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I.  CONCLUSIONS

A specific second-order digital phase-locked lopp (DPLL) has been modeled as o
first-order Markov chain with alternatives. From the matrix of transition probabilities
of the Markov chain, the steady-state phass error of the DPLL was determined. Ina
similar manner the loop's transient response was calculated for a fading input.

Additionally, o hardware DPLL was constructed and tested to provide a com-
parison to the results obtained from the Markov chain model. In all cases tested, good
agreement was found between the theoretical predictions and the experimental data.

. INTRODUCTION

The phase-locked loop has long been recognized as o circuit with many important
applications,and as such,the description of analog phase-locked loup: {APLL's) has become
well known as a large volume of material has been published to facilitate their use. In
recent years, there has been an increasing use of various types of lcops employing discrete
elements. Among these have been hybrid PLL schemes that utilize both analog and
digital circuitry, Newer loop realizations have been circuits composed entirely of digital
element (DPLL's). The importance of these types of configurations liesin the relative ease

of design and construction and,of equal importance, the ease in which such circuits can be
m~intained,

Unfortunately, the very attributes that make DPLL's attractive from a design stand-
point also contribute to the difficulties in the theortical analysis of DPLL operation. In
this area the available litﬁj)ture is relatively thin, For the area of analysis with a fading
input, Weinburg and Lin “" derive steady-state results for general first~ and second-order
DPLL's, but the analysis is limited by the assumption o small phase error values. In [2] and [3]
steady -state loop performance ir. the presence of Gaussian noise is discussed for specific
digital loop configurations. However, for both of these popers the analysis is limited to
first-order DPLL's only.

In a previous Technical Memorandum [4], the analysis of a first-order DPLL was per-
formed by modeling the loop as a first-order Markov chain. In the following, the ideas and
methods used in this previous Technical Memorandum will be modified to allow a similar
approach to be used for the analysis of second-order DPLL's. It will be shown that a second-
order DPLL can be modeled as a first-order Markov chain with alternatives and thot these
alternatives themselves can be thought of as states in a first-order Markov chain. The
steady -state distribution of the Markov chain alternatives can be determined and from this
distributicn it is possible to find the steady-state phase error of the DPLL. The transient
response of the loop is determined in a similar manner.

Also detailed in the following is the design and testing of a hardware DPLL capable
of either first- or second-order operation. A primary design objective followed in the
construction of the hardware loop was to allow easy alteration of important loop parameters
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to provide insight into their effects on loop performance. The general range of these
parameters, however, was limited to values thought to be useful for an Omega navi-
gation receiver application. It must be emphasized, however, that neither the theory
developed in this TM nor the DPLL design are in any way limited to this particular
application.

", MARKOV CHAIN MODEL OF SECOND-ORDER DPLL

A. Second-Order DPLL Configuration. A block of the second-order DPLL
configuration considered here is shown in Figure 1. This configuration differs from the
first-order loop presented in [4] only by the addition of the S-bit counter and adder
blocks. For this loop, the input is sampled ot the positive-going zero crossing of the
reference clock and then quantized to a value of + 1. The quantized signal is applied

directly to the divide-by-2 (M +N) up/down counter {count up one on plus one and
count down one on minus one) giving first-order phase updating. The quantized

hard-limiter output is also applied to the input of the divide -by- 25 up/down counter
which has the odditional property thot the counter will satu ate at the limit points

12 5-1 -1, Once the counters have been updated their values are summed and the sum
loaded into the (M + N)-bit counter.  The phase of the reference clock is then set to
a value determined by the contents of the most significant bits of the (M + N) L*t
counter.

B. Markov Chains with Alternatives. A Markov chain can be char  rized

by o system containing o number of distinguishable states (finite or infinite)  wvhich
transition to o new state denoted s: from any present state s; depends solel he
present state s;. For the present, assume that the numbe: of states is N, ~ Then
for each state s;, i =1,2,..., N a vector of transition piobabilities may b tten os,
s = PR, i= 2 e
P| (Pi] pi2 piN, ! ]l ’ IN (])

where p., is the probability of transition !0 stute s, given that the present state is
s.. Note that the N transition probahility vectdrs must satisfy the requirement
I

pii _\{‘_O ii=12,..., N

N (2)
-1.0i=1,2,...,N

and I p. =
= Pij

and are called stochastic vectors. These N vectors may be arranged in  matrix of
size N x N to give the matrix of transition probabilities P,
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.
Pl Pi2* PIN

P21 P22 o+ PaN
P = .. . (3)

PNT PN2...PNN
Note that this matrix defines all of the state-to-state transition probabilities for the
Markov chain with a finite number of states,

A Markov chain can also be specified for which each state has one or more
possible vectors of transition probabilities. For each state s,, the possible vectors are
called altemative vectors and transition from the present state to some new state is
governed by one and only one of the alternative vectors associated with the present
state. !n this case, for each state s, there exists Ki alternative vectors,

i=1,2,... N (4)
k=1 K

. ) 2
iR P PiN k=1,2,...

k - s i . L% .
where p,. is the probability fho}thfhe system will make a transition to state s, given
that the phesent state iss. and k' alternative for s is used. As before, eadh of the

alternative vectors of transition probabilities are sfochastic vectors and must satisfy
the conditions,

o 20 0i=12, 0, Nandk =1,2,..., K,
i

Nk ) ;
and L pii"=l.0|=],2,...,Nondk'—'l,?,...,Ki
i=1

The vectors may be combined t. give the K x N stochastic matrix, £,
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C. Markov Chain Model of DPLL,  Use of the Markov chain with alternatives
in the modeling of second-order DPLLYs will be shown with an example. Consider the
DPLL of Figure 1 with M =1, N =2, and S=3, Defining the possible states of the
(M + N)-bit counter as loop states then the loop will have eight loop states while the
reference clock is quantized to 2~ = 4 possible states, These eight loop states form
the states of a first-order Markov chain.  However, transfer from loop state to loop
state is dependent not only upon the present loop state but also on the value of the
S-bit counter. For example, if the value of the S-bit counter is zero, then a + 1
phase detector output will cause the (M + N) counter to be incremented by a value of
+2, Similarly, a -1 phase detector when the S-bit counter is zero will cause the
(M + N)-bit counter to decrement by a value of 2, However, if the value of the S-bit
counter is +1, then a +1 phase detector output will cause the (M + N)-bit counter to
increment by a value of 3 while a ~1 phase detector output causes the counter to
decrement by a value of 1, Since the possible values of the (M+N)-bit counter are
associated with the states of a Markov chain, then the possible values of the S-bit
counter can be associated with alternative actions for each loop state. Thus for the
present case of 5=3, there are seven alternative actions associated with each loop state.

A state diagram of the Markov chain model with zitematives for the DPLL under
consideration is shown in Figure 2. Since thcre are eight possible loop states with each
having seven possible alternative actions, there are a total of 56 alternative acticvns for
the entire loop; or in terms of Markov chain notation, there are 56 aiternative vectors
of transition probabilities. For each loop state the alternative vector to be used is
uniquely defined by the value of the S-bit counter so that the altemative vectors them-
selves can be thought of as states in a first-order Markov chain. That is, instead of
considering the transitions from loop state to loop state, the transitions from loop alter-
native to loop alternative are considered. Thus in the state diagram, Figure 2, the loop
altematives are successively numbered s, ,s.,, ...s., and the possible transition from
loop alternative to loop alternative is assigned a probability as indicated by the directed
arrows. The values of the indicated probabilities are dependent on the state of the loop
reference clock only. The method for determining their value was discussed in [4].

Denoting the ste ady-state probability of loop occupancy of state s, as a, then from
Figure 2,

) T 930 Py T 9y Py (7)

It is clear that there will be 56 such equations which can be put in matrix form as

[Al| * | -[0] (8)
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for which a unique solution does not exist. However, since a, represents a steady-state

probability then
I a. = 1.0 (9)
so that the above homogeneous system in conjunction with this additional constraint

can be solved for the steady-state probabilities a.. If the steady-state probability of
the occurrence of the k th clock state is denoted ‘as R then

L+2 M om N
RIa K=1,2, ...,2 (10)
k
1=L
where L=k-1) [2M7 5 omi+n ()

The distribution of Rk then establishes the statistics for the phase error of thir DPLL.

A similar method is used to find the mean time to loop lock-up for a jiven
initial state, For the loop representad by Figure 2 with a noiseless input signal,
Py TP

2=q3=q4=]

ond P3=Py=9y 79,70

and it is easy to see that regardless of initial state the loop will move to a .table condi-
tion involving a transition loop of,

S38™ 3327 Si9 =S5

Thus, occurrence of any of these four states can be used as defining the lock-up condi-
tion for the DPLL. Denoting T as the mean number of loop tronsitions to a lock-up
condition for some initial state s. o then a set of difference equations can be written in
terms of mean time to loop lock as was done for the determination of steady-state loop
probabilities. For instance if the loop is initially in state S then

= +
T,=p Tos ¥ a Tyg ¥ (12)

Clearly, a similar equation can be written for each initial state. Note, for state

538’ 532, Sl‘)’ and 525 then

T3g= T35 = Ti9™ Tp5 =0

since the loop is defined as being initially in a lock condition.
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D. Application of the Markov Chain Model. The DPLL's steady-state distribution
and transient properties are determine by a solution of the systems of equations given by
(8) and (9), respectively. A computer program PBSTGEN was written to establish the
state-to-state transitions (i.e., the systems of equations)for arbitrary values of M, N, and
S. Using the output of PBSTGEN a second program PBDPL2, solved the system of equations
to find the steady-state phase distribution for the DPLL.  Similarly, the output of PBSTGEN
by another program, PBDPL2T, to solve for the mean time to lock for an abritrary initial
phase offset. In both PBDPL2 and DPL2T, Jacobi's iterative algorithm was used to solve
the system of equations, These programs may be found in Appendix A, Results obtained
from these programs will be presented in a later section of this TM.

v, DIGITAL PHASE-LOCKED LOOP DESIGN

To demonstrate experimentally the validity of the Markov chain model described
in the previous section, a hardware DPLL was designed and constructed. A block diagram
of the hardware loop is shown in Figure 3. All register lengths shown in the block dia-
gram indicate the maximum values and during testing the actual register lengths were alter-
ed to verify the effects of various parameters upon loop performance.

Referring to Figure , the phase cetector will sample the incoming binary signal of
frequency f and then output a count-down signal if the sample is a ZERO or a count-up
signal if the input is ONE,  The count-up or count-down signal is then applied to both
the S-bit saturating counter and the (M + N)-bit counter. Inhibiting logic is included with
the S-bit counter so that the counter will saturate at selectable values of * (2i -1) , i =1,
2, ..., 7. The sample command also initiotes the control logic so that the new value of
the (M + N)-bit counter (following the count-up or count-down signal) is loaded into the
12-bit buffer by means of the TOADZ signal. After settling, the output of the 12-bit
adder will contain the sum of the S-bit saturating counter and the (M + N)-bit counter,
This value is then loaded into the (M + N)-bit counter by means of the TOADI signal.
Note, the value of the N most significant bits represents the phase estimate of the DPLL.
To establish variable phase reference clock, this phase e:timate is compared to the value
of an N-bit counter being clocked at ¢ 2N * § rate by en N-bit binary magnitude
comparator. Upon coincidence of the two inpu.?r words the magnitude comparator output
takes on a value of ONE. Note that this pulse output occurs at on f rate. Notice also
that this loop will operate in the first-order mode simply by mhnbmng the TOAD] signal
to the (M * N) counter. Detailed schematics for the DPLL may be found in Appendix B.

The basic test configuration used for all DPLL experiments is shown in Figure 4.
Since it was primarily desired to determine the steady-state phase error and the mean time
to lock for an initial phase offset, it was possible to use the same clock source for both the
DPLL input and the external reference source. A Sulzer temperature compensated crystal
oscillator was used as the reference source to minimize effects caused by frequency drift
of this source. This source was quantized to binary levels and applied to both the DPLL
variable phase reference clock and a phase shifting network, The phase shifted clock
was then filtered, mixed with noise, and hardlimited to provide a noisy binary input to

-9-
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the DPLL. The phase estimate of the loop is continously stored in a buffer register to
provide a parallel digital phase output. This value is also af »lied to a D/A converter
to provide an analog phase output for menitoring purposes.

V. ANALYSIS AND HARDWARE TEST RESULTS

Solutions to the systems of equations describing the Markov chain model for
the DPLL were performed for various loop paremeter values by means of the computer
programs found in Appendix A. Of prime concem was the steady-state phase error
and the transient response of the DPLL for a fading input. In addition, data was taken
from experiments involving the hardware DPLL to determine both of the parameters for
comparison to the results obtained from the Markov chain model.

Figures 5,6, and 7 are plots of standard deviation of the phase error for the
DPLL as a function of noise-to-signal ratio for various loop parameters. The results
obtained from the Markov chain model are overplotted with tne experimental results
and, as can be seen, there is close agreement between the two. Notice for the case
of 51 the loop is operating in the first-order mode while for S greater than one the
loop is operating second-crder., Referring to these three figures it is seen that for
constart M and N there is a reductic of 5 to 10 dB in loop performance as S increases
in unit steps. Similarly, as S and N are held constant, there is a 5 to 10 dB increase
in loop performance as M increases in unit steps.

Figures 8-14 are plots of the loop transient response for various loop parameters
and signal-to-noise ratios. Again the experimental results are overplotted on the
theoretical prediction:, Each experimenta! data point represents the mean of at least
500 trials and once again there is good agreement between experimental and theoretical
data. A particularly significant result may be fourd from a comparison of Figures 8-10.
From these figures it is seen that ror small values of initial phase offset, the mean time to
lock increases with an increasing value of S. That is, for small phase offsets the first-
order DPLL will achieve lock in less time than will a cecond-order DPLL. This is likewise
found to be true when ..o iparing Figures 11-13 and can be a significant factor in selection
of loop parameters for an application such as an Omega navigation receiver.
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VI, APPENDICES

A. Fortran Programs Used for Solution of Markov Choin Model .
Reference Section lil - C and D,
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B. Binary Phase-Locked Loop Design.

The following sections discuss in detail the design of the hardware DPLL used to
validate the Markov chain model, The block diagram for the DPLL may be found in
Section 1V, Figure 3 of the main text,

a. Binary Phase Detector. Referring to the schematic of Figure B-1, the
binary phase detector operates by sampling the binary input signal fc and producing a
complemented pulse output on either the count-up or count-down line, This function
is produced by three D-type flip~flops as follows, The OPEN SW signal s applied to
the clock input of ff B3 while the binary signal f. is applied to the data input of the
same ff. Thus on a positive transition of OPEN $W the value of fe is latched, giving
the sampled value IN at B3's Q output. The two ff's of A6 are initailly set to the
ONE state , so that when SET LAT latches the input values to the ff's (IN and TN),
one ff goes to the ZERO ttate while the other remains in the ONE state. The SET LAT
signal is followed by the CLR LAT signal which sets both ff's to the ONE state. Thus
the count-up or count-down are produced in a mutually exclusive manner when one
of the ff's of A6 toggles HIGH LOW HIGH while the other remains HIGH.

b. S-bit Saturating Counter,  The saturating up-down S-bit counter is
shown in Figure B-2. The counting function is performed by two serially connected
74193 4-bit synchronous up-down counters, The ouput states of the counter is de-
tected by a logic network to produce the INHIB UP and INHIB DN signals that will
inhibit the UP and DN clock signals respectively. For example, if switches SW1
through SWé are closed, then for a counter state of 0000 0001 the INHIB UP signal
will be TRUE, thus inhibiting the UP clock signal and saturating the counter at that
value. Note, a DN clock signal will still count the counter to the 0000 0000 state.
Similarly, for all switches closed and the counter in state 1111 1111 the INHIB DN
signal will be TRUE and the counter is saturated at that state. If switch SW1 is opened
while all other switches remain closed, then the counter saturation states will be 0000
0011 and 1111 1101 (+3). Continuing in this manner, the counter saturation states
may be selected to be £2i =1, i =1,2,...7 by opening switches SW1 through SW (i-1)
while all other switches remain closed,

c. (M +N) -Bit Counter., The schematic for the (M + N)-bit counter along
with the buffer register and adder are shown in Figure B~3. The (M + N)-bit counter
consists of three serially connected 74193 4-bit up-down counters. Following an UP
or DN clock signal the value of the (M + N)-bit counter is loaded into the 12-bit
buffer register composed of two 74174 hex D-type flip-flops by the LOAD2 signal .
The values of the 12-bit buffer and the S-bit saturating counter compose the inputs
to the adder circuit consisting of three 7483 4-bit binary adders. The ouput of the
12-bit adder is applied to the preset terminals of the (M + N) =bit counter. If the type
select switch is set for first-order operation, the adder output will not be loaded into
the (M + N)-bit counter. If a second-order loop is selected, the LOADT signal will
be applied to the load inputs of the 74193's thus presetting the (M + N)=bit counter to the
value of the 12-bit adder output.
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d. Variable Phase reference Clock. Referring to Figure B-4, six se!ectable
contiguous bits from the (M + N)-=bit counter are applied to one input side of a binary
magnitude comparator formed by two 7485 4-bit magnitude comparators. The other
input to the comparator is obtained from the lower N bits of the two series~connected
74193 counters that are being clocked at o rate of 2N time the input frequency. Thus
the EQUALS output pin 6 of A3, of the magnitude comparator will be a ONE when
the two inputs are equal and this will occur ot a rate equal the input frequency f.. The
circuit formed by A33 and A34 prevent the sample output from occurring at a rate
greater than f.. For example, if pin 8 of A34 is HIGH then when the magnitude
comparator detects the equal condition, pin 5 of A34 is set HIGH causing the phase de-
tector to sample the input signal. The SAMPLE signal is reset LOW by the W%ET
signal at the end of the loop phase update. However, since the (M + N)-bit counter
may have counted up during the last phase update and the counters of the reference
clock have also counted up, it is possible for the magnitude comparator to detect equal
states occurring at a rate of 2N *fc. Thus it Is necessary for the TOADT signal to reset
pin 8 of A33 to a ZERO so that another sample cannot occur unit the reference clock
counter loads a ZERO into that flip-flop.

e. Control Logic. A timing diagram for the necessary control waveforms and
the logic schematic used in their generation are given in Figures B-5 and B-6, respec-
tively. Use of the control waveforms has been described in the previous sections.
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Figure B-4. DPLL Veoriable Phase Reference Clock.
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Figure B-4, DPLL Variable Phase Reference Clock.
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Figure B-5. Control Waveforms.
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Figure B-6. Control Logic.
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