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The purpose of the grant was to provide support to the author so that he

could collaborate with Professor Gene H. Golub at Stanford University during

the summer of 1978 on numerical problems relating to the Drazin inverse and

applications thereof. In particular, the objective was to try to develop a

useful numerical algorithm for the Drazin inverse and to analyze the numerical

aspects of the applications of the Drazin inverse relating to the study of

homogeneous Markov chains an.: systems of linear differential equations with

singular coefficient matrices.

It is felt that all objectives were accomplished with a measurable degree

of success.

A Stable Algorithm For the Drazin Inverse: During the author's stay at Stanford,

the following algorithm was derived and report::d on. The algorithm seems to be

the best (in the sense of stability) in current existence. The algorithm is

based on the work of Golub and Wilkinson (Ill-Conditioned Eigensystems and the

Computation of the Jordan Form, SIAM Rev.,Vol. 18, Oct. 1976, pp. 578-619.) and

is described below.

The first half of the algorithm determines the index of a square matrix

and returns the "index decomposition" of the matrix.

I. The Index Decomposition.

(0) Given Anxn # 0, apply the singular value decomposition to obtain

E	 0
A - U rx r	 V. If r - n, then Ind(A) = 0 (i.e., A is nonsingular)

0	 0 ]

and AD - A 1 - V E-1U and process stops. If r < n, then continue.
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E	 0	 Ali)	 0	

(1)	
D

(1) Form VAV	
VU 0 0	 ( l)	

If All	 4, then A	 0

A	 021 

If A (l) # 0, apply the singular value decomposition to A (l) to obtain
11	 11	 3

(1)	 E1	 0_Y^

A11 = Ul 0	 0 Vl

where Ali ) is nl x nl and E l is rl x rl'

	

A(1)	 0
P 1AP 1 * =	

11

	

A(l)	 0
21

Define P 1 = V so that

If r l = n l , then Ind(A) = 1 and Go To II. If r l < nl , then continue.

E 0 A(2) 0
(2) Form V1Ali)VIN = V 1U1	1	

11	 If Ali )	0, then
0	 0 1	A(2)	 0

21

AD = 0. If Aii ) # 0, apply the singular value decomposition to A(2)

to obtain

E	 0
Ali) = U2 

2	 V2 where
0	 0

All ) is n2 X n2 and E l is r2 X r2 . Define

	

V	 0	 V	 0
P=	 1	 P=	 1	 V
2	

0	 I	 1	 0	 I

*
so that P 2AP2 has the form

i

All) 1 0	 0

P2AP2
*
	A22) i 0	 0

A (2)	 A(2) 0
31	 32

If r2 = n2 , then Ind(A) = 2 and Go To II. If r 2 < n2 , then continue.
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A (k)	 0	 .	 .	 .	 .	 .	 0
i	 32

A (k)
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i A (k)	 A(k)	 .
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(k)	 (k)	 (k)	 0
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A (k)	 0
Form V A

(k-1) V * =	 11	 If A (k) - 0, then AD = 0. If	
y_;

k-1 11	 k-1	
A(k)	

0	
11

21

A (k)	 )0 0, apply singular value decomposition to Ail to obtain
11

A(k) = U 	
0 V

11	
k[Ek

0	 0 k

where A(k) is nk X % and 
Ik 

is rk X rk. Define11

P _ Vk-1 0 P

	

k	 0	 I k-1

so that PkAPk now has the form

(3)

(k)

.

If r  = nk, then Ind(A) - k and GO TO II. If r  < n k , then continue.

This process can continue for only a finite number of steps. When the process

terminates, the final value of PkAPk is called the index decomposition of A.



If PAP* is the index decomposition, then P is unitary and PAP* has the

form

PAP*	
B 1 ] 

i 0

C N

where N is lower triangular with 0's on the diagonal (and hence nilpotent) and

B is either nonsingular or a zero matrix. If B - 0, then A D - 0. If B is

nonsingular, then

B1 0
AD - P*	P

IX	 0
where X is computed by part II of the algorithm.

II. Computation of the X Factor.

Partition X and -CB 1 by rows so that

X1	 r1

X	 x2 and -CB- 
1	

r2

x	 r
m	 m

and let N - [nij].

Successively determine the rows of X as follows. First, solve the

system x 
1 
B - r 1 for x 1 . Then for k - 2,3, ..., m, successively solve the

systems

k-1
xkB - r  - nkj for xk .J11

This concludes the algorithm.
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The techniques utilized in the above algorithm have subsequently been

applied by J. H. Wilkinson ("Note On The Practical Significance of The Drazin

Inverse" Preprint) to produce a direct method for obtaining numerical solutions

of the system of differential equations Akt) + Bx(t) - f(t) where A and B

may both be singular matrices.

A Perturbation Analysis Of The Limiting Probabilities For A Finite Ersodic

Markov Chain In Terms Of The Drazin Inverse. Given any finite homogeneous

Markov chain with transition matrix T, the author had previously established

the fundamental fact that the limiting probabilities were functions of the

elements of a Drazin inverse in the following sense. If A - I - T, then

lim I + T + T2 + ... + Tn-1 I
 AA

n-j—
n

where A# is the group inverse of A (A# is alternate notation for the Drazin

inverse in the case Ind(A) < 1.) The second aspect of the research conducted

under this grant was to utilize the above relation between the group inverse

and the limiting probabilities so as to ascertain the relative sensitivity

the limiting probabilities might exhibit when the original chain is subject to

a perturbation. It was discovered that a simple looking perturbation bound

can be given in terms of A. The major result which was established is given

below.

Let T denote the transition matrix of an ergodic chain L with the limiting

probability (row) vector w. Let L be an ergodic chain obtained from L by

perturbing T so that T - T - E is the transition matrix of L. Let A - I - T,

A a I - T, and w denote the limiting probability vector for L. The object is

to bound the relative error
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W - w
W

Although it is not a consequence of any of the traditional theory of linear systems,

the bound obtainable is exactly analogous to that which appears in the analysis

of a perturbed linear system.

If E is "small" in the sense that 11 EA'^ll < 1 (for an operator norm induced

by a vector norm 11 • 11) then

w- w	 EA11

!I W - 11	 1_11 EA#

The relative error in w is bounded by the relative error in A as follows. If

11 E 11 11 A" 11 < 1, then

A - A I G (A)
w-w	 <	 A -

—WT71 - A A A G(A)

where G(A) - 11 All 11 A^1 11 . Moreover, the above inequalities are sharp in the

sense that there exist nontrivial examples where equality is actually attained.

The obvious conclusion is that if G(A) is small, then the limiting probabilities

are relatively insensitive to perturbations. If G(A) is large, the limiting

probabilities may be quite sensitive to small perturbations. The number G(A) was

defined by the author to be the condition of the chain. It can be demonstrated

that G(A) also arises in dealing with the mean first passage times and other

related aspects of a perturbed chain.

In addition to the perturbation " given above, the following perturbation

formula was derived. If L and L are both ergodic, then

w (I + EA# ) -1 a w - wEA# (I + EA#)

independent of the size of 11 EA# 11.
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Finally, examples were constructed to show that the bounds involving G(A)

give better estimates than the bounds obtainable using the t.aditional theory

based on the nonsingular "fundamental matrix" of the chain. This tends to

reinforce the belief that the introduction of the Drazin inverse into the

theory of finite Markov chains provides a significant advantage over classical

methods.

The results obtained under the support of this grant will be published in

detail in four journal articles and in a portion of the author's soon to be

released text "Generalized Inverses of Linear Transformations" (Pitman Pub.

Co. - coauthor with S. Campbell).
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