
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

t

014524-5-T

(WASH-CR-158249) PEEFOEMASILITY EVALUATION 	 R79-19700
OF THE SIFT COMPUTEE (Michigan Univ.) 40 p
HC A03/M F A01	 CSCL 09B

Unclas
G3/60 16430

Performability Evaluation
of the SIFT Computer

J. F. MEYER

D. G. FURCHTGOTT

L. T. WU

January 1979

l! or^̂ o^^o

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 93365

G. E. Migneault, Technical Officer

NASA Grant NSG 1306

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SYSTEMS ENGINEERING LABORATORY
THE UNIVERSITY OF MICHIGAN, ANN ARBOR

r

TABLE OF CONTENTS

I. INTRODUCTION . 1

II. PERFORMABILITY MODELING5

III. MODELING OF SIFT AND ITS ENVIRONMENT 9

IV. SOLUTION METHODS AND RESULTS23

V. REFERENCES .36

a.

—ii-

PERFORMABILITY EVALUATION OF

THE SIFT COMPUTER

by

J.F. Meyer, D.G. Furchtgott and L.T. Wu

systems Engineering Laboratory
The University of Michigan

Ann Arbor, MI 48109

Abztnact - Performability modeling and evaluation techniques
are applied to the SIFT computer as it might operate in the com-
putational environment of an air transport mission. User-
visible performance of the "total system" (SIFT plus its environ-
ment) is modeled as a random variable taking values in a set of
"levels of accomplishment." These levels are defined n terms
of four attributes of total system behavior: safety, no change
in mission profile, no operational penalties, and no economic
penalties. The "base model" of the total system is a stochastic
process whose states describe the internal structure of SIFT as
well as relavant conditions of the environment. Base model
state trajectories are related to accomplishment levels via a
"capability function" which is formulated in terms of a 3-level
model hierarchy. Performability evaluation algorithms are
then applied to determine the performability of the total-system
for various choices of computer and environment parameter
values. Numerical results of those evaluations are presented
and, in conclusion, some implications of this effort are discussed.

I. INTRODUCTION

Performability modeling and evaluation methods, as intro-

duced in [1], provide a means for quantifying "ability to

perform" when system performance is "degradable," that is,

depending on the history of the computer's structure and environ-

ment during some specified utilization period T, the system

can exhibit one of several worthwhile levels of performance

(as viewed by the user throughout T). Of particular interest

are systems where degraded levels of performance (in addition to

i

k

A

-2-

"full degradation" or "failure") are caused, at least in part,

by changes in the computer's structure. Typically, such changes

are due to faults which occur during utilization and to subse-

quent structural reconfigurations that are made in the process

of fault recovery. Changes in structure may also be due to

reconfigurations that are made to accomodate changes in the

computer's environment and, particularly, its workload.

The growing interest in such systems is a consequence of the

fact that computing systems with distributed hardware and soft-

ware resources (e.g., multiprocessors, multicomputers, dis-

+ `_buted operating systems, distributed data bases, etc.) often

.hibit this type of degradable performance. In particular,

.iis is true of distributed, fault-tolerant computers that are

esigned to detect and locate a faulty resource and, through

_econfiguration, eliminate its use.

If performance is degradable then, as observed in [11,

traditional views of computer "performance" and computer "reli-

ability" are no longer applicable. These views matured in the

context of nondegradable performance where, in the presence of

structural changes, a system either performs adequately (success)

or does not (failure). In this context, "performance" is

regarded as successful performance and "reliability" as the

ability to perform successfully (probability of success).

Accordingly, performance can be evaluated relative to a fixed,

fault-free structure (since the system is presumed to perform

successfully when it is fault-free) and reliability can be

evaluated relative to a structure-based definition of success.

r	 ,

-3-

In particular, we see these views reflected by the analytic

models that are typically used for computer performance and

reliability evaluation. Probabilistic models for performance

evaluation (see [2] - [4], for example) represent variations in

internal state (e.g., the number of jobs being served or waiting

for service in each resource) and workload (e.g., job arrivals)

but assume that the structure of the system is fixed (time-

invariant). On the other hand, probabilistic models for reli-

ability evaluation (beginning with [5] and continuing through

the recent work of [6] and [71) represent variations in structure

(e.g., for each type of resource, the number that remain fault-

free) while ignoring the influence of internal state and workload.

Although such modeling restrictions are appropriate in the case

of nondegradable systems, as argued in [1], more general models

are called for when performance is degradable.

As a consequence of these observations, a general modeling

framework was introduced [1] which permits the definition,

formulation, and evaluation of a unified performance-reliability

measure referred to as "performability." The purpose of this

paper is to describe the techniques of performability modeling

and evaluation in more detail via their application to a specific

computer and computational environment. The computer considered

i-c the SIFT (Software-Implemented Fault-Tolerance) computer

being developed for the NASA Langley Research Center by SRI

International [8], [9]. Its environment is taken to be the

control of an advanced (next-generation) commercial aircraft

during a transoceanic flight, where such control includes

.f

	 P R

t

I

w

-4-

"active" controls (e.g., active flutter control) and automatic

landing control, as well as other, more conventional aircraft

control functions. Assumptions regarding the computational

requirements of this environment are based on the study made

by Ratner, et al. (10].

The choice of a fault-tolerant aircraft computer for this

evaluation exercise reflects the principal interest of the

NASA Langley Research Center in their support of this research.

Between the two fault-tolerant architectures being developed

for Langley (SIFT and the Fault-Tolerant Multiprocessor [11],

[12] developed by the C. S. Draper Laboratory), the choice

of SIFT was due mainly to the availability of information

regarding the allocation of tasks to processor-memory units [9].

These task allocations, paricularly in degraded modes of operation,

indicate how the structure of SIFT relates to the accomplishment

of aircraft functional tasks. Moreover, the attributes used to

distinguish the "criticalities" of functional tasks [10] support

a natural definition of "accomplishment levels" for the total

system.

In Section II of the paper we give a brief review of the

basic concepts and terminology of performability modeling [1].

Section III describes the construction of a hierarchical model

for the SIFT computer in the computational environment specified

above. The concluding section (Section IV) summarizes the solution

methods used to determine the performability values and presents

numerical results of the evaluation for various choices of

computer and environment parameter values.

•1

-5-

II. PERFORMABILITY MODELING

A computing system, as it operates in its use environment,

may re viewed at several levels. At a low level, there is a

detailed view of how various components of the computer's

hardware and software structure behave throughout the utilization

period. At this level, there is also a detailed view of the

Lehavior of the computer's "environment" where by this term

we mean both demands (workload) imposed by users and peripheral

systems, and natural conditions (e.g., weather, radiation, etc.)

which can influence the system's performability. 	 The computer,

together with its environment, is referred to as the total

system. A second (and usually much less detailed) view of the

total system is the user's view of system behavior, that is,

what the system accomplishes for the user during the utilization

period. A third view (which may coincide with the second) is

the economic benefit derived from using the system, that is,

the computing system's "worth" (as measured, say, in dollars)

when operated in its use environment. Performability evaluation

is concerned with quantifying a system's ability to perform

when it is viewed at the user interface (the second view) and

hence questions of economic benefit may be avoided if desired.

On the other hand, if economic benefit is the primary concern,

performability can be evaluated in these terms by placing the

user interface at this level (i.e., by identifying the second

and third views).

To formally represent these views, let S = (C,E) denote

the total system T 'iere C is the computer and E is its environment.

1

1
'	 ^	 r

^l	
i

-6-

(Although C is referred to as the "computer," it should be

generally interpreted as that part of the total system which

is the object of the evaluation, that is, the part which lies

within the "system boundary"; see [2], [3], for example.)

As is typically done in probabilistic modeling, the low level

view of S is modeled as a stochastic process X S defined over a

time period T called the utilization period. The process XS

is referred to as the base model of S. Each random variable X

(teT) of the base model X S takes on values in a state space Q,

where a given state in Q represents a particular status of both

the ^omputer and its environment. More precisely, Q = QCXQE

where QC is the state space of the computer and QE is the state

space of its environment. Moreover, a state gcQ C may describe

both the structural configuration of the computer and the internal

state of that structure. An instance of the base model's behavior

is a state trajectory u:T -► Q where u(t) = X t , the state of S

at time t. Finally, the collection of all possible state trajec-

tories is denoted U and is referred to as the trajectory space

of S. (For a more detailed and more precise development of these

concepts, the reader should refer to [1].)

Regarding the second, user-oriented view of the total system,

we assume that the user is interested in distinguishing a number

of different levels of accomplishment when judging how well

the system has performed throughout the utilization period T

(one such level may be total system failure). The user's

"description space" is thus identified with an accomplishment

set A whose elements are referred to alternatively as accomplishment

,.

1

E, -7-

levels or (user-visible) performance levels. Accordingly, the

user's view of total system behavior is modeled by a random

variable YS taking values in the accomplishment set A. Y S is

referred to as the performance of S. In the terminology of

computer performance evaluation, YS can be regarded as any

user-oriented performance "measure" or "index" that summarizes

the behavior of S throughout the utilization period T. Thus,

"average response time" (averaged over T) could be regarded

as a performance variable YS whereas "response time" would not.

Given this representation of user-visible performance, a

natural measure which quantifies the "ability to perform" is

the probability distribution function of the performance variable

YS . In case the accomplishment set A is discrete (which is the

only case we have considered in the context of aircraft computer

evaluation) the probability (mass) function of YS suffices,

that is, the performability of S is the function p S :A -[0,11

where

PS (a) = the probability that S	 (1)
performs at level a.

In cons''Cructing a model that can support an evaluation of

performability, we assume that enough is known about the proba-

bilistic nature of the computer's structure and environment to

permit the specification of the base model, i.e., the stochastic

process X S . At the outset, on the other hand, little if anything

is known about the performance variable Y S , except that it takes

on values in a designated accomplishment set A. Thus, to determine

j

Prw	 r

r 4 -

-8-

the probabilistic nature of YS (and hence the performability pS),

we must establish how state trajectories of the base model XS

relate to the accomplishment levels of the performance variable

YS . We refer to this relationship as the capability funct ion

of S which, in terms of the notation introduced above, is

defined as a function y S .from the trajectory space U into the

accomplishment set A. If u(U then y S (u) is interpreted as the

level of accomplishment (performance) that results when the

state trajectory is u. (For a more detailed discussion of

capability functions and their properties, see references

[1) and [13] .)

Once the base model X S is specified, the essential problem

in performability modeling is to formulate the capability

function y or, more precisely, its inverse yS l . The tech-

nique we have used to solve this problem is to elaborate the

base model into a model hierarchv, vermittinc a decomposition_

of
Y

into inte revel translations [1]. Once the capability

function is formulated, model solution is basically a two-

step procedure:

(1) For each accomplishment level a in A,
determine the set of all state trajectories
that result in a, tha^ is, determine the
inverse image U = y (a).

(2) Using the base model X S , for each a in A,
compute the probability of the trajectory
set U (which is equal to the performability
value pS (a)) .

Although the above review of performability modeling is

tewhat brief, it will hopefully serve as an adequate guide

-9-

for the discussion that follows. Moreover, these various

concepts should acquire more meaning once they are illustrated

in the context of a specific application.

III. MODELING OF SIFT AND ITS ENVIRONMENT

The concepts, models and methods described above appear

to be applicable to a variety of systems (both man-made and

natural) wherein performance may degrade with changes in the

system's structure and environment. The primary motivation

for this development, however, has been to evaluate the

performability of aircraft computing systems of the type

envisioned for next-generation commercial aircraft. Within

this context, the sections that follow describe a relatively

comprehensive performability modeling and evaluation exercise.

In the terminology of the previous section and for

reasons discussed in the introduction, the system considered

is the total system S - (C,E) where C is the SIFT computer

[81,[91 and E is a transoceanic flight of an advanced commercial

aircraft. Assuming that the user is the airline that owns the

aircraft, the user's view of desired total system performance

can be stated quite simply: "Transport passengers from air-

port A to a transoceanic airport B, safely, directly, and with

minimum operational and economic penalties." Examining this

statement in more detail, total system performance can be

described in terms of four attributes: safety, no change in

mission profile, no operational penalties, and no economic

penalties. (See [10] for a more precise interpretation of these

r

a

•^	 i

-10-

attributes, used there to distinguish the "criticalities"

of various aircraft functional tasks.)

To determine the accomplishment set A for the performance

variable YS we assume that safety is the most important attri-

bute, i.e., safe flights have the greatest worth, the remaining

attributes being worth successively less in the order they

are listed. (These assumptions regarding relative worths

conform with the "reliability requiremer.t:3" specified in [10)

for the corresponding criticality levels.) Assumirq further

that safety is worth considerably more than no change in mission

profile, which in turn is worth considerably more than no

operational penalties, etc., the following accomplishment set

suffices to describe the performance levels of interest to the

user:

A = {a0,al,a2'a3'a41

where

a0	no economic penalties, no operational penalties,
no change in mission profile, and no fatalities

a l = economic penalties, no operational penalties, no
change in mission profile, and no fatalities

a 2 = operational penalties, no chance in mission profile
and no fatalities

a 3 = change 'n mi_sion profile, and no fatalities
a 4 = fatalities.

Accordingly, the performance of S !see Section II) is a

random variable Y S taking values in the accomplishment set

A specified above. The performabitity p s , which we seek to

evaluate, is the probability (mass) t,n,7tion of YS.

To construct a rase model X S that can support an evalu-

ation of pS , the state spaces QC of SIFT and QE of its

environment must be refined enough so that each state trajectory

(2)

8

-11-

u:T
+ QCXQE

of the process XS (see Section II) results in a uniquely

determined accomplishment level a i(A. In other words, the

trajectory space U must admit to the formulation of a capa-

bility function y S :U + A. On examining the architecture of

the SIFT computer, whose general organization is depicted in

Figure 1, we find that it suffices (with one exception to be

discussed later) tc know the number of processor-memcry

units, and the number of busses which are fault-free. In

--:.er words, a state of gEQc can be expressed as an ordered

rair

q = (i,j)

where i is the number of fault-free processor-memory units

and j is the number of fault-free busses. Regarding the

environment, we find that the weather condition at the des-

tination airport is an influential variable and, under reason-

able assumptions, the only environmental variable that need

be considered. (Other environmental factors,such as the

duration of the utilization period T, are fixed for a specific

total system and .hence are regarded as parameters rather than

variables.) Accordingly, the state space of the environment is

Laken to be the two-clement set QE - {0,1} interpreted as

follows:

1: Zero visibility (Category III) weather at the
destination airport	 (3)

0: Not 1.

r

-12-

Regarding the utilization period T, we assume that the

utilization of SIFT is continuous from ramp departure of the

aircraft to ramp arrival at the destination airport. More

precisely, taking the departure time to be t=0, if h is the

duration of utilization (in hours) then T is the closed real

interval

T = [O , h] = W O-st`h} .

Accordingly, the base model is a stochastic process

XS = {XtltE[O,h]}

where each random variable X takes values in the state space

QC x QE. If further, we let XC t and XE t denote the projections

of X on QC and QE , respectively, it is reasonable to assume

that the processes

x = {XC,tltE[O,h]}
	

(4)

and

x = {XE,t(tE[O,h]}	 (5)

are (statistically) independent. (What we are saying here

is that the number of fault-free resources in SIFT is inde-

pendent of the weather condition at the destination airport.

This should not be confused with how the use of SIFT's resources

depends on the weather; the latter type of dependence is

"functional" [13] and is determined by the nature of the

capability function y S .) Thus the base model XS is determined

once we specify the probabilistic nature of the stochastic

processes X and XE . It is convenient, however to defer

these details to the subsequent discussion of a hierarchical

model of S.

In general, to facilitate the description of the capability

function, we have proposed the use of a model hierarchy (see

f	

OF

	 e 1

-13-

111) which, proceeding from the top down (the "top" model

is closely related to the performance variable Y S), consists

of a sequence of models describing the total system in sucessively

more detail. The "bottom" model of the hierarchy is comprised

of those components of the base model which cannot be introduced

directly at higher levels.

For the system in question, we fi. ,. it convenient to intro-

duce three levels of detail (abstraction) and refer to them,

respectively as the "mission level" (level 0), the "aircraft

level" (level 1), and the "computer level" (level 2). Following

the terminology and notation of (1], the model at level i

(0<:::) is a stochastic process X i defined in terms of

a composite process x and basic process Xb. (The composite

process inherits its behavior from the level i+l model; the

basic process does not, i.e., it is a component of the base

model process XS .) The trajectory spaces of Xc an d Xb are

denoted U^ and Ub, respectively, and trajectories in Uc ® Ub

determine trajectories in Uc-1 (i>1) via an interlevel trans-

lation K i . (When i=0, K 0 is a function from level 0 trajectories

into the accomplishment set A.)

This notation is summarized in Figure 2 which depicts

the model hierarchy for S and its relation to the performance

variable YS . (It is helpful to compare Figure 2 with Figure

lb in [11, where the latter depicts the general form of a

model hierarchy.) The specific nature of the hierarchy in

question is dea:tP%rd in the subsections that follow.

-14-

Mission Level (Level 0)

The model at this level, which is the "top" of the model

hierarchy, is close to the accomplishment set A and simply

formalizes the attributes used earlier to distinguish accomplish-

ment levels. More precisely, we take the level 0 state

space to be the set

Q0 = {0,1}4

where the four coordinates are referred to as ECONOMICS, OPERATIONS,

PROFILE and SAFETY, respectively. A coordinate value of 0

denotes the presence of the corresponding attribute; 1 denotes

its absence. Thus, for example, the state

q = (1,0,1,0)

says that the flight incurred economic penalties, no operational

penalties, a change in mission profile, and was safe. More-

over, we assume that all the coordinates are "composite,"

that is their values will be uniquely determined by a state

trajectory of the level 1 model. Hence Q 0 = Q0 and accordingly

(by definition) all the state trajectories of the level

0 model will be composite. (This explains the lack of a

basic trajectory space Ub0 in Figure 2.) Moreover, since

we are modeling the outcome of the mission after utilization

is completed (i.e., at time t = h) the level 0 model is a

single-variable random process

X 0 = { Xh}

with a trajectory space that coincides with the state space, i.e.,

U0 = U0 = Q0 = {0,1}4

(Note that the term "trajectory" is somewhat misleading in this

,+

-15-

instance; however, we prefer to maintain a common vocabulary

that applies to any level of the hierarchy.) Given the inter-

pretation of Q0 (and hence U 0) specified above, the translation

K0 : U0 4 A is determined immediately from the definitions

of the accomplishment levels (see (2)). The function

table of K0 is shown in Table 1 where * denotes that the

variable value can be either 0 or 1.

Aircraft Level (Level 1)

The model at this level of the hierarchy describes the

extent to which various aircraft functional tasks can be accom-

plished during various phases of the flight. The environment

part of the base model (i.e., the weather condition at the

destination airport) is also introduced at this level. The

latter is possible since task allocation priorities in the SIFT

computer (see [121) are weather independent. Note, however,

this does rule out "use" dependencies of the type referred to

earlier, e.g., computations required for an automatic landing

are not used during clear weather. Such dependencies are

captured by the translation of level 1 trajectories into

level 0 trajectories, which will be discussed momentarily.

The aircraft functional tasks considered are a repre-

sentative subset of those identified in (10) and subsequently

added to and modified in [9). More specifically, we make

the following assumptions regarding the aircraft, where

the functional tasks considered (a total of 8) are signified

by capital letter names or acronyms.

-16-

a) The aircraft has an Aircraft Integrated Data System
(AIDS) which continuously executes in-flight analyses
of various on-board data. This information is econom-
cally useful to the airline for assessing aircraft
performance and for scheduling maintenance. Hence,
"loss" of AIDS is assumed to result in economic penalties.
(By the "loss" of a functional task we mean the inability
to accomplish that task.)

b) The aircraft has two means of navigation. The first
involves an inertial guidance system (INERTIAL), while
the second means involves an air data system (AIR DATA)
along with two radio beacon systems: Very-High Frequency
Omnirange (VOR) and Distance Measuring Equipment (DME).
(Support of VOR and DME is regarded as a single functional
task denoted VOR/DME.) We assume that the signals
generated by the VOR/DME system will not be receivable
by aircraft more than 250 nautical miles from a transmit-
ting station, and in particular, more than 250 nautical
miles from land. The AIR DATA task is required to support
the VOR/DME task.

c) If INERTIAL is lost before the aircraft enters
a region where it cannot receive VOR/DME signals (especially
an oceanic region on a transoceanic mission), it will
return to its origin. We make the simplifying assumption
that if the aircraft must make such a diversion, it
returns safely to its origin with no further incidents.
Such a diversion is considered a change in mission profile.

d) If INERTIAL is lost while the aircraft is out of
range of the VOR/DME system, the aircraft loses its
navigational capability. Likewise, loss of INERTIAL
along with VOR/DME or AIR DATA results in a loss of
navigational capability. These losses are assumed to
result in a change in mission profile.

e) Loss of VOR/DME or AIR DATA tasks results in eco-
nomic penalties.

f) The aircraft has an autoland system (AUTOLAND) which,
if operational, will land the plane in any weather. The
AUTOLAND system requires the results of INERTIAL compu-
tations as well as AUTOLAND computations. If, just prior
to initiation of landing, the destination airport has
Category III weather and the aircraft does not have
AUTOLAND capability then a diversion is made to another
airport. Such a diversion is considered a change in
mission profile.

,e

r

-17-

g) If, just prior to the initiation of landing, the desti-
nation airport has Category III weather and the aircraft
has the AUTOLAND capability, AUTOLAND is used. Loss of
AUTOLAND during such a landing will cause the plane to
crash, resulting in an unsafe mission.

h) The aircraft has active flutter control (ACTIVE
FLUTTER CONTROL), attitude control (ATTITUDE CONTROL),
and engine control (ENGINE CONTROL) functions, all of
which are critical to the airworthiness of the plane.
Loss of any of these functions results in an unsafe
misssion.

Given the above assumptions regarding the aircraft, we

find that computer behavior, when viewed at the aircraft level,

can be represented as SIFT's ability to accomplish (via

execution of required computational tasks) each of eight

aircraft functional tasks:

Task
1 : A?OS
2 : AIR DATA
3 : VOR/DME
4 : INERTIAL
5 : AUTOLAND
6 : ACTIVE FLUTTER CONTROL
7 : ENGINE CONTROL
8 : ATTITUDE CONTROL

during each of four phases of the utilization period:

Phase
1 : Takeoff/cruise until VOR/DYz out of range
2 : Cruise until VOR/DME in range again
3 : Cruise until landing is to be initiated
4 : Landing.

Accordingly, the trajectory space U
c
 of the composite process

Xc can be conveniently represented by the set of all 8x4 matrices

1{i58
u = Iqi, j]	

(lf-j`4)

where, except for coordinates (5,1) and (5,2),

0 if task i can be accomplished
_	 throughout phase j

qi, j

	

	 (6)
1 otherwise.

/ ^ l

. h

4

-1e -

In the case of coordinates (5,l) and (5,2), since we know

that task 5 (AUTOLAND) need not be accomplished during phases

1 and 2, q5,1 and q5,2 are assigned a constant value "id".

During phase 3, the AUTOLAND task is interpreted as the

checkout of the autoland system (prior to its possible use

during landing).

To permit level 1 trajectories to be translated into level

0 trajectories (i.e., to determine the interlevel translation

K 1), the level 1 model must also convey the weather condition

at the destination airport just prior to the initiation of

the landing phase (see assumptions f) and g)). Accordingly,

the basic part of the level 1 model is taken to be the

environment model X (see (5)) when sampled at the end of

phase 3. More precisely, if phase 3 ends at time t 3 then

the basic part is the (degenerate) process.

1 __
Xb	 {XE,t3} .

Extending the time base of Xb1 to that of X I , the combined

trajectory space U1 = Ulou11 can be represented by the set of

all 9x4 matrices

(1!ij r-4)
1Ki.59

where the first 8 rows represent trajectories in U 1 (as speci-

fied above), g93 (QE (see (3)), and q9 , 1 = q9,2	 q9,4

Given this representation of level 1 state trajectories

and under assumptions a)-h) stated above, the interlevel

translation K1:U1 - ► U0 can then be specified. In general,

however, when specifying an interlevel translation K i , we

,/

er

r1^r

seek to avoid a complete tabulation of the values Ki(u)

for each trajectory u(U i since, as we move down a model

hierarchy, the size of the trajectory sets U can become

unmanageabley large. (Note that, even in the case of th--

small space U = {0,1} 4 , we avoided complete tabulation

through use of the symbol "*".) In response to this need,

we have developed a general method (see (141-(151) for spec-

ifying the K i in a form that is feasible for large trajectory

spaces and is suited to solution methods for computing per-

formability.

Although space does not permit a detailed description

of this specification method, its application to the interlevel

translation K1 can be summarized as follows. K 1 is first

decomposed into its projections onto the individual coordinates

of UO = {0,1} 4 , i.e., into the functions i K1 W1 i,4) where,

if uEUO , ^ i (u) is the value of the ith coordinate of u.	 iK1

denotes the composition of functions K 1 and E i , first applying

K 1 •) Each function & i K 1 is then specified by specifying the

inverse image (^iK1) -1(v) for each value v(C i (U0) = {0,1}.

However, instead of tabulating all the trajectories in this

preimage (which is a subset of U 1), it is expressed as a

disjoint union of "Cartesian" subsets of Ul.

(Since trajectories in U l are represented by matrices (6), a

Cartesian subset V of U l can be regarded as a 9 X 4 matrix

whose entries are the component sets of the Cartesian product

V.) This representation thus parallels the use of "subcubes"

to represent switching functions (see (16], for example)

although, in general, we allow the coordinate values to be

1

A

{	

i•

2

-20-

elements of an arbitrary finite set (the state set of the level

i model) .

To illustrate part of the specification of K 1 , suppose

i=3 (the PROFILE coordinate of U0) and v-0 (no change in mission

profile).	 Then the corresponding set of level 1 trajectories

is the union of three Cartesian subsets of U1 , that is,

* * * * * * * * * * * * AIDS
* * * * * * 0 ' * * * * * VOR/DME
* * * * * * 0 * * * * * AIR DATA

()0
(3 K 1) -1

0
0
0*

*
0

U
0

*
1*

*
0

U
0 0*

1 *
INERTIAL
AUTOLAND(0)	 _	 ¢ ¢ ¢ ¢ ¢ ¢

* * * * * * * * * * * * ACTIVE FLUTTER CONTROL
* * * * * * * * * * * * ENGINE CONTROL
* * * * * * * * * * * * ATTITUDE CONTROL
¢ ¢ * ¢ ¢ ¢ 0 ¢ ¢ ¢ 0 ¢ WEATHER

where 0, 1, ¢ and * denote the sets {0}, {1}, {¢} and {0,1},

respectively. The complete specification of K l , along with a

more detailed discussion of its derivation, can be found in [15].

Computer Level (Level 2)

The model Xb at the bottom of the hierarchy is the

computer component of the base model process X S , i.e., the

stochastic process X identified earlier in the discussion

(see (4)). In determining the specific nature of XC , many

of the issues to be resolved are similar to those encountered

in reliability modeling (see [5] - [7] , for example) and,

in particular, those addressed by SRI in their investigation of

reliability models for SIFT (see [9], Section VII). Since

the emphasis here is on needs that are peculiar to performabil-

ity modeling, our construction of X is based on a relatively

idealized Markov model of SIFT (referred to in [9] as "Model I")

where faults are assumed to be permanent and reconfiguration

times are assumed to be instantaneous. On the other hand, to

.,

r

"^	 r

-21-

deal with performance issues such as the effect of different

computational demands (workloads) during different phases of

the flight, the utilization period T is decomposed into eight

phases at level 2 (see Table 2). Within a given phase, we

take the process X to be a time-homogeneous Markov process

similar to SRI's Model I. However, we generally permit these

intraphase processes to differ from phase to phase, where the

probabilities of interphase state transitions (which take place

at the time of a phase change) are specified by interphase

transition matrices (see (14], (151). Assuming a maximum of

n processors (i.e., processor -memory units) and m busses, the

intraphase Markov process assumed for all phases except the

takeoff phases is given by the transition graph of Figure 3. For

the takeoff phase, state pairs (2,j) and (2 1 ,j) are identified

for all j, in which case the model reduces to ERI's Model I

((91,p. 151, Figure VII-2). The need for the states (2',j)

during phases 2-8 is to distinguish whether a particular pro-

cessor is reduced from 3 to 2. (The fact that processors do

not look alike when only three remain fault-free is a consequence

of task allocation constraints which will be discussed momentarily.

Given the computer level model Xb = X C , it remains to

specify how trajectories in U b (variations in the structure

of SIFT) translate via K 2 into trajectories in U (varia-

tions in SIFT's ability to accomplish aircraft functional

tasks). Such a specification is based primarily on hew

functional tasks or, more precisely, the computational tasks

-22-

that support them, are allocated to a given number of fault-

free processors. Assuming that each processor has a capacity

of 0.16 MIPS (millions of instructions per second) and each

memory has 5 kilowords of storage (these assumptions are scaled

down from those of [91 since we are considering a reduced

number of functional tasks), this allocation is determined by an

algorithm (see[15)) similar to the one employed in [9). As

a consequence, for each phase of the level 2 model, we are

able to specify which functional tasks are lost (cannot be

accomplished by SIFT) as a function of the number of fault-

free processors. This information is summarized in Table 3.

The information in Table 3, along with the assumption

that communication among any number of processors is insured

as long as at least two busses remain fault-free (see [91),

suffices to determine the interlevel translation K 2 . Because

busses do not play an essential role when at least 2 remain

fault-free, it suffices to specify K 2 for trajectories over the

state space

Q = {1,2,2',3,4,5,6}

where, in terms of the states of the bottom model,

1 = (F}

i = ((i , j) 2 ~- jam}	 if i=2,2',3,4,5

6 = ((i,j) 6-5i<_n,2!-:j<_m}

Accordingly, trajectories over Q are represented by the set of

al'. 1X8 matrices

u = [qk l	 (15k58)

0

A

-23-

where

q = i	 if the structural state of SIFT is
in set i (i(d) at the end of phase k.

(During phase 1, states 2 and 2' are identified since, accord-

ing to Table 3, there is no need to distinguish them.) The

method used to specify K 2 is identical to that used at level

1, except that 32 coordinates must now be accounted for instead

of 4. A full specification of K 2 , obtained by this method,

is described in (15). Having established all the ingredients

of the hierarchy (Figure 2), our modeling of S is complete.

IV. Solution Methods and Results

As outlined in the concluding paragraph of Section II,

once a performability model has been constructed for a system S,

the computation of its performability p (see (1), Section II)

is basically a two-step procedure. The first step relies

on a knowledge of the capability function YS and, for each

accomplishment level a(A, yields an appropriate representation

of all the base model state trajectories that result in a,

i.e., all trajectories in the set U = 'Y S 1 (a). The second

step relies on a knowledge of the probabilitic nature of the

base model XS and, for each trajectory set U a , yields the

performability value pS(a).

The problems encountered in carrying out these steps

are both interesting and challenging since, in effect, they are

generalized versions of problems currently being dealt with in

the more specific contexts of performance evaluation and relia-

bility evaluation. Our work to date concerning each of these

r

-24-

steps has been carried to the point where models of moderate

complexity,such as the one just described in the previous

section, can be solved without an undue amount of effort.

Certain of the algorithms used, particularly in the second

step, have been implemented by programt that reside in a

prototype software package called METAPHOR (Michigan Evaluation

Aid for Perphormability). Other algorithms, which have not

yet been programmed, can fortunately be carried out manually,

although the effort required is somewhat tedious and laborious.

Since space does not permit discussion of these methods,

we can only outline the underlying ideas and point, as we

did in Section III, to some recent technical reports for further

information. Regarding the first step, i.e., the determination

of the trajectory sets U a , the algorithm used here is based

on the fact that y s l can formulated in terms of the inverses

of the interlevel translations K i . Thus, for the hierarchy

in question (Figure 2), y- l (a) is computed by first determining

r. 0}a), and then applying K1 1 followed by K Z I . An important

feature of this algorithm is that it manipulates Cartesian

representations of the type illustrated in Section III (see

(7)). Moreover, the trajectory sets determined at each level

of the hierarchy are always expressed as disjoint unions of

Cartesian subsets. Details concerning the derivation and

application of this algorithm can be found in (15].

The second step of the solution procedure computes the

probability of each base model trajectory set Ua . The algorithm

requires that Ua be expressed as a disjoint union of Cartesian

I

-25-

components, but this is automatically provided by the output

of step 1. The probability of each Cartesian component

is then computed using a specially developed algorithm that

involves the "intraphase" and "interphase" transition matrices

of the base model (14). Summing the probabilities of these

components yields the performablity value pS (a) and, when

this is done for each level a, the computation of pS terminates.

Applying these algorithms, the performability of SIFT

was evaluated for a number of specific instances of the total

system model described in Section III. An instance of the

model is obtained by fixing the values of the following

computer and environment parameters:

COMPUTER (SIFT)

Cl) Hardware resources, that is, the number of pi :ussors
n and the number of busses m (see Figures 1 a_3 3).

C2) Hardware failure rates, that is, the pre-cessor failure
rate p, and the bus failure rate q (sea Figure 3).

C3) Initial state distribution, that is, the probability
distribution of the random variable

xC,0
(sea. (2)).

ENVIORNMENT

E1) Flight duration h and phase durations.

E2) Probability of Category III weather at destination
airport.

Evaluations were based on the following selection of

parameter values:

Cl) n-6 and m-5.

C2) As in (91, we assume that p = 10_
4
 and	 10-5

(failures per hour).

i

e

-26-

C3) Two types of initial state distributions are considered.
The first type is "deterministic" in the sense that
one computer state has probability 1 of being the init-
ial state (the remaining states having probability 0).
If (i,j) is the state having probability 1, this
dittribution is denoted

Det(i,j).

The second type of initial state distribution considered
is truly probabilistic where one of two specific distri-
butions are assumed. These are denoted I 1 and I 2 and
are given in Table 4.

E1) Two plight missions are considered, a 6 hour and 25
minute flight from London to New York (JFK Airport)
and a 10 hour flight from Tel Aviv to New York. The
assumed phase durations associated with each flight
are given in Table 5.

E2) The probability of Category III weather at JFK is taken
to be 0.011 (see [171, p. 173).

For-the fixed values of Cl, C2, and EL indicated above

and for choices C3 and E1 as indicated in Tables 4 and 5,

14 specific systems were evaluated (denoted S1' S 2' ''S14).

For each system S i the results of the performability evaluation

are tabulated in Table 6, where the entry corresponding to

system Si and accomplishment lei,l a is the probability p S (aj).
i

On examining Table 6, we see that a performability eval-

uation provides the t.ser with a "spECtrum" of numbers which

quantifies degradable performance when viewed at the user

interface. Although the user's primary concern, in this

case, is safety, if the probability p S (a4) of an unsafe

flight is acceptably low, the performability at safe levels

(levels a 0-a 3) is also a legitimate concern of the u-er.
Moreover, we believe that the design of an aircraft computer

should reflect this concern, that is, performability .should

be accounted for by design algorithms (e.g., the allocation

and scheduAng of computational tasks) and should be evaluated

-27-

in the process of assessing design alternatives.

Although the results given by Table 6 are interesting
F

in themselves, we will resist the temptation to interpret this

data since our intent here is not to critique the design of

the SIFT computer. Instead, the purpose of this study has been

to demonstrate the feasibility of pei -:rmability modeling and

evaluation and to illustrate the type of results that can be

obtained. We believe that this has been accomplished and,

moreover, we hope that the preceding discussion has helped

to clarify the kind of modeling concepts and solution techniques

needed to evaluate the performability of degradable computing

r
	 systems.

L

}

Figure 1

Hardware organization of SIFT

Mi : memory Pi : processor	 B i : bus

F^

IM

-ZB-

r	
1

-29-

ORIG-NAL PAGE 18
OF POOR QUALITY

Performance of S' YS	 '	 A

_ _ - - - - - - _ _ -- - - - - _. - - -	 K 0

Mission
X^	 U^Level

(Level 0)

Model
K1

Hierarchy
for	 Aircraft X1	 R	 U1 ® U1S	 Level c	 c	 b

(Level 1)

K2

Computer
^"Level Ub

(Level 2)

Figure 2

The model hierarchy for S
and its relation to YS

- -_f --'e

.	 1

N

1

r	 Lg

-30-

Key: p - processor failure rate

q - bus failure rate

(n--1-) p ... 4p}

(n-1) p	 4p

(m-1) q	 (m-1) q	 (m-1) q

m-1)q

1}E^ ...

Figure 3

Markov transition graph for phases other than takeoff

A

tr	?

-31-
nY r

u

K0 02)

ECONOMICS OPERATIONS PROFILE SAFETY

0 0 0 0 a0

1 0 0 0 al

* 1 0 0 a2

* * 1 0 a3

* * * 1 a4

Table 1

Function table of K0

i

a,

-32—

Level 2 Level 1

Phase Description Phase

1 Take-off

2 Climb 1

3 Cruise I

4 Cruise II 2

5 Cruise III

6 Descent 3

7 Approach

8 Landing 4

Y

-I

.	 ,

Table 2

Level 2 phases ani
their relation to

level 1

T_
	

•

^	 F
.h

- 33-

Phase
so. of

Processors	 1	 2- 6	 7	 8

n - - - -

6 - - - -

5 - AIDS

INERTIAL
4 INERTIAL AIDS AIDS

AIDS

INERTIAL AIR DATA
3 INERTIAL AIDS

AIDS AIDS

INERTIAL
2 INERTIAL AIDS

AIDS

INERTIAL
ENGINE CONTROL ENGINE CONTROL ENGINE CONTROL

2' INERTIAL INERTIAL INERTIAL

AIDS AIDS AIDS

1 All Tasks All Tasks All Tasks All Tasks

Table 3

Loss of functional tasks

A

.,34,..

state Distribution

(i.j) 11 I2

(6,6) .64 .31

(6,5) .128 .081

(6,4) .032 .009

(5,6) .16 .09

(5,5) .032 .009

(5,4) .008 .001

Others 0 0

Table 4

Initial state probabilities

Flight
Phase London-New York Tel Aviv-New York

Takeoff 1 minute 1 minute
Climb 15 minutes 15 minutes
Cruise I 25 minutes 25 minutes
Cruise II 5 hours 8 hours 35 minutes
Cruise III 25 minutes 25 minutes
Descent 15 minutes 15 minutes
Approach 3 minutes 3 minutes
Landing 1 minute 1 minute

Total 6 hours 25 minutes 10 hours
Duration

Table 5

Phase durations

1

r	 Ge

-35-

System
C3

nit. State
H stribut b^

21
flight

Accaispliehment Level

S 1 Dft(6,6) Lon-NY 3.80x10 3 3.78x10-12 6.02 x10 6 1.95r10-12

S2 Det(6,5) Lon-NY

r96

3.80x10 3 3.79x10
12

6.02 x10
-6

1.95x10-12

S3 Det(6,4) Lon-NY 3.80x10 3 1.32x10 10 6.05x10
6

2.97x10-12

S4 Det(5,6) Lon-NY 0 9.97x10-1 1.03x10 9 3.17x10-3 1.55x10-9

S 5 Det(5,5) Lon-NY 0 9.97x10-1 1.03 x 10
-9

3.17x10 3 1.55.1r,_9

S6 Det(5,4) Lon-NY 9.97x10 1 1.16x10-9 3.17x10 3 1.55x10-9

S7 Det(6,6) TA-NY 0 1 6.03x10-3 6.07,10- 12 1.52x10
5

1.30x10-11

S8 Det(6,5) TA-NY 0 1 6.03x10
-3

6.12x10-12 1.52x10-5 1.30x10-11

S9 Det(6,4) TA-NY 0 i

rO

6.03x10 3 2.09x10
1u 1.53x10-5 1.71x10-11

S 10 Det(5,6) TA-NY 9.95x101 1.03x10-9 5.03x10
-3

7.15x10-9

S 11 Det(5,S) TA-NY 9.95x10-1 1.03x10-9 5.03x10-3 7.15x:0-9

S 12 Det(5,4) TA-NY 0 9.95x10 1 1.23x10
-9

5.03x10-3 7.15x10-9

5 13 I1 TA-NY 7.95x10-1 2.04x10
-1

2.18x10-10 1.02x10
-3

1.4440 -9

S10 I2 TA-NY 8.95x10-1 1.05x10
-1

1.10x10
10 5.17x10

-4
7.26x10-1u

Table 6

Performability results

of"FE IS

4

l 	 ^^

-36-

REFERENCES

[1) J. F. Meyer, "On evaluating the performability of
degradable computing systems," Proc. 1978 Intl Symp. on
Fault-Tolerant Computing, Toulouse, France, pp. 44-49,
June, 1978.

[2) L. Svobodova
'
Computer Performance Measures and

Evaluation Methods: Anal~- s and Applications. New York:
American Elsevier, 1976.

[3) D. Ferrari, Computer Systems Performance Evaluation.
Englewood C1 f s, NJ: Prentice-Hall, 1978.

[41 H. Kobayashi, Modeling and Analysis: An Introduction to
System Performance -Evaluation Methodology. Read ng, MA:
Addison-Wese y, 1978.

[5] W. G. Bouricius, W. C. Carter and P. R. Schneider,
"Reliability modeling techniques for self-repairing
computer systems," Proc. ACM 1969 Annual Conf., pp.295-
309, Aug. 1969.

[6] Y.-W. Ng and A. Avizienis, "A reliability model for
gracefully degrading and repairable fault-tolerant
systems," Proc. 1977 Intl S m . on Fault-Tolerant
Computing, Los Angeles, CA, pp. 22-28, June 1977.

[7] A. Costes, C. Landrault, and J. C. Laprie, "Reliability
and availability models for maintained systems featuring
hardware failures and design faults," IEEE Trans.
Comput., vol. C-27, pp. 548-560, June 1978.

[81 J. H. Wensley, M. W. Green, K. N. Levitt, and R. E.
Shostak, "The design, analysis, and verification of the
SIFT fault-tolerant system," Proc. 2nd Intl Conf. on
Software Engineering, San Franc sco, CA, pp. 458-466,
Oct. 1976.

[91 J. H. Wensley, J. Goldberg, M. W. Green, W. H. Kautz, K.
N. Levitt, M. E. Mills, R. E. Shostak, P. M. Whiting-
O'Keefe and H. M. Zeidler, "Design study of software
implemented fault tolerance (SIFT) computer," Interim
Technical Report No. 1, NASA Contract NAS1-13792,
Stanford Research Institute, June 1978.

[101 R. S. Ratner, E. B. Shapiro, H. M. Zeidler, S. E.
Watrlstrom, C. B. Clark and J. Goldberg, "Design of a
fault-tolerant airborne digital computer," vol. II, Final
Report, NASA Contract NAS1-10920, Stanford Research
Institute, Oct. 1973.

r
w

0037-

[111 A. L. Hopkins, Jr. and T. E. Smith, III, "The
architectural elements of a symmetric fault-tolerant
multiprocessor," IEEE Transactions on Com ut., vol. C-24,
pp. 498-505, May Mr.

[121 T. B. Smith, A, L. Hopkins, W. Taylor, R. A. Ausrotas, J.
H. Lala, L. D. Hanley and J. H. Martin, "A fault tolerant
multiprocessor architecture for aircraft," vol. 1,
Technical Report, NASA Contract NAS1-13782, The Charles
Stark Draper Laboratory, Inc., Cambridge, MA, July 1976.

1131 R. A. Ballance and J. F. Meyer, "Functional dependence
and its application to system evaluation," Proc. Of the
.1978 Johns Ho ki ps Conference on Informationn Sciences and
Systems, Ba t more, MD, pp. 280-285, March 1978.

[141 J. F. Meyer, "Models and techniquesror evaluating the
effectiveness of aircraft computing systems," Semi-Annual
Status Report Number 3, NASA Grant NSG 1306, January
1978.

(15) J. F. Meyer, "Models and techniques for evaluating the
effectiveness of aircraft computing systems," Semi-Annual
Status Report Number 4, NASA Grant NSG 1306, July 1978.

[161 J. P. Roth, "Algebraic topological methods for the
synthesis of switching systems, I," Transactions of the
American Mathematical Society, vol 88, no. 2, pp. 301-
326, July	 8.

[171 B. E. Bjurman, G. M. Jenkins, C. J. Masreliea, K. L.
McClellan, and J. E. Templeman, "Airborne advanced
reconfigurable computer (ARCS)", NASA Contract NAS1-
13654, Boeing Commercial Airplane Company, Seattle,
Washington, August 1976.

i

	GeneralDisclaimer.pdf
	0027A02.pdf
	0027A03.pdf
	0027A04.pdf
	0027A05.pdf
	0027A06.pdf
	0027A07.pdf
	0027A08.pdf
	0027A09.pdf
	0027A10.pdf
	0027A11.pdf
	0027A12.pdf
	0027A13.pdf
	0027A14.pdf
	0027B01.pdf
	0027B02.pdf
	0027B03.pdf
	0027B04.pdf
	0027B05.pdf
	0027B06.pdf
	0027B07.pdf
	0027B08.pdf
	0027B09.pdf
	0027B10.pdf
	0027B11.pdf
	0027B12.pdf
	0027B13.pdf
	0027B14.pdf
	0027C01.pdf
	0027C02.pdf
	0027C03.pdf
	0027C04.pdf
	0027C05.pdf
	0027C06.pdf
	0027C07.pdf
	0027C08.pdf
	0027C09.pdf
	0027C10.pdf
	0027C11.pdf
	0027C12.pdf
	0027C13.pdf

