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Abstract 

First-order nonlinear interactions of Tollmien-Schlichting waves of 

different frequencies and initial amplitudes in boundary-layer flows are 

analyzed by using the method of multiple scales. For the case of two 

waves, a strong nonlinear interaction exists if one of the frequencies 

W2 is twice the other frequency WI. Numerical results for flow past a 

flat plate show that this interaction mechanism is strongly destabilizing 

even in regions where either the fundamental or its harmonic is damped 

in the absence of the interaction. For the case of three waves, a 

strong nonlinear interaction exists when W3 = W2- WI. This combination 

resonance causes the amplitude of the wave with the difference frequency 

W3 to multiply many times in magnitude ln a short distance even if it 

is damped in the absence of the interaction. The initial amplitudes 

playa dominant role in determining the changes in the amplitudes of 

the waves in both of these mechanisms. 



I. INTRODUCTION 

One of the major roads from laminar to turbulent flow involves the 

inltial linear amplification of disturbances, which might be present in 

the flow. However, as these disturbances grow to appreciable amplitudes, 

nonlinear effects set in. The nonlinear mechanisms that are actlvated 

depend on the spectrum of the disturbances. In this paper, we investigate 

two of these mechanisms. 

In his exp~riments on the transition from laminar to turbulent flow 

in a separated shear layer, Satol observed the appearance of the subharmonic 

of order one-half in addition to the higher harmonics of the fundamental 

wave. Wille2 observed the development of subharmonic waves while investigating 

the stability of both circular and plane jets. Kachanov, et a1 3 observed 

that, in addition to the higher harmonics of a fundamental wave, which 

was introduced in the flow by a vibrating ribbon, a subharmonic wave 

with one-half the frequency of the fundamental wave appeared downstream. 

Michalke4 postulated that the subharmonic appears when two vortices 

rotate around each other in a fusion mating dance. Kelly5 showed that 

the appearance of the subharmonic in a shear layer is due to a secondary 

linear instability associated with a time-dependent flow that consists 

of the superposition of the basic flow and a finite-amplitude funda

mental wave. Nayfeh and Bozatli 6 investigated the appearance of the 

subharmonic in boundary layers by analyzing the instability associated 

with a time-dependent flow that consists of the superposition of the 

basic flow and a Tollmien-Schlichting wave. The results show that the 

amplitude of the fundamental wave must exceed a critical value to 

trigger this parametric instability. This value is proportional to a 
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detuning parameter that is the real part of k - 2K, where k and K are 

the wavenumbers of the fundamental and its subharmonic, respectively. 

For the Blasius flow, the critical amplitude is approximately 29% of the 

mean flow. For other flows where the detuning parameter is small, such 

as free-shear layer flows, the critlcal amplitude can be small, thus the 

parametric instability might playa greater role. Since the analysis of 

Kelly5 and Nayfeh and Bozatli 6 are linear, they do not account for the 

effect of the subharmonic wave on the fundamental wave. This effect may 

be small initially, but as the subharmonic grows appreciably, its 

effect on the fundamental cannot be neglected. One of the purposes of 

the present paper is to determine the nonlinear interaction of a Tollmien-

Schlichting wave with its subharmonic. 

Sato7, Miksad8, and Kachanov, et a1 9 observed that the nonlinear 

development of the waves in the transition region depends on the initial 

and external disturbances. Sato7 conducted an experiment on the stability 

of symmetric laminar wakes by exciting two unstable modes with the 

frequencies fl and f 2. He observed the generation of waves having the 

frequencies f2 ± fl. Miksad8 excited two unstable modes of a laminar 

asymmetric free-shear layer. He also observed nonlinear triggered 

instabilities of the difference mode f2 - fl' subharmonics, and higher 

harmonics of the fundamental waves. Kachanov, et a1 9 introduced two 

Tollmien-Schlichting waves in the boundary layer on a flat plate by 

using two vibrating ribbons. They observed the appearance and growth of 

a Tollmien-Schllchting wave having the difference frequency f2 - fl' 

Norman lO also observed the amplification of the difference harmonic of 

two introduced disturbance waves in his experimental study of secondary 
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flows around and downstream of protuberances in laminar boundary layers. 

The second purpose of the present paper is to determine the nonlinear 

interaction of three Tollmien-Schlichting waves (combination resonance) 

in boundary layers and show that the difference frequency can be very 

unstable when generated by the nonlinearity, even though it is stable 

when introduced by itself in the boundary layer. 

The problem is formulated in Sec. II. The analysis for the com

bination-resonance case is contalned in Sec. III, while the results for 

the second-harmonic case are stated in Sec. IV. The numerical procedure 

is discussed in Sec. V, while the numerical results are presented in 

Sec. VI. 
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II. PROBLEM FORMULATION 

We consider nonlinear interactions of wave packets in a two-dimensional 

steady incompressible boundary-layer. The equations describing the 

motion of the fluid are 

where 

au + av = 0 
ax 'dy , 

'dv + ~av + ~ 'dv 
at uax v 'dy 

u = v = 0 at y = 0, 

u -+ 1 as y -+ 00, 

'd 2 'd 2 
'1/

2 = axr + 'dyZ 

(1) 

(2) 

(3) 

(4) 

(5) 

Here, x and yare made dimensionless by using a reference length or' 

the time is made dimensionless by using 0r/Uoo' and the velocities are 

made dimensionless by using the freestream velocity U. The Reynolds 
00 

number R = Uooor/v with v being the fluid kinematic viscosity. 

The analysis is restricted to basic flows that are Sllghtly 

nonparallel (i.e., vary slowly in the streamwise direction) and to 

disturbances that are small but finite. The slow variation is expressed 

by using the slow scale Xl =EIX, where EI is a small dimensionless quantity 

that characterizes the nonparallellsm of the flow and can be related 

to R by EI = R- I • The smallness of the amplitude of the disturbance 

is expressed by introducing the small dimensionless parameter E. For 

a general solution, we assume that E = O(EI) so that the resulting 
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expansion accounts simultaneously for the effects of nonparallel ism and 

nonlinearity. When £ « £1, the nonlinear effects are negligible and 

the solution reduces to those obtained ln Refs. 11 and 12. When 

E » £1, the nonparallel effects are negligible and the solution reduces 

to equations with constant coefficients. 

We assume that each flow quantity is the sum of a mean-flow quan

tity and an unsteady disturbance quantity, which is assumed to be much 

smaller than the mean-flow quantity. We can then express the velocity 

components and the pressure as 

u(x,y,t) = UO(Xl,y) + £u(x,y,t), (6 ) 

(7) 

p(x,y,t) = P (Xl) + Ep(X,y,t), (8 ) 

where Uo, Vo, and Po are the nonparallel basic-flow quantities. Sub

stituting Eqs. (6) - (8) into Eqs. (1) - (5) an~ subtracting the basic-

flow quantities, we obtain 

~tU + Uo ~ + v au o + E.E. - 1 V2 u = - El U ~ - V au 
a ax ay ax R aXl El 0 ay 

au au 
- EU ax - EV ay 

~tV + Uo av + E.E. _ 1 v2 v = -
a ax ay R 

av av 
- EU ax - EV ay , 

u = v = ° at y = 0, 

u,v as y-+oo. 

6 

(9) 

(10) 

(11 ) 

(12) 

(13) 



Without loss of generality, we let E = El. To determine the wave~ 

packet solutions of Eqs. (9) - (13), we use the method of mu1tlp1e 

sca1es13 and seek an expansion in the form 

· .. , (14 ) 

· .. , (15 ) 

· .. , (16 ) 

where Xo = x, To = t, and Tl = Et. Substituting Eqs. (14) - (16) into 

Eqs. (9) - (13) and equating coefficients of like powers of E, we obtain 

Order EO 

auo + aVo = 0 
axo ay , ( 17) 

auo + Uo auo + v auo + ~ _ 1 v2 u = 0 
aTo axo 0 ay axo ROO , (18) 

J ( ) - avo + U avo + ~ _ 1 v2 v = 0 
c:7\2 uo,vo,po = aTo 0 axo ay ROO , (19 ) 

Uo = Vo = 0 at y = 0 (20) 

Uo, vo -+ 0 as y -+ 00 (21) 

Order E 

(22) 

_ vo auo _ Uo auo _ auG 
ay axo Vo ay , (23) 

avo avo 
- Uo axo - Vo ay (24) 

7 



at y = 0, (25) 

as Y -7 00, (26) 

where 

In what follows, we describe the details of the analysis for the 

combination-resonance case and only state the results for the second-

haromnic resonance case. 
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III. COMBINATION RESONANCES 

A. First-Order Problem 

For the case of combination resonances, we consider three wave-

packets centered at the frequencies WI, W2, and W3, Then we examine the 

resonances that might exist among them. Thus, the solution of Eqs. 

(17) - (21) is expressed as a linear combination of three Tollmien-

Schlichting waves; that is,. 

where 
aen 
-= - W aTo n (n=1,2,3) (30) 

with the wn being real constants. The quasl-parallel Orr-Sommerfeld 

problems for these waves are 

(31) 

(32) 
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(33) 

at y = 0, (34) 

as y ~ 00, (35) 

where 0 = a/ay. 

B. Second-Order Problem 

Substituting Eqs. (27) - (29) into Eqs. (22) - (26), we find that 

the inhomogeneous parts in Eqs. (22) - (26) contain terms proportional 

to 

where the overbar indicates the complex conjugate. The terms that are 

proportional to these exponential expressions will create secular terms 

in the partlcular solutions for UI, VI, and PI if k3 : k2 - kI 

and W3 : W2 - WI; that is, ~hen a combination resonance exists among the 

waves. To express quantitively the nearness of the above resonances, we 

introduce the two detuning parameters 01 and 02 defined by 

(36) 

(37) 
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where an = 0(1). Using Eqs. (36) and (37), we write 

- k2i )dxo, (38) 

82 - 83= 81 - <P + 1 (k 21 + k . 
31 - k1i )dx o , (39) 

82 - 81 = 83 - <P + i (k . 1 1 + k . 21 - k3;)dx o, (40) 

where kn; stands for the imaginary part of kn and 

<P= !a2dx1-a1T1 (41) 

To determine the An' we seek a particular solution for the second

order problem in the form 

exp(i8 3) + c.c., (42) 

VI = ~21(y;xl)exp(iel) + ~22(y;xl)exp(ie2) + ~23(Y;Xl) X 

exp(i83) + c.c., (43) 

(44) 

Substituting Eqs. (27) - (30) and (38) - (44) into Eqs. (22) - (26) and 

equating the coefficents of exp(iS 1), exp(i82), and exp(iS 3 ) on both 

sides, we obtain the following equations: 

Md~ ., ~ ; k.) = d , 
IJ 2J J IJ 

(45) 
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Md 1jJ Ij' 1jJ 2J' 1jJ 3J ; k. , 
J 

w.) = d ., 
J 2J (46) 

~13 (1jJ ., 1jJ ., 1jJ .; 
lJ ?J 3J 

k., w.) = d ., 
J J 3J (47) 

1jJ • = 1jJ • 
lJ 2J = ° at y = 0, (48) 

1jJ ., 1jJ • -+ ° as y -+ co, (49) lJ 2J 

for j = 1, 2, and 3, where the dij are given in Appendix A. 

c. Adjoint Problem 

Since the homogeneous parts of Eqs. (45) - (49) are the same as 

Eqs. (31) - (35) and since the latter have a nontrivial solution, the 

inhomogeneous equations (45) - (49) have a solution if, and only if, the 

inhomogeneous· parts are orthogonal to every solution of the adjoint 

homogeneous problem; that is, 

co 

I (d. ·s*· + d ·s*· + d s*·)dy = ° for j = 1,2, and 3, lJ lJ 2J 2J 3J 3J 
o 

where the S*IS are the solutions of 

* * * * M*l(S ·'S .; k ) = ik s - Ds . = 0, 2J 3J J J 2 J 3J 

* * * * * M*2(S ., S ., S .; k., w.) - i(UokJ. - WJ·)S3J· + S2J·DUo lJ 2J 3J J J 

* 
S 2j = 

* s ., lJ 

* 1 * - Ds . - -R (D2 - k~)s = 0, lJ J 3J 

1 (2 2) * _ - -R D - k. s . - 0, 
J 2J 

* 
S 3j = ° at y = 0, 

* s . 2J -+ ° as y-+co. 

12 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 



Substituting for the d .. from Appendix A into Eq. (50) and defining 
1J 

(56) 

we obtain the following differential equations for the evolution 

1 aa1 + aa1 = (£1 hll k . )a1 + h123 - (i) (57) wi' at ax ~- 11 £ ~ a2 a 3exp - $ , 

1 aa2 + aa2 = (£1 h22 k . )a2 + h213 (. ) (58) W2 at ax -r;- - 21 £ ~ a1a3exp 1$ , 

1 aa3 + aa3 (£1 h33 k . )a3 + h312 - (.) (59) = r;- - £ r;-- a2a1exp -1$ , W3 at ax 31 

where w~ = dWn/dkn is the group veloclty and $ is defined in Eq. (4l) . 

spatial modulation only, 01 = a and aan/at = 0; all the calculations 

presented in this paper are for this case. We note that Eqs. (57) -

(59) account for the combined effects of the nonparallelism (i.e., 

growth of the boundary layer) and the nonlinear interaction. If 

£ « £1, the nonlinear interactions can be neglected and the spatial 

variations in Eqs. (57) - (59) reduce to the nonparallel solutions of 

Refs. 11 and 12. When £1 « £, the effects of the nonparallelism are 

negligible; that is, one can set £1 = a and all the coefficients in Eqs. 

(57) - (59) can be treated as constants. 
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IV. HARMONIC RESONANCE 

The interaction between a fundamental Tollmien-Schlichting wave and 

its second harmonic is analyzed using a procedure similar to that 

outlined in the previous section. In this case. instead of Eqs. (57) -

(59) we obtain 

(60) 

1 da
2 + aa2 = (Elhf222 - k

21
.)a2 + E fh 221 afexp(i<j». W2 at ax (61) 

where <j> is defined in Eq. (41) and 

(62) 

and fl. f 2• hll' h22 • h12 • and h21 are given ln Appendices Band C. 

For spatial modulation only. 01 = 0 and aan/dt = o. All the 

calculations presented in this paper are for this case. 
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v. COMPUTATION PROCEDURE 

A. Solutions of First- and Second-Order Problems 

The same procedure is followed 1n solving the first- and second

order problems for both harmonic and combination resonances. Therefore, 

only the computation methodology for the solution of the first-order 

problem for the first mode is outlined here. 

Equations (31) - (33) are expressed as a system of first-order 

differential equation 1n the form 

dz _ 
dx - Gz, (63) 

where z 1S a 4 x 1 matrix with the elements 

(64) 

and G is a 4 x 4 matrix; its elements are given in Appendix D. 

We start the integration of Eqs. (63) at Y = Ye ' where Ye is larger 

than the boundary-layer th1ckness. Hence, Uo = 1, DUo = 0, and 

D2 Uo = 0 at Yeo Then the matrix G has constant coefficients at Y = Ye 
and Eqs. (63) have solutions of the form 

4 

z. = L c· .exp(A·y) for 1 _ 1J J 
J-l 

i = 1, 2, 3, and 4, (65) 

where the cij are constants, the AIS are the solutions of 

IG - All = 0, (66) 

and I is the identity matrix. Equation (66) has the roots 

(67) 

15 



Two of these roots have positlve real parts that make the solution grow 

exponentlally as y + 00; hence, they must be discarded to satisfy condltions 

(35). This leaves two linearly independent solutions that decay ex

ponentially with y. 

The eigenvalues are not known a priori and must be determined along 

with the eigenfunctions. For given values of WI and R, we guess a value 

for kl and integrate Eqs. (63) from Ye to y = O. If the quessed value 

of kl does not staisfy the boundary conditlons at y = 0, kl is incremented 

by using a Newton-Raphson scheme and the procedure is repeated until the 

boundary conditions are satisfied to wlthin a specified accuracy. The 

integration is done by using a computer code developed by Scott and 

Watts14 . This technique orthonormallzes the solution of the set of 

equations whenever a loss of independence is detected. 

B. Solution of AdJoint Problem 

The solution procedure is exactly the same as that for the first

order problem. The coefficients of the z matrix are 

* * * Zl = SZI(y;XI), Zz = Dsz1(y;XI), Z3 = S3I(y;XI), 

(68) 

and the adJolnt problem has the same eigenvalues as the first-order 

problem. 

C. Solvability Conditions 

The calculations are repeated at dlfferent streamwise locations to 

evaluate f., h .. , k., and the other interaction lntegrals for a given 
J JJ J 

frequency along the x-axis. A fourth-order fixed step-size Runge-Kutta 
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integration scheme is used to solve either Ecs. (57) - (59) for com

bination resonances or Eqs. (60) and (61) for harmonic resonances to 

find the amplitudes of the waves for different initial amplitudes of the 

respective modes. 
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VI. Results and Discusslon 

The analysis presented in this paper is applicable to both two-and 

three-wave interactions. First, we present and discuss numerical 

results for the case of two-wave interactlons. Then, we present and 

discuss numerical results for the lnteractlon of three waves whose 

frequencies are such that F3 = F2 - Fl. 

A. Two-Wave Interactions 

The numerical results presented in Ref. 6 show that the amplitude 

of a wave a~ = Ea2 must exceed a critical value before it can generate 

and amplify its subharmonic. For the Blasius flow, the critical value 

is approximately 29% of the mean flow. This is for the case when the 

subharmonic wave has an lnfiniteslmal amplitude. When the amplitude 

* al = €al of the subharmonic wave is not infinitesimal, its lnfluence on 

* a2 should be taken into account. The equations governing this lnfluence 

are Eqs. (60) and (61) whose general solution is not avallable yet. The 

previous results of the parametrlc instability mode1 6 show that a~ 
* oscillates about its non-interactlon value until a2 reaches the critlcal 

value. Figures 1 and 2, obtained by numerically solvlng Eqs. (60) and 

* * (61), agree with this conclusion. Initlally, a2 lncreases while al 

oscillates around its non-interaction value. 

* At R : 580, Fig. 1 shows that al starts to deviate sharply from its 

* non-interaction value, while lt follows from Fig. 2 that 2na2 : -1.25 

* * or a2 = 0.286 at this location. Hence, when a2 is less than this 

* critical value, al can be approximated by its non-interaction value; 

that is 
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(69) 

* where alO and T are the init1al amplitude and phase of the subharmonic 

wave, respectively. If we substitute Eq. (69) into Eq. (61) and neglect 

the nonparallel effects, we obta1n 

* 
da2 + k .a* = h2l a*2exp[-(2k . + i£o2)x + 2iT]. (70) dx 21 2 f 2 10 11 

The solution of Eq. (70) that satisfies the initial condition 

* * a2 = a2(0) at x = 0 can be written as 

(71) 
* Equation (71) represents an approximation to a2 as long as it is less 

than the critical value needed to trigger the parametric instability 1n 

the subharmonic wave. 

Next, we consider the generation and amplification of a second-

harmonic wave by a fundamental Tollmien-Schlichting wave. We consider 

the following three cases: (i) fundamental wave 1S stable while its 

second harmonic is unstable, (ii) fundamental wave is unstable while its 

second harmonic 1S stable, (iii) both fundamental and second-harmonic 

waves are unstable. 

When the fundamental wave is initially stable while its second 

* harmonic 1S unstable, al decays until it reaches the unstable region and 

then it 1ncreases as shown in Fig. 1. For Reynolds Number less than 

* 560, al osc111ates around its non-interaction value, implying a small 

* initial influence of its second harmonic on it. Thus, a2 can be approx-

imated initially by Eq. (71). Figure 2 shows that the values obtained 

from Eq. (71) are in good agreement with those obta1ned by numerically 
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integrating Eqs. (60) and (61) for R ~ 560. After a short initial 

distance, the second term on the rlght-hand side of Eq. (71) decays. 

* Then, a2 can be approximated by 

* 

*2 
aloexp(2iT)]exp(-k .x), 21 

as long as a2 is less than the crit1cal value. 
(72 ) 

Hence, the effect of the fundamental wave on 1ts second harmonic is 

* to increase its initial amplitude. However, as a2 attains large values, 

* * it strongly influences al which in turn strongly influences a2. The 

result is an accelerated instability. 

For the case when the fundamental wave is 1n1t1ally unstable while 

its second harmonic 1S stable, we performed calculat10ns for waves with 

the frequencies Fi = 46.5 x 10-6 and F2 = 93 X 10-6. The fundamental 

wave is in the unstable region at R = 950 where the calculations are 

started. Thus, its unstable downstream of R = 950. Figure 3, obtained 

* by numerically 1ntegrat1ng Eqs. (60) and (61), shows that ai hardly 

* deviates from its non-interaction value. On the other hand, a2 in-

creases many orders of magnitude even for small in1tial amplitudes of 

the fundamental wave as shown in F1g. 4. In these calculat10ns, the 

initial amplitude of the second-harmonic wave 1S taken to be 0.1% wh11e 

the initial amplitudes of the fundamental wave are 0.1% and 0.5%. Since 

* al hardly dev1ates from its non-interaction value, Eq. (71) is expected 

* to be a good approximation to a2. F1gure 4 shows that the values obtained 

from Eq. (71) oscillate about those obtained by numerically integrating 

Eqs. (60) and (61). * Since the initial values are very small, a2 

* does not reach the cr1tical value to influerce ai. After a short initial 

distance, the first term on the right-hand slde of Eq. (71) decays and 
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* az can be approximated by 

* az 

* 

*2 
a1oexp[-(2k

1
; + isoz)x + 2iT], 

(73) 

as long as az is less than the critical value. Consequently, the effect 

of the interaction is to produce a second-harmonic wave that grows 

approximately at a rate that is twice that of the fundamental wave. 

For the case when both waves are unstable, we performed numerical 

calculations for waves having the frequencies Fl = 52 x 10-6 and 

Fz = 104 x 10-6 starting near R : 600. Figure 5 shows that initially 

* al deviates slightly from 1tS non-interaction values. Hence, Eq. (71) is 

* expected to be initially a good approximation to az. Figure 6 shows 

that the numerical values obtained from Eq. (71) are in good agreement 

with those obtained by numerically integrating Eqs. (60) and (61) when 

* az is less than 0.29. Thus, in this case, the effect of the interaction 

on the second-harmonic wave is to increase its initial amplitude and to 

produce a term that grows at a rate that is tW1ce the growth rate of 

the fundamental wave. Due to the fact that both waves are initially 

unstable, the interaction 1S more effective in this case than in the 

preceding two cases. 

B. Three-Wave Interactions 
9 . 8 10 In their experimental studies, Kachanov, et al , M1ksad ,Norman , 

and Sato7 introduced two separate waves of different frequencies into 

the flow that was being studied. They observed the growth of a wave 

whose frequency is equal to the difference frequency. Kachanov et al 

used the frequency pairs Fl = 88 x 10-6 and F2 = 104 x 10-6 and 

Fl = 88 x 10-6 and F2 = 120 x 10-6 to analyze the growth of the associated 
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difference-harmonlc waves at F3 = 16 x 10-6 (l.e. F3 = F2 - F1 ) and 

-6 F3 = 32 x 10 in a boundary-layer flow over a flat plate. US1ng the 

same frequency pairs, we determined the amplitudes of the fundamental 

* * * waves (al and a2) and the difference-harmonic wave a3 by numerically 

solving Eqs. (57) - (59). Figures 7 and 8 show the large increases 1n 

the amp11tudes of the above difference-harmonic waves due to the nonlinear 

interact10n of the waves with the frequencies Fl and F2. The amplitude 

of the difference-harmonic wave at R : 715 is increased 120-200 times 

its non-interaction value. 

However, the amplltudes of the fundamental waves change very little 

from their non-interaction values as shown in Fig. 9 for Fl = 88 x 10-6. 

* * Thus, al and a2 can be approximated by 

* * a2 = a2oexp(-k ·x + iL2), (74) 21 

* * where alO and a20 are the init1a1 amplitudes and Ll and L2 are the 

1nitial phases of the fundamental waves. Substituting Eq. (74) 1nto 

Eq. (59) and neglecting the nonparallel effects, we obtain 

_ h312 * * ( ) - -- alOa20 exp[- k . + k . + iE:02 X fs 11 21 

(75) 

The solution of Eq. (75) that satisfies the in1tia1 condition 

* * a3 = as(O) at x = 0 can be expressed as 

* * alOa20exp(iLl + iL2)] x 

+ iE02)x + i(Tl + T2)]. (76) 

* Equation (76) represents an approx1mation to a3 as long as the amplitudes 

of the fundamental waves do not deviate from their non-interaction values. 
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Figures 7 and 8 show that Eq. (76) is initially in good agreement with 

those obtained by numerically integratlng Eqs. (57) - (59). 

According to Eq. (76), the difference-harmonic wave grows at a rate 

that is the sum of the growth rates of the fundamental waves. Since the 

fundamental waves are unstable at R = 430, where the calculations are 

started, the difference-harmonic wave amplifies considerably, inspite of 

the fact that it is stable in the absence of the interaction. These 

results are in qualitative agreement with the experimental observations 

of Refs. 7 - 10. 
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APPENDIX A 

a~3· 2· a~l· dk. U 
- __ J + _1 (k. __ J + ---""-'d J I.) - h r I ]A 

aXI R J aXI ..J XI '" J aXI '" j j' 

exp[;q, - j(kli + k3; - k2 ;)dx], 

d231 = (-;kl~II~12 + ;k2~12~11 + ~22D~11 + D~12~21)A2AI X 

d 3 ·0= - (UO~2· 
J J 

2; dk j 
- -R (-d - ~2· + Xl J 

d311 = (-;k3~12~23 + ;k2~22Z13 + S22 DZ23 + DS22Z23)A2A3 X 

exp[-;cp - j(k2i + k3; - kl;)dx], 

d321 = (;k3~11~23 + ;kl~2IS13 + ~21Dr,23 + D~21~23)AIA3 X 

exp[;q, -~kl; + k3; - k2;)dx], 
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(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7} 

(A8) 

(A9) 

(A10) 



--
d331 = ( -;k1Z;21 + ;k21:;2ZZ;11 + 1:;22DZ;zl + D1:;zzZ;21)A2A1 x 

exp[-;~ -~kl; + k2; - k3 ;)dx]. (All) 
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APPENDIX B 

(j=1,2,3), 

h .. 
JJ 

* dk. dUO] * 2ik. 01;;2· 
+ -1..d 1;;1·) + -,,-Sl· 1;;2· + [(U o - __ J ) ~ +V oD1;;2. 

Xl J OXI J J R OXI J 

2· dk. *} + 1;;2· DVo - -R' -d J 1;;2 ·]1;;3· dy 
J Xl J J 

(j=1,2,3), 

h12 , = J {[i(k, - k,)C12C~, + C22D~13 + DC12~"lC;' 
o 

(B1) 

(B2) 

+ ( -ik'C12~" + ik,C22~13 + C22D~" + DC22~" )C~I} dy, (B3) 

h", = 1 {[i(k l * + k3)1;;111;;13 + 1;;21 D1;;13 + 01;;111;;23]1;;22 

+ (ik'C'lC" + iklC'ICI' + C'IDC" + DC'IC")C:,}dY' (B4) 

h,,, = J {[i(k, - kdc"~l1 + C22D~l1 + DC!2~,dc;, 
o 
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APPENDIX C 
00 

h" = ~{[",OZ" + Z"O", + i(k, - k,)",Z,,],;, 

+ [ik""Z" - ik,Z"",+ ",oZ" + ~"O",],:,} dy (Cl) 

h" =.I,"{[(ik'~'l + ",0",),;, + (ik,~"~,, + C"OC")~:']}dY (C2) 
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APPENDIX D 

911 = 0 , 912 = 1, 913 = 0, 914 = 0 (Dl ) 

921 = i(Uok - w}R + k2, 922 = 0, 923 = R d~o, 924 = ikR (D2) 

931 - - ik, 932 = 933 = 934 = 0 (03) 

941 = 0, 942 = -ik/R, 943 = -[i(Uok - w} + k2/R], 944 = 0 (04) 

Q is a 2 x 4 matrix consistin9 of the last two rows of the matrix 

B-1• The matrix B has the elements: 

bll = b12 = b13 = b14 = 1 

b21 = -k, b22 = k, b23 = k, b24 - - k 

b31 = i , b32 = i k/k, b33 = -i, b34 = -ik/k 

b41 = (w/k - 1), b42 = 0, b43 = (w/k - 1), b44 = 0 

where 

k = [k2 + i(k - W}R]1/ 2 

29 

(D5) 

(06) 

(D7} 

(D8) 

(D9) 



-* -o 
c: 

4 

2 

o L------L----~L-----~----~------~--_r~----~ 
400 450 500 550 750 

REYNOLDS NUMBER J R 

-2 

-4 

-6 

Figure 1. 

NO INTERACTION. 
* 0 10 =0 03 

Amp11tude of a wave at Fl = 52 x 10-6 involved 

in a subharmonic resonance with a fundamental wave 

at F2 = 104 x 10-6. 



-*(\1 
C -c 

4 

2 

NUMERICAL INTEGRATION OF 

EQUATIONS (60) AND (61) 

" / 

/ 

" / 

" 
" " 

/ 
OL-----~-------L-------L-------L------~--_r--~---
400 450 500 550 600 / 700 

-2 

-4 

-6 

REYNOLDS NUMBER, R --- ,,"'" 
CALC~~AT~D FROM~ 
EQUATION (71) 

NO INTERACTION 

0;0=0005 

t 

Figure 2. Amplitude of the fundamental wave at F2 = 104 x 10-6 

involved in resonance wlth its subharmonic at Fl = 52 x 10-6. 



-* -0 

c 

o IL __________ -iI ____________ LI __________ ~I ____________ ~I __________ ~~I~------
950 1000 1050 1100 1150 1200 

-I 

-2 

-3 

-4 

-5 

-6 

-7 

Flgure 3. 

REYNOLDS NUMBER, R 

--
--~a;"OOOI 

f\Q INTERACTION. a~O = 0 001 

Amplitude of a fundamental wave at Fl = 46.5 x 10-6 

involved in resonance with its harmonic at F2 = 93 x 10-6. 



...-
*(\1 

C 

c 

'. 

01 ~ __________ -L __________ ~I __________ ~I~ __________ ~I __________ ~I ______ ___ 

950 1000 1050 1100 1150 1200 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

O~= 0005 _------- ___ _ _ __ _ _ _ REYNOLDS NUMBER. R 

Figure 4. 

----------

CALCULATED FROM 

EQUATION (71) 

---- ---------
-------------

NUMERICAL INTEGRATION OF 

EQUATIONS (60) AND (61) 

• ~--NO INTERACTION. 020= 0.001 

Amplitude of the sec0nd-harmonic wave at F2 = 93 x 10-6-

when lnvolved in resonance with a wave at Fl = 46.5 x 10-6. 



4 

2 

-,.:C\J 
C -c 

-2 

-4 

-6 

Figure 5. 

NUMERICAL INTEGRATION OF 

EQUATIONS (60) AND (61) 

NO INTERACTION. 0;0=0005 

Amplitud~ of fundamental wave at Fl = 52 x 10-6 involved 

in resonance wlth its harmonic at F2 = 104 x 10-6. 



• 

4 

2 
" 020=0 005 --.t 

o L-____ L-____ ~ ______ ~ ______ _L_+----~------~----

600 

-2 

-4 

-6 

Figure 6. 

625 650 675 725 750 
REYNOLDS NUMBER I R 

NO INTERACTON 

" 0 10 = 003 

Amplitude of the second-harmonic wave at F2 = 104 x 10-6 

-6 when involved in resonance with a wave at Fl = 52 x 10 . 



rIO c 

430 450 

-2 

-4 

c -6 

-8 

-10 

-12 

-14 

500 

CALCULATED FROM 
EQUATION (71) 

---

NOINTERACTON 
* °30=00001 

Figure 7. 

550 600 

"-

650 700 750 

"-

REYNOLDS NUMBER, R 

" " " 

NUMERICAL INTEGRATION OF 
EQUATIONS (57) - (59) 

, --\ ...,.~ ... , --- .- ,.,' 
\ ..... -----;: ... ----

'\ ... --- .... --.-
"\ "--'- / ,-

" \ I .. 
'.\ ... _-," 

\ I 
\ I 
\ I 

Amplitude of the difference-harmonic wave at F3 = 32 x 10-6 

generated from a comblnation resonance of Fl = 88 x 10-6 

and 120 x 10-6• 



-*10 
0 

c 

" t 

~---------5~0-0--------55~0--------6~~L--------6~5~0~----~7~0~10~------~7~~0~----
430 450 REYNOLDS NUMBER , R 

-2 

-4 

-6 

-8 

-10 

-12 

-14 

CALCULATED FROM 
EQUATION (71) -

---

NUMERICAL INTEGRATION OF 
EQUATIONS (57) - (59) 

, , , , 
..... , " 

..... , " , " 
.... " .... , 

" " " , " , 
" " , \ 

\ \ 
\ , 

\ ' , \ , \ 

\ \ 

NO INTERACTION. 
a:a= 00001 

\ \ 
\ \ 

\ \ 
\ " 
',----.:::~ 

Figure 8. Amplitude of the difference-harmonic wave at F3 = 16 x 10-6 

generated from a combination resonance of Fl = 88 x 10-6 

and F2 = 104 x 10-6. 



-* -o -

430 450 500 550 600 650 700 750 
REYNOLDS NUMBER, R 

-I 

-6 * 
IN INTERACTION WITH F=32x10 ,°30 =00001 

-2 

-3 

NO INTERACTION, O~=OOI 
-4 

-5 

-6 
Figure 9. 

-6 * IN INTERACTON WITH F = 16xIO,03Q=00OOI 

-6 
Amplitude of the fundamental wave at Fl = 88 x 10 

involved in a combination resonance with two waves 

at F2 = 104 x 10-6 and F3 = 16 x 10-6. 



End of Document 


