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A NEW AIRFOIL RESEARCH CAPABILITY

Charles L. Ladson

NASA Langley Research Center

SUMMARY

The design and construction of a self streamlining wall test section for

the Langley 0.3-meter transonic cryogenic tunnel has been included in the

fiscal year 1978 construction of facilities budget for Langley Research Center.

The design is based on the research being carried out by M. J. Goodyer at the

University of Southampton, Southampton, England, and is supported by Langley
Research Center. This paper presents a brief description of the project.

Included are some of the design considerations, anticipated operational

envelope, and sketches showing the detail design concepts. Some details of

the proposed operational mode, safety aspects, and preliminary schedule are
presented.

INTRODUCTION

In late 1974, a decision wasmade at Langley Research Center to support

adaptive wall wind-tunnel research. This was accomplished by grants to the
University of Southampton to support the work of M. J. Goodyer on the self

streamlining wall concept (refs. 1 to 5), a grant to support the work of A.

Ferrl, and a request for funds for constructing a self streamlining test
section for the Langley 0.3-meter transonic cryogenic tunnel to be based upon

the design technology developed during the University of Southampton research

program.

SYMBOLS

c model chord

h tunnel height

R Reynolds number based on model chord
c

x longitudinal distance

y vertical distanc_
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DISCUSSION

The purpose of the new test section, in addition to providin_ airfoil test

capability essentially fre_ from floor and ceiling interference effects, is to

increase the Reynolds number capability in the facility. This paper deals only

with the design features and capabilities for the new test section and the

reader is referred to references 1 to 5 for details of the concept. The

proposed test section shown in figure 1 would have a 33-cm square test section

and would be interchangeable with the two existing test sections for this

facility. The new test section would make use of as much of the existing

equipment as possible but would include a new minicomputer for the wall shape
control.

Because the new test section must be compatible with the existing tunnel,

its flow area must be about the same but the height and width could be differ-

ent. As shown in figure 2, if the model chord is held equal to its span so

that sidewall effects would be similar for all cases, an increase in chord

Reynolds number can be achieved by reducing the tunnel height-width ratio. By

making the tunnel height-wldth ratio equal to one as compared with the

conventional two-dimensional tunnel ratio of four, an increase in Reynolds

number by a factor of two can be achieved due to the increased chord allowed

while maintaining the chord-span ratio. Although the blockage for this case

is greater, the streamlined wal]s can still correct for it, as evidenced

by the University of Southampton experience. The capability of the facility

in terms of Math number and Reynolds number is shown in figure 3 for the

assumed chord-to-height ratio of 1.0.

The lower portion of this figure, which shows the existing Langley

facilities and the current requJreme-"s of various types of aircraft, has been

presented in reference 6. The currently envisioned region for advanced large

cargo aircraft has been added. The point to be noted here is that the trend

in requirements for transport aircraft is extended into the chord Reynolds

number range of about 80 x 106 for advanced large cargo aircraft such as the

spanloader concept. The envelope for the 33- by 33-cm test section of the

Langley 0.3-meter transonic cryogenic t,mnel is seen to adequately cover this

requirement from the Mach number and Reynolds number viewpoints.

To illustrate the wall contouring capability, a typical streamlined wall

shape is plotted in figure 4 for an NACA 0012-64 airfoil at a Math number of

0.3 and angle of attack of 12° , or a lift coefficient of _bout 1.5. This is a

potential flow solution and does not include any viscous effects. The case is

for model chord c equal to tunnel height h and the two streamlines begin

at + y/h = 0.5. The flexible wal]s are fixed at x/h = 0 and ends at x/h = 4.5.

The quarter-chord of the model is located at the midpoint of the flex wall.

Twenty-one jacks are mounted on each wall, with the downstream three being used

for a fairing into the fixed diffuser. The close spacing of the jack Jn the

region of the model is evident and is necessary to provide as close an

approximation as possible to the streamline shape. For the case shown, the

wall deflection from straight is abou_ two-thirds the maximum design value.

It should be pointed out that there will be limitations to this test section
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with respect to the maximum llft coefficient which can be tested as well as a

Math number limltatloi_ due to shock reflections and sonic velocities reaching

the wall boundary. Sidewall boundary layer will be removed by the same
mechanism as will be used for the existing 20- by 60-cm two-dlmensional cast
section.

A generalized operational schematic is shown in figure 5. A typical sec-

tion of the flex wall to which a position transducer, pressure tap, and jack

are attached is shown on the lower portion of the figure along with the main

computer on the upper portion. The main computer, through appropriate
software programs, uses the measured pressures to compute the internal flow

velocities, the position transducer to compute the external flow velocities,

and sends drive pulses to the motor driven jacks to change wall shape if

necessary. A scanivalve system will initially be used to scan the wall

pressure although the system can be expanded to accommodate an individual

transducer for each wall orifice. A microprocessor based safety system is

used as a backup to the main computer to prevent the flexible walls from being
overstressed, thus protecting them fro: permanent damage.

Two view drawings of the proposed test section ere presented in figures

6 and 7. From the end view (fig. 6) the tunnel flex walls and side walls are
seen to be enclosed inside a plenum chamber which is the pressure vessel. The

vertical s_dewalls are solid and of one piece construction. The flexible top

and bottom walls are attached through a thin, flexible membrane to two push

rods which are connected to a crosshead. The crosshead is actuated by a motor-

driven lead screw. The motors are staggered in vertical and lateral position

in order to achieve the close spacing of the push rods which was desired.
Both top and bottom wall actuating systems are the same. The angle of attack

and traversing wake-survey-probe drive mechanisms are also located on the top

of the test section. The model turntable is rotated by means of two push rods
passing through the pressure vessel while the cantilevered survey probe is

driven by a single push rod. All of the drive mechanisms and instrumentation

are located outside of the tunnel pressure shell so as to be in an ambient

temperature environment. The side view (fig. 7) shows the larger center door

for model access as well as ports for instrumentation leads and boundary-
layer removal flow ducts.

PROPOSED MILESTONE SCHEDULE

At present, the procurement package is being readied for advertistment.

If acceptable bids are received, the contract could be awarded by late 1978

with about a l-yr delivery time. The system is to be bench mounted for

initial checkout of operation, which would extend to the end of 1979. Tile

test section could then be mated with an existing low-speed compressor,

bellmouth, and diffuser to provide some low-speed ambient temperature and

pressure operational experience before committing it to installation in the
Langley 0.3-meter transonic cryogenic tunnel circuit.
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Figure I.- Interchangeable cest-sectlon capability in the Langley 0.3-meter

transonic cryogenic tunnel.
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Figure 2.- Reynolds number variation with height-wldth ratio.
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Figure 3.- Langley airfoil test capability.
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Figure 4.- Typical streamlinedwall shape for an NACA 0012-64 airfoil at
M = 0.3, a = 12°, and c = h.
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Figure 5.- Operation schematic.

Figure 6.- End vlew of test section.
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Figure 7.- Side view of test section.
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