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ABSTRACT

This report presents results of a feasibility study to design

graphite epoxy antenna reflectors for a Jet Propulsion Laboratory

Microwave Limb Sounder Instrument (MLSR). Two general

configurations of the offset elliptic parabolic reflectors are

presented that will meet the requirements on geometry and

reflector accuracy. The designs consist of sandwich construction

for the primary reflectors, secondary reflector support structure

{	 and cross-tie members between reflector pairs. Graphite epoxy

f	 materials of 3 and 6 plies are used in the facesheets of the

G

	 sandwich. An aluminum honeycomb is used for the core. A built-

in adjustment system is proposed to reduce surface distortions

during assembly. The manufacturing and environmental effects

are expected to result in surface distortions less than .0015 inch

(RMS) and pointing errors less than .002 degree.

Al
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1.0 INTRODUCTION AND SUMMARY

,n

	

	 This report presents the results of a feasibility study to conceptually

design graphite epoxy antennas for a Microwave Limb Sounder Radiometer

(MLSR). The work was performed for the Jet Propulsion Laboratory under

Contract No. 955258.

The Microwave Limb Sounder Radiometer system is a pair of offset elliptic

paraboloid reflectors mounted with orthogonal fields of view and consisting

of a primary reflector, secondary reflector and receiver optics for each

antenna in the pair. The MLSR observes millimeter wavelength thermal

emissions from the earth's atmospheric limb to obtain wind, temperature,

pressure and chemical constituent measurements. The principal objectives

of this study are: 1) To present reflector conceptual designs that will

meet the reflector contour RMS andpointing accuracy requirements, as

specified in the statement of work; 2) determine manufacturing methods

needed to produce the precision reflectors; and 3) provide-a ROM cost

estimate to design, develop, test and deliver one qual and three flight

units. l
Results ofthe study show that a graphite epoxy honeycomb shell with a

backup rib structure will meet the RMS surface distortion requirements 	 4'

for conservative estimates of thermal environments. The pointing accuracy

was not satisfiedfor all assumed temperature conditions; however, the

temperatures used in the analyses were considered to be conservative for

MLSR low earth orbit applications. A more exact heat transfer analysis,

coupled with the spacecraft radiation effects, is expected to show compliance

with this requirement for all flight conditions except short term eclipse

transients that produce large fore-to-aft temperature gradients. A

manufacturing concept has been formulated that will permit accurate

adjustment between the reflector shell and rib structure prior to final	 -

E
attachment of the two structural components. This approach i s expected

to yield less than l mil RMS surface distortion due to manufacturing effects.

l
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1
4	 j	 In response to Task (a), (1), (G) of the JPL Statement of Work, the

f feasibility associated with producing a graphite epoxy reflector to

twice the precision of the baseline design by calendar year 1982 is

addressed here. Three facets of the design are crucial to providing9	 P	 9

a precision instrument - manufactured shape, thermal distortion in

orbit and stability relative to loss of moisture content. These are

briefly examined below.

The improved manufactured shape (<0.0005 inch RMS) may be achieved by

the use of high precision tooling coupled with post-fabrication

adjustment. Precision tooling would be required with a contour of

0.0002 inch RMS versus the 0.0005 inch RMS baseline. Tooling costs

would be doubled, but the technology is currently available. Thermal

distortion in orbit could be further reduced by the utilization of

6 or 9 plies of GFRP material compared to the 3 or 6 plies baseline.

This would result in a moderate increase in the weight of the unit.

Creep resulting from changes in the moisture content would be further

minimized by the use of a moisture barrier, such as a conformal coating

to prevent the movement of moisture in or out of the GFRP materials.

Additional materials process control and testing is required to support

these more stringent requirements. Overall, the added program costs

would be twenty-five to fifty percent of the baseline costs.

A summary of the envelope and performance requiremen'-.s is presented in

Section 2.0. Conceptual designs are discussed in Section 3.0 and thermal

conditions used in the deflection analyses are presented in Section 4.0.'

Results of the trade studies and a weight summary are in Sections 5.0

and 6.0. The manufacturing process and proposed development plan are

presented in Sections 7.0 and 8.0.

9
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2.0	 DESIGN REQUIREMENTS
k

1
The design requirements, as taken from the statement of work, relate

primarily to the geometry and accuracy of the primary reflector. 	 Specific

requirements on the secondary reflector and spacecraft interface geometry

were not defined; hence data were assumed or scaled from the envelope

drawing of Figure 1 in the statement of work. 	 A summary of the require-

ments, as used in the conceptual design process, are summarized below.

fr 2.1	 Geometry Requirements

2.1.1	 Primary Reflectors

a)	 Elliptical	 Planform

Major Axis - 1.50 meters'
Minor Axis - 0.75 meters

b)	 Focal Length - 1.20 meters

c-)	 Surface Contour - Offset Paraboloid

2.1.2	 Secondary Reflectors

a)	 Planform - Not defined

b)	 Surface Contour - Offset Paraboloid

c)	 Focal Length - Not defined (0.2 M assumed) 	 ^a}

2.1.3	 Assembly Envelope Dimensions

Defined in Figure 1.

2.2	 System Accuracy Requirements 	 x

2.2.1	 Pointi ng

Antenna electricalboresight shall deviate no more than .002 0 or 1/32 of

the antenna 3 db full beamwidth at 200 GHz in the intended service

environment.

2.2.2	 Surface Contour Distortions

a)	 Manufacturing Requirement:	 .0015 inch RMS to a best fit parabola.

I
3



b) Manufacturing Goal: .0008 inch.(RMS)

s	 c) Environmental Effects: Not defined

Assumed Values

Thermal < 1 x 10-3 inches (RMS)

d) Overall	 Not defined

Assumed
i

Thermal < 1 x 10
-3
 inches (RMS)

Manufacturing < l x 10
-3
 inches (RMS)

rr	 Overall `= 1.5 x 10- 3 inches (RMS)

2.3 Systems Information

C	 2.3.1 Orbits

Orbit	 Altitude	 Inclination	 Condition

1	 250 Km	 600	 Shuttle attached

2	 700 Kin	 FO°	 Free flyer from Shuttle launch

2.3.2 Scanning

Scanning Angle - 7°

Period - 70 seconds

Motion - Sinusoidal

fi

2.3.3 Environments

a) Shuttle launched

b) Orbits as defined previously

i

r
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3.0 CONCEPTUAL DESIGNS

To achieve the primary design requirements, as specified in the previous

section, a couple of design configurations and a variety of composite

materials were considered. Since the offset elliptic paraboloid require-

ment explicitly defines the primary reflector planform and contour

geometry, design variations were considered only in materials, secondary

reflector supports, cross-ties between reflector pairs and antenna/

spacecraft attachment methods. The surface contour inaccuracies arise

from two principal sources - thermal and manufacturing techniques. The

thermal effects are controlled by use of thermal coatings and insulation

to minimize temperature changes and temperature gradients, and by the

selective use of composite materials with low coefficients of thermal

expansion (CTE's). The manufacturing effects are controlled by use of

precision molds for the reflector fabrication, and careful attention to

the manufacturing processes for laying up and curing the composite materials

used in the reflector construction. Inaccuracies that may arise during

the assembly of the reflector to the support structure are minimized by

means of poast-fabrication adjustment capabilities between the two elements

before final attachment is made. Potential errors due to changes in moisture

content will be limited to acceptable values by process control and assembly

in low humidity environments.

3.1 Primary Reflector Design

For the MLSR primary reflector design, the use of a sandwich construction

is selected for both the surface shell and the backup rib structure (Figure

2). The reflector shell would consist of 3 plies of unidirectional GY70

graphite epoxy cloth for each facesheet and a 1/4-inch thick aluminum

honeycomb core. A fine unidirectional weave cloth is selected (50 ends

per inch) to provide a smooth surface finish. An alternative possibility

is a 6-ply GY70 facesheet to further reduce the thermal expansion and

improve the isotropic characteristics. A relatively thin honeycomb is

chosen to minimize the shell bending stiffness relative to the backup rib

structure.

The rib structure shown in Figure 2 would be constructed from flat sandwich

plates consisting of 6-ply GY70 cloth facesheets and 1/2-inch thick, aluminum

6
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	 Kev ar T2o7mi000
/2 Ply (0,90)

Face Sheets
^	 070. 6 Ply (0.+60,+60.0)F	 \^	

50 EPI
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FIGURE 2	 PRIMARY REFLECTOR DESIGN - MLSR
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honeycomb core. The ribs would be four inches deep, and

to the reflector-rib interface would have a channel-type

of 2-ply Kevlar 120 and HM1OOO twill cloth. The central

rib would be a continuous member and would extend beyond

edges to provide a means of attaching cross-ties between

Rib intersections would be locally reinforced as require

the edge opposite

edge closure

longitudinal

the reflector

the two reflectors.

i.

f,

To achieve the stringent manufacturing RMS levels for the MRS reflectors,

a built-in adjustment capability is planned for the reflector-rib interface.

Two concepts, as illustrated in Figure 3, are being considered. The

plan is to mate the two assemblies on the contour measuring machine. The

adjustment feature is incorporated at a uniform spacing around the perimeter

of thr rib assembly, with a few additional points on the center rib. The

Typec) concept requires small cutouts in the ribs,.with threaded inserts

in the aft faceof the reflector and the inside edges of the rib. A-

turnbuckle type bolt with a right and left-hand thread and a center

mounted knurled nut is rotated to induce relative displacement between

rib and shell. Contour readings and RMS levels are determined after each

adjustment. Once an acceptable surface contour is achieved, then the

relative position of rib and shell is permanently fixed by adding 2-ply

Kevlar 120/HM 1000 angles along the inside and outside edges of every

rib-reflector interface.

The Type 2 adjustment concept consists of tubes imbedded in the aluminum

honeycomb at the appropriate location. Bolts are inserted from the aft

edge of the rib through the tube and into threaded inserts on the aft

side of the reflector shell. After the proper contour is achieved by

rotating the bolt in the insert, the lock nuts are tightened and the

angles installed, as described in Type 1.

3.2 Secondary Reflector Qesi n

The secondary reflector design requirei ,,ents were not specified in the

work statements hence the conceptual design is very general. The

configuration is assumed to bean elliptic offset paraboloid, probably

less than eight inches along the major axis. Because of the small size,

a thin machined titanium reflector should meet the thermal distortion
requirements. The secondary reflectors would be shimmed and bolted to

the secondary reFlector support frame, with a joint capable of providing
proper position and angular alignment between the primary and secondary

reflectors
B

k
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FIGURE 3	 REFLECTOR-RIB ADJUSTMENT CONCEPTS - MLSR
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3.3 Assembl y Concepts

The geometric arrangement of the MLSR requires a common focal point for

the reflector pairs, but with a right angle relationship between the

focal axis of each reflector. With the secondary reflectors set aft

of the focal point about 0.2 meter, a support arrangement is required

for the secondary reflectors that does not block the field of view of

either primary reflector. Two candidate concepts were identified and

are illustrated in Figures 4 and 5. Concept A uses twin beams running

from the central longitudinal rib ends out to a common support point for

the secondary reflectors. Cross-ties between the primary reflector ends

are added to provide rigidity. Intermediate cross-ties provide strength

and stiffness for the assembly, and carry the interface fittings that

attach the antenna assembly to the spacecraft. Concept B is similar,

except only a single secondary reflector support beam is used, but with

braces to increase the beam lateral stiffness.

All beams, as shown in Figures 4 and 5, that support the secondary

reflectors and interconnect the two primary reflectors are of composite

sandwich construction identical to the reflector to provide a uniform

thermal expansion. The beams are cut from a flat sandwich plate of

3-ply GY70 facesheets and 1/4-inch aluminum honeycomb core. The secondary

reflector support beams are 3-1/2 inches deep, the upper and lower cross-

tie members are 4 inches deep and the intermediate cross-tie members are

6 inches deep.

A summary of the assembly joints that are initially'-Selected for the

configurations are presented in Table 1. -Because of the composite material

construction, bonded joints are the primary means of attachment. It is

planned that the two primary reflectors would be connected together in

an assembly jig, with the intermediate cross.-ties being shimmed at the

center of the assembly to achieve proper spacing and orientation. Splice

plates would be addedto the joint for strength and stiffness. The upper

and lower cross-ties and secondary reflector support beams would then be

added by shimming and bonding. - To achieve proper alignment of the

secondary reflectors and receiver optics, it is planned that these units

be bolted to the assembly in such a manner as to permit shimming and

angular alignment.

10
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FIGURE 5 ANTENNA CONCEPT B - MLSR _
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TABLE 1	 ASSEMBLY JOINT DETAILS

JOINT COMMENT {'
f

RIB INTERSECTIONS BONDED, DOUBLERS IF REQUIRED.

REFLECTOR/RIB ADJUSTMENT SCREWS, INSERTS, ANGLES
BONDED AFTER ADJUSTMENT.

7

INTERMEDIATE CROSS, TIES CONTINUATION OF HORIZONTAL RIBS.
SHIMMING REQUIREMENT AT CENTER OF ASSEMBLY.

c^ BONDED SPLICE PLATES FOR FINAL CONNECTIONS.

UPPER AND LOWER CROSS TIES SHIMMED AND BONDED.
AND SECONDARY SUPPORT BEAMS

SECONDARY REFLECTOR ADJUSTMENT CAPABILITY, BOLTED.

INSULATION TAPED AND/OR NYLON CLIPS.

RECEIVER BOLTED WITH SHIMS OR ADJUSTMENT CAPABILITY.

ANTENNA-SPACECRAFT SHIMS/FLEXURES, BOLTED.

i
'1



3.4 Antenna-Spacecraft Interface

The MLSR antenna assembly will be attached to the spacecraft at an inter-

face that is not yet defined by the spacecraft; hence only very general

concepts have been formulated'. The requirements from the antenna side

of the interface are: 1) Attachments that minimize distortions in the

antenna, 2) provide adequate strength and stiffness and 3) minimize

thermal conduction across the interface. If the antenna is required to

scan about one axis, then the interface may also require rotation and/or

articulating joints.

Two possible arrangements for interface joints are illustrated in Figure 6.

The first is a four-point support using flexutre-type attachments at the

points where the inner edges of the primary reflectors attach to the

intermediate cross-ties. The flexures are canted at approximately 45-degree

angles to the cross-ties to provide equal strength and stiffness in the

plane of the attachments. The flexures would be sized to minimize antenna

distortions once the spacecraft structure stiffness and distortions are

specified. The-four-point support is symmetrical and reduces the loading

into the cross-tie members; however, it is 'redundant type support and

represents a more complicated interface for the spacecraft. A three-point

support, as shown in Figure 6, would eliminate the redundancy characteristics,

but would require heavier flexures to carry out the antenna load at three

points, rather than four. The cross-tie loading would also be greater in

this arrangement; however, it would be more suited to gimbals and articulating

joints if a scanning requirement results in rotation joints at the interface.

A third possible interface arrangement which is not shown would have the

interface joints at two locations on each central longitudinal rib. This

would still be a redundant arrangement for the two reflector MLSR configuration;

however, if a single reflector is to be used in a Shuttle experiment, it

would provide a more suitable support arrangement. A non-redundant support

arrangement with two of the three attachment points on the ribs and the

third point on the cross-tie is also feasible.

b
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FIGURE 6	 ANTENNA INTERFACE ARRANGEMENTS
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3.5 Thermal Control System

The thermal control concept for MLSR is a passive system similar to that

used on Intelsat V antennas. It consists of multi-layer insulation

blankets and white paint. The multi-layer blankets are made up of four

Layers of aluminized mylar and one layer of aluminized Kapton. It would

be attached to the aft surfaces of the primary and secondary reflectors,

and possibly to the secondary reflector support beams. Attachment is

by low outgassing tape or nylon clips. The white paint would either be

PV100 or S13GLO and would be applied to reflector forward surfaces and

possibly to the secondary reflector support beams, depending on the

results of detailed heat transfer analyses for MLSR orbital conditions.

g
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4.0 THERMAL CONDITIONS

The antenna temperature conditions are a complex interaction of orbital

parameters, spacecraft attitudes, and spacecraft and antenna heat

transfer characteristics. Since the scope of the current study did not

permit a detailed thermal analysis of the MLSR configuration, a set of

temperature conditions was assumed based on data from similar antenna

analyses. The configuration selected was the 61-inch diameter Intelsat V

antenna, which has a thermal control system close to that selected for

MLSR, although the orbital conditions and construction details are somewhat

different. The Intelsat V temperature data, however, when applied to MLSR,

are considered to be conservative based on the following reasons:

o MLSR spacecraft will have a low-to-medium altitude orbit versus a

synchronous orbit for Intelsat V; hence the lower bound cold temperatures

should be significantly higher on MLSR.

o The aluminum core construction for MLSR reflector versus Kevlar core

for Intelsat V would reduce significantly temperature gradients through

the sandwich.

o The MLSR antenna system oscillates slightly versus a fixed attitude for

the Intelsat V, which should also help reduce temperature extremes and

gradients.

The Intelsat_V antenna was assessed for seven different thermal conditions,

as illustrated in Figure 7. These included direct sunlight, fully shaded,

partially shaded, spacecraft reflected heating, edge illumination and

transient eclipse conditions. The transient heating on emerging from an

eclipse produces a large temperature gradient from the reflector forward

surface to the ribs, which could result in significant focal length changes

and transient pointing errors. This condition, however, is a short-term

phenomenon, as illustrated in Figure 8. The MLSR gradients should be less

because of the lower earth orbit; however, the number of transients will

increase as the orbital period decreases.

1I
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The conditions selected for MLSR distortion analysis and the structural
	

i

temperatures for those conditions are summarized in Table 2. The basis

for selection of the first case is that it represents the most severe

temperature change from the assembly condition; hence contour, RMS and

pointing errors should be greater than for a full sun condition. The

next two cases represent severe gradients in a reflector, with Case 2

producing a gradient from top to bottom and Case 3 a gradient from front

to back, although the latter is a short-term transient, as indicated

previously. The fourth case is derived from an edge-illuminated condition

of the Intelsat V reflector (Figure 7, Case 6); however, the temperature

distributions have been modified to represent the MLSR configuration.

This results in a condition with one reflector edge to the sun; the other

reflector face is full sun and, because of the radiation heating, the

first reflector face is significantly higher temperatures than a shaded

condition.

All temperature distributions were taken directly from the Intelsat V

analyses and modified only for Case 4; hence the assumed temperatures

are subjectively derived, but based on the reasons presented earlier are

considered to be conservative.

Until the spacecraft configuration is defined and the orbital heating data

for the MLSR configuration is available, the data presented here is

considered adequate for evaluating the conceptual design thermal distortion

performance.

I mo -
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TEMPERATURES - OF
REFLECTOR REFLECTOR RIB

CONDITION FACE AFT SIDE STRUCTURE

1.	 REFLECTOR FACE, FULLY SHADED,
AFT-INSULATED SIDE FULLY ILLUMINATED -152 -146 -135

2.	 HALF-SHADED FACE

UPPER HALF 175 169 167

LOWER HALF -152 -146 -135

3.	 TRANSIENT OF EMERGING FROM ECLIPSE TO
INDUCE MAXIMUM FRONT-TO-BACK GRADIENT 175 130 - 63

4.	 ONE REFLECTOR EDGE - ILLUMINATED
SECOND REFLECTOR FACE- FULL SUN

REFLECTOR 1 - 52 - 46 - 35

REFLECTOR 2 175 169 167



5.0 TRADE STUDY RESULTS

1

The conceptual design trade studies focused on the antenna performance

in the thermal environment	 The initial step in the study required the

development of structural models that met the geometrical requirements.

Material properties were then selected, based on prior experience, that

would minimize the thermal distortions within a reasonable weight allowance.

Temperature data were applied to the model and the subsequent distortions

were evaluated to determine pointing accura-ies, focal length changes and

surface RMS contour deviations. To be certain that the configurations

satisfied a minimum strength requirement, the trade study was concluded

with a loads andstress analysis.

5.1 Structural Model

The 'structural models of the MLSR were formulated to evaluate thermal

distortions and internal stresses from launch loads environments. These

detailed analyses were performed using TRW's Structural Analysis Program

(TRWSAP) and a Best Fit Parabola (BFP) program. TRWSAP is a CDC 6000

Series computer program capable of analyzing very large and complex

structures. The solution is based on small deflection theory using the
t

direct stiffness finite element method of structural analysis. The program

has options for three types of analysis: a-structural modal analysis

program (SMAP) option, a static structural analysis program (SSAP) option

and a loads transformation matrix program (LTMP) option. The computer

program permits sandwich construction to be accurately modeled by

requiring separate material_.and thickness' data for the. faces-heets and

core. The rib members are modeled as two beams by representing the

sandwich elements with one set of section properties and materials, and

the channel closure elements with a second set of properties and materials.

Fi fires 9 and 10resent the niesh elements for the rimar reflector ribg	 p	 p	 y

members and shell elements, respectively. An identical representation

was achieved for the second reflector in each assembly by transforming the

data to the coordinate locations of the adjacent reflector.

In formulating the system model, the coordinate system presented in Figure

11 was used 	 The origin is at the vertex of Reflector l and the focal

point is 47.244 inches along the +Z axis. The solid lines are model

22
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geometry in the X-Z plane and the dashed lines represent key dimensional

positions of the model not in the X-Z coordinate plane. All dimensions

are in inches. Figures 12 and 13 present the X and Y views of the

Concept A structural model, and Figures 14 and 15 present similar views

for the Concept B structural model.

5.2 Material Properties

9

h

The materials selected for MLSR use are based on trade studies of composite

materials from prior antenna applications. Also considered were the special

requirements of the MLSR application. Primary among these is the need for

small distortions to meet the RMS accuracy, but also included is the concern

for a smooth surface finish. The effect of surface finish on antenna

performance at high frequencies is relatively unknown and requires further

study and test. It is anticipated, however, that as smooth a surface as

possible will be required without resorting to special polishing procedures;

hence, a fine weave cloth was selected for the reflector composite material.

Table 3 summarizes physical and thermal properties of sandwich construction

that have been manufactured and tested by TRW on other programs. Table 4 ".

presents strength and stiffness data for some of the same construction types.

as presented in Table 3.

The specific materials selected for the MLSR configuration are summarized

in Table 5. The primary reflector would be made of 3 plies of unidirectional

woven graphite cloth with a fine weave of 50 ends per inch over a 1/4-inch

thick aluminum honeycomb core. A possible alternative, if reduced thermal

deflections are necessary, would be a 6-ply GY70 (0,+60,+.60,0) on the

1/4-inch aluminum honeycomb. The cross-ties and secondary reflector support

structure would be the same as the primary reflector. The rib construction

wouldbe 6 plies of GY70 bonded to a 1/2-inch thick, 4-inch deep aluminum

honeycomb to provide a rib subassembly with adequate stiffness and a

thermal expansion similar to the reflector shell. Channel edge closures

and angle sections made of Kevlar 20/HM1000 would be included for additional

stiffness and to hold the rib subassembly to the reflector. Mechanical

properties of the materials used in the thermal distortion analyses are

presented in Table 6.

The basic materials and processes selected for MLSR construction have been

developed and flight-proven on other systems. Tests have been conducted

26
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TABLE 3	 TYPICAL PHYSICAL AND THERMAL PROPERTIES OF VARIOUS SANDWICH STRUCTURES

_ Face Sheet Core - -	 Sandwich Properties

a

Test DirResin Weight
Type Ply No. Cell (lb/ft2) .	 (Core
(Content Thick of Size Density Thick Cure* of Ribbon in./in./°F

Fiber percent) (in.) Plies Orientation_ (in.) (lb/1`0) (in.) Mat'l Process Surface Direction) x 10-6

GY70 934 0.0052 6 0,+60,90,+30 1/8 3.1 1/4 Al 1 0.705 0 -0.06
(35) 90 -0.17

0.0055 6 0,+60,90,+30 1/8 3.1 1/4 Al 2 0.715 0 0.05
90 -0.03

0.0054 3 0, +60 1/8 3.1 1/4 Al 1 0.445 0 0.66
90 -0.06

0.0054 4 0,90,45,135 1/8 3.1 1/4 Al 2 0.525 0 0.21
90 0.09

0.0054 4 0,90,90,0 1/8 3.1 1/4 Al 2 0.525 0 -0.13
90 -0.26

GY70 (37 934 0.003 4 0,90,90,0 1/4 1.6 1/4 Al 1 0.271 0 0.21
ends/in.) (35) 90 0.16

0.003 3 0,+60 1/4 1.6 1/4 Al 1 0.21 0 0.28
90 0.30

GY70 (56 934 0.003 3 0,+60 1/4 1.6 1/4 Al 1 0.23 0 0.29
ends/in.) (35) 90 0.20

GY70 40x40 8517 0.007 2 1 ply(0,90) 1/4 2.1 1/4 Kev 2 0.250 0 0.09
Twill (35) 1 ply(45,135) 90 0.10

GY70 (50 5208 0.0031 4 0,90,90 1 0 1/4 2.1 1/4 Kev 2 0.31 0 0.27
ends /in.) (42) 90 0.23	 S

I ply GY70 8517 0.011 2 0,90 1/4 2.1 1/4 Kev 2 0.195 0 0.06
4000 Twil (35) Total 0,90 - 90 0.09
1 plyKevlar
120

*1 - Autoclaved faces, secondary bonded to core.
2 - Single stage layup and 'low pressure autoclave cure.
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TABLE 4	 SANDWICH MECHANICAL PROPERTIES

WN

Face Sheets Core Sandwich Properties

Resin
Type

Type—
Density Compressive Compressive Flatwise

Fiber (Content
lb/ft3)

Thickness Test Stren th Modulus Tensile
Type Weave percent) Orientation Hat' 1 (in.) Direction (psi (msi) (psi)

GY70 50 EPI 5208 0,90,90,0 Al 1/4-1.6 1/4 0 16.5 22.0 249
(30) (Autoclaved 90 12.7 22.6

and bonded)

GY70 50 EPI 5208 0,90,90,0 Kevlar 1/4-2.1 1/4 0 14.5 12.6 220
(35) (Vacuum bag 90 13.1 12.3

single stage)

GY70 50 EPI 5208 0,+60 Al 1/4-1/6 1/4 0 21.1 11.2
(30) (Autoclaved 90 20.2 10.9

and bonded)

GY70 40x40 5208 1ply (0,90) Kevlar 1/4-2.1 1/4 0 13.5 12.0 218
Twill 2nd ply (45, 90 12.5 12.0

135)
(Single stage
vacuum bag)

GY70 40x40 8517 0,90 Kevlar 1/4-2.1 1/4 0 12.5 8.0 160

( 1	 ply) Twilll
Kevlar 120 3404 0190 90 12.0 7.5
(1 ply) (Single stage

vacuum bag)



TABLE 5	 MATERIAL SELECTIONS

o PRIMARY REFLECTOR

o FACE SHEETS - GY70 (UNI-DIRECTIONAL WOVEN GRAPHITE CLOTH)
3 PLIES (0,±60), 50 EPI
9,34 EPDXY

o CORE - ALUMINUM HONEYCOMB, 1/4-INCH THICK,

1.6 LB/FT 3 , 1/4-INCH CELL SIZE

o RIB STRUCTURE	 -- - -

o FACE SHEETS - GY70, 6 PLIES (0,+60,+60,0), 50 EPI
934 EPDXY

w
o CORE - ALUMINUM HONEYCOMB, 1/2-INCH THICK,

1.6 LB/FT3 , 1/4-INCH CELL SIZE

o EDGE CLOSURE AND ANGLES - KEVLAR 120/HM1000
2 PLY (0,90)

o CROSS TIES AND SECONDARY REFLECTOR SUPPORT

o SAME SANDWICH CONSTRUCTION AS PRIMARY REFLECTOR

o SECONDARY REFLECTOR

o MACHINED TITANIUM FITTING



TABLE 6	 MATERIAL MECHANICAL PROPERTIES

ITEM	 (

E

PSI

u G

PSI

at

IN/IN -°F

f

SHELL SANDWICH 15.2 x 106 0.3 5.8 x 106 .25 x 10-6

RIB SANDWICH 13.4 x 106 0.3 5.2 x 106 .21	 x 10-6

ANGLES AND RIB CAPS 6.95 x 106 0.3 2.7 x 106 .17 x 10-6

CROSS TIES AND
SECONDARY REFLECTOR SUPPORT 106 106 .25 x 10-615.2 x 0.3 5.8 x
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to obtain the strength, stiffness and CTE values of the various composite

sandwich constructions. Design values are based on statistical testing

to arrive at a conservative 95 percent level from 90 percent of the test

population. Specifications exist for all materials and processes that

were selected for the MLSR design.

5.3 Thermal Distortion Results

The output of the TRWSpP model analyses are distorted coordinates of the

reflector for each temperature condition assessed. The distorted

coordinates are used ina best fit parabola, program to compute several

mechanical distortion parameters, including RMS surface deviation,

mechanical boresight angle shift, focal length changes and vertex shift.

These parameters are computed by determining the three-dimensional best

fit paraboloid that passes through the nodes of the distorted finite

element model of the reflector surface. Once the best fit paraboloid is

defined, the distortion parameters are computed by direct comparison to

the original undistorted reflector.

Figure 16 is a schematic representation of how the electrical boresight

angle change (4)E ) and the focal point defocus (AFP) are characterized

based on contributions from the thermoelastic distortion analysis. The

best fit paraboloid (BFP) analysis computes values for the change in

focal point position (4X 
FP, 

AY 
FP' 

AZ FP ) and the tilt in mechanical boresight

(Ae) relative to the undeformed reflector geometry. For symmetric thermal

cases, AZ 
FP 

is zero and distortions are limited to the XY plane. The

assumption is made that the focal point is stationary so that all displacements

are computed relative to that point.

r

Results of these analyses for the two MLSR configurations for four

temperature conditions are summarized in Table 7. The fourth thermal

condition was not assessed on Concept B because of the relatively small

distortions that were achieved on Concept A. Included in the table are
the allowable pointing and RMS levels from Section 2, with the latter

broken down into the allowances for manufacturing and in-orbit thermal

distortions. It is apparent that the RMS requirement is achieved for both

concepts for all temperature conditions analyzed. The pointing requirement

is satisfied for temperature conditions 1 and 4, but is not achieved for
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TABLE 7	 THEPVAL DISTORTION ANALYSES RESULTS - MLSR

w

CONCEPT A
TWIN BEAMS

CONCEPT B
SINGLE BEAM

T I	 AFL RMS
y 
	 AFL RMS

TEMPERATURE CONDITION DEG. IN. IN. DEG.	 IN. IN.

1.	 REFLECTOR FACE, FULLY SHADED .0010 .0012 4.7x10-5 .00088 .0008 4.8x10-5

2.	 REFLECTOR FACE, HALF-SHADED .0042 .00061 - 2.9x10- 4 .0096 .0005 2.9x10

3.	 TRANSIENT FRONT-TO-AFT GRADIENT .0439 -.0119 2.27x]0 -4 .0503 -.0117 2.13x10-4

4.	 REFLECTOR l EDGE - IN SUN
-.0008 .00057 3.6X10-4

REFLECTOR 2 FACE - FULL SUN
ALLUWABLU>: T	 = .UUL"

RMS = 1.5x10 -3 (TOTAL)

RMS DISTRIBUTION

THERMAL DISTORTIONS < 1x10-3

MANUFACTURING	 <1x10
-3
	(REQUIRED)

< 0.5x10 
3 

(GOAL)



conditions 2 and 3. In general, Concept A is better than Concept B on

pointing and RMS levels. The results presented here are influenced by

the antenna support condition and could possibly improve by proper

adjustment or tuning of the antenna/spacecraft interface stiffness. A

more precise heat transfer analysis, coupled with some modifications of

materials or structure, should enable the design to meet the pointing

requirement for most other tempera^ure conditions. Selection of the

6-ply design for the reflector, for example, would result in a 50%

reduction of the distortion errors and a further improvement is in order

because of the conservative temperature assumptions. It does not appear

likely, however, that material changes or structural configuration

modifications could achieve the desired pointing accuracy for temperature

condition 3. It should be recognized, however, that this is a short-term

transient condition that may be acceptable from an overall mission

viewpoint.

5.4 Structural Loads and Stiffness

The final trade study was intended to make a comparative assessment of the

two design concepts for flight loads. However, results of the analyses

showed such high margins of safety for one configuration that detailed

assessment of the other was not made. Structural differences are only

in the secondary reflector supports and this part of the design was

assessed.

The design loads, strength criteria and stiffness evaluations are summarized

in Table 8. The Shuttle launch environments in ICD2-19001 were reviewed

prior to selection of a design load condition. In general, limit load

factors are less than 4.5 g's along any axis for payloads mounted in the

Shuttle cargo bay. Since the spacecraft and spacecraft/Shuttle support

structure is not defined, dynamic amplifications on the transient loading

events could not be determined. For conceptual design purposes, therefore,

a limit load of 20 g's was selected. Acoustic levels of 145 db (OA) are

liftoff overall levels for cargo bay mounted equi pment. An ultimate design

factor of safety of 1.5 was selected for MLSR structures, which also meets

Shuttle minimum requirements.

k
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Results of the detailed stress analysis show very high margins of safety

in all structural elements, based on a 20 g static load co6diiionra6d

a four-point support of the antenna at the interface fitting shown in

Figure 4. Total weight of the assembly was originally assumed to be

approximately 34 pounds, including an allowance of 8 pounds for the

receiver optics. A subsequent estimation of the receiver weight by JPL

at about 35 pounds would result in an antenna assembly weight of about

64 pounds. A 6-ply reflector face would add 3.8 pounds to the assembly

weight. A check of the interface fitting loads for this weight condition

continues to show positive margins of safety. A check of the local

structure where the receiver mounts to the antenna ribs was not attempted

because details of the receiver footprint are not defined. Local

structural changes may be required once the receiver configuration is

defined. Details of the stress analysis are provided in Appendix A.

Modal data of the configuration were not computed; however, an approximate

f

	

	 evaluation of the stiffness was made using static deflections. For a

1_.g.loading condition, the maximum deflections were .use!d to Id6.te nitne

approximate values of the fundamental frequencies. Results are presented

in Table 8.
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TABLE 8	 DESIGN LOADS AND STIFFNESS

o LOADS (REF. SHUTTLE ICD2-19001}

o LOAD FACTORS = + 20 G'S (QUASI-STATIC + DYNAMIC)

o ACOUSTIC = 145 DB .(OA)

0 STRENGTH CRITERIA

o FACTOR OF SAFETY: 1.5 (ULTIMATE)

0
o STRENGTH EVALUATION

o ALL STRUCTURAL ELEMENTS SHOW VERY HIGH MARGINS

FOR 20G LOAD CONDITION

o STIFFNESS EVALUATION	 f = 2,r g max

	

CONCEPT A	 42 Hz

	

CONCEPT B	 28 Hz
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6.0 WEIGHT ESTIMATES

A preliminary weight estimate for the two MLSR conceptual designs is

summarized in Table 9. These estimates are provided for both the 3-ply

and alternative 6-ply facesheet for the primary reflectors. An
}

allowance has been added for doublers, thermal paint and alignment prism

assemblies. The latest estimate for the JPL receivers is included in

the total assembly weight.
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TABLE 9 MLSR WEIGHT ESTIMATESi

CONCEPT A CONCEPT B
3-PLY 6-PLY 3-PLY 6-PLY

FACESHEET FACESHEET FACESHEET FACESHEET
REFLECTORS REFLECTORS REFLECTORS REFLECTORS

ITEP1 LBS LBS LBS LBS

PRIMARY REFLECTOR AND RIBS 17.6 21.4 17.6 21.4

SECONDARY REFLECTORS AND SUPPORT 3.6 3.6 4.1 4.1

CROSS-TIES AND I/F FITTINGS 1.3 1.3 1.3 1.3

DOUBLERS AND SHIMS 1.2 1.2 1.2 1.2
N

INSULATION 1.3 1.3 1.3 1.3

PAINT 0.8 0.8 0.8 0.8

ALIGNMENT PRISM ASSEMBLIES 0.3 0.3 0.3 0.3

SUBTOTAL 26.1 29.9 26.6 30.4

CONTINGENCY 3.0 3.0 3.0 3.0
k

JPL RECEIVERS 35.0 35.0 35.0 35.0

TOTAL ASSEMBLY WEIGHT 64.1 67.9 64,6 68.4
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7.0 MANUFACTURING PROCESS

The manufacturing plan for the MLSR antenna system is similar to the

plan used on three offset reflector assemblies recently completed for

the RCA TELESAT, RCA SATCOM and Intelsat V spacecraft. Because of

the more precise contour shape required for MLSR, additional steps

have been taken in the tooling and assembly processes to achieve the

desired accuracy.

7.1 Tooling

The paraboloid layup tool surface will be cold-formed by bump-forming a

one-piece plate into the approximate shape. This type mold is rough-

machined on a vertical tracer lathe via a contoured template, stress-

relieved, final-machined in unrestrained condition and then hand-polished

to obtain the desired surface finish. The tool contour is measured in

the unrestrained condition and its contour RMS verified. Prior to the

fabrication of production parts, the tool is tool-proofed to assure that

uniform heating is possible, as well as assured that it will not leak

during vacuum/pressure cure ofparts. The contoured template, with extra

precision in its machining and polishing, is expected to have a contour

accuracy of .0005 inch (RMS). The layup tool surface may be somewhat

more inaccurate than the template, even with the normal precision in

machining and polishing. Since the tool is so massive, its direct contour

measurement on the Cordax machine is not feasible. To circumvent the

problem, a plaster mold will be made that will provide a direct transfer

of the tool contour to a plaster surface that can be measured on the

Cordax. If the tool does not meet the desired accuracy of .0005 inch (RMS),

then additional cuts will be made on the layup tool and the process repeated

until the precision accuracy is achieved.

In addition to the primary reflector layup tool, an assembly fixture is

planned that will position the two primary and secondary reflectors in

the proper relative positions. Secondary reflector support beams and.

cross-tie members will be installed, shimmed and permanently fixed into

position with splice plates and angle sections to complete the final

assembly.
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7.2 Fabrication Process

The manufacturing methods planned for the MLSR system have been successfully

developed for fabrication of offset composite reflectors for RCA TELESAT
and SATCOM and the Ford/WDL Intelsat V. The key elements in the manufacturing

methods are: 1) Use of a conventional metal mold, 2) initial autoclave

cure of balanced graphite/epoxy facesheet layup, 3) final cure of

honeycomb sandwich assembly, 4) use of integrally bonded inserts for

tooling balls located relative to dish contour and 5) contour adjustments

using the built-in rib-reflector spacers prior to final permanent

attachment. Details of the fabrication and assembly process are presented

in Figure 17.

7.3 Contour Measurement

The four tooling balls installed into inserts on the reflective surface

are the master references for all contour measurements and alignments.
The tooling balls are installed just prior to the first contour measurement,

but are removable at any time, leaving the insert head flush with reflector

surface. The contour measurements will be made utilizing a Cordax 3000

measuring machine with oversize "Y" travel of 48 inches. This precision

equipment performs measurements repeatable to 0.0003 inch per equipment

specification and is the standard for all TRW antenna contour measurements.

The reflector will be positioned on the rotary table with the center of the

reflector surface coincident with the center line of the rotary table. A

series of Z probe readings will be made by turning the rotary table to the

predetermined angles and lowering the probe of the Cordax. The probe is

a spherical ground contact point of a dial indicator which permits each

point to be measured in a consistent manner with no deflection in the
reflector.

The cylindrical reference system data is entered into the Cordax computer
..i

at the touch of a switch. A tape is being punched at the same time with
rectangular coordinates of each of the points for input into the time-shared
company computer where the best fit parabola programs are stored. The

tooling balls are measured before and after the contour measurement to

assure no movement has occurred in the setup and this data is reserved for
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FIGURE 17
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use with the output of the BFP program. After the contour points have been

inspected, the data tape is entered into the company computer and a

least squares analysis is made to determine-the BFP to the measured

points. The BFP mathematically defines the particular- paraboloid which

most closely fits the measured data.

The BFP is defined as having the least sum-of-squares deviation between

the theoretically perfect paraboloid and the given data. For a deviation,

the different in the path lengths between rays which strike a data point

and rays which hit the theoretical surface was chosen, as it is closely

related to the RF performance of a_parabolic antenna. This difference is

denoted as A. The one-half a values are averaged and weighted to give

the one-half a RMS. The BFP analysis produces the following for evaluation:

o Sum of weighted squares.

o A one-half a RMS value.

o The coordinates of the BFP vertex.

o The coordinates of the BFP focal point.

o The focal length of the BFP.

o A tabular listing of input coordinates, coordinat es on the BFP,
a path length error value and an approximate AZ error for each.

o A data file formatted for contour plotting.

.r

TRW has available another computer program, TDCOGO, which will now be used

in the complete transformation of the coordinates available in the Cordax

and best fit reflector reference systems. The rectangular coordinates

of the best fit vertex, the best fit focal point of the reflector, as

it is positioned on the Cordax, and the cylindrical coordinates of the

four tooling ball centers are entered into the program. The output is a

listing of the rectangular and spherical coordinates of all the input

points in the Cordax and reflector reference systems. The individual data

points and collective RMS and pointing errors are assessed for each

reflector-rib setting. Adjustments are then made at specific contour

adjustment spacer locations and the process repeated. Once the RMS, pointing

and focal length parameters have reached acceptable values, then the

adjustment features are locked in place and the rib-reflector angle members

are added to permanentlyfix the contour.
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8.0 PROPOSED DEVELOPMENT PLAN

To provide a basis for the ROM costing, a program development plan, as

shown in Figure 18, is proposed. A key element of the plan is to design,

fabricate and test a reflector-rib subassembly prior to Critical Design

Review (CDR) to confirm the assembly techniques will meet the RMS

accuracy requirements. An estimated seven months is required for CDR.

The first complete assembly of MLSR will be used asa quad model.

Vibration, acoustic and thermal cycling tests are planned as the qual

test program, which will be completed prior to the Final Design Review.

The three flight units will be fabricated and acceptance-tested over

approximately a six-month period following the FDR, resulting in an

overall program schedule of twenty months.

The qualification and acceptance test program is a minimum level of

testing to demonstrate the design adequacy for the expected operational

environments. The qualification model tests consist of contour measurements

and alignment checks prior to testing, a low level sine sweep (3 axes),

a random vibration (single axis), an acoustic test and a thermal cycling

test to hot and cold extremes. A post-test contour and alignment check

will be made. The flight units will be subjected to an acoustic test

only, with pre and post-test checks of the contour and alignment. RF

testing is not proposed and material characterization tests are not

planned based on the materials selections discussed in Section 5.0. Since

there are no moving parts in the assembly, mechanical functional tests

are not required. Standard product assurance inspections and reviews are

planned for all phases of fabrication, test and hardware delivery.
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FIGURE 18

PROPOSED DEVELOPMENT PROGRAM PLAN

MICROWAVE LIMB SOUNDER RADIOMETER

co

MONTHS FROM GO-AHEAD
PROGRAM ITEM 1 2	 3	 4	 5	 6 7	 8	 9 10	 11	 12 113	 14	 15	 16	 17	 18 19	 20	 21	 22	 23	 24

1. Design Reviews
QPDR QCDR QFDR

i

2. Preliminary System Design j

3. Detailed Reflector C=t6
Design/Analysis

4. Production Drawing Release 0

5. Reflector Tool Design
i

6. Procure Material and r---77A I
îi

Fabricate Reflector Tool I

I
7. Fabricate Qual i

Model Reflector

8. Contour Measurement and
Thermal Cycle Test

9. Detailed System
Design/Analysis

10. Fabricate Qual Model Unit j

f	 11. Qual Test - Vibration, I C^—

Acoustic, Thermal Cycle ( j

12. Fabricate, Acceptance Test i [
and Deliver Flt #1 Unit -

{	 13. Fabricate, Acceptance Test i
l and Deliver Flt #2 Unit

14. Fabricate, Acceptance Test
and Deliver Flt #3 Unit

{
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INTZKORFICC CORRESPONDENCC
8712.4-78-101

*o =	 A. P. Goldberg	 ee: J. S. Archer	 December , 12, 1978
S. J. Voce

w•.ISCT: Stress Analysis for Feasibility Study 	 FROM:	 C. K. Cheung 45A

of Graphite Epoxy Antenna Reflectors 	 .LOO. 82 MAIL STA. - 1758 "`T 5355Ei

r
Stress analyses for two conceptual designs of Graphite Epoxy Antenna
Reflectors are completed. According to TRWSAP outputs stress levels
on the antenna reflectors are very low due to 20g accelerations and
they are considered to be not critical to both of the conceptual designs.
The enclosed stress analyses show positive margins of safety for all
parts of the antenna reflectors, which are structurally adequate and
acceptable. No change to the present designs is required.

t^Approved: t ^•. • `^ •

M. P. So eika, Hea d
Structural Systems Section
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CHECKED DEFLECTIONS
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1

lmsv;

CHZG& DEFLECTIONS
re

DE FL EGT IDNS AT SEC,ltWP gRY REFLECTOR

' .70XNT	 D-X	 D-Y	 D-2 R-X	 R- y k-z

' 48	 8.33E-4	 -1.12 E-la	 5•77E -4 3.0E-/0	 -5.05E-3 -.3.0"-10

DEFLECTIONS AT OTHER LOCATIONS ARE VERY SMALL AND INSIGNI FZ6AN

G4SE2; 48	 -7./7E /0	 1.32E-3	 -7.37E-10 G.28F -6 	-2.33,E-12 6.1E E

E3,;	 4 9	 S.a?GE-4	 -1.73E- 9 	 8.1E-4 /.?9E-9	 -S.oSE ;3 -I.4E-9

{
C}IECIS' MS OF :STRUCTURE AUE TO 10 4 LOADZNIr CONDITION

SE / ;	 JOINTS	 F-X	 F -Y F

i^

a 4	 0J4	 - .3,f 79J? -..70 /S
j

/ I ^	 -. o6ado?	 •^89d6 ..cols

MASS .a0./9.5	 LP.:.

^^0

CASE .2;	 Z F,. = o	 Z Fy = -. 54.2 -)S	 2 F,: = o oKA^

'
^

GSE 3;	 ^ Fx = o	 ^' F = o	 E F^ = -.
y

54.?.^	 ^KAy

WHERE i	 64SE /	 X -/ICGEl— = 7V
n

. sj r  C^9S G .?	 y -ACG,EL . - ^ o ^ -

CASE 3	 z,-AeeE4. = /0 9
v

•riTCM^ t^^^ Rw. ^.^•
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'`
S

'
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_/- 1. 808 - <l46 1 ,r-Ld'o^f.i46 )2 t 9^.27	 2a	 /	 —	 / a

.y75+	 .6d/ + .e;

_ — .775 +	 7/

Of

Qn MzN. 	 I . 84 6
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/y

n MA 	 L

t • 35^

_ .a7
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° / 84 6 - D, a 73^	 PSX	 0
k _ -4.d 4 	 Fix
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/YET[M!. 1411 R<V. 1.76.
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MODEL ANIJUM REFL.ECTOR^_

'	 LOAD CASE / — ANTENNA A

LAPES AND ANKLES

	

i	 COMPOSITE HM 10VV 1A-,EVI-,4R

a PLY. NARMC6 RESIN 934

r	
.t = ell

G = .?. 70 x / 0
,tt = G. 3 D

F

ALL OWABLES; QT= 4 9,a oU PSI (O"`] , -id. e- f,̂ I F c'>

ELEMENTS 45'-,f 9 , SECTION .2 , A = .o/ gas , Zr 67/? , Iz = • fr a
(ANTENNA 8 143 -/X6.)

FkCA4 7i WSAP OUTPUTS, CRZTZCAL AXIAL AND BENDZN(,r LOADS ARE

ON EL&446V7- S NEXT TO THE SWe-ORTIVer JOINTS .

EL . JOZNT	 F-)(	 F-Y	 r-9	 M -Y	 M- s^

68	 27	 .0/SS'	 -.Caas7	 •00.254 -.e6,93	 • ".2
l8 F)	 / 2	 - . 0/SS	 . &onS 7	 5..2	 . G4 s.?	 -. ".6-4

64	 .23	 , c103116	 -. "/ P3	 . "-214/	 .030.2	 .OV/ 07

	

(S6>^ a d	 (T316	 -"/13 -, o-D34/ -. G4 3 -, to 7/

	

9	 7

FOR ELEMENT 6,f , MAX, CDMBIN€ S7KESSES;

,^ _	 0>ss .^ C.oas^)(^^	 ! . eos4) ^• /3^ _-•0^0s.+/.^Id .17

	

C/ 9^S	 • 07/3	 orv6	 "

FOR ELEMENT 44,
.	 T _ - _ ^3a	 f (. C^•93) ^-^) t ^• ^9..?)^•/3) _ .,/6t -/.3^3 f /. y93s	 . o/ f^•? S .07/3	 . rr o 6 3.54 P.►S aAf

A..?/ P.iZ TEN.

A4. S. FOR a0 = 3l' 6 ca	 - / = HZC7H

sy sTams 1"I may. 4.76

	v 	 ^x3•^/X/•50
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t :sp	 ,^. ^.sc

Fe, F, OR Cr 	s ae.aaa xAeo P.

-+!	 F+- et.. art

ELEMENTS d 9 - 98 , SECTION 3 , A = .0 4  3 	 Zx (,T) -- • or" 	 Iy = - eli/cd , T^=-a4

THE MOST GRITIGln. STRESSES ARE AT ELEMENTS X f AND f¢ L064TED

AT THE 50770M JOZAITS OF THIS SUPPORT STROMIRE . .

EL.JOZNT	 F -X	 F- Y	 F- z	 M-X	 M- y	 k/- 0

8p	
37	 •OV415	 -evIX.z	 - 0/?9 	 -.os/6	 -.ts-Q7	 . tt

- ,oa^tlS	 • ra/ ?	 -•o/a	 .c5i6	 -0.26	 -. co6(94)	 4-7	 B	 p	 '	 3

cHEG^ SHEAR STRESS DUE 70 A4

MAX, SHEAR ON FACE .c,MFETS DUE To -7.6 7 4

-4t
a ( - 03 6 )

—'(..^3,9^ Via. s ) (. 099

/^. d s pSI

ROTATXON A MIND X- AXIS , - o? T'L	 74 AKC

C, 4

^0M8ZNE STR,FSS - , ^¢!s f (05/^ )C/•7s^ t C.c^	 ,^ 
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Fo FOR 6Y 70 =.0,.2	 0 Psx

•2Ld

ELEMENTS / 9 7 AND -:? o d SECTION 1

.4 = .07.2	 ZX = 0	 Ir = •096 , Zr _ .ec1.2/

EL JOZNT	 F-)(	 F-Y	 F-.=	 M-X	 M-E

	

X97	 37	 -•/04	 .0"36	 .ca¢ la 	 • 0673	 0-t 7L

	

(ao6) /37	 •1 04	 -.cca36 -.c^^/a	 0243	 • to5f
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ll	 P t My c,, f OF e-_.
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SAME MAT2. AS REFLECTOR SURF

Fe	 G. 0 PS 

b.o "

•^49

ELEMENTS 198 —.2495

SEGTiON 4	 A = •/off	 _. rr-rv/ , Zy = . 3- 4	 13 = , ca.^^7

FL. JOINT	 F x	 F-Y	 ,J^	 M-Y	 pl-Z

a0^	 4 3	 -.11	 -.0138	 - t,
(aoa)	 11.2	 -1/	 •0138	 y¢	 —.^79	 —./c.2

FOR ELEMENT .?CO , JOINT	 Nlht- COMBINE STRES4

"s —• l 0 8	 .3 ^ 4	 ov.^3 7
. O/ t a. s8 1'.57, s4

= 9 • / 3 PSI COMP.

M.S.'Fog 10	
= p?o..? r •^o _ I	 Nz^H
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0 45 ` DIA.

zb_.ic

J	 `i	

SECTION A —A

T P., THROUCrH SEARINCT

TOTAL LOAD ON THE ANTENNA REFLECTOR DUE To a0 
f 

=a/ ZBs w.2o
= 4ao LES

ASSUMINCT THE REACTZVE LOAD IS EVENLY DISTRIBUTED AI ►MGNCT FOUR

SUPPORTING FITTZN(rS ( PICTURE ABOVE) , THEREFORE, REACTZVE

a
LOAD PER JOINT IS 4a0 LSS. /4 OR /05 I.W. MAXIMUM .

AM T1. ; .2 0,24 -7-35/	 Q?Q-A -.250/¢

Fx^. 6^ KSI	 F ♦fw = //S, &Z	 =z.0

Ftr = 4 7 KSZ C -L	 4? KSZ CLT) f bYr	 d'7 KSZ. , rb =?.
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Fsa. = 37 KSz

a
A
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^^> a• A = t,, (.? ,& t G ) = ( • /o) (,? t /. 40) = 0. 3¢
(OSS AREA.)

THE MAX. TENSZON STRESS , ^Xw IN THE FI TTZNf WALL DUE

TD ULTZMATE L.4,4,0,

1
1

Al = a. 3¢

Z R^,_..^
R 4 ER/  Sir

TENSZON FFFZeZZNGy F,44 MR FOR THIS WALL ;

0. -2-5-	 6Z	 A	 0,3¢ =o.^

REF.;,LOLKHEED STRESS MEMO 5G G.

C. TA E WALL TENSZON STRESS RATIO

f	 WNE,CE +.. ,^ = 1.
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"'	 YL„



TRW
CN§ SUAC* PA4RK • RIDONOO 1/AC.+. CALWORMA 8,

^ l^CNR r4.	 L- ^ 'INK•	 19	 /	 R[rORT Mo. PACE I /A
•	 M[MR[D

CN[CK[D CHA/VIYLEL FI T 7TINrrS
woD[c ANM"AlRFfLFCTORS
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_	 • oE75 f /./0

3 .40
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Table 3 -- Laminate Mechanical Properties

Fiber
Type Weave

Resin
Type

(Content
percent)

Ply
Thickness

(in.)

Laminate
Weight

(ib/ft2/ply) Orientation

Tensile
Strength
(ksi)

Tensile
Modulus
(msi) Et Type Cure

GY70 50 end/inch E702 0.0028 0.03 Oo 73.6 39.0 0.655 Autoclave
Unidirectional (32)

(6 ply)

GY70 50 end/inch 5208 0.003 0.029 Oo 71.3 37.0 0.777 Autoclave
Unidirectional (30)

(6 ply)

HM-1000 30x30 934 0.0063- 0.058 0,90 60.0 19.1 0.722 Autoclave
8-harness (30)
Satin

( 6 ply)

GY70 4000 Twill 8517 0.0072 0.052 0190 20.5 12.0 0.173 Vacuum Bag
(2 ply ) (35)

GY70 40x40 Twill 8517 0.0068 0.051 0190 25.0 12.3 0.334 Vacuum Bag
(4 ply) (35)

GY70 40x40 Twill 8517 0.0066 0.050 0190 26.4. 12.6 0.499 Vacuum Bag
(6 ply ) (35)

GY70 40x40 Twill 8517 0.0061 0.0455 0190 32.8 14.0 0.171 Autoclave
(2 p ly ) (30)

GY70 4000 Twill 8517 0.0059 0.044 0190 28.0 14.8 0.350 Autoclave
( 4 Ply ) (30)

GY70 40x40 Twill 8517 0.0057 0.042 0190 28.5 15.8 0.540 Autoclave
( 6 ply ) (30)

GY70 4000 Twill 8517 0.011 0.075 0,90 21.0 8.0 0.088 Vacuum Bag
Plus (1 ply) (35) Total Total
Kevlar 3404 0190
120 (1	 ply)
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