is an inherent 2 Hz

counter ambiguity. This is because effectively 0.5 second of the inter-

val would be devoted to counter velocity measurement and 0.5 second

would be devoted to counter range measurement. If the full 1 second were

devoted to velocity measurement, the counter ambiguity would be 1 Hz.

One way to devote the full 1 second to velocity measurement would be to

make the range measurement while utilizing the triangular waveform mod-

ulation, then switch to a CW mode in which only velocity would be mea-

sured. Range would still be automatically updated by virtue of inte-

grating the velocity measurement. Even the 1 Hz counter resolution error,

however, is on the same order as the la y error of 1.6 Hz. (The 1.6 Hz

value corresponds to 0.01 m/sec la velocity measurement accuracy.)

Thus, where near-zero velocity measurement is desired, such as in space-

craft station-keeping operations, the measurement or integration interval

should be increased to 10 seconds. This makes the counter resolution or

round-off error an order of magnitude less than the errors analyzed in

Section 2.6. Thus, Axiomatix recommends a "station-keeping" radar mode

during which a CW is transmitted for the major portion of a 10 second

f
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interval and the velocity measurements are updated every 10 seconds.

The range measurement for this mode would take only about 1 second, and

its update rate would also be over in 10 seconds.

2.8.2	 Near-Zero Range Measurement

The problem of near-zero range measurement is similar to the

near-zero velocity measurement problem, i.e., counter measurement of

very low frequencies. In Section 2.4, it is shown that, for a modula-

tion range scale of 16 Hz/m, the resultant beat note is 3.2 Hz at the

range of 0.2 m (0.7 ft). Thus, for a measurement count interval of

0.5 second, the 2 Hz mound-off error is of the same order as the fre-

quency to be measured. This problem can be solved by utilizing a

10-second mea,sUrement interval, i.e., a "docking" radar mode. Also,

since at close ranges, the signal-to-noise ratio is very high, it is

possible to multiply the range tone frequency before counting it. Thus,

multiplication by a factor of 10 would decrease the round-off error to

an order of magnitude less than the frequency to be measured. The

velocity in this case (i.e., high SNR) can be obtained by differentiating

the range information.

t
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3.0	 CONCLUSIONS AND RECOMMENDATIONS

A baseline system design for a ranging/tracking radar for space

proximity operations has been developed. The analysis of this CW radar

has demonstrated that NASA's performance goals for range rate measurement

of a= 0.01 m/sec (0.03 ft/sec) can be met. Analysis of the ranging per-

formance has indicated that the range accuracy goal of a= 0.2 m (0.66 ft)

wil l lie met at ranges up to 2100 m (4000 ft) and the range accuracy will

be cF = 0.268 m (0.88 ft) at the maximum range of 1860 m (I nmi).

The system design developed is a practical design which can be

implemented in Phase II with existing commercial components; yet it

reflects state-of-the-art component utilization such as the use of

microprocessors. Furthermore, the range rate measurement potential for

the Iatest technology was experimentally verified during the Phase I

contract. Using a Kustom police radar modified to measure low velocities,

Axiomatix measured velocities as low as 0.018 m/sec (0.06 ft/sec). This

radar was by no means optimized for this task. Further details of the

test are reported in Appendix F.

The system design developed in Phase I will be breadboarded and

tested in Phase II. However, Axiomatix strongly recommends that NASA

authorize the detailed analysis of the effects on the system design of

target scintillation, extended targets, and multipath. Due to the limi-

tations of Phase I funding, these effects were not analyzed in detail.

The experimental tests performed by Axiomatix, however, indicated that

target effects and multipath will affect radar performance.

An area closely related to the target effects is consideration

of using radar reflectors on some, or possibly all, of the targets with

which the sensor will operate. In case of adverse findings from further

target effect studies, utilization of a passive, cooperative reflector

mounted on a complex target may be the most promising approach towards

meeting the measurement accuracies specified by NASA. Consequently,

further studies directed towards defining, specifying, and utilizing

passive, cooperative reflectors in conjunction with realistic targets

are also strongly recommended.

Jr t
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APPENDIX A

THE EFFECT OF PHASE NOISE ON CW RADAR PERFORMANCE

by

Charles L. Weber

	

1.0	 SUMMARY

The performance of the proposed CW radar ;n the presence of addi-

tive white Gaussian noise has been developed and is reported in [1]. In

this appendix, the performance of the proposed CW radar is determined in

the presence of phase noise on the local oscillator. The effect of phase

noise on performance is essentially identical for both the range and range

rate estimators. This is because both involve a frequency estimate.

The results take into account the correlation that exists in the

frequency noise process over the round trip time to the target. The

results are shown to be independent of received signal power, power in

the local reference, and gain of the receiver mixers.

	

2.0	 ANALYTICAL DESCRIPTION OF PROPOSED CW RADAR
SYSTEM IN THE PRESENCE OF PHASE NOISE

A block diagram of the proposed CW radar system is shown in

Figure 1. The transmitter is tunable at K-band, where the input is pro-

portional to the instantaneous frequency fi (t). The range and range rate

estimations are performed in a TDM (time-division-multiplexed) manner.

Depending on how the final implementation is chosen, the doppler bias

error in the range error can be removed by use of the range rate estimate

or by proper choice of the instantaneous frequency modulation f i (t). For

details, see [I].

One candidate instantaneous frequency modulation is shown in

Figure 2a. The system parameters shown in this figure are:

AF = total deviation of the instantaneous frequency (Hz)

Tm = total measurement time for one range measurement (sec)

TO = measurement time for the range rate measurement (sec)

k = slope of the linear FM instantaneous frequency varia-
tion (Hz/sec).

It

..	 ...	 ♦ Y	 ,.^.^..-a	 -:. ,,.- _ +w. : _a^ ^3''^-+r;Ur'	 ^	 T'	 : ..^+^.^'-....:tip`'^++..-tir ....-...« .-...... ^r....-.- ...... ^. -.... _.. _.. ., _...	 ... _<. _. _.	 -_.._ d



a.	 .

a,

Target

fi(t) Tunable	 T(t)
K-Band

Transmitter

BPF -
r(t)

Y(t)
Range Rate	

R(t)Estimator
Gain K1

OF H x(t)

Range	 P-0- AwEstimator

Figure 1. Simplified Block Diagram of Proposed CW Radar System
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An alternate version of the instantaneous carrier frequency is shown

a	 in Figure 2b. There are advantages and disadvantages to both choices ofr
instantaneous carrier frequency modulation. Among them, as shall be shown,

is that, in Figure 2a, the choice of f i (t) ,till allow range measurement

without knowledge of the range rate, whereas ir. Figure 2b, the f i (t) requires

knowledge of range rate i g order to provide an estimate of range. The second

alternative, however, is simpler to implement and the sign of the doppler

correction is not a problem, as will be shown. This could possibly be A

problem in the first alternative.

From Figure 2, it is seen that a CW linear FM waveform is used

during range estimation and a pure CW is used for range rate estimation.

For a target at range R, the round-trip time to the target, T RT , is

given by

TRT ARc ,	 (1)

where R is the range to the target and c is the speed of light. From

Figure 2a,

2 = k Tv = k Tr,/4	 (2)

For range measurement, the basic approach is to estimate the change

in instantaneous frequency (termed the beat frequency) over the round-trip

time to the target. Designating the beat frequency as f b , we have that

f  = k TRT = 2AF TRT/TM .
	 (3)

In what follows, only the effects of phase noise are considered,

and the signal-to-noise ratio (SN R) is assumed to be sufficiently large that

the effects of additive white Gaussian noise (A41GN) can be neglected.

During range estimation, the transmitted signal is given by (see

Figure 1):

t

T(t) = J2 PT cos Itu 0 t +	 27rfi(z) dT + OT + O PN (t}	 (4)

f t0

where	 PT = transmitted average power

WO = 27rfD = carrier frequency (rad/sec)

^A	
-
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fi k) = instantaneous frequency deviation from the carrier

t0 = arbitrary starting time for the transmitted waveform

0  = random reference phase of the transmitted signal,
uniformly distributed over (0,2fr)

0PN (t) = phase noise process, generated by the K-band oscillator
in the transmitter.

Modeling of ,the phase noise process 
0PNM 

will be considered

subsequently.

The received signal at time t, after passage through the bandpass

filter (BPS) shown in Figure 1, is given by

y(t) = V'2—P-  cos1Wot + wd t + f t-T RT 2Tr f i	 dT + a  + ©PM(t-TRT) 	 (5)
t0

where the AWGN has been neglected, and

PR = average received power of the desired signal

cud = 21cfd = doppl er frequency shift (rad/sec)

O R = random reference phase of the received signal,
uniformly distributed over (0,2w)

t3 PN (t-TRT } = phase noise process delayed by the round-trip time
delay T RT `

As can be observed from Figure 1, the mixer carries out the operation

x(t) = y ( t ) r(t) 
IBB ,
	 (5)

where the notation implies that only the difference frequency contribution

is maintained. The reference signal r(t) is an attenuated version of the

transmitted signals, so that

itt
r(t) = 2^ cos cu0t +	 2,rfi(i) dT + oT + 6PN (t)	 (/)

0

I	 The output of the LPF following the mixer is therefore given by
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x(t) =	 K cos [2W
f

t
	f.(T} dT -	 t + e + e (t) - e (t-T ) ,R LO 1	 t-T	 z	 d	 0	 PN	 PN	 RT

RT

(8)

where PLC is the average power in the reference waveform, and e 0 is also

a uniformly distributed random phase over (0,27).

The round-trip time delay TRT is assumed to be much smaller than the

observation or averaging time Tav' i.e.,

TRT << 	 21

so that any end effects at the beginning and end of the observation interval

can be neglected.

For linear FM, the slope of the FM can be modeled as the function k(T).

The instantaneous frequency is then given by

r	 T
fi (T) =	 I k(a) da .	 (10)

If the rate of change of FM is constant (as shown in Figure 3,

$	 for example), then the FM varies linearly, which is also shown in Figure 3.

The extent to which linearity is a requirement in this CW radar is dis-
c

cussed in Appendix D. Henceforth in this development, it is assumed k(T)

is piecewise constant and f i (T) is linear (sawtooth) as ideally shown

in Figure 3.

The accumulated beat phase in (8) can be written as

r	
i (T}

t
21r If	dT = 27r	 dT f

	
k(a) da

t-T
RT

	ft
 t- RT	

t-TRT

rt
27r 

J t-TRT

±2 n k^TRTT - TRT/2]

^t	 = ±2a fbt + e l	(11)

0



k(T)

fi(T)

-0

'	 1

Figure 3. Instantaneous Frequency f i (T) and Its Slope k(T)
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where the beat frequency is given by

fb	 fklTRT	
{12)

and the additional phase el can be absorbed into 00.
The signal at the input to the range estimator in Figure 1 is then

described by	

-
X(t) = P^ K1 cos [21r fbt ± 2w fdt + e0 + 6PN (t) - a PN (t-TRT J	 (13)

3.0

	

	 PERFORMANCE OF RANGE AND RANGE RATE ESTIMATION
IN THE PRESENCE OF PHASE NOISE

From (13), it is seen that the estimation of range has been reduced

to the estimation of the beat frequency, f  = k TRT . In terms of the range

itself,

R	 ^2^TRT	 (-Ak-)fb^
	

(14)

so that the standard deviation of range can be expressed in terms of that

of fb , namely,

c
^R = (2k	 f  .

Whether Alternative 1 or Alternative 2 is used as the instantaneous

frequency modulation, it will be assumed that the effects of the doppler

frequency are either eliminated or subtracted out. With the doppler fre-

quency removed, the input to the frequency estimation device for range

estimation is given by

x(t) = /PR PLO K 1 cos [2TT f b t + a0 + 0 PN (t) - 'PN(t-TRT] .	 (16)

On the other hand, when range rate is being estimated, there is no

beat frequency and the input to the frequency estimator is equal to

X(t) _ VP R P LO K1 cos [2ff f d t + 0 0 + 0PN(t) - 0 PN (t-T RT ) { .	 (17)

It

(15)



c (18)R T 2fc ^ fd
and

a
r

2c.

In what follows, range and range rate estimation can be simultaneously

analyzed by determining the variance of the frequency estimator. Then,

via (15) or (19), the standard deviation of range and range rate can be

determined,,°respectively.

4.0	 PERFORMANCE OF FREQUENCY ESTIMATION IN
THE PRESENLE OF PHASE NOISE

There are various methods of implementing an effective frequency

estimator, including a hard-limiter plus frequency counters, and a bank of

narrowband filters plus an interpolation algorithm [2]. The first of these

appears quite attractive and, as a result, the performance of frequency

estimation in the presence of phase noise will be determined for a frequency

counter.

After a hard-limiter, all of the information in x(t) in (16) is

contained in its phase argument:

t

o(t) = 2w f b t + e0 + 27T 	 fN(T) dT (radians),	 (20)

t-TRT

where fN (t) is the instantaneous frequency noise process associated with

the phase noise process 0 PN (t). Therefore,

t

ePN(t) - © PN (t-TRT) = 2Tr	 fN(T) dT	 (21)

t-TRT

The frequency counter essentially counts zero crossings for a period

of Tav seconds, Tav being the averaging time. This can be modeled analytically

by saying that the frequency counter examines

4
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t r t	 t
CM	

^21T _
	 fb(T) dT + I	 fN(z) d-r	 fbt + f	 fN(ro) dT .

t-TRT 	1 t-TRT	 t- TRT
(22)

By observing (counting) c(t) for Tav seconds and averaging (dividing by Tav)'
QL	

the frequency counter estimate can be analytically described as

f = c(Tav) = f	 l Tav	 f 
(T) dT 

,	 (23)
	b 	

Tav	 b	
Tav ^T -T N

av RT

where Tav is the counting (or averaging) time.

It is noted that the quality of this estimate is distorted by the

phase noise process, and that the estimate is independent of the received

signal power P R , the power in the local oscillator P LO , and the gain K 1 of

the mixer in Figure 1. The phase noise process is assumed by definition to

have zero mean. Therefore,

E[fN (T)] = 0 ,	 for all T ,
	

(24)

and as a result
A

E Efb] = fb .
	

(25)

Hence, the frequency counter provides an unbiased estimate of the unknown

frequency fb . The variance of the estimate is therefore given by

T	 2
Cyf2 = E 

I

	 av
	fN{T) dT

b
	v Tav-TRT

(LT

2	 T	 2

	

T 
E 

T1 f RT fN (T) dT	 {26)
av	 RT J 0

where the translation in integration time is done for convenience and is

justified since the phase noise process is assumed to be stationary. Using

the stationary assumption further, (26) can be expressed as



I1

2	 TRT

	

6 f2	
TRT	 fr E [fN ( t l ) fN ( t2 )] dtl dt2 	(27)

	

b	 av T
RT 00

where

E [fN ( t l ) fN ( t2 )] ° Rf
N
 (t1 - t2 )	 (28)

is the autocorrelation function of the frequency noise process fN (t). By

substituting (28) into (27) and letting T = ti - t2 , the variance in (27)

simplifies to [3]:

T	
2	

T_ f
6 2 = 	 TRT	

T2	
RT I - TT	 Rf (T) dT .	 (29 )

6	 av	 RT 0	 RT	 N

What is typically available on "Spec" sheets is power spectral

density (PSD) information instead of autocorrelation function information [4].

In terms of the two-sided PSD Sf
N 
(f) of fPN (t), where

SfN (f) = :^_ RfN(T)	 (30)

is the Fourier transform of the autocorrelation function, (29) is equal to

	

2	 - sin (7r f T ) 2f2 _ T
—RT 2 f	 ^r f 7 RT	 S f (f) df	 (31)

b	 av	 0	 RT	 N

The "Spec" sheets for frequency noise processes typically provide

single-sided power spectral densities [4]. Therefore, we define the single-

sided PSD of y t) as

G 
N 
(f)	 2 S f

N 
(f) .	 (32)

The standard deviation of the frequency estimate due to the fre-

quency noise process of f PN (t) is therefore given by

(LTav	

sin (Tr T
RT
 f

	

2	 1/2

CT 	 iT T f	
Gf (f) df	 Hz	 (33)

PN 	 0	 RT	 N

.^—_;,:._.	 .:[ ....	 __ .^	 .. :.. ......	 ,.:u.x ^	 _ ^^^ ^ --,e"=rte. f •	 v:n,.-.^ _,^
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It is noted that the effect of phase noise in frequency estimation

decreases as the inverse of the averaging time Tay . The effect on performance
of the correlation that exists in the phase noise process over the round-trip

transmission time 
TRT 

shows up in (33) via the weighting Function

[sin (7rTRTf)/(,TTRTf)]2•
e

	

	 If the maximum frequency of interest in the frequency noise process

isBmax then in this application the range is sufficiently short that

1	 (34)
"Max 	 TRT

For example, if R = 2000 meters, then TRT W 13.33 psec, and T
T
 = 75 kHz.

Hence, (34) would be satisfied for Bmax equal to a few kHz. When (34) is
satisfied, the performance in ( 33) can be tightly upper bounded by

1/2
TRT [f max G (f) d f	 Hz	 (35)

fPN	 Tav j0	 fN

Using the results in either (33) or (35), the standard deviation of

the effects of phase noise on frequency estimation can be determined. The

simplest certainly would be to substitute the "Spec" sheet frequency noise

PSD for a particular oscillator directly into (35) and -integrate.
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APPENDIX B

BEAT NOTE ANALYSIS IN AN FM-CW RADAR

by

Teferi Nessibou

1.0	 INTRODUCTION

This appendix presents a derivation of the discrete power spectrum

of the beat note in an FM-CW radar when the modulating waveform is a sym-

metrical sawtooth.

2.0	 M4THEMATICAL DEVELOPMENT

2.1	 System Model

Figure 1 shows the receiving end of the FM-CW radar where the

reflected signal v  is mixed with the transmitted signal v  to generate

the beat note vg.

2.2	 Symmetrical Sawtooth FM_

Figure 2 gives the frequencies for a stationary target. From

this figure, fB = 4T Af fm .
Over the interval [O,T m], fT can be described by

T	 T
fT = fO + iAf (t _ 4	 0 s t 5 2 ,	 (1)

M

3'
	 T

f T = f 0 _ 4 M	 _ 
4m)	

2 <_ t< Tm 	2)
M

^T = f
t

 27v fT dt .

r
	

"m)

	 3T

^T = 
1 

2Tr f0 + 4Af 
^t - 	 dt + [ 2n f0 - LA-f- !t _ 4m 1 dt a

M	 f	 mi	 J

0 < t < T  .

The transmitted signal is given by

rs

(3)

(4)

(5)V  = VT sin OT

iwwo^R^^01(^n	 ^sioi^fm^m^a^ee^.".+"^^„"`^.	 1^,	 -^.:t +..."'. ^. ---
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and can be expressed as

[2Trf	
2

vT = VT sin	 0t - 8w left + 4af 2w fm 2 + ^1 >

0<t<_ 2	 (6)
and

2	 ^'
vT = V.r sin 2^r fOt +67r eft - 4af 27r fm 2 + ^,

2 `— t < Tm '	 (7)

The corresponding received signal is of the form

v  = V  sin
R	

(8)

and can be written as

v  = V  sin [2W f0 (t - T) - 8-ff of (t - T) + 40f 2Tr fm t 2 	 ^3 .

0<t< 2	 (9)
and

vR = VR sin [27T f0 (t - T) + 6-ff Af(t - T) - 40f 21r fm (t 2T 
2 

+ ^4 .

T
2 c t M

The output of the mixer (neglecting double frequency terms) is the beat

note of interest of the form

v  - K vT vR

K VT VR

v 	 2	 cos 
(OR - OT)

(10)

(11)

(12)

therefore,

t

fir	 -., ^- ,,^:;•	 ' ` ^^ ^^ .:.	 ._ .._ .__ -..	 _.,,.,..	 ,•..-... -^..^y»^,3
::^^•r^•a^ •	 ^^^'	 ^.,_...,.............^.. _ _,,_.. ,_
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LB
	 1

vg = Vg cos [-27r fB t -^ (2-rr Z + 87r Af - 27r f O J T + $ ;

0 < t < 2 (13)

and

LB
	'

vB W VS cos [27rf8 t - (2,rr 2 + 6w of + 27r f0^ T +	 ;

T

2 C t K	 ,	 (14)

where

KV V
VB =	 ^ ^	 (15)

and ^ is a constant phase shift due to reflection, the transmitting and

receiving antennas, and the mixer.

Let

el	 _ ^2 +8,r qf-wO)T + (16) xr,
3	 ..j

i^
j^

e l	 = [2Tr W$^ + (2wm T Af -w 0 )T  +
(17)

and

e	 =2 - wg
	

6-r qf	 w	 T +2	 0)
(l 8)

>i

e 2	 - - (w0 +2wm TAf)T +z wg^
(19)

id

1

}t
m

Over the interval	 [O, ,r v8 can be expressed as
5j

vB = UB [cos (-wBt +e 1 ) + cos wBt + e] . (20) l F'

Equation (20) can also be written as



r

t^

5

a +0K A (el - 62
vB = 2VS cos	 2	 cos [COBt + —	 (21)

It can be easily cheated that v3 is periodic with period Tm.

2.3	 Frequency Domain Representation of vg

The beat note v$ is now expanded in a Fourier series as follows:

00

vB (t) =	 X V  exp (jnwmt) ,	 (22)

n=-CQ

where

T

Vn = _
L
 J 

m 
VB (t) exp ( -jnwmt) dt.	 (23)

m 0

Substituting for v  in its exponential form, we get

-'m "-'m
"VB

Vn	
l

 -1
m f	

2 [exp (-jw,t + ja l ) + exp ( jwB 't - j B l )] exp (-jnwmt) dt
 o

+ fTm VB [eXp (jwB t +j© 2 ) + exp (-jwBt-jo2)] exp (-jnwmt) dt
m/2 2

(24)

which can be rewritten as

fTinj 2 l
Vn=

VB

2 ! 0	
TM [exp ( -j ( wB + nwm )t) exp (j 0  + exp (j (wB - nwm )t) exp (-je l )] dt

+ 
fmT 

/2 
Tm 

[exp (j (wB - nwm )t) exp ( j © 2 ) + exp (-J(wB +nmm )t^ exp (-j@2)] dt

m

(25)

Evaluating the integrals yields the following expression:



t

t

	

1
	
Q

Vn V$ cos 6 	 1 - exp - jTr 	 + n)

j2w+n)
im

1	 wB
+	 c^B	 exp jTr(wm - n) - 1

	j 2 ,u(
	

n) _ 
m

1	 wB+ V  cos e2

	

	 wB \ exp j2-a	 - n) - exp

j 2^(W
m

 - n) ,TT(wB
n)

m

6

(26)

1 	 w

+ 

Q

	

exp - w + n) - exp -j27r( WB + n))
 m	 m

2Tr 	
- n)

with wB/wm ^ ±n .

Equation (26) can be broken down into its real and imaginary parts:

V B	 1	 $
Ref v =	

GM)

2	 (cos 9 1 - cos 6 2 ) n cos -aw

wB ) 
sin Trn - Ow

w 
sin (TT 

wB

y ) cOS•nn
2	 2 	 .	 m I/	 m!	 m

+ cos e2 n cos (2Tr -- ^ sin 2Trn - ^wB^ sin l 2Tr !B cos 2Trn

	

`` m	 m	 ` m

(27)

V	 1	

ItwBwBwB

im{Vn	 B}	
2	 w	

(cos e1 - cos g2} ncos (Tr W 1 cosTrn }^^ sin ^Tr w
	

sin,r

n2^ / B) 	 \ ml	 m	 m

M

1

	

+ cos 02 ncos (Tr wy )cos2Trn+4ww^	 (2iT)sin 	ww^ )sin2Trn - n cos 6l

	

m	 ` m 	 m//

(28)

R
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Since n is an integer and w B/wm is an integer greater than 1, Ref'n } = 0.

The Im{Vn} can be further reduced by considering the two cases below.

Case 1: w B/wm even:

Im V	 V8	 n2	 cos 8 ( 
7

cos 7rn 	 1 1

	

n} 
_ 

2	 1 17M	 Tr J
[n2_ CB 

m

+ cos e 2 cos 2Trn _ cos Trn 1

	

2	 2Tr n	 Tr n	 1

Im{ Vn } = V 	 n2	 - cos $1 sinc 2 (n/2)
2

n2_ Q^

+cos 02 sinc 2 (n/2) - 2 sinc2
^j

	
(30)

e	
Case 2: w $ /wm odd:

	

Im{V n } = VB
	 n2	

- cos 01 (Cos -an + 7m

2 	 n2 , wB
wm)-

+ cos a r2 cos 2Trn + cos Trn

	

2 1	 2Tr n	 Tr n

Irr	
B	

n
= V

2
	cos 

BI IS inc 2 (n/2) -
	2 	 w	

n]

n2_ ^wm/

+cos B2 Cn - 2 sinc 2 n - sinc 2 ( n/2^ ,

where sine n= (sinTrn) /Trn .

In Case 1, when n is even, Im}Vn} =0 
(by inspection). When

n is odd, the expression reduces to

(29)

F

D

(31)

(32)

'4



t

8

	

Im{Vn } = 
B2	

n2 2 (cos Q2 - cos a  ) si nc2 (n/2) .	 (33)

n2 - \w8!m

In Case 2, when n is even, we have

Im {Vn}	
V B 	 n2 

2 p) (cos 6
2 

-cos 6 7 ) 	 (34)
2 2

n - (
WB

wm/

when n is odd, we have

Im{Vn } = V^
	

n —^ (cos 62 - cos 6 I ) ran - sinc2 (n/2)	 (35)

n2
	2 	 W	 L

- Wm^

In either case, the magnitude spectrum of v  is obtained from

IVn
I = 2 ^(,MlVn1)2
	 (36)

In summary, when w+B/Wm is even and WB/Wm ^ ±n ,then

IVn I = 2 v2
	

n22	 cos e 2 -Cos e I ( sinc 2 (n/2)
n 2 _( 

WB) I

	

with n odd;	 (37)

when w B/wm is odd and wB/wm ^ ±n, then

	

E Vn I = z U	

n

B	
n2 2 (') cos 62 - Cos e,I , for n even, 	 (38)

	

2	 2 -( W8

^wm

-^^ "	 ^^, YIi1YeYlaib -̂°

P
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and

V	 2
E Vn = 2 2	

n 
	 2	

cos 6 2 -cos 6, p - sinc 2 (n/2)	 n odd .	 (39)

n2 - (
W)

-

When wB/wm =-gin, V. is evaluated directly from (25) to yield

V 
	 exp (±j61)

V  = 4 [exp (±j61) } 	 j27rn	 (i - exp (-j2Trn)) + exp (±j62)

jexp (±62)
+	

j2	
(exp ( -j2Trn) - exp (-j4Trn)) 	 (40)

which reduces to

V

V  = B [(cos e 2 +cos$,) ± j(sin0 2 - sin 0,}^	 (41)
2	 -J^

in either case,

IV n I  = 2 Icos 61 + 
6 2	

(42)

	

2	 ^I

2.4	 Examples of Ca lculations for w B/wm = 2 and w B /wm = 5

In this section, the spectrum of the beat note is calculated and

presented graphically for different values of 6 1 and 6 2 when w B/wm is
equal to 2 and 5.

For simplicity, ^ is set to 0 in the equations for 6 1 and 62.

Case 1: w B/wm = 2

P

.E

t

61	 = 47r	 + 13m T AfT - w 0 T . (43)

6 2	= -1r - 2w m TAfT - w 0 T . (44)

9
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Four distinct subcases emerge;

a. 6 1 = 27r ,	 02 = Tr

2
1Vn 1 = Vg

In -41 
sinc2 (n/2) ;	 n odd

1Vn j = 0 ;	 otherwise	 (45)

b. e1 = w/2, e2 = Tr/2

1Vn 1 = 0 .	 (46)

C. 61 = 7w/4 , 62 = 31r/4

1 Vn 1 = 2̂  —2--,1f sinc2 ( n/2) ;	 n odd	 {47}
In -41

IVn 1 = (0.707) 
V 

4 	
n = 2	 (40)

1Vn 1 = 0;	 otherwise.	 (49)

Let VP be such that

V 21VP12 
=	 21 2 = 0.0625.	 (50)

VBI

Equation (50) represents the total power normalized by 1VBl2;

we assume that V B =1. The Function

2

S = 
1Vn12	

(51)

1VP1

is shown in Figure 3.
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c. el = 31T/4 ,	 e2 = -37r/4

V
IV 5 1 = 4	 n = 5	 (60)

IV n I = 0 ;	 otherwise.	 (61)

These three cases are presented in Figure 4 where V B = 1 was

assumed and the normalization used in Case 1 of Section 2.4

was also used.

3.0	 CONCLUSION

We can see from Figures 3 and 4 that the discrete power spectrum

of the beat note vB goes through three distinct cycles as the target

moves; the cycles are:

(1) All the power is in the fundamental component (i.e., wB /w = n).

(2) The power is shared between the fundamental component and

its harmonics.

(3) The power is distributed in the harmonics only.

We also note that the spectrum is nonsymmetric; this is due to

the small values used for wB /wm (namely, 2 and 5). For large values of

wB /wm , the spectrum will become symmetric.

REFEREN(:E:
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by

Teferi Nessibou

1.0	 INTRODUCTION

This appendix investigates the effects of switching a frequency

divider on the transient phase error and the estimated frequency output

of a Gunn VCO in a phase locked loop (PLL).

2.0	 ANALYSIS

In the following analysis, we first consider a second-order loop

with filter function

1 + 2Ww
F(s) =	 n	 (I )2

I + sKJmn

to derive the exact,solution for the loop transient phase error.

The second part of this appendix utilizes the appropriate

approximation for a high loop gain.

2.1	 System Model

Figure l shows the diagram of the phase Tacked loop considered.

The VCO output is mixed and -Filtered to drive the frequency divider (:N);

the output of the divider is then fed into the loop phase detector to

close the loop. The frequency divider operates incrementally in steps

of qm (which corresponds to a phase ramp).

The linear baseband equivalent model of this system is shown

in Figure 2.

2.1.1	 Definition of Terms Used

9d = loop phase error

ON = phase ramp due to divider

0  = estimated phase

K1 = BPF gain

f



E) 
0

2

Figure 1. Phase Locked Frequency Source with Frequency Divider

e N

Figure 2. Linear Baseband Equivalent Model



or r

3

K 
	 = frequency divider gain

K2 = loop filter gain

K3 = VCO gain

K = K 
I 
K 

2 
K 
3 

K 4 = loop gain

F(s) = loop filter transfer function

7/s = VCO transfer function

H(s) = closed loop transfer function

W  = loop natural frequency

= clamping factor

2.2	 Transient phase Error ea for a Frequency Step of ON= Aw

Let 0(s) be the Laplace transform of 6; then,

03(s)=

	 (2)
aN s
	

l-H{s);

01 (s) = [l - H(s)] ON ( s ) ;	 (3)

where

H(s} _ (2Cwn - w  /K) s a- wn 	
(4)

s 2 + 2;wns +wn

A frequency step Aw can be expressed in operational notation

as

0N(s) _ 7	 (5},

5

Consequently, the phase error becomes

03 (s) = [I - H(s)] aw
	

(6)
s

or, substituting for H(s) and rearranging,

;s

f::

D



--w t
6 J (t) = w^ e n wnt

n
C=1	 (12)

r
r

4

W(—n

2N

OJ (s) =	 2	
aw  
	 °w	 2	 (7)

	

s + 2^wns + wn	 ^ K 
)S(s 2

 + 2cwns + wn

Taking the inverse Laplace transform of O J (s), the transient

response is found to be

	

1 - Cw /K	 ca
e
i
(t) = K + ^^ e- ^wnt	

n sinh wn	 - 1 t -	 cash wn ^2 -7 t

n 	 2 -- 1

^> 1	 (8)

w

2
-w t	 w	 w

n 
e	

(W 
n	 K C = 1	 (g)

1-;w/K	 w

6 J (t) = K + An
t e-^wnt	

n sin (Ojn
	cos wnJ-

172)t

n L^^

	

^ < 1	 (10)

For high loop gain K, these expressions can be approximated by

t = 
Aw e -Cwn t Binh (--nP - 1 )t	 > 1

D J ( )

n

(11)

^w -Z;wnt sin (wn 
Fl - 

2}t

J	
wn	 11 _ ^2

The curves representing (w n/Aw)6 J (t) for various values of the

damping factor C are plotted in Figure 3.

2.3	 Transient Frequency Response at the Out ut of the VCO
for a Frequency 5teo of the Divider :N

Because the loop gain K in our application is very high, we now

approximate F(s) and H(s) by the expressions below and derive the time

(73)

0
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Figure 3. Phase Error for a Frequency Step of the Divider
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6

response of the desired frequency f  for the case where the damping

factor is less than 1:

2cw s+w2
H(s)	 2	 n	 n	 (14)

s + 2^wns + w  >

1 + 4s/w

F(s) _ ^ .	 (15)

sK/wn

From the Iinear model in Figure 2, we see that

Q T (s) = [K2 K3 
F(s 

0J (s) .	 (16)

The effect of a frequency step on the phase of the desired signal 0 

can then be found by using

oJ (s) = [1- H(s)] 4"	 (17)

S

in the expression of eT (s) above and taking the inverse Laplace transform;

thus,

0 (s) = [K2 K3 F $[I - H(s)] A,	 (18)
s

Substituting for F(s) and H(s) and rearranging, we get

W 2	 2^w

0T (s)	 K K	 2 2	 n	 +	 n	 (19)
1 N s (s + 2;wn s +wn 

2	
s 

2
(s f 2Cwn s + wn

and taking the inverse transform

-^wnt

8Tw(t)	
K K It - 

e	 l	
sin wn ^i - ^2 t	 ^ < 1 .	 (20)

I N	 n	 ^i-^2

The frequency variation of the transmitted signal is then simply

obtained by taking the derivative of 0T(t):

^. s

t
z	 -

5

r

:a

6



b

$'	 7
^	 aF

d6T{t)

dt	 = fr(t) ;	 (21)

n

fT(t) - K K i - e-^mnt Icos ^wn ,^l -t -	 sin (Jl
1 N	

17

(22)

For the particular value ^ = 0.707, fT(t) is evaluated to be

f
l 
(t) =	 1110 	

1 - 
e-(0.707)wnt 

C os (0.707)wnt- sin (0.707)wnt1N

(23)

Equation (23) normalized by (K1KN)/Aw is plotted in Figure 4.

3.0	 CONCLUSION

An expression for the loop transient phase error for a frequency

step of a frequency divider was derived and presented graphically for a

second-order phase locked loop with two stages of down-conversion.

An expression for the transient frequency response at the output

of the VCO for a frequency step of a frequency divider was also derived.
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APPENDIX D

THE FREQUENCY SWEEP LINEARITY REQUIREMENTS FOR A LINEARLY-
MODULATED FM-CW RANGE MEASURING RADAR

by

Charles L. Weber

	

1.0	 SUMMARY

The error in fregitiency estimation that is introduced due to a

nonlinear frequency sweep is determined. The exact error is determined

for an arbitrary nonlinear frequency sweep. A relatively tight and

simple upper bound is also determined that applies to a very large class

of nonlinear modulations. This class includes most nonlinear modulations

that are of practical interest. Computations involving typical values

show that the error that is introduced by a nonlinear frequency sweep

is on the order of 0.13%.

Being more precise, the claim is that the average beat frequency

is linearly proportional to range, independent of the shape of the instan-

taneous frequency modulation. In addition, the claim is that the slope

is dependent only on the maximum frequency deviation and the observation

time. In this appendix, we show the extent to which that is true. In

particular, the above claim is true within an error of frequency estima-

tion which is on the order of 0.13% for expected values of the system

parameters. To within the same fractional error, the slope is dependent

only on the maximum frequency deviation and the observation time.

In general, however, the above claim is not exactly true, but

only approximately true, depending upon the extent of nonlinear modula-

tion, averaging time, and range.

	

2.0	 EVALUATION OF ERROR IN FREQUENCY ESTIMATION
DUE TO NONLINEAR FREQUENCY SWEEP

The effect on frequency estimation due to thermal noise was

determined in [11 for a CW radar, and the effect of phase noise was

determined in Appendix A of this report. As a result, in this develop-

ment, neither thermal noise nor phase noise is considered.

From (5), (7) and (8) of Appendix A, the accumulated phase due

to the beat frequency which is proportional to the round-trip time, TRT,

i

,2M n,..--	 -•.__. .......-^....s. 3̂'- _	 _::sue"' -a^.., ^,a err-.. »^..•-.,. ;„,_,.,.._^-.-^...__,..
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to the target, is given by

tftt-TRT6b (t)	 27r	 fi (T) dT - 2Tr	 fi(T) dT
t0	

0

t
21r	 f  (T) dT	 (l )

t-TRT

The round-trip 'time, T RT , is assumed to be small with respect to

the averaging time, Tav , so that the end effects at the beginning and end

of the observation interval can be neglected.

The nonlinearities present in the frequency modulation which show

up in the beat frequency can be determined from the instantaneous fre-

quency of ab (t). In particular,

1 debt)

fb (t) - (2wr)	dt	 i (t) - f  (t - TRT ) .	 {2)

As discussed in Appendix A, the frequency counter essentially

counts zero crossings for the observation period of T ay . This can be

modeled analytically by saying that the frequency counter averages fb(t)

for Tav sec [Appendix A, Eq. (23)] *

T

fb = 
T 	 r av [ f

i (t)-  f i (t - TRT )] dt .	 (3)
av o

When the instantaneous frequency modulation is ideally linear,

f  in (3) reduces to

f  = f  ,	 (4)

as shown in Appendix A, where the end effects have been neglected.

In order to determine the effects of nonlinear modulation on

the estimate of the beat frequency, consider a power series expansion

of f i (t) over the averaging period. In particular,

The do pier frequency shift is neglected for reasons that are
discussed in [1^ and Appendix A.

{	 I

^I
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CO	 k

f i (t) = E ak MTav	
< t 

<Tav'	 (5)
k=l

where

T 
v 

dk 
fi 

(t)
ak	

k! d—^ t=0.[

and where the k=O term is deleted since any constant contribution would

be part of the carrier and, as such, would not contribute to any error

in frequency estimation. Also, as shown in Figure 2b of Appendix A, the

maximum instantaneous frequency deviation in the averaging interval Tav

is taken to be AF. When that restriction is substituted into (5), we see

that

CO

Fi(Tav) _
	 X a k = AF Hz .

k=1

When examining the effects of nonlinear instantaneous frequency

modulation, we shall consider the set of modulations which can be repre-

sented as a power series and whose maximum instantaneous frequency devia-

tion is AF.

Upon substitution of the power series representation for fi(t)

in (5) into the model for the frequency counter in (3) and carrying out

the indicated integration, we have, after some algebraic simplification:

l T 	 tt T

fb TTav fa k=l ak [(Ta_vj- 	
dt

CO	
k-1 l k1 1	 -TRT

	

.k^l 
a k[,= Q Q" (Tav
	 (7)

In (7), all of the Q = k-1 terms contribute to the part of fb

which is linear in TRT . Removing all of the Z= k-1 terms in the double

sum in (7) and using (6),

(6)



F P

4
r

t;

4

(
4RT W

kk	
_TRT k-R,

fb 	 kE2 
a  

Qk, 1 

)(T]
1 / Tav	 (8)

n
The contribution to f  due to linear variation in T RT has

therefore been separated from the contribution which is nonlinear.

Hence, the first term in (7) is considered the signal part or desired

part, and the remaining double sum is the distortion due to the non-

linear modulation of fi(t).

The distortion or error due to the nonlinear modulation is

defined as

mJ

N F ^ - ^ a 
	

.E lj^1k-j-^1^ T
av

RT	
(9)

J2	 -2 

where we have set j = k-Q in (8). The distortion varies as (TRT/Tav)2.

This is emphasized by setting i = j-2 with the result that

C,Z
TRT k-2	 k	 1	 -TRT

NF = 
-k 2 

ak
[(Tav	

i Q (i+2i-1^ Tav	 (10)

This can be simplified to

2	 iICO	
TRT	 1 

k-2 k+l (^
RT

T
N	 - -	 a	 - ^.
F-k^2 k Tav 	 i -

Q+2	
av

This is an exact expression for the effect of nonlinear modulation on

fb . The fractional error can be written as

[ 
N F I

Fractional Error = AF TRT	 (12)

Ta v

An approximation to N F in ( 11) can be obtained for small 
(TRT/Tav)'

The approximation is particularly good if the primary contribution of

the nonlinear modulation is concentrated in the low values of k. For

small TRT/Tav' the sum on i in ( 11) can be approximated by



`r

5

(^+ 1	

i	

r	 ]	 r	

k-2

	

k2 i+2/ T RT	 - 1 k2 1I y 1k31)(TavRT + ... + (kl 
(Tav

	

RT

i -0	 av

	

lk+l/	
for small TRT/Tav'
	

(13)

Then the effect of nonlinear modulation can be approximated by

2
NF

	

(Ta

RT	
2 ak.(14)

v k=2

For the applications envisioned in this CW radar, the approxima-

tion of NF in (14) is most satisfactory.

Substituting (14) into (12), the fractional error is approximated

by

CO

T	 I kak2=

	

Fractional Error	
T 
RT 1

2 
kk=2	 -
	

(15)
av	 AF

Because of the weighting by the factor k, it is seen that the

error is more for a higher order nonlinear modulation.

Example 1: Linear FM Only

f i (t} = al (
Tav
t

al	 q F

a  = 0, a  >_ 2

fb	 4F ART	 (16)
av

	

Fractional Error = 0	 (17)
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Example 2: Pure Quadratic FM

2

fi (t) r a2 T
av

a2 = q F

a 
	 = 0, k ^ 2

2
fh =

	

AF TRT - AF 
TRT	

(18)
	av 	 av

Fractional Error =

	

	 RT	 (19)
T

av

At a range of R= 200 m, T RT = 13.3 usec. If the averaging time

is Tav = 10 msec, then the Fractional Error is approximately 0.00I33 or

0.133%. The approximation in (14) and (I5) gives the exact answer for

Pure Quadratic FM.

Example 3: Pure Fourth-Order FM

4

	

fi (t} _ (oF)
T	.
av

From (15),

Fractional Error v 2 TRT 9

av

which is twice that of Pure Quadratic FM.

REFERENCE

1. "Ranging/Tracking System for Proximity Operations," Axiomatix Tech-
nical Proposal for RFP 9-BC73-38-8-48P, May 24, I978.
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(21)
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APPENDIX E

PHASE NOISE OF A PHASE-LOCKED GUNN OSCILLATOR FREQUENCY SOURCE

by

Teferi Nessibou

1.0	 INTRODUCTION

This appendix presents a relationship between phase noise due to

oscillators and phase noise of the estimated phase error in a two--stage

phase-locked loop (PLL). This noise is an important factor that affects

the measurement accuracy of the reflected signal in the FM CW Radar.

^.0	 ANALYSIS

The phase instabilities of the different oscillators are charac-

terized by their respective power spectral density (psd), and the overall

phase noise spectra is obtained by adding the individual contributions

with appropriate weight (this is true because the phase noise is assumed

to be a zero mean, stationary random process uncorrelated with the cor-

responding frequency output for each source; furthermore, the different

noise sources are assumed to be independent). A convenience of this

method is that the spectrum is directly measurable.

Consider the system of Figure 1. The system consists of a Gunn

local oscillator (LO) with frequency output f 05 a low-frequency stable

crystal oscillator (XTAL OSC) with center frequency fX , a voltage con-

trolled Gunn oscillator (VCO) whose output f T is the desired frequency

for transmission complemented by a bandpass IF filter (BPF) and a loop

filter in a PLL configuration.

The three main sources of phase noise in this system are:

1. The LO with phase noise 
DLO 

of psd S	 M.
DLO

2. The XTAL OSC with phase noise 0X of psd So 
X 
(f).

3. The VCO with phase noise 
OVCO 

of psd S	 (f).
^VCO

The noise contributions of the phase detectors are assumed to be

negligible.

The analysis begins with the linearized baseband model of Figure 2.

y



a 

r

2

-T

Figure I. Block Diagram of P. L. Frequency Source

DLO
	

^x

^Vco

Figure 2. Baseband Equivalent Model
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Definition of terms:

BO = phase error due to LO

a  = estimated phase error

a  = 00 a  = l st IF phase error

ex = phase error due to XTRL OSC

O V = phase error at VCO input

K1 = BPF gain

K2 = Loop Filter gain

K3 = VCO gain

F(p) = Loop Filter transfer function

1 = VCO transfer function
p

Let O(p) and 4^(p) denote the transform of the corresponding e

and ^ processes obtained by applying the Heaviside operator p= d/dt.

We then have,

Q I (P) = 00 (P) - oT ( p )	 (1)

OV (P) = ^00(P)-OT(P) + (P LO (P)]KI - . OX (P) + (DX (P) K2 F ( p )	 (2)

K

OT(P) = OV (P) p f OVCO(P)	 (3)

Substituting for OV (p) in (3), we get

OT (P) _	
1

1̂ 0 (P) - 0T (P) + 'PLO (P)] K1 - OX (P) + 4'X (P) K2 K3 F (P) + bVCO(P) (4)

Expanding the right-hand side of the above equation, we have

OT (P) - 00 (P) Kl K2K3 F—p) - 0T (P) K 1 K2K3 F^

+ 'D (p) n 1 K
2 

K3 F(P) - OX (p)  K K F-)p	 2 3 p

+ 'D
X 
(p) K

2 
K
3 F-	 + 'DVCO(P)	 (5)



i

P
'Z

3	 4

a

} .	 Solving for E) (p), we get

[aO(P) + OLO (P)I K  K 2 
K 3 

F P	
IaX ( p ) - D X (P) K2K3 _p	

^VCO(P)T (p) _

1 + K l K2 K3 F P I
(6)

Letting p= jw and K1 K 2 K3 = K

00 (jw} fiL0(^w} KF(jw) 
+[,P,(jw) - o X (Jw) K2K,^ F— ŵ) + 0 VCQ

{ jw}
jW

QT
(jw) -

i+K 
Fjw	 (7)

The power spectral density of the process e  is given by

S(f) r 2nl0T('iw)!2
T

Therefore, evaluating Sg T (f) for (7) will yield the desired

relationship between the psd's.

Taking the magnitude squared of the right-hand side of (7) and

dividing by 2,r, we get

ll	 K K F(jw}

2,r C0O('w) + ('LO (jw)I jw+KF jw +I^X (jw) - X(jw) juts+KF j w!i

jW
+ UCO ( ^w) jw+KF jw l 

2	

(9)

Let's consider the first term of (9) in the form

(8)

2,^ i^0(dw) +

The expressioi

transform of a signal

transfer function

such that

KF 'w	

f 2^LO (jw) I jw+KF jw	
(l0)

i inside the absolute values can be regarded as the

plus noise Z(jw) passed through a filter with

G l (jw)

Z ( jw) Gl ( jw ) = Y 1 ow)

r

M ' Immune .1 11
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where

Z(jw) = 000w) + tLO(jw)

and

G1(Jw) r jw + KF jw

Therefore, (10) can be written from (8)

2^r  2Y 1 (jw)
I  = S Y (f)

1

We also know that

2

1

SY (f) = ^G l 0 w) I SZ(f)

Since e O and ^O are uncorrelated processes, the cress-spectral

densities are zero. Thus,

S
Z 
(f) = S o o 

(f) + S 
k0 

(f)

and	
2

SY1
(f) = IG1(jw)1	

[Se 0 (f) + S(D 
LO (f1	

(11)

J

Similarly, the second term of (9) will have a psd

2

SY

2 
( f ) = I G2(jw)l	

I 

S6 

X 
(f) + S X ( f )	 (12)

where	 - K 2 K 3 F(jw)
G 2 ( jw) - jw+ KF jw

and the third term of (9) has a psd

S Y3 (f) = I G3(jw) l
2 

S^ Vco(f)

	
(13)

wi th

G O W ) =	 jw3	 jw + KF jw



a

s

Since the three noise sources are assumed to be independent,

the cross-products of (9) have no contribution to the overall phase

noise. The psd of the e  process is then the sum of (11), (12) and (13).

S
OT 

(f) = S (f) + 5 (f) + S (f)
Y l 	Y2	 Y3 

	 (14)

The phase noise psd due to the three oscillators is therefore

S ^T (f) = S DLO (f) I G 1 (jw)12
	

^X
+ S (f) I G 

20 W) 
1  

2	
I

OVCO	 3

+ 5	 (f)G (jw) 
2 

(15)

The closed loop transfer function of the system in Figure I is given by

H (Jw) 
= KF 'w

jw + KF jw	
(16}

This function is related to the loop noise bandwidth by

2BL = I f^ IH(jw)I 2 dw	 (17)

Noting that G 1 (jw) = H(jw)

G 1 ( jw) = K H(jw)
I

and

G3(jw) = I - H(jw)

(15) can be rewritten as

	

S^ ( f) = S^ (f) H(jw) 2 + S^ (f) K H(jw)

2	

+ S	 (f) I - H(jw) 2
T	 LO	 X	 1	 VGO

(18)

From (18), we see that, while the phase noise contributions of

the reference oscillators to the overall phase noise of the transmitted

signal are lowpass filtered, that of the VCO is highpass filtered. This

implies that, since the VCO is a low Q device and thus relatively noisy,

W4^
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the low-frequency content of its noise spectrum will be filtered out and

the phase noise performance of the system will be primarily controlled

by the noise of the fixed oscillators. Since the Gunn local oscillator

is fixed frequency, it can be high Q and thus contribute less noise.

Figure 3 shows a typical phase noise spectra.

3.0	 CONCLUSION

The effects of oscillators (fixed and variable) phase noise on

the phase noise of the estimated phase in a PLL configuration and the

relationship of the spectra of this noise process to the loop noise

bandwidth was hown.

Since

G2 - 2,r m S^ 0W) dw

T	 -^ T

the mean-squared phase error can also be determined from the phase noise

psd of (18).

REFERENCES
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APPENDIX F

EXPERIMENTAL VERIFICATION OF LOW-VELOCITY MEASUREMENT WITH
CW K-BAND RADAR

by

Peter Nilsen
Sergei Udalov

As part of the Phase I contractual effort, Axiomatix conducted

laboratory tests to assess the potential of low-velocity measurement

capability for CW K-band, homodyne radar. Kustom Electronics, under

subcontract to Axiomatix, modified a hand-held police velocity radar

so that it would measure velocities lower than those for which it was

originally designed. The radar used for the experiment operates nominally

at 24 GHz.

Figure I is a photograph of the laboratory setup and Figure 2

shows a functional block diagram of the setup. The radar target con-

sisted of a 0.1 square meter (radar cross-section) corner reflector

mounted on a linear motion carriage. The doppler frequency was measured

with a counter, and an averaging time of 10 sec was used to provide a

frequency resolution of 0.1 Hz. The quality of the doppler data was

determined by monitoring the doppler waveform on the oscilloscope.

Table 1 shows the measured doppler data for three typical runs.

The experimental average measured velocity was 0.02 m/sec (0.06 ft/sec)

and the experimental standard deviation was 0.001 m/sec (0.003 ft/sec).

The actual velocity of the carriage, as measured independently of the

radar, was 0.063 ft/sec, which is consistent with o =0.003 ft/sec.

The lowest velocity measured by Axiomatix was 0.06 ft/sec.

Below this, erratic readings were obtained. This was attributed to

multipath effects and the fact that the radar amplifier gains were not

tailored for low frequencies and, therefore, their roll--off severely

attenuated the very low frequencies. The Phase II breadboard will be

designed to avoid this problem.

^r
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Figure 2 . Experimental Test Block Diagram
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Table I . Experimental Test Data*

Measured Doppler (Hz)

Run I Run 2 Run 3

3.2 3.0 3.5

3.5 3.3 3.3

3.2 3.6 3.0

V = 0.06 ft/sec*

v = 0.003 ft/sec

Vactual 	 0.063 ft/sec

*Radar frequency, fo = 24.150 GHz
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APPENDIX G

PERFORMANCE GOAL SPECIFICATION FOR PHASE II BREADBOARD

The following specifications are performance goals for the

Phase II breadboard. It is expected that, at the conclusion of Phase II

testing, a specification for an engineering prototype will be generated.

1.0 Target Size_: The radar shall meet the performance goals

specified herein with a point target having a radar cross-section of

10 square meters.

2.0 Acquisition Performance: The acquisition performance shall

be met for a target size given in Section 1.0 and over a range and

velocity given in Sections 3.0 and 4.G.

2.1 Probability of Detection within acquisition time specified

in Section 2.3: P
d
= 0.90.

2.2 False Alarm Rate: Not greater than once every 15 minutes.

2.3 Acquisition Time: Tacq < 30 seconds.

3.0 Range The performance specified herein shall be met over

the range of 0.2 meters (2/3 ft) to 1850 meters (6000 ft).

4.0 Velocity: The performance specified herein shall be met

over the velocity range of -0.01 m/sec (-0.03 ft/sec) to -6.1 m/sec

(--20 ft/sec) and x-0.01 m/sec (+0.03 ft/sec) to x-6.1 m/sec (x-20 ft/sec).

5.0 Acceleration: The accuracies specified in Section 6.0 shall
be met for target accelerations up to ±1.0 m/sec t (3.28 ft/sect).

6.0 Measurement Accuracy

6.1 Range Accuracy: 3a= 1 m (3.28 ft) at the range specified

in Section 3.0 and 3a= 0.61 m (2 ft) at a maximum range of 1200 m (3936 ft).

6.2 Velocity: 3a = 0.03 cm/sec (1.0 ft/sec)

7.0 Pointing Accuracy: The performance specified herein shall

be met with the radar pointed to within ±1/2 degree of the target.

8.0 Data Output

8.1 Update Interval: Normal mode, once per second. Station-

keeping mode, once per 10 seconds.

8.2 Data Display: Range--The display characters shall be in
tenths of feet, units of feet, tens of feet, hundreds of feet, and

thousands of feet. Range Rate--The display characters shall be in

a
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hundredths of feet per second, tenths of feet per second, units of feet

per second, and tens of feet per second. A plus sign shall indicate

closing relative target motion, and a minus sign shall indicate opening

relative target motion.

8.3 Data Good Signal: A data good signal shall be provided for

each measurement of each parameter. The signal shall indicate that the

quality of the parameter is suitable for use.

9.0 System Characteristics

9.1 Operating Frequency--24 GHz.

9.2 Polarization--Circular,

9.3 Antenna--Type: Horn; Beamwidth (conical angle, 3 dB): 12°;

Gain: 25 dB; Scan: Manual.

9.4 Transmitter Characteristics--Average Power: 200 mW.

9.5 Frequency Stability--(Long-term and temperature): ±2.5x 103,

(af = ±50 MHz at 24 GHz).

9.6 Receiver Characteristics Receiver type: Homodyne (zero IF);

Receiver noise figure: 22 dB at 1 kHz (for details, see Figure 10 of

Section 2.1).

10.0 Frequency Modulation Program

10.1 Modulation Format--Linear FM-CW.

10.2 Deviation (oF)--100 MHz p-p.

10.3 Repetition Frequency--R< 500 m: 12 Hz; 500 m< R<1850 m:

3 Hz.

10.4 Modulation Slope--R< 500 m: 2400 MHz/sec; 500 m< R< 1850 m:

600 MHz/sec.
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APPENDIX H

BIBLIOGRAPHY

by

Sergei Udalov

In carrying out Phase I of the study to define a design for a

Ranging and Tracking System for Proximity Operations, Axiomatix personnel

conducted a literature search to determine if any of the existing and

latest techniques could be applied to the implementation of the system.

Presented below are the references considered. These references are

organized according to the appropriate categories.

A.	 FM RADAR MODULATION AND RELATED SUBJECTS
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pp. 30-433.
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4. L. W. Couch. "Effect of Modulation Nonlinearity on the Response of
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