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NOMENCLATURE

Symbol Definition

A cross sectional areas of the blade

B - B/- terms defined by Equation (D-26)
* • * * ' * *

B., - Bg terms defined by Equation (D-̂ 5)

d vectorial distance between a point on the cross section

of the blade and the shear center of the cross section

E Young's modulus

E-jELjE, Young's moduli of an orthotropic material

E ,E ,E the base vectors on the elastic axis of the deformedx y z

blade

e .e .e unit vectors in the directions of the coordinatesx y z

XQ>y0»z , respectively, before the deformation

e',ef,e' the triad e ,e .e after deformationx' y' z x' y' z

e",e",e" the triad (e',e' ,e') after the virtual motion
x y z x y z

e. blade pitch bearing offset defined in Figure 2

e* ,e. unit vectors in the directions i\, £, respectively,

before deformation —

e',el the vectors e ,e» after the deformation
T £ TI C

F the resultant force which acts on a cross section of

the blade

G modulus of shear

G..p,G.,,,GL_ moduli of shear of an orthotropic material

Preceding Page Blank



G ,G ,5 the base vectors of the deformed blade in the directionsx y z

xO'yO'V

g >fL.t6 the base vectors of the undeformed blade in the directions

xO>yO'V respectively

H the height of the tower supporting the wind turbine (Figure Ib)

L,,,I,,, II, moments of inertia of the cross section (effective in carrying
™ 22 ^2

tensile stresses) around axes parallel to the directions

e ,e which pass through the tensile center. Defined by
v **

Equation (5)

X,»Ir> the principal moments of inertia of the cross section around the
j &

principal axes (for a symmetric profile around the symmetry axes,.

and an axis perpendicular to it, respectively, Eqs. 6)

i,̂ ,k unit vectors in the directions x,y, and z, respectively

J torsional stiffness of the blade (Figure 2)

I length of the elastic part of the blade

M the resultant moment which acts on the cross section of the

blade

M ,M ,M the components of the resultant moment which acts on a cross

section of the blade, M, in the directions e',e', and. x y

e', respectively

M ,M ,M the components of the resultant moment which acts on a cross

section of the blade, M, in the directions e ,e , and
. . «

e . respectively
Z

n *n ,n the components of the virtual rotation; Equation (D-ll)x y z

p distributed external force to unit length of the axis of

the blade

P >P »P the components of the distributed external force in thex y z

directions e',e',e', respectively

vi



p ,p ,p the components of the distributed external

force in the directions e ,e ,e ,

respectively

q distributed external moment per unit length

along the axis of the blade

<Lft
<Lr><lz t*16 components of the distributed external

moment q, in the directions e'.e' .e1.x y* z'
respectively

f+* *M ***

<L^<L^<1_ the components of the distributed external

moment q, in the directions e ,e ,e ,

respectively

R ,...jR̂  terms defined by Equation
~ «• • - • . -
R ....,R̂  terms defined by Equation (D-k2)

R the position vector of a point of the blade

after the deformation

R the position vector of a point on the deformed

elastic axis of the blade

r the position vector of any point of the blade

before the deformation

r the position vector of points on the elastic axis

of the blade, before deformation

S.. the elements in'the matrix-which describes,the„

transformation between the triads (e ,e ,e )

and (ê,e'z.)

[T] the matrix which gives the transformation between
A A A A. A. A.

T the component of the resultant force, F, which

acts in the direction e' (axial tension)

T the component of the resultant force, F, which

acts in the direction e

vii



t resultant force per unit area of the cross

section of the blade

U elastic energy

u,v,w the components of the displacement, W, of a

point on the elastic axis of the blade in the

directions e ,e , and e , respectivelyx y z

V ,V the components of the resultant force, F,

which act in the directions £y and e| >

respectively
•** *** •»
V ,V the components of the resultant force, F,

which act in the directions e and e ,

respectively

V the displacement of any point of the blade

W the displacement of a point on the elastic

axis of the blade

VL, the work of the external forces which act on the
Ci

system

W_ the work of the internal forces of the system

the ^nitl-al sys*6111 °f coordinates of the blade

x,y,z a rotating system of coordinates (Figure l)

x_,y,,z_ a system of coordinates fixed with respect to

the ground (Figure l)

X. the offset between the shear center and the aero-A
dynamic center of a cross section of the blade;

positive when in the positive direction of ^

X_ the offset between the shear center and the

center of gravity of a cross section of the blade;

positive when in the positive direction of T)

viii



II

y ,z
oc oc

the offset between the shear center and the

tension center of a cross section of the blade;

positive when in the positive direction of r\

the position of the tension center of a cross

section of the blade with respect to the

coordinates y_ and z_, respectively

e ,e .e
xx' yy' zz

e ,e ,eyz* xy xz

rate of change of a pretwist (equal to 9 in the
\J ) X

present study)

preconing angle; inclination of the feathering axis

with respect to the hub plane (Figure 2)

typical symbolic quantity used in the ordering

scheme

strain components

XX

V

9 ,e .0
x* y' z

strain of the elastic axis

principal coordinates of a cross section of the

blade (T) is the axis of symmetry in the present

study)

"total̂ geometric pitch anglê of the blade -cross

section (angle between e and e )

the rotation component of the triad e ,e ,e ,

during the deformation, about e , e , and e ,x y z'
respectively

the virtual rotation of any point on the elastic

axis, during a virtual movement

curvature of the deformed rod in the directions

e',e', respectively. Defined by Equation (B-15)
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v Poisson's ratio

V V V V

Poisson's ratios of an orthotropic material
V23'V32

cr ,<r .axx' yy' zz
o- ,T .T stress componentsyz' xy' xz ^
a ,cr ,,,
XT)' X</

T the twist of the deformed blade, defined by Equation (B-15)

T the twist while using coordinates r\, {;

instead of y0>z_

* the rotation of a cross section of the blade

around the elastic axis (equivalent to 9 )
A

cp warping function

cp the warping function as chosen by Hodges and

Dowell (Ref. 8)

azimuth angle of the blade, measured from

straight down position (Figure l)

angular speed of rotation

( ) x >( ) y >( )^z differentiation by x̂ yQ, and ZQ,

respectively

d( ) differential

8( ) variation

( ) vector

C") unit vector

(") x (~) the cross product of two vectors

( ).' differentiation with respect to X



SUMMARY

A set of nonlinear equations of equilibrium for an elastic wind

turbine or helicopter blade are presented. These equations are derived

for the case of small strains and moderate rotations (slopes). The deriva-

tion includes several assumptions which are carefully stated. For the

convenience of potential users the equations are developed with respect to

two different systems of coordinates, the undeformed and the deformed co-

ordinates of the blade. Furthermore, the loads acting on the blade are

given in a general form so as to make them suitable for a variety of

applications. The equations obtained in the present study are compared

with those obtained in previous studies. Finally, it should be noted that

this report represents the first in a series of three reports documenting

the research performed under the grant. The second report (UCLA-ENG-7880)

deals with the aeroelastic stability and response of an isolated horizontal

axis wind turbine blade. The third report (UCLA-ENG-7881) deals with the

aeroelastic stability and response of the complete coupled rotor/tower

system simulating essentially the dynamics of the NASA/foOE Mod-0 config-

uration.



1. INTRODUCTION

Recent investigations on the behavior of elastic slender rotor blades

undergoing relatively large deformations during operation, show that non-

linear phenomena have considerable influence on this behavior* These non-

linear phenomena are due to the inclusion of moderately large deformations

in the elastic, inertial and aerodynamic operators associated with this

problem. A detailed review of recent research on rotary wing aeroelasticity

with an emphasis on the importance of moderately large deformations has been

presented in Ref. 1 and is beyond the scope of this report.

Recent emphasis on wind energy conversion, using large horizontal axis

wind turbines, employing two-bladed, hiiigeless rotor configurations having

rotor diameters varying between 120 to 500 ft. have added a new stimulus

to the study of large flexible, highly pretwisted blades. In a recent study

by Friedmann (Ref. 2) it has been noted that efficient construction and opera-

tion of wind turbines requires that the vibratory loads and stresses on the

rotor itself and the combined rotor tower system be reduced to the lowest

possible levels. Thus, structural dynamic and aeroelastic considerations

are of primary importance for both the design of wind turbines and the compar-

ison of various potential wind turbine configurations.

In view of this need, it was felt that a careful, fundamental deriva-

tion of the equations of motion for slender rotor blades, possibly highly

pretwisted, undergoing relatively large deformations during their operation,

is required. These equations could be used as a basis for future studies,

into which nonisotropic material behavior, such as required for the treatment



of composite blades, could be easily incorporated. The main objective of

the present study is the derivation of such a set of equations.

A fundamental work in this field was that of Houbolt and Brooks (Ref.

5) where equations of equilibrium for the coupled bending and torsion of

twisted nonuniform blades were derived. Although some nonlinear effects were

included in their derivation, their final results can be considered as a

linear representation of the problem. Following this work, other researchers

presented derivations of equations which include additional nonlinear terms.

These include, for example, the work of Arcidiacono (Ref» k), Friedmann and

Tong (Ref. 5), Hodges, et al (Ref. 6-8) and a recent work by Friedmann (Ref.

9). The most detailed and comprehensive derivation of a set Of nonlinear

elastic equilibrium equations is presented by Hodges and Dowell (Ref« 8).

There the equations are obtained by two complementary methods, Hamilton's

principle and the Newtonian method.

In the present work a set of nonlinear elastic equilibrium equations

of a blade are presented. These equations are derived for the case of small

strain and finite rotations. The derivation includes several assumptions

which are presented during the presentation. The equations are developed with

respect to two different systems of coordinates. In each case the derivation

is done using two complementary methods; the Newtonian method and the principle

of virtual work. Finally, the equations obtained in the present study are

compared with those obtained in the previous studies.

This report is a modified and abbreviated version of Reference 13,

which contains a considerable amount of additional details. Furthermore,

it should be noted that this report represents the first in a series of



three reports which document the research which has been performed under

the grant. The second report (Ref. 20) deals with the aeroelastic

stability and response problem of an isolated horizontal axis wind turbine

blade. This report also contains typical single-blade aeroelastic stability

boundaries together with blade response studies at operating conditions for

the MOD-0 wind turbine, currently in operation at NASA Lewis Research Center.

The third report (Ref. 21) deals with the aeroelastic response and stability

of a coupled rotor-tower configuration corresponding to the NASÂ )OE

Mod-0 machine.



2. BASIC ASSUMPTIONS

The geometry of the problem is shown in Figures 1 through 3« The

following assumptions will be used in deriving the equations of motion.

1) The blade is cantilevered at the hub, the feathering axis of the

blade is preconed by an angle B .

2) The blade can bend in two mutually perpendicular directions

normal to the elastic axis of the blade, and can also twist around

the elastic axis. The boundary conditions are those of a canti-

levered beam.

3) The blade has an arbitrary amount of pretwist which is assumed to

be built in about the elastic axis of the blade.

k) The blade cross section is symmetrical about the major principal

axis. It has four distinct points:

l) Elastic Center (E.G.) - the intersection point between the

Elastic Axis (E.A.) and the cross section of the blade

II) Center of Mass (C.G.)

III) Tension Center (T.C.)-the intersection point between the

Tension Axis (T.A.) and the cross"section of the blade

IV) The Aerodynamic Center (A.C.)

As shown in Figure 3 the C.G - E.C offset is denoted by X_, the

T.C - E.C offset is denoted by Xjj, and the A.C - E.C offset is denoted

by X., where it is understood that the offsets shown in Figure 3 are
fL

considered to be positive.

5) The strains in the blade are always small, but the rotations can

be finite (for additional details see Appendix B).



3. ELASTIC EQUILIBRIUM EQUATIONS OF THE BLADE

In this section, the equilibrium equations of the deformed blade axe

given. It is assumed that the blade can be considered to be a deformable,

slender rod, made of linearly isotropic, homogeneous material. As formerly

indicated, the analysis is restricted to the case of small strains and

finite rotations. Appendix A gives a brief summary of some well known rela-

tions of nonlinear deformations. In Appendix B expressions for rotating and

strains of a deformed slender rod are derived and the force and moment

resultants are obtained. In Appendix C the equilibrium equations are derived

systematically with respect to the deformed as well as the undeformed system

of coordinates, using the Newtonian method. In Appendix D the same equations

are derived using the principle of virtual work.

In this study the Bernoulli-Euler hypothesis is assumed to apply. This

hypothesis is usually stated as: "ELane cross sections which are normal to the

elastic axis before deformation remain plane after deformation (except for

negligible errors due to warping) and normal to the deformed axis." Furthermore,

it is also assumed that strains within the cross section can be neglected,

and the warping is very small so that its influence is negligible, besides

its effect on the torsional stiffness. (For a more accurate approach other

warping effects can be included as shown in Appendix B.)

As shown in Figures 2 and 3, before the deformation of the elastic

axis of the blade, which is the line that connects the shear centers of the

blade cross sections, coincides with the XQ axis. The yQ axis is

orthogonal to x-, and lies in a plane parallel to the hub plane, while z~.



is perpendicular to XQ and yQ. It is clear that ô*y0'
zo is a

lar Cartesian system. As shown in Figures 2 and 3, e ,e ,e are unit vectorsx y z

in the directions XQ>yQ*zQ> respectively. According to the Bernoulli-Euler

hypothesis and the other accompanying assumptions, during the deformation the

triad e ,e ,e is carried in a rigid form, composed of translation and -

rotation, to the new orthogonal triad e',e',e' (shown in Figures 2 and 3).x y z

The unit vector e' is tangent to the deformed elastic axis, while e and
x * y

e are rotated around it to the position of e1 and e1 .z y z

It is assumed that the blade is acted upon by a distributed load, p,

per unit length of its undeformed axis, given in component form by:

"• «̂p ' Vi

This load, p, includes body forces, surface tractions and inertial loading.

There is also a distributed moment, q, per unit length of the undeformed

axis of the rod, given by:

This also includes body couples, moments of surface tractions and moments of

inertial loading. The loads and couples, p and q, and their derivatives

are assumed to be continuous.

Then the exact equilibrium equations are obtained in Appendix C as

Equations (C-7) and (C-8):



T + * (M + T M + O ),x yv z,x y *z'

- K ( M - T M + q _ ) + p = 0
z ^y *x

,X
-(M + K M + TM +

Z,X 2 X y

K T - T ( M + K M -TM + q) + p =0y y>x y x * TT *y

(M + K M - TM + a )y,x y x z ^y ,x

V * T(Mz,x

- K M - K M + a « 0x,x y y z z TC

(3)

The first three equations are basically from force equilibrium rela-

tions in the e',e', and e' directions, respectively. The fourthx y **

equation is the moment equilibrium relation in the e1 direction. The equi-
<X

libritm of moments in the directions e' and e' are also satisfied.y z

T is the axial tension in the blade. M .M . and M are the compo-x y z
nents of the elastic moments, M is the torque, while M and M are thex y ^
bending moments. K and K are the curvatures, while T is the twist ofy z
the deformed elastic axis. The expressions for the components of the moments

are obtained from Equation (B-̂ 3) of Appendix B:

M

M

M

GJr

' EI33Kz
E:i22K

8



where £ is young's modulus, G is the shear modulus, J is the torsional

stiffness of the blade, and ô'1^ and 323 are the flexural moments of

inertia of the cross section (effective in carrying tensile stresses) around

axes parallel to the directions e and e which pass through the point

(y z ). This point, whose coordinates are
OC OC

y,,,,* *,„,)> *s the tensile
W OC

center. The moments of inertia are given by Equation (B-l*2 ), which is :

dz

J7 (2oc dzO

(5)

Furthermore, it is assumed that the blade cross section is symmetric

about the f\ axis (see Figure 3)* The moments of Inertia about T) and an

axis perpendicular to T], which pass through the tensile center, are

denoted by I, and :£,, respectively. Then (see Figure 3):

cos

°G

(6)

From Figure 3, the following relations follow:

^oc * XII COS °G J Zoc
(7)



It IB assumed that X _ is small enough so that the expressions

Tz and Ty in Equation (k) are at most of the magnitude of theoc oc

other terms in the equation.

Furthermore, it should be emphasized that Equations (*0 vere
2

obtained after neglecting terms of order e compared to unity (for more

details about the ordering scheme, see Appendices B and G). According to

the assumptions of Appendix B, rotations are of order £.

Within the order of approximation implied by neglecting terms of
2

order e , compared to unity, the equations of equilibrium are simplified

and are given in their final form by Equations (C-10):

T +KM -KM + T(K M + K M ),x y z,x z y,x y y z z

-M - (K + ifc )M - (T + k k )M - 2T Mz,xx z,x y x ,x y z y y,x

+ K. T + K q - Tq - q + p = 0
y z^jc TT z,x ^y

M 4- (K - TK )M - (T - K K )M - 2T M
y,xx y,x z x ,x y z z z,x

+ K T - K q + q - Ta -f P « 0
" Jr *t *r 9 ** <& Z

M - K M - * Mx,x y y z z

(8)

10



In order to complete the formulation of the problem, the boundary

conditions must be also taken into account. For the present case of a canti-

levered blade, the boundary condition at x_ = 0 corresponds to a clamped

root and at the tip, XL. = t (where I is the length of the blade), free

end conditions apply. Thus

for :c=0: v = w = v = w = < J > = 0 ;u ,x ,x
(9)

for Xo = Z: T - Vy - YZ - M^ - My -' MZ » 0 .

V and V are the resultant shearing forces at the blade cross sectiony z

and they are given by (see Equation (C-6) of Appendix G):

V = - ( M + K M + TM + q_) ;
y z,x z x y ^z

(10)

V = M + K M - T M + Qz y,x y x z ^y

The underlined terms in Equation (10) disappear in the case of a free edge

when M = M = M =0, also.

The deflection of a point on the elastic axis is given by W where

(see Equation (B-6) of Appendix B):

•• \ \
W = ue + ve + wex y z

11



The new triad, e',e',ef, which is tangent to the deformed coordi-

nates of the "blade is given by Equation (c-ll):

•^ • " y» n ^e' = e + S.,e + S, ,ex x 12 y 13 z

e1 = S0,e + e—+ S0..ey 21 x y 23 z

e' = S,.e + S2cie + ez 31 x 32 y z

(12)

where S. . are functions of w , v and *. When finite rotations are
i j >x tx

considered, these S. . depend on the sequence of rotations which transform
-̂j

(e ,e ,e ) to (eSe'̂ e1), as one can see from Equations (B-10), (B-13) andx y z x y z

(B-l̂ ) of Appendix B. If the sequence chosen is a finite rotation about e ,z

followed by rotation about e , followed by rotation about e , then,y x
2

neglecting terms of order e compared to unity, the transformation given in

Equation (12) is defined by Equation (B-13):

e l s s e + v e + w ex x ,x y ,x z

= -Iv x x

e = -( ) e N - ( < > + v w )e'+e
.x x ,x ,x y

(13)

With relations (13) the curvatures and twist are then given by (B-16)

K = V + Awy ,xx v j

12



xx ,xx

+ v wx ,xx ,x

The term v w in Eqs. (l3) and (l̂ ) was intrcxiuced by Wempner,x ,x

(Ref. 11 ) and was later shown to be significant for rotor blades by Kaza

and Kvaternik (Refs. 15 and !?)• Substitution of Equations (l*0, (6) and

(7) into Equation (k) implies:

M = GJ((J> + v w )x >x

My - -EtX, - I5) sin 0G co. 0G(v

sin2 QQ + I5 cos
2 9G)(w - + TX sin

cos2 9G + I3 sin
2 0Q)(r

9G COS 9G(w,xx - ) -TX COS

Substitution of Equations (l̂ ) and (15) into Equation (8), using
2

Equations (6) and (?) and neglecting terms of order e compared to

unity, implies :

T + v [EL0(v + <iw )+ EL,(w - <j>v
,x ,xx ^2X ,xx ^ ,xx ^3 ,xx ^

L, (v + <|>w ) + EL, w ]}z2 ,xx ^ ,xx ^3 ,xx ,

EI33(w,xx

EI33(w,xx

13



• XX tXX OC »XX

> w + v w w - *<l> v ) + EL* * v,x ,xxx ,xx ,x ,xxx ,x ,xxx z3 >xx ,xx

I ($ w + v ww ~ ^"^ v + 2v w )
33 >xx ,xx ,xxx ,x ,xx ,xx ,xx ,xx ,xx

(* + V w v)[EL^ v ___ + EI,,(w - *v ) - Tz.
fX. »XX >X

(v + *w - z "" )T + (w - *v )q
,XX TC,XX ,XX OC ,XX

P7

+ EI33(w,xx - \xx)

v + * < l w + v v w ) - E ,,x ,xxx ,x ,xxx ,xx ,xxx ,x ^3 ,xx ,xx

v - I - * * w + v v w )
,XX ,XX ,XX ,XXX ,X

2(* + v w MEL.-.CV + *w ) + EL, w - Ty ],x ,xx ,x ^2V ,xx ,xx ^3 >xx 'oc ,x

(w - "V + y * )T - (v +,xx •'oc ,xx ,xx

+ v w ) q _ + q _ + p = 0 (l6c)
,XX ,X/HZ >,X ^2,X

,xxw,x)],x+ E323(v xx

xx + \xx)] + Sc • ° (l6d)

The system of Equations (l6) contains four equations with four

unknowns being represented by v, w, * and T. The boundary conditions

(9) together with Equations (10) and (15) become:

for x ^ - 0 : v=w = v =w = < t » = o , (l?a)u ,x ,x
for ^ - J: T - 0 , (l7b)

and

Ik



e )(v

x y - - G •»

- V Sln 9G C°S 9G(W,XX- -T COS

+ q = 0 (l?c)
4U

v /», », _rv-\ = -[E(L - I.,) sin 6 cos 9 (v + "V jz(M =M =0; 2 3 G G ,xx ,xx
x z ' ' .

o •?
9G+ J!

= 0 (I7d)

M = G J ( < " + v w ) = 0 . (I7e)
X ,X ,XX ,X

-My = E(3 - I) sin e cos

2+ E(L sin 6_ + I Cos 6 )(w - <V ) = 0 (l7f )
£ Li 13 Lr «JCX >JDC

cos2 6 + i ain
2

s in e C os 9(w - 0) = 0 . (l7g )

The equations of equilibrium presented above were derived in the

directions of the deformed coordinates. As pointed out in Appendix C, the

equations can also be derived in the directions of the undeformed coordinates

£ ,e ,e • In this case the distributed force, given previously by Equationx y z
(l), can be taken in the form:

= p e + p e + p e*x x *y y . z z

15



while from similar considerations the distributed moment can be written as

Vz

The equilibrium equations are given by (C-2U). In the present case

the triad e',e',ê  is given by Equation (15). Then Equations (12) and

(13) Imply:

S23

S21 ' -(v,x + \J'' S31 = -(w,x - ̂,x}' S32

Substitution of Equation (20) into Equation (c-2U) and neglecting
2

terms of order e compared to unity, yields the following equilibrium

equations :

[T + (v + *w )M - (w - <v )M + w * M
,x ,x z,x ,x ,x y,x ,x ,x z

+ V 4 " M + ( v w - v w ) M ]
,x ,x y ,x ,xx ,xx ,x x ,x

(20)

(21a)

[M + w M + («> + v w )M + (o + v w )M ]z,x ,xx x ,x ,xx ,x y ,x ,x y,x ,x

Vy

[ M + v M - ( < } > + v W ) M - * M ]
y,x ,xx x ,x ,xx ,x z z,x ,x

( w T ) - ( v q ) + q * + p = 0 (21c)
,x ,x ,x ^x ,x V»x *z

16



M - (v + ** )M - (w - <v )Mx,x ,xx ,xx y ,xx ,xx z

+ v q+w q + q =0,x T ,x ̂z x̂ (2ld)

Substitution of Equations (15) into Equations (2l), using Equations
2

(6) and (7), and neglecting terms of order e when compared to unity,

yields the following equations

(T + v [EL0(v + ""w ) + o,x z2v ,xx ,xx .y ,xx ,xx ,x

+ w [EL,(v + <>V )+ EIz,(w - «V )],x ^3 ,xx ,xx 33 ,xx ,xx ,x

+ w (*[EL0(v + Hr ) + EX,, w ]}
,yC~ ^ ,XX. ,XX ^3 ,XX ,X

- v,x^J23v,xx+ K133^,«- "V

+ GJ(<|) + v w )(v w - v w )}
,x ,xx ,x ,x ,xx ,xx ,x ,x

( v q ) - ( w q . )
,x z ,x ,K T ,

= 0 (22a)

- [EL0(v + 4>v ) + EL..(w - 2* v
^2 ,xx ,xx ^3 >xx ,xx ,xx

+ v w V ]
,x ,xx ,x ,xx ,x

-^ + v w w - v )]33 ,xx ,x ,x ,xx ,xx ,xx

- (EI33 V,x

(22b)

+ 2" w ; + EI,z(w ^ - QV )\
,xx ,xx 33 >xx ,xx ,xx

+ V W /V 1 ™ T E T_ ^ ^ V 4* *^W / J
ITX ^XX ^X fXX jX ^£j yXX yXX ^XX

p

v w ) + [w T + (TZ ) + (oov ) ]
-— v *w v r\f* v *^ /V* *v vi X > X ^ X Ou ^ A t/^- ^ Jv > A

17



- (v,x Sĉ x + « + * = ° (22c)

p p

[GJ(* + v w )] + EL,(v - w + k* v w,x ,xx ,x ,x 3̂ ,xx ,xx ,xx

+ (EI53 ' EI22)[V «V «c + *(lf2«c ' ̂ xyr^J^ ^£- , XX ,XX ,XX ,XX

(22d)

The boundary conditions remain the same as in Equation (l?) and it

- T[z (v + *w ) - y (w - V )]oc ,xx ,xx Joc ,xx ,xx

is only required to write q and q as functions of < L < L and qq

According to Equations (C-16) and (C-ll):

S21 \ + S23
(23)

The equilibritun equations in Appendix C were derived by the Newtonian

method. In Appendix D the two sets of equations, with respect to the

two different systems of coordinates, are derived using the principle of

virtual work. The equilibrium equations which are obtained from this

procedure are identical to those obtained in Appendix C, within the

approximations inherent in the present theory. One of the advantages

of the second method is that it also provides the appropriate setvof

boundary conditions, which is sometimes difficult to obtain using the

Newtonian method. It is shown that the boundary conditions of the blade,

as stated in Equations (9) or (17), are in agreement with the boundary

conditions obtained by the second method.

18



The equations of equilibrium can be further simplified by taking

into account some common properties pertaining to helicopter and vind

turbine blades* These blades are usually stiff er in lag than in the

flap-wise direction, thus:

(24a)

/ - -

The geometric pitch angle 0 has an absolute value less than

• Therefore, according to Equation (6)

o

Using Equation (2 4b) together with the ordering scheme (e neglected

compared to unity) enables one to neglect a considerable number of addi-

tional small terms; the resulting equations are given below:

(T

EI33 \«]

(25a)

EI23(w, - 2V - EIxx - ,xx - 33 xx,

(w,x 4c>,x + Py - ° • (25b)

19



- [EL,(v + 20 w ) + EI,,(w - IV )]3̂ ,xx ,xx 33 ,xx ,xx ,xx

+ v w )v ] - [EL9 4>(v + *w )],x ,xx ,x ,xx ,x z2 ,xx ,xx ,xx

(25c)

+ v w + EL,v - w + > v w,x ,xx ,x ,x

2 2+ (El,, - EL,)[v w + l>(w - v )]33 T2 ,xx ,xx ,xx ,xx

- T[zoc(v,xx + <V,XX
) - yoc(w,xx - \xx)]

v,x S- * w,x S + Sc " ° (25d)

Usually, In the case of rotating blades large tensile forces are caused

by the centrifugal forces; therefore, the nonlinear contributions of the

bending and torsional moments to the tensile force are very small. In

this case it seems to be justified to keep only the principal terms of

this contribution (twice underlined in Equation (25a)) and neglect all

the other terms associated with it (once underlined in Equation (25a)).

In fact, it seems that neglecting the twice underlined terms will also

not affect the results in a significant manner.

A further simplification can be obtained if all stiffnesses are

approximately of the same order of magnitude, which means:

I22 EI22 EI33 ~
!„ ' GJ » GJ

In this case, Equations (22 ) turn out to be:

> ̂ T ~ (0-5 - 2) . (26)

20



EI33 *.

(27a)

- EI53 V, J,

(27b)

* E122 ̂, J,

(EI33 * xx

(27d)

The tmderlined terms in Equation (2?a) have the same meaning as

thoae in Equation (25a).

To facilitate the use of these equations for rotor-dynamics

applications and to also simplify comparison of the equations in this

revised version of the report with the previous version, the Equations

(27a-d) are rewritten below using the principal moments of inertia of

the cross section (Equations (6) and (?))• It should be noted that in

21



the previous version of the report, few terms In Equations (22b - d) were

missing due to an algebraic error. In most copies of the

report these terms were added in handwriting.

T,x + (v,x \\z - (w,x

- I3)sin 9 cos 9(v - 2*

[TXII(COS

o o

sin 9_ + I- cos 9 )(w - <V )
G 3 G ,xx ,xx

4- E(L cos2 6 + I sin2 9_)<tV ] + (GJ* v )
C , \3 J Cr . fXX fXX jX fXX

+ {w T + [TXTT(sin 9_ + * cos e )] }
>X J.J. Cr Li ^X >X

- (v q ) + q,r „ + ?„ = 0 (2?cc)
^ X Jt ) A

- COS

(27dd)
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U. COMPARISON BETWEEN THE PRESENT ELASTIC EQUATIONS

AND THE EQUATIONS OF OTHER STUDIES

Elastic equilibrium equations for a rotor blade were derived by

different researchers during the past twenty years, as was shown in the

introduction. In this chapter a comparison will be made between the

present derivation and some of the previous ones. For the sake of

brevity these comparisons are concise, much more detailed comparisons

can be found in Reference 18.

k.l Comparison with Houbolt and Brooks (Ref. 3)

A set of equations equivalent to those of Reference 3 can be

obtained from Equations (21a-d) by neglecting the nonlinear terms assoc-

iated with the elastic moments . Performing these operations and replac-

ing the moments by the appropriate expressions, as shown in Equation (15),

results in the equations given below. It should be noted that nonlinear

terms containing the displacements have been neglected in these equations.

' (28a)

cos2 6 + I sin2

1- E(L-lJ sin 6r cos 9r v -TX_ T cos Oj (28b)
c j \s \j f XA J.J- w1 y xx

sin 9 cos

sin2 e + I cos2 0 - TX sin

( T W ) + ^- ( v ** ) * 5,x x,x z

23



(28d)

If Equations (28) in this report are compared with Equations (15)

and (l8- 20) of Reference 3, the following observations can be made:

1) Equation (28a) is identical to Equation (15) of Houbolt and

Brooks, except for the terms (<T v ) and (q, w )TS ,x ,x TT ,x ,x

which are not present in Equation (15).

2) Comparing Equation (28b) of the present study with Equation (20 )

of Reference 3» it follows that in addition to the terms con-

tained in Equation (28b), Houbolt and Brooks' equation contains

an additional term involving P , probably resulting from the>x

assumption cr S a .

Furthermore, the term [ TXTT 4 sin 0 ] which appears
JLJ. U , XX

in Reference 3 is a physically nonlinear term. This term, which

appears in Equation (22b) of the present study is associated

with the term (̂  M ) in Equation (21b) of the present study.y ,xx

If this term is retained, a-11 other terms of the same order

should also be retained. However, this was not done in the

equations presented by Houbolt and Brooks.

In the loading terms, the term, - (w q" ) , which
,X TC ,X

appears in Equation (28b) of the present study does not appear

in Equation (20 ) of Reference 3.

3) The comparison between Equation (28c) of the present study and

Equation (19) of Houbolt and Brooks is analogous to the compar-

ison given in the previous section, and will not be repeated



here.

U) Comparison of Equation (28d) and Equation (l8) of Reference

3, shows that except for the terms which appear in Equa-

tion (28d), additional terms containing P appear in
>*

those of Houbolt and Brooks' equation. These, again, are

related to the assumption a,, = o" . Houbolt and Brooks11 xx
also retain the term TkA (k being the radius ofa , x a

gyration of the cross sectional area). However, this term

should be neglected within the assumption that strain is

negligible compared to unity. Similar to what has been

pointed out already in Item (2) of this comparison, from the

nonlinear terms - v M., and - w M in Equation,xx y ,xx z

(2Id) of the present study, Houbolt and Brooks retain only

the terms - T XTT sin 0_ v and TX_T cos 6_ w ,
11 (j , XX 11 (7 ,XX

while apparently neglecting other terms of the same order.

5) As pointed out in (2) and (U) above, it appears that

Houbolt and Brooks assumed that in the expressions for the

moments M and M (Eq. (k) of the present study), the

terms Tz and Ty are mich" larger than~the"other——oc oc

terms. This seems to imply that the offset between the

shear center and the tension center is the main contri-

butor to the bending moments in the blade. This is a very

special case which may be of limited importance from an

engineering point of view. The assumption of the present

study, that these terms are, at most, of the same

25



magnitude as that of the other terms, seems to be more

realistic.

U.2 Comparison with Hodges and Dovell (Ref. 8)

1) Comparison of the expressions for £ shows that the
JvX

strain at the elastic axis, and the contributions due to

bending all over the cross section, are exactly the same.

The expressions for warping are different. Hodges and

Dowell also add the terms (TI + (T )0/, ^ d̂
G,x ,x

[(l + s H ]/2 . The first expression is also present in
?x

the derivations of Houbolt and Brooks. The second term, as

was pointed out by Hodges and Dowell themselves, is neglect-

2
ed within the approximation that terms of order e are

negligible compared to unity. They retained this term for

the case of very large torsional deformations, which imply

that y 4 and z 4 are of order e . The occurrence
O >X O jX

of such large elastic twist is unusual for most wind turbine

or helicopter blades and is not treated in the present work.

It should also be mentioned that the case when squares of

strains are not negligible, in comparison to the strains

themselves, is very special, and it appears that for this case

a more refined theory than the one presented in this study

will be required.

2) Comparing the shearing strains e and e » as derived
X*| — u--- — XS~~~M~

from Equation (B-23) of the present study with Equations

26



(25, 26) of Hodges and Dowell, shows some discrepancy which

appears to be related to the previously discussed differ-

ences in the warping function, and the expression for the

twist. Furthermore, terms which represent products of the

warping and curvatures in this work, are neglected by Hodges

and Dowell in theirs. This neglect seems to be justified

for the case of slender blades having a closed cross section.

After obtaining the strain components, Hodges and Dowell derived

the equations of equilibrium by two complementary methods, the Harnll-

tonian principle (similar to what is done in Appendix D of this report)

and the Newtonian method (similar to what is done in Appendix C of this

report). It is obvious that different strain expressions, and different

transformation relations between (e , e , e ) and (e1 , e1 , e1), willx y z x y z

yield different final equations.
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5. CONCLUDING REMARKS

A system of consistent, nonlinear, equations of equilibrium of a

pretwisted wind turbine or helicopter blade which undergoes moderate

deformation was systematically derived. The derivation contains, in

addition to the basic assumptions listed in Section 2, some additional

assumptions which are gradually introduced in the course of derivation.

For the sake of completeness, these additional assumptions are briefly

summarized. The blade is slender and its undeformed elastic axis is

straight, the blade is made of elastic isotropic material. The Euler-

Bernoulli assumptions are valid (for details see Appendix B) and warp-
*

ing of the cross sections due to torsion is neglected. Axial forces

in the blade contribute to the bending moments, due to the offset be-

tween the elastic center of the cross section and the tensile center.

It is assumed that this offset is sufficiently small such that the mag-

nitude of this contribution is, at most, of the magnitude of the other

contributions to the bending moments (e.g., see Equations (B̂ 3)). The

strains in the blade are always small (less then O.Ol), while the

slopes due to elastic rotations are of order of magnitude e where
2

e « 0.2; furthermore, terms of order of magnitude e are neglected

when compared to unity. Finally, it is assumed that deformations are

changing gradually along the span of the blade, which implies that a

modal expansion representing blade deformations would be restricted to

*
Except for the warping contribution to torsional rigidity.
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the lower modes.

Nonlinear structural problems require careful distinction between

undeformed and deformed systems of coordinates for representing blade

deformations. Therefore, in this study the final equations of equili-

brium are presented in both the undeformed and deformed system. The

general load components are also defined with respect to each of the

systems.

The orthogonal system of coordinates ': x, y, z, used in deriving

the equations of equilibrium in this study was found to be slightly more

convenient than the curvilinear nonorthogonal x, f\t £ coordinate

system used ,in References 3, 6, 8, 9 and 17- The main advantage being

a somewhat simpler derivation and slightly simpler final equations.

Additional information on this topic is .provided in Reference 18.

An ordering scheme, such as used in this study, can simplify the

equations considerably. The equations can be further simplified for

certain blade geometries. It should be noted that the loading terms in

the equations (forces and moments) were presented in a general form,

without any approximations. Substitution of explicit expressions for the

loading terms, and the application of an ordering scheme, enables one to

identify and neglect a considerable number of additional small terms.

Since their derivation, these equations have been used extensively

in a variety of aeroelastic stability and response problems as indicated

below:

l) Calculation of coupled flap-lag-torsional aeroelastic stability

29



of hingeless rotor blades in forward flight (Ref. 19).

2) Aeroelastic stability and response calculations for an iso-

lated horizontal axis wind turbine blade (Ref. 20). It should

be noted that in this study, dynamic blade root bending

moments were also calculated and found to be in satisfactory

agreement with the loads measured on the NASA/DOE Mod-0

machine.

3) Aeroelastic stability and response calculation of a coupled

rotor/tower horizontal axis wind turbine, simulating the

behavior of the NASA/DOE Mod-0 machine (Ref. 21).

Finally, it is important to note that the equations derived in this

study were used to investigate the large deformations of a cantilevered

beam loaded by a concentrated transverse load at the free end (Ref. 22).

The numerical results obtained were in very good agreement with experi-

mental results, which Indicates that these equations are reliable and can

be used with confidence in a variety of applications.
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Figure 1a. General Description of Helicopter Rotor Geometry.
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Fig. 1b. General Description of the Wind Turbine Geometry
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APPENDIX A

DEFORMATIONS

A detailed development of the expressions in this Appendix can be

found in many books on elasticity (for example, Refs. 10, ll); therefore,

these are only briefly repeated here for the sake of clarity.

Consider a material point P in an elastic body, where the posi-

tion before deformation is given by the position vector r (Figure A-l).

The position vector r is a function of three coordinates, such that:

r - r(xQ,y0,z0) . (A-l)

The coordinate system shown in Figure A-l is an orthogonal Cartesian

system with the unit vectors e ,e ,e in the directions x_,y_,ẑ ,x y z \) u o

respectively. Thus:

(A-2)

After the deformation, the material particle is located at point

P1 (see Figure A-l) defined by the position vector R. If the initial

coordinates of the particle are used as independent variables, then:

R - R(x0,y(), ZQ, t) , (A-3)

where R is also a function of time because the position of the point is

a function of time (K^^ can te considered to be the coordinates of

36



the point at t •» tQ).

If V denotes the displacement of the point, then:

R « r+ V . (A-4)

The base vectors of the point before deformation are defined as:

= T : a a r . (A-5)r „ » <>•. r » • \A 7 /

After the deformation, the base vectors are:

G = R ; G = R ; G =» R . (A-6)x ,x y ,y z ,z v

The strain components are given by Equation (2-20) of Wempner in

Reference 11 (where X^V^ is an orthogonal system):

e s ^ (G • 5 - l) ; e = e «?(&•&);xx 2 x x -' xy yx 2 v x y

e s | ( G - G - l ) ; e =e = | ( G » G ) ; (A-7)yy 2Ny y ' ' xz zx 2vx z '

e * y (G • 5 - l) ; e =e • ̂  (5 • 6 ) .zz 2*z z ' yz zy 2vy z
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Fig. A1. Position of a Material Particle Before and After the Deformation



APPENDIX B

MECHANICS OF A DEFORMED ROD WHICH IS SLENDER AND

STRAIGHT BEFORE DEFORMATION

B.I General Expressions

A straight slender rod is shown in Figure B-l. Every material point

in this rod is described by a rectangular Cartesian system of coordinates,

'xb'̂ ro'zO* The coord*nate KG *s identical with the elastic axis of the

rod, defined as the line which connects the shear centers of the cross

sections of the rod* It is assumed that the elastic axis is a straight line.

In this case, x_ denotes length along the elastic axis of the undeformed

rod, while y. and zo denote lengths along lines orthogonal to the unde-

formed elastic axis.

Before the deformation the position vector of every material point is

given by:

V.

while after the deformation, at time t, the new position vector is

R = 5(xj,,y0,z0,t) . (B-2)

The displacement of the particle is:

R - T . (B-3)



Looking at a particle, which before deformation lies on the elastic

axis, its initial position vector is:

or ' Vx

and its position after the deformation is given by:

3R = 5(3^,0,0,0 (B-5)

The displacement of this point is denoted by:

W
y\ /N y\

,0,0) m Ue + ve +
X. jr

' (B-6)

The base vectors of the undeformed rod are simply (according to Eq.

(A-5)) the orthonormal triad:

gx ' ex (B-7)

vhile the base vectors of the deformed rod are (according to (A-6))

G
X

Gy

Gz

3 5»x

3 R>y
3 R

=» (r 4

= (r -t

= (T4

- v)^

- v)>y

• ^} »

« e + V
X > X

= e + Vy >y

" *„ + v mZ • Z

(B-8)

and at the elastic axis, a set E ,E ,E is defined as:



5^,0,0)

a \ ^ ^v s\+ u )e + v e + w e,x x ,x y ,x z

= e +y

Gz(x0,0,0) =

(B-9)

The strains at any point are calculated by using Equations (A-?)*

The motion which carries the rectangular lines of the undeformed rod

into the curved lines of the deformed rod, carries the Initial tangent unit

vectors e ,e ,e to the current tangent base vectors, G ,G ,G ,x y -Z x y z

respectively. This motion can be looked upon as two successive motions:

First, the triad e ,e ,e is rigidly transformed and rotated to thex y z

orientation of an intermediate orthonormal triad £',£'.£'. Next, the inter-x y z

mediate triad is deformed to the triad G ,G ,5 which means changing the

angles between the vectors as well as the length of the vectors. The

procedure which was described above is illustrated by Figure B-2.

Consider a triad e >e ,e - which is positioned on the elastic axis
x' y' z

of the rod before deformation. In the stage of rigid transformation and

rotation this triad is carried to the triad e',e',e', respectively. Withrx y z

out any loss of generality, let us assume that e' is carried in this

stage to the direction of E , which means that it is tangent to the

elastic axis of the rod after deformation.

If the rotation of the triad e ,e ,e to the position e',e'»e'x y z • x y z



is relatively large, it cannot be described by a vector and it is treated by

means of Euler angles (see, for example, Novozhilov, Ref. 12, Chapter VI,

p. 205). If it is described as a finite rotation 9 about e , followed
Z Z

by a rotation 9 about e , followed by a rotation 9 about e , theny y x x
the triad e'.e^e1 obtained after these three rotations, is given by:x y z

e1 = (cos 9 cos 9 )e + (cos 9 sin 9 )e

- sin 9 e , (B-10a)
Y z

e' = (sin 9 sin 9 cos 9 - cos 9 sin 9 )e
y x y z x z x

+ (cos 9 cos 9 + sin 9 sin 9 sin 9 )e
x z x y z y

+ (sin 9x cos 9 )ez , (B-10b)

e1 * (cos 9 sin 9 cos 9 + sin 9 sin 9 )e
z x y z x z x

- (sin 9 cos 9 - cos 9 sin 9 sin 9 )e
x z x y z y

+ (cos 9 cos 9 )e . (B-10c)
x y z

Equation (B-10) are identical to Equations (A2 ) of Hodges and Dowell (Ref.

8), after replacing 9,9 and 9 by 9, -£, and £, respectively.

Consider the deformation of an element dXg on the elastic axis

of the rod, as described in Figure B-J. The procedure is as follows:

First, the element is carried in a rigid body translation that does not

appear in Figure B-3. Then the element is stretched by an amount



u dxi. to the position A - (l). Then the element is rotated by 6 about,x \j v—' z

e while point (T) moves a distance v dx_ to location (§} , followed

by a rotation -0 , while the element tip moves from location (2) to ($) «
y

Finally, the element in its position A - (j) is rotated by an amount 0

about itself. From Figure B-3, the following relations are obtained:

w
sin 6 = - '* , (B-lla)

y / o 2 2 2/ l + 2 u + u + v + w,x ,x ,x ,x

/ 2 2 x

N/l + 2u + u + v
cos 0 = \ >x '* '* — , (B-llb)

y I 2 2 2
+ 2 u + u + v + w,x ,x ,x ,x

V
sin 6 - '* —— , (B-llc)

2 2/I + 2u + u + v,x ,x ,x

1+u
cos e - >x —- . (B-lld)

' 2 2
+ 2u + u + v

_ , _ jX >JK_ _ >X

The quantity u is of the magnitude of strain, as will be shown
*x

later. Assuming that the strains are small (say, e.. < O.Ol) which is the
ij

case for most engineering materials, then the expression u win be
>x

neglected In comparison to unity. Next, it is assumed that v ,w and,x ,x

9 are quantities of magnitude equal to or less than e (in our case,
A

2
e ^0.2), and quantities of the magnitude of £ are negligible compared

to unity.



Using these assumptions and expanding sin 6 and cos 9 into
JC JC

series, one obtains:

sin 6=9

cos 9 = 1

sin 9 = -w

cos e = 1

sin 6 = v

cos 6 =

(B-12)

At this stage, in order to be consistent with the usual notation in

the literature (for example, Reference 9), e is replaced by *. Sub-

stituting Equations (B-12) into Equations (B-10) implies:

e = e + v e + w ex x ,x y ,x z

-(v + 4>w )e + e + ""e,x ,x x y z

/- (w,x
\ ̂  t jk. \ i *)e - ( * + v w ) e + e,x x ,x ,x y z

(B-15)

Because the rotations are treated as finite, it is not surprising

that the triad e',e',e' depends on the sequence of rotations. If thex y z

sequence consists of rotation 6 about e , followed by a rotation 0
v y *

about e , and finally, a rotation 9 about e , as described in
" «™ ^t

Figure B-U, then the expressions become:

.e1

e+w e,x y ,x z

( *K \ ^ •* /A
v + * w y e + e + l * - v wV •V V IT * V,x ,x x y ,x ,

-(w - *r )e - *e + e,x ,x x y z

(B-14)



The triad (B-3A) differs from (B-lj) by terms of second order. Other

different sequences of rotation will yield other triads which will differ

from each other by second order terms. Therefore, it is most important to

retain one particular triad during a complete derivation, and consistency

with this selected triad. In the theory of space curves there are three

Important quantities, defined as (for example, Wempner, Ref. 11, Eqs.

(8-19) - (8-21)):

e • e1y x,x

K a e' • e'z z x,x

T a e'

-e1

t-e1

-e'y

z,x

e'z,x

(B-15)

where K and * are curvatures, while T is the twist. Equation (B-15)y z

represents the exact expressions for the curvature and twist when strains

are neglected compared to one. If e1, e', and e1 are given by Equationx y z

(B-13), then:

^. /N /Ne1 = v e _+ w ex,x ,xx y ,xx z

y,x

e 1

z,x

T + 0 W + * W
,xx ,x ,x .XX X

" e,x z

-(w - < t > v - *v )e,xx ,x ,x ,xx x ,x w,xx ,x w )e,x ,xx y

(B-l6a)

Substituting expressions (B-l6a) into Equations (B-15), and assuming

that v , w , and * are of the same magnitude, and neglecting,xx ,xx ,x
2

again terms of the magnitude of e compared to unity, implies:



K = y + *W
y ,xx ,xx

\ = W,xx

0 + v W
,x ,xx ,x

The term v v in the expression for twist is a well known, xx ,x

term in the theory of rods (see for example, Reference 11, p. 390,

Eq. 8-152d). It has also been used in rotor dynamics by

Kaza and Kvaternik (Ref. 15).

From the definitions (B-15) and the orthonormality conditions of

the triad «'>£',e, it is clear that:

>\_ >\. /\.
a1 = K e

f + * e'x,x y y z z

»' = -K e' + T e' \ , (B-17)
y,x y x z > ' v y

*z,x " z 6x " T 6y

which can be easily verified by substitution of expression (B-l?) into

the definitions (B-15).

B.2 Bernoulli-Euler Hypothesis

At this stage, it is necessary to find an expression for R. This

always requires certain assumptions. In the present case, the well known

Bernoulli-Euler hypothesis will be used* In most cases this hypothesis

is stated as follows: During bending, plane cross sections which are



normal to the axis before deformation remain plane after deformation, and

normal to the deformed axis. Usually, this hypothesis is combined with

the assumption, although not always stated, that strains within the cross

sections can be neglected. This assumption will be used in the present

study also. (This is similar to the case of plate and shells where the

analogous Love-Kirchoff hypothesis is used. ) This hypothesis leads to

the following results:

E = e' , E = e' , (B-l8)y y z z '

and

R =

The last term in Equation (B-19) represents small normal displacement

which, as pointed out by Novozhilov (Ref. 12, p. 213), is a generaliza-

tion of the warping function of St.-Venant torsion. This function con-

tains only quadratic and higher degree terms in y~ and ZQ and is

assumed to be small compared with typical cross -sectional dimensions of

the rod.

Substitution of the expression (B-6) for W into Equation (B-19),

then differentiating (B-17) and using Equation (B-17), implies:

G = R = ( l + u ) e + v e + w ex ,x ,x x ,x y ,x z

(B-20a)



S,y

By definition, e1 is a unit vector in the direction of E_.

ig e as the strain of th<

first of Equations (B-9), implies:

Defining e as the strain of the elastic axis, and then using the

E « (l + u )e + v £ + w ex ,x' x ,x y ,x z

From Equation (B-2l), using the phthagorian rule and neglecting terms of
2

order £ compared to unity, implies :

Substitution of Equations (B-20) into the expressions (A-?) of Appendix

A for the strain components, and making use of Equation (B-22), implies:

£xx ' £xx - ̂ 0 Ky - Z0 \ * * x

£xz

In deriving the expressions (B-23) use was made of the fact that

the quantities yQ icy, ZQ KZ, yQ T, ZQ T, <p>x, 9 Ky, 9 ng, 9>y,
2

and V are of magnitude of strain and therefore less than e .



B.3 Force and Moment Resultants

In calculating the stresses In the rod, use is made of the con-

stitutive relations of the material from which the rod is made. In the

present case it is assumed that the rod is made of isotropic Hookean

material which is homogeneous for every cross section. On the other hand,

in the present study the assumption that <r * g =0, commonly used
yy ««

for slender rods, is made. However, according to the Bernoulli-Euler

hypothesis, £ and £ should also be zero, and the vanishing ofyy z&

e , g , £ and £ simultaneously, is inconsistent with Hooke'syy zz yy zz
Law. This inconsistency, which is inherent in the Bernoulli-Euler hypo-

thesis, although not always stated is explained in the literature in

different ways. One of the explanations is that one is dealing with a

material having a special type of orthotropy.

The constitutive relations for an orthotropic material, as given

by Lekhnitskii (Ref. 1̂ , Eq. (3-7)), are:

, ——xx E- xx

V V

^* - -#TE,, yy E, zz

yy

zz

£ =

xz

xy

xx yy

Jxx - ip V

yz

xz

xy

zz



It is assumed, that in the present case:

V2l = V31 = V12 " V13 ° 0; \ ' E3 ~* W; S? - G15

By using Equation (B-2lrt>) together with the relations (s-24a), the incon-

sistency that was mentioned earlier, disappears.

Another inconsistency which is inherent in the Bernoulli-Euler

hypothesis, concerns the shearing stresses. If torsion is neglected,

the assumption that plane cross sections, before deformation, remain
*M «w

plane after the deformation, means that the shearing strains e and £
xz yz

are zero. (These components are due to contributions other than torsion*

The contributions due to torsion appear in Equation (B-23).) This means,

according to Hooke's Law, that the shearing stresses due to contributions
IN* *M

other than torsion disappear. However, these stresses, T and T , orxy xz

more accurately their resultants — the shearing forces — do not vanish at

all. Furthermore, they play an important role in the equilibrium calcula-

tions. Sometimes this inconsistency is explained by taking GU, " G-, -»

00 in Equations (E-2ke.). In the present case, where shearing strains

due to torsion are also present, this assumption will cause some

problems. Therefore, a better explanation is that in the case of slender

rods the shearing strains are very small, so that they do not violate the

hypothesis; however, their integral over the cross section should be taken

into account, implying that the shearing forces cannot be neglected.

Using Equations (B-2lia), (B-2lrt>) together with the strain relations

as given by Equation (B-2J), implies:

*The two in the expressions for O,, and G , is needed because shearing,

strains in Ref. 1̂  are defined without the factor 1/2 which appears in
Eq. (A-7) of the present study.
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cr = E e
XX XX

E(Ev xx - z * +q>y 0 y ,xy

T = T + 2G exy xy xy

' V + G(<",y - Z0 T

T » T + 2G exz xz xz

(B-210

Detailed expressions for T and T are not required, as will be shownxy xz
later.

The force which acts on the unit area of the cross section of the

deformed rod, is:

G + T G + T G
xx x xy y xz z (B-25)

Using Equations (B-20), (B-2l), combined with (B-25), one obtains:

- ^ - ^xxvx xx '0 y 0 z
cp

xy ,y 9 ]e'xz ,zj x

+ [a (-z. T + q> K ) + T ]e'
xxv 0 y xy y

[<rxx(yO T (B-26)

Assuming that the stresses are of the same order and neglecting terms
2 *

of order £ compared to unity, implies:

* ftSee coaaent on page 57•



e1 + T ef + T e1 . (B-2?)xx x xy y xz z

The resultant force, F, which acts on the cross section, is

obtained by integration:

JJ dzO - T eV Vy *y+ Vz «i ' (B-28)

Before proceeding, the warping function, which until now was treated

in a general manner, has to be considered. One possibility it to treat it

in an exact fashion as done by Wempner (Ref. 11, Chapter 8). This procedure,

however, complicates the derivation considerably. Instead, when dealing

with a slender rod, it is possible to introduce an assumption analogous to

the one used for the case of the St. Venant torsion, whereby cp can be

written as :

<P - f <P(XO ,y0, ZQ) , (B-29)

where cp is still a function of x~ because it is conceivable that the

cross section changes along the span with XQ.

According to Equations (B-28), (B-210, (B-2?) and (B-29):

A

Restricting the derivation to symmetric cross sections (at least about one

axis of symmetry) yields:



rr ~ rr ~ • // / <P dv dz = / / <P dv dz «• 0 (B—31)JJ T "»o 0 JJ T,x ̂0 ̂ 0 i«--«./
A A

and Equation (B-30) becomes:

T - E ACe^ - y0(J K - z^ *z) (B-32)

vhile:

rr
JJ Y0 ̂0 Z0 yoc '
A

(B-33)

ff "b^O^ * ZocA '
A

The point (y ,z ) is the point of intersection of the tensionoo oc

axis and the cross section. Equation (B-32) together with the first of

Equations (B-2̂ ) Implies:

axx = I* (yoc : y(X)E Ky.*. (zoc " Z0)E Kz

+ ET 5 + E T 9 . (B-31*-)

After examining the force resultants on a cross section of the de-

formed rod, the moment resultants about the point (yQ = ZQ
 3 0), M, will

be considered, where:

M - JJ d X t dA . (B-35)

A



According to the Bernoulli-Euler hypothesis:

(B-36)

Substitution of Equations (B-2?), (B-2*0 and (B-36) into (B-35)

implies:

where:

M

M

M

Txz - Z0

zo - T

dz

dz

JT0 * T ? T ]dy0

(B-38)

Substitution of Equation (B-2̂ ) into the first of Equations (B-38)

implies:

"* ' 1 % - 2 If yO dz

z_ «p dy_ dz_0 ^0 0

rr r 2 2
JJ tyo + zo ".z - Z0 (B-39)



The first Integral in Equation (B-39) is the torque which is produced

by the shearing forces V ,V around the point z » y » 0. This point
jT Z OC OC

is the shear center of the cross section; thus, by definition this Integral

becomes zero. The last Integral is the torslonal stiffness, J, of the

cross section known from St. Venant torsion. Thus, expression (B-39)

simplifies to:

JJ yO ? %
A

rr ~
JJ 0 C- G T Ky JJ zo * % dzo
A

Substitution of Equations (B-jM and (B-2l».) into the second and

third of expressions (B-38) implies:

My * - E *23 V ' E X33 "z + T zoc + T,x E JJ Z0 » % d20
A

J ~ * rr ~ ~-
Z0 *,x ̂ 0 dzO - T JJ * ̂ xz % dzO '

A A

dzo - T
/̂ p

G JJ yo ' % dzo
A

- T2K G q dyn dz ; (B-Ma)
v
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Mz = EI22 *y + E I23

rr
-T E //

2
T G / /' W dyn dz - T" Q / ' z

Ov_ J ̂ ^ ^ ^* ' r'vJ V

A A

dyQ

where !_„, I,,, and 3^, are flexural moments of inertia given by

r 2
(y ~ y / dy dz

If
A

IT
(yoc - y0

)(zoc - Z
0

)dyO dzO

The underlined terms in Equations (B-Ul) become zero in the case of a

symmetric cross section, which is the type of cross section being considered.

In the case of slender rods with closed cross sections, the influence

of warping is usually neglected and in this case, expressions (B-Uo) and

(B-Ul) become:
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M » G J T

M » -E L, K - £ I,, K + T z
y ^3 y 33 z oc

M - E ]_„ K + £ I_, K - TZ 62 y z) z

Comment; In Equation (B-26) a contribution of the axial stress

to the shearing forces acting on the cross section of the blade exists.

For beams where the torsional stiffness is very small compared to the

bending stiffness (like the case of beams with thin open cross sections)

this contribution, sometimes called the trapeze effect, can cause con-

siderable Influence of axial forces on the torsional rigidity of those

beams (see, for example, Ref. 16). However, rotor blades, which are the

subject matter of this study are made of either closed or solid cross

sections, where the above mentioned effect can be neglected, as pointed

out by Goodier (Ref. 16, p. 386, second column, line 18 from the top).

Therefore, the assumptions leading from Equation (B-26) to (B-27) seems

to be appropriate for the present study.
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Fig. B2. Procedure of Deformation
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Fig. B3. Euler Angles When the Order of Rotation is 0Z. 0 6y
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v'xdxo

w,xdxQ

Fig. B4. Euler Angles When the Order of Rotation is 8 ,0^,y z- x
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APPENDIX C

EQUATIONS OF EQUILIBRIUM OF A DEFORMED ROD

In Appendix £ the expressions for the resultant forces and moments

which act on a cross section of a deformed slender rod, which was initially

straight, were calculated. Furthermore, it was assumed that the rod is

subjected to a distributed force, p, per unit length of its undeformed

axis. This load p includes body forces, surface tractions and inertia!

loading. There is also a moment q per unit length of the undeformed

axis of the rod. This includes body couples, moments of surface tractions

and moments of Inertia! loading. The loads p and q are assumed to be

continuous and also having continuous derivatives.

Figure C-l shows a segment of the deformed rod. From equilibrium

of forces the following equation is obtained:

F x + p - 0 . (C-l)

From the equilibrium of moments about the point P, letting dx:, -» 0,

the following equation is obtained:

M + q + e ' x F = 0 . (C-2)
,X X

The load p and the couple q are described by their components:
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p = p e-1 + p e1 + p e1*x x *y y *z z

e'+x

(C-3)

Substitution of the first of Equations (C-5) into Equation (C-l),

together with Equations (B-17) and (B-28), implies:

,x y y z z

Vv x + Kv T • Tjr 9 *^ j

V + K T + T V + Pz,x z y

0 (e1 direction)

direction)

0 (e1 direction)z

. (C-10

Substitution of the second of equations (C-5) into (C-2 ), together

with Equations (B-17), (B-28) and (B-37) implies:

x,x y y z z

+K M - T M ' + a - Vy,x y x z V z

Mz,x z xM + T M + q + Vy T; y

0 (e1 direction)

0 (e1 direction)
y

0 (e1 direction)

. (C-5)

Equations (C-̂ ) and (C-5) are exact, and contain no approximations.

The procedure of solution is as follows: Expressions for V and V

are obtained from the second and third of Equations (C-5). These are

subsequently substituted in Equations (C-4). Following this procedure,

the expressions for the shearing forces become:



V « -(M + * M + T M + q_) ,
y v z,x z x y ^z '

(C-6)
V = M + K M - T M + az y,x y x z >

Substitution of expressions (C-6) into Equations (C-k) implies:

T + K ( M + T M + O ),x yx z,x y ^z

- K (M - T M + q ) + p » 0 , (C-7a)z y,x z ^y *x '

Cz Mx "*" T My + \ ,x * Ky T

r (M + K M - T M + a ) + p - ' 0 . (C-7b)
y»x yx z - TT y

- T(M + * M + T M. + a ) +• p « 0 • (C-7c)
z,x z x y ^z z ,

Equations (C-7) represent the equilibrium of forces in the direc-

tions e'j e', and e', respectively. There is still the moment equa-

tion, in the e' direction that must be satisfied, which is:

M - K M - K M + a - « 0 . (C-8)x,x y y z z ^x '

Equations (C-7) and (C-8) are accurate and contain no approxima-

tions. These four equations (three of (C-7) and one of (C-8) must be

solved in order to investigate the problem of the deformed rod. In order

to obtain a solution, it is necessary to express the moments in terms of

the derivatives of the displacements and the rotation of the cross



section about the elastic axis. This reduces the problem to one contain-

ing four equations and four unknowns.

In trying to simplify the equations, use can be made of the order-

ing scheme. Performing the differentiation in Equations (C-7a - c)

implies:

T + * M -KM + T(K M + * M )
,x y z,x z y,x y y z z

* * q - K Q + P = 0 (C-9a)

-M - (* + TK )M - K M - T Mz,xx z,x y x z x,x ,x y

- 2T M.. .. + T2 M + * T - a - T q+ P =° (C-9b)

M + ( K - T K ) M + K M - T M - 2 r My,xx y,x z x y x,x ,x z z,x

x,x y y z z

+ Qy^ - T q,, -i- PZ - o (c-9c)

+ q__ - 0 . (C-9d)

The underlined terms in Equations (C-9b) and (c-9c) can be

neglected according to the ordering scheme. As an example, consider
n

Equation (C-9b). The underlined terms T M can be neglected, com-

pared to the term -M which also appears in the equation. As az^xx

clarification, recall that according to the ordering scheme one can

write:

M.2



If both sides of the last equality are differentiated twice with respect

to x, it implies:

M = M - M <f - kH W - 2M (<p2 +
Z,XX Z,XX ZjXX 2,X ,X 2 ,X

The -underlined terms in the last equality are negligible compared
2 2to M . The term -2M _ «P ' is of the order of magnitude of T M

Z,XX Z jX Z

and so neglect ion of the underlined terms in Equations (C-9) is justi-

fied. It is clear that the last argument is correct only if deflections

and force and moment resultants are changing gradually along the span

and do not have very high gradients.

Substitution of the expression for M from Equation (c-9d)x>x

into Equations (c-9b,c), and using the ordering scheme, implies the fol-

lowing set of equations :

+ K M - K M + T ( K M + K M ) + K O _,x y z,x z y,x y y z z y ^

- * a + p =0 (C-10a)
Z TT X

-M - (* + T K )M - (T + K. K )M - 2r M
z,xx z,x y x ,x y z y y,x

+ K T + K a - T a - q + p =0 (C-lOb)
y z TC TT z,x y

M + (K. . - T K )M - (T - K K )M - 2r M
y,xx y,x z x ,x y z z z,x

+ K T-K q - T q _ + q +p =0 (C-lOc)
z y TC ^ T^x z

M - K M - R M 4 - q = 0 . (C-lOd)
x,x y y z z ^x
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Sometimes it is more convenient to write the equations of equi-

librium in the undeformed directions (e ,e ,e ), instead of the

directions after the deformation (e',eN|,el) as was done in the previousx y z

part of this Appendix. The general relation between the two systems is

given in the form:

/\. /\ _ /\ _ s\

ei • ex * S12 ey * S13 ez

y\* _. *N _ ^ ^
e* = Sz, e + Sz_ e + ez 31 x 32 y z

Two such transformations, belonging to the class of transformations

2containing the inherent assumption that quantities of order of £ are

negligible compared to unity, are presented in Appendix B as Equations

(fi-13) and (B-lU). The components S. . are of order, E, or less.

The resultant elastic force on a cross section of the rod is given

In an analogous manner to Equation (B-28), by the expression:

F = -T -a- +-V ^e + V. e- - ^ . , (C-12}x y y z z

and the resultant elastic moment, which acts on a cross section of the

rod is given in an analogous manner to Equation (£-37), by the expression:

= M e + M e + M e .xx y y z z

Equations (C-12), (C-13), (B-28) and (B-37) together with Equation

(C-ll) Imply:

67



and

T • T + S.21

(C-lH)

M

M

M

M + S~, M + Sx. M
x 21 y 31 z

S,,, M + M + S,, M
12 x y 32 z

S_, M + S9, M + M
13 X 23 y z

(C-15)

The distributed force p and distributed moment q per unit length

are given by (compare to Equation (C-3)):

e +x e +
y

(C-16)

e + a e - t - q e
x T y TB a

From the equilibrium of forces (Equation (C-l)) the following equa-

tions are obtained:

V + py,x *

V + pz,x z

(C-17)

and the equilibrium of moments (Equation (c-2)) implies:
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M - S,, V + S.,0 V +x,x 13 y 32. z '

M + S,, T - V
y»x 13 z

M - S10 T 4- vz,x 12 y

0

0

(C-18)

From Equations (C-1̂ ), neglecting terms of order e compared to

unity, one obtains:

T

The second and third expressions of Equations (c-l8), together

with (C-19), yields, after neglecting terns of the order e compared

to unity:

and

\ = -\x+S12(S31-S21S32)Sy,x

My,x - S13(S21 S13 T

(C-20a)

(C-20b)

Substitution of Equations (c-19) and (C-20) into (C-17) and the

first expression of Equations (C-l8), yields:

- S3lS23)Mz,x+ (S31 - S21S32)5y,x],x

- [(S2l [(S31 ' (C-21a)
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[S12(S31

(S12 T),x

, (C-21b)

S13(S21

- [S13(S21-

(S13 T),x

, (C-21c)

S13 \,x + S12 V, + S12 V + S13

According to the assumption that quantities of the order of £ are

negligible compared to unity, and the orthonormality of the transformation

represented by Equation (C-ll), one has:

S21 - S31S23

S31 " S21S32

12

S13+ S21S23

S23 " S12S31

' S13S21

S21 + S13S23

S31 + S12S32

~S13

~S21

= "S31

"S23

"S12

" ~S13

(c-2;.:
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Making use of Equations (C-23), Equations (C-21a-d) turn out

to be:

+ p =0 (C23a)
, x x

S12S15 VxU + (S12 T),x

(G25b)

S12S13 S,,«U + (Sl3T),x+

M + S_, M + S,, M + S.Q a. + S,_ q*_ -H q.
x,x 13 z,x 12 y,x 12 > 13 ^ TC

(C25C)

0 . (C-25d)

Substitution of Equations (c-15) into Equations (C-25), using

Equation (C-2^d) also, to substitute for M , and neglecting terms
X* 1Cx,x

2
of order e conrpared to unity, yields:

- S21 »*,*+ S31 My,x - Sl3(V,x M
Z

+ ^^jU My

* " . - ^ M . . * (S12 ^},x- (S13
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Mx,x+

0 (C-2Ud)



p dx

F,xdxQ)

Fig. C-1. Forces and Moments on Segment of the Deformed Rod
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APPENDIX D

DERIVATION OF THE EQUATIONS OF EQUILIBRIUM BY THE

USE OF THE PRINCIPLE OF VIRTUAL WORK

D.I Principle of Virtual Work Applied to a Rod

Usually, in a structural system subject to loads, internal forces

develop 'between the various components of the system as a result of the

external loads* If the work of the internal forces is denoted by WT,

and that of the external forces W_, then the principle of virtual work
£i

can be simply expressed as:

(D-l)

where 8W_ and 8WL are the work done during a virtual displacement by
1 Ci

the internal and external forces, respectively.

In the case of an elastic system,

U = - Wj (D-2)

where U is the elastic energy in the system. Therefore, Equation (D-l)

becomes:

SU = 8WE . (D-3)

Using Equations (D-2) and (D-3) implies (for example, Eq. (9-125)



of Wempner, Ref. ll), the following expression for a continuous body:

xx xx yy yy zz zz
Volume of the

body

2Tx 8ex + 2Txz ̂ xz + 2Tz ^ dyO dzO

For the case of a slender rod of length Jt and cross section
•*

A, within the framework of the Bernoulli-Euler assumptions

= <r = e =o.yy zz yz '

Equation (D-4) becomes:

mi ' ' S SI0
 2Txz

*b A

The virtual displacement of the rod is given by a displacement

8W (XL.) of every point on the elastic axis, accompanied by rotation

86 (x_) of the triad e',e',e' at every point of the deformed rod. The

virtual rotation 86 can be described in this case as a vector because

it is infinitesimal. The rod is acted upon by a distributed force, p,

per unit length of its undeformed axis, which includes body forces,

surface tractions and inertia loading, and it acts at the elastic axis

The fact that e « 0 emerges from the assumption that strains within

the cross sections of the rod are neglected.
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as described in Appendix C. There is also a distributed moment, q, per

unit length of the undeformed axis of the rod. It includes body couples,

moments of surface tractions and moments of intertial loading. This

moment also acts at the elastic axis of the rod. It is clear, therefore,

that:

6W
£

_ r -1

= 0
(p • 5W + q • 80)dx0 (D-6)

Equations (D-3), (D-5) and (D-6) imply:

r 8e + 2T 8e + 2T 8e ]dyr dz
xx xx xy xy xz xzj ^0 0

- p «8W - q '59

According to Equations (B-23) of Appendix B:

(D-7)

•. = 8£
XX XX

8 *y - '0

8£

8exz 6T

(D-8)

In deriving Equation (D-8), use was made of the assumption that

in the case of a slend.er rod with closed cross section, the influence of

warping is negligible and, therefore, the virtual work is taken as that
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perfonned during a rigid body motion of a slice of the rod, and thus, 8<p

is assumed to be zero. The terms <p8* and <p8ic are also neglected asy z

a consequence of assuming the warping to be negligible.

Substitution of Equation (D-8) into (D-7), use of Equations (B-38)

from Appendix B, and neglecting the influence of warping, implies:

r*°mt ~I (T 8£ + M 8K - M &K + M BT - p .6W - q •69)dxn = 0 , (D-9)j _ Q xx z y y z x u

where Be , 6* , BK and 5r are functions of 8W and 89. After3oc y z .
*>*

substitution of the appropriate values for 8£ , &K, BK and BT, the
xx y z

equilibrium equations and boundary conditions are obtained by performing an

integration by parts of Equation (D-9).

In Chapter 2 of this study it was shown that the equilibrium

equations can be obtained with respect to different directions. In the

present case, the definition of &W and 89 determines the directions in

which the equations will be valid.

D.2 Equilibrium Equations in the Directions of the

Deformed Rod Coordinates (e'.e'je1)~ x y z

In this case, the virtual displacement is chosen as:

8W = &u' .e' + 8v' e' + 8w' e1 . (iXLO)x y z

The virtual rotation is given in the form:
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80 = n e' + n e1 + n e1 . (D-ll)x x y y z z ' \ /

where n ,n and n are the components of the virtual rotation,x y z

Due to BW and 60 the triad e^e^e1 is rotated to a new

triad e",e",e", given by:x y Z

- ny

e" = e' + 60 x e1 = -n e1 + e1 + n e'y y y z x y x z

e " = e' + 50 x e' = n e' - n e' + e""n e'y x

(D-12)

z z -z y x x y

It is clear that n = 6 *, however n and n are determined by 6W.x y z

In order to find n and n let us consider an element dx~ of they z \)

deformed elastic axis, which is shown in Figure D-l. Before the virtual

displacement, the element is in position AB, described by dx~ e'.

After the virtual displacement, the element is in position A'B', given

by:

A'B' » (R + dxQ ex -*- 5W + 6W dx̂ ) - (R + 5W)

Substitution of expression (D-10) into (D-13), and performing the differ-

entiation, while using Equation (B-17) of Appendix B for the derivatives

of the unit vectors, implies:
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A'B1 ' -K 6v' - K 8w')e'
,x y z x

+ (5v' + K Su' - T 8w')e'»x y y

8w' + * 8u' -i- T SvOe'ldx^
,x z z u

Recalling that the virtual displacement 6W is as smn.11 as desired, then

from Equation (D-l̂ ), one obtains after neglecting products of virtual

terms:

e " = e1 + ( Sv1 + K 5u' - T 6w' )e'
x x ,x y y

8w'
,x

6v' (D-15)

Comparing Equation (D-15) with the first of Equations (D-12 ),

the quantities n and n are determined. Thus, the rotation componentsy "
are:

n

n

n

a 8*

-( 5w' 8u' + T 8v')

6v' + K 8u' - T 8w'
,x y

Using definitions (B-15) from Appendix B, then:
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_ /N ft ^ tlK + 8 K » e • ey y x,x y

Kz + *'z - «x,* • *: • <W>

T +8T - e" • e"z

Differentiation of expressions (D-12), using Equations (B-17)

of Appendix B, yields:

S\ || ^m ^m t \ ^*

e » K e * •»• K e ' + ( n K -n « c ) e '
x,x y y z z v y z z y' x

•T nJe' , (D-l8a)

£" = -K e1 + T e1 - (n + n K )e'
y,x y x z z,x x z x

(D-l8b)

Substitution of Equations (D-l8) and (D-12) into Equation

(D-17), and neglecting nonlinear terms in n ,n and n , implies:

y nz,x z nx ny

B K « - n - K n •»• T n . (D-19)z y,x y x z ^'

BT »n - K n. - K n
x,x y y z z

Substitution of expressions (D-16) into (D-19) yields;

• Bv' + (K Bu1) - (T
y ,xx y 7,x ,

+ K 8* - T Bw1 - T K Bu1 - T2 Bv1 , (D-20a)
Z jX Z
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r'™+ (* &u') + (T 8v')
IXX Z j X ^ X

- K 80 + T 8vf + T K Bu1 - r2 Bw' , (D-20b)
y >x y

BT = 6 * + * Bw1 + K K Bu1 -i- K T &v',x y ,x y z y

- K 8v' - K K Bu1 + K T 6w' . (D-20c)z ,x y z z

From Equation (D-lM it is clear that (neglecting products of components

of the virtual displacement):

Be = Bu' - K Bv' - K Bv1 . (D-2l)
xx ,x y z

The load p and couple q are given with respect to the de-

formed system, in the form of Equations (l) and (2), as:

(D-22)

a e1 •»• q. e1 + q_ e'*K x ^y y ^z z

Substitution of expressions (D-10), (D-ll), (D-16), (D-20),

(D-2l), and (D-22) into Equation (l>-9) implies:

I (T&u1 - T K 8v' - T K 8tr' + M 8v' + M (K Bu1 )
_ «0 *x 7 z z >«c z y ,x

2 '- M (T Bw' ) -f M K 8 * - M T Sir1 - M T it ou1 - M T ftv'
Z »X Z Z Z ,X Z Z Z

- My 6.;̂  - My(Kz 8u' )>x - My(r 8 v' )>x + M/y8* - MyT



- MT K Bu1 4- M T2 Bw1 + M 8* + M * 8w' + M * K 8u«
yy y x ,x x y ,x x y z

+ M K T Bv* - M K 8vf - M K K Bu' + M * T Bw1

x y x z , x x y z x z

- py Bv' - pz 8v« - q^ 8 * + qy 6w'x + qy *z 8u' + (y 8v' -

K Bu1 + qz T Bw'JdXQ » 0 . (D-23)

Integration by parts of Equation (D-25) gives the following

variational expression:

ri
I (-1 Bu1 - R Bv1 - R 8wf - R 6

B. 8u» + a ov

'

where the various expressions in (D-24) are:

- T ( M + K M - T M + a ) + p , (D-25b)y,x y x z ^y ^y '

R = (M + K M - TM + q) + K T
5 y»x y x z y ,x z

- T(M + K M + TM + a ) + p , (D-25c)z , x z x y ^ z ^ z * \ s i



R,, = M - K M - K M + OTCx,x y y z z (D-25d)

and

B Mz - M

B M + K M - 2 T My,x y x z

B. = M

B M

-M

(D-26)

With the virtual displacement being arbitrary, the equilibrium

equations turn out to be:

" o, 0, o - --(D-27)-

Substitution.of Equations (D-25) into (D-27) yields exactly the same

equations of equilibrium (C-7,8), which were obtained in Appendix C.

The boundary conditions for this problem can be obtained directly

from Equation (D-24), subject to the assumption that the boundary condi-

tions are not varied during the loading.
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B.. * 0 or u = 0

= 0 or v = 0

= 0 or w = 0

= 0 or * = 0

3 = 0 or v =0

(D-28)

B/- » 0 or w 0

The "boundary conditions of free edge and rigid clamping, as

stated by Equations (9) and (10) of Chapter 2, are in agreement with

Equations (D-28). There is only one item which should be noted. In

Equation (9) the boundary condition of u = 0 at x.^ = 0 is neglected.

This is due to the fact that T is used in the equilibrium equations,

instead of u. As a result of this difference the first equation con-

tains the first derivative of T instead of a second derivative of u. If

expression (B-32 ) of Appendix B is inserted in the equilibrium equations

instead of T, using Equation (B-22 ) for e , the boundary condition,
JUC

u = 0 at X = 0, is needed when the unknown T is replaced by u.

D.5 Equilibrium Equations in the Directions of the

Undeformed Coordinates of the Rod (e ,e ,e )- x y z

As pointed out in Appendix C (Equation (C-ll)), in general:



XX, \̂ r\ /̂

e' = e + S,0 e + S,, ex x 12 y 13 z

S2ie> S

^ _. \̂ /\
S2, e + S..0 e + e31 x 32 y z

(D-29)

Becaxise of the orthonormality conditions, Equations (n-29) imply:

(D-30)

The cTirvatures and twist, using definitions (B-15) of Appendix B are:

tc . e'
/\l

x,x ey

x,x e1

z

T = ie'

(D-31)

In this particular case, the virtual displacement is chosen as

(compared to (D-10)):

BW - &u e + &v e + &w ex y z (D-32)

Using Equations (D-13), (D-30) and (D-32), implies (compared vith



t -n«A'B e1 + 8u e + 8v e +8w ex ,x x ,x y ,x z

8u + S,,., 8v + S.,8w )e',x 12 ,x 13 ,x x

_, 8u + 8v + S0 ,8w )e'21 ,x ,x 23 ,x y

,n 6u + Sxo 8v + 8w )e'31 ,x 32 ,x ,x z - (D-33)

Neglecting virtual terms compared to vinity in Equation (D-33), implies

(similar to (D-15)):

e"x

The virtual rotation around the elastic axis is 5 * £', thus,

according to Equation (D-12), one obtains:

n

m = __ 8u + 8v + S0, 8w21 ,x ,x 23 ,

(D-35)

Using (D-19), together with (D-3l) and (D-35), implies:

x S31]
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S31]9v,x- [<V,x+ (Sl3},x S23]6*

[(S12},x <S31-SziV ' ^W^x (S21

(Sl3},x & v ,x^ (Sl2j,x 6w,x

Frcm Equation (D-33)> one obtains:

8£xx = 5u,x+ S125v ,x+Sl36w ,x '

The virt\ial rotation components are given by Equations (D-35) with

respect to the rotated triad (e',e',e'). Using Equation (D-29), implies:x y z

6, -

o

With Equation (D-29) and the assumption that terms of order e are

neglected compared to unity:

S21 " S23S31

S31 " S32S2l * ~S13 *

(D-39)
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The load p and moment q are given with respect to the undeformed

triad (e ,e ,e ), as in Equation (C-l6) of Appendix C:

e + p e + p ex *y y *z z

Substitution of Equations (D-52), (D-36), (D-37), (D-38) and

into (D-9)> and using (D-39), implies, after integration by parts:

Jim I jr = *

r ^ r~ ~ ~ - ~i 1^- i^
/ -R, 8u - Rg 8v - R, 8v - R^ 8 ̂ Idx. - B 8u

8v - B,8w - B.

r~- B
L

•X -
"b"

v B
' x 0 - o

0

where:

- S21 Mz,x + S31 V* - (S25
},x S21 My * fe^U S31 Mz



,« "a1 Vs* My,x',x

* (S13},x

and:

31

89

S13] -

My,x + (S12 T),x 13

Mz,x + S13



BU » Mx

B

"S3l My * S2l Mz '

-K, M + M32 y z

-M + S,,, M
y 23 z

The virtual displacements are arbitrary, thus, the equations of

equilibrium become:

0; 0; 0;

while the boundary conditions (assuming that the boundary conditions are

not changed during loading) are:

or u » 0

or v » 0

B, « 0 or

*w

Bi. »0 or

0

0

0 or u

or v - 0>x

• 0 orB7

The equilibirum equations (D-̂ ) are identical to (C-2̂ ) of Appendix
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2
C, within the framework of the assumption that terms of order £ are

neglected compared to unity, which implies:

My * S31 My,x ' ̂ l*8^̂  My

From the boundary conditions (D-̂ 5) it seems that due to the change
f**

of the coordinate system a new boundary condition appears. B,.. « 0 or

u 8 0. However, upon checking the sixth and seventh condition, it is
fx

clear that in the case of a clamped edge, v s w » 0, or a free,x ,x
rv

edge, M • M » 0, the condition B,. » 0 is satisfied automatically.

Thus, the fifth condition is satisfied, by satisfying the other boundary

conditions. "~
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Fig. D1. Displacement of Element on the Elastic Axis During the Virtual Displacement
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