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1. ) INTRODUCTION

During this report period the principal efforts toward
extending the understanding of the flexible walled test section
were directed at

{1} further testing and data analysis with the standard
airfoil model in low speed wind tunnels,

(ii) completing the construction of the automated transconic
test gection.

Testing in the low speed flexible walled tunnel was
continued in an effort to explain the reasons for data discrepancies
at high angles of attack. This work was extended to include tests
of the same model in éhe University's large 7° x 5! low speed tunnel,
mainly to gather baseline wake infoxmation for comparison with
measurexents in the [lexible walled tunnel. ZIn addiéion, the flexible
walled tunnel was used in a new operating mode to generate curved
flow around the airfoil, azllowing the extraction of pureiy rotaxry
derivatives.

The transonic test section was run for the first time during
this report period, although its operation is manual pending the
delivery and commissioning of the computer. No significant operational
troubles have been found during tests up to Mach 1.1.

This report also contains some straight-=wall low spesd
pressure data, for walls and model, which may be of use for checking
interferance correction methods. The ratic model choxd to test section
height is unusually large.

Computer software is included. There are two complete sets:
an old streamlining algorithm suitable.only for low speed testing which

has been used as a check on our normal predictive algorithm, plus an



uvpdated version of the Predictive algorithm with modifications
designed to allow its use at compressible speeds with tha new
transonic test section operated in a nanual mode.

A PDP 11-34 computer has been ordered for use with the
transonic tungel. The computer will have facilities for closed-

loop operation.



2. WALL STREAMLINE CHECKS

Attempts have been made from time to time to account for
the differences between the 0012-64 airfoll data taken in LTPT and
the low speed self streamlining wind tunnel‘{SSWT), particularl§ at
high angles of attack%'zrhé-method of streamlining used in the 3SSWT
tests was the Predictive Method for Rapid Wall Adjustmént3 which has
the advantage over the earlier4 method in requiring only a small
numbay of iterations%

The question arose of vhether the Predictive Method was
bhecoming inaccurate at high angles of attack, and, therefore, an
indszpendent check has been made. The check was by means of the
application to the streamlined contcurs of the older method4 of analysing
the wall imaginary-side static pressure distributions.

The method is applied to each wall separately, and consists
of reproducing the effective contour of the wall by the envelope of the
flows from a set of two dimensional sources spaced along a line parallel
to the test saction axis. The inclusicon of an estimate of the chénge
of wall boundary layer displacemené thickness is optional. The BASIC
programs for tcop and hottom walls are reproduced in Appendix A. This
version of the method curve-fits the wall jack positions (which axe
unevenly spaced) to allow interpolation of the contour at regular
2.54 cm (l-inch) intervals along the whole length of test section. In
addition the imeginary field is constrained to follow streamwise
extensions of the walls upstream and downstream of the ends of the tes.
section by a further 25.4 cm (10 inches). Sources (or sinks) are
positioned along austraight line, each source mid-way between a pair of
interpolated wall cocrdinates. The geometry is sketched on figure 2.1

Tha whole of an imaginary flowfield may be computed once a source set



has been determingd, in practice the pressure on the wall is compuéed
at points mid-way between sources and then compared with the
measured test zection pressure to test whether or not the wall is
loaded. The routines hava been extensively checked against exact
two-dimensional potential flow streamlines.

Computations of pressure differences across wallsg, that is
the difference between real and imaginary pressures, were carried out
for the three representative incidences of 0, 6o and 120. The
streamlined wall contours, real wall pressures and tvnnel reference
conditicns were the input data, taken at the time of the SSWIT tests
4, 7 and 13 @etailed on figure 2.1 of reference 2. As a measure of wal!
loading, the average error in pressure coefficient Cp iIs presented
for the twelve jack positiuns nearest to the model, six on each wall.
" Wall-induced flow errors at the modsl are most strongly affected by

wall loading in these areas. The average errors are:—

o 0 2 12

E%EEL 0.0078 0.0178 0.0182

The implication of these levels of loadings are put into perspective
when it is appreciated that a uniform error along both walls assumed
extended to infinity will induce a streamwise Gelocity error at the
godel and an assogiated erxor in pressure coefficient just equal to
the pressure coefficient imbalance at the walls. While the residual
wall loading after streamlining ig inevitably finite, it tends to be
randomly distributed and, therefore, one would normally expect the
wall induced errors at the model to be smaller than indicated by the

pressure coefficient errors given above.



The largest wall error is at o = 120, where dispérity
between SSWT and LTPT airfoil data is most apparent. Theraefore, more
was carrled out at this angle of attack, ccntiguing the streamlining
Process through more iterations. It was found that no significant
improvement could be made in the matching of real and imaginary flows,
also that the airfoil pressure distributiOn {(which was being monitored
throughout) was not affected significantly by the minor changes in
wall position. It is, therefore, concluded that wall streamlining by
the Predictive Method is satisfactory. Differences in the airfoil
behaviour in the two wind tunnels must be accredited to some other effect
perhaps to sidewall bousdary layer effects or wake—wall interaction
(See section 4).

The assessment of wall induced flow exrors at the model has
not so far been as logical as it might. We are modifying our methods
along the lines developed by Kemp8 and will present in the next
progress report the assessments of blockage, angle of attack and camber
which are induced at the model hy the residual levels of wall loading.

Cne point which was apparent in the work covered by this
section was a feature which has been noted before but which is quite
remarkable and will stand repetition. This is that even though the
tunnel user in no way pre—determines the Wali shapes which are to be
emploved, the shapes dexive from measu?ements solely at the walls,
during the streamlining process the lower (pressure) wall scmetimes takes
on the unmistakable imprint of the airfoil. Sees the contours plotted
on figure 2.2. Presumably the Imprint is present on the upper wall
also but is less apparent bhecause there are fewer inflections, and
because with lift the lower wall moves toward the airfoll, the.upper

wall away.



3. SSWT STRAIGHT WALL DATA

The effects of wall streamlining were illustrated in an earlier
Progress Reportl for example by comparing noxmal f9rce coefficients measured
with straight and streamlined walls. The airfoil was 0012-64 sectioned with
a 13.72 am (5.4 inch) chord, tested in the low speed SSWT having & nominal
test section depth of 15.24 cm (6 inches). The forca coefficiepts were
determined from measured pressure distributions around the centerline of
the 30.48 cm (12 inch) airfoil span. There were simultaneéus measurements
of pressure along the top and bottom wall centerlines of the test section.
In the streamlined-wall cases the wall pressure dieributions are used as
checks on the accuracy of the streamlining. The wall pressure data taken
with straight walls can be used as initial inputs to streamlining

3,4

élgorithms However, the data has more general usefulness because the
ratio of airfoil chord to test section depth at 0.9 is unusually high. The
straight wall interference is, therefore, highex tﬁan usual, and thé main
reason foﬁ presenting the data is because éhe airfo%l and perhaps wall
Pressure data can be used as severe test casés in the evaluation of wall
interference correction methods.

At this.point a word of caution should be noted which arises from
what could be regarded as a fine detail of -styxaight wall testing of any
kind. The normal practice in any wind tunnel is to diverge the test sectio:
walls slightly in order to compensate for the growtb of wall boundary layer
’In advance of the tests reported in this section the walls of SSWT were
adjusted to give constant velogity along the empty: test section at the
correct unit Reynolds pumber. With'the nodel present the perturbations
in boundary layer thickness on the top and bottom'walls produce houndaries
which axe not effectively stxaight. The notion is discussed ?n referencs 4

and is illustrated on figure 18 (a) to (¢} of that reference. In order to

produce effectively straight boundaries in the presence of the model the

- f -



walls should be moved to compensate for changes in displacement thickness.
This was not done. The cautionary ncte is raised bécause correction
theories are based on the assumption of effectively straight boundaries.

The airfoil pressure.distributions are given on figures 3.1 to
3.13 for the angle of attack range +120 to —60. The test Mach number was
about 0.1, and the chord Reynolds puwber in the range 285,000 to 290,000:
The forée and moment coefficients quoted on each figure are derived fxom
the integrated presgure distributions. The corresponding top and bottom
wall centerline pressure distributions are shown on figures 3.14 to

3.17.



4; FURTHER LOW SEEED ABRODYNAMIC WORK

There has been a continuing effort to improve the understanding
of previously reported low speed aerodynamic_da’gal’2 obtained on a NACA
0012-64 ée;tion in SSWIL. In comparison w;th the LTPT reference‘data-there
seem to ke angle of attack errors present, small with an unstalied’airfoil
and laxge when'stalled; There are of course othexr possible'reasons for
discrepancy, including inadequate streamlining although the work of ééction
2 above had gone some way toward removing dsubté of this kind. However, it
was concaivable that the walls were impressing an intorrect flow pattgrn on
the model. While tﬁis flow pattern was not correct it was nevertheless
apparently- correct when judged by wall measurements alone. "It was,
therafore, decided to gather moré information on the "free air" pexrformance
df the airfoil, specifically wake measurements, for comparison with SSWT
neasurements.

Weake surveys were made on the NACA 00L2-64 section of 13.71 cm
{5.4 inch] choxd and 2-22 agpect ratio din SSWf at ¢ = + 120} +60,,00 and
“60 and at a chord Rsynolds number of approximately 287,000. The SSWT
flexible walls were set stralght and also streamlined.

Tests were'also carried out in thé Low Speed 2.13 metre x 1.52 metre
(7et. x 5ft) Wind Tunnel (7 x 5) at Southampton University using the same
model but with two 30.48 cm (1 foot) wing extensions and smali end plates
as shown in figure 4.10. Note that the model is mounted upside'down relative
+o LTPT tests. This wing model of span .91 metre (3 feet) and 6.66 aspect
ratio was tested through the angle of attack rangenoo to - 12° at.the
maximmnsdstainébleReynold‘s'number of approximately 236,500.’ Positive
angles of attack runs were not attemptéd'due to poor surface contours o
one wing extension. The choice of a¢ kept the faulty surface to thé préssure

h
side. With a test section height to chord ratio{ /c] of 11.1, ISW? 7 x 5



results are assumed to be interference free. HNote $SWT_h/c % 1.1.
Transition strips were fitted to the models at all times.

The velocity defect in the wake was measured with a static
probe and Kiel probe of standard design. The traversing plane was 1.25 .
chords downstream of the model trailing edge and 2.28 em { .9 inch) to the
side of nid span. Tunnel reference pressures were taken upstream of the
model in SSWT and in line with the model for 7 x 5 tests. Form drag was
calculated by numerical integration of the wake's momentum defect (See
pages 35§’~ 365 of reference 7).

SSWT tests aé o = +12° reveal a large wake due to flow separation.
Streamlining of the walls allowed the wake to expand, possibly with earlier
separation on the airfoil, untii it practically filled the tummel from
floor to ceiling (See figure 4.1). The extent of the wake was surxprising
and may have been enhanced by sidewall separations. Interaction of wake
and flexible wall boundary iayers would nullify any attempts to streamline
the walls downsiream of the modal. This discove;y may account for the
discrepancies in data at.high angles of attack. Presumsbly for all points
downstream of the measuring plane, in the "streamlined wall" case nowhe?e
in the test section ig there z region of potential flow. The flowfield is
very roughly as sketched on figure 5{a) of xeference 4..

In order for the streamlining criteria to be wvalid it is a
requirement that the flow just ocutside the flexible wall boundary layer be
irrotational. Therefore, the "streamlining" at the higher angles of
‘attack may be invalid. This experience suggests that the flow at the
downstream end of the test ;ection should be monitored to test for the
existence of two potential zones between the wake a2nd walls.

SSWT tests at lower values of o show more acceptable wake profiles.

For @ = +5  the wake occupies only 17% of the test section. height at the



traversing plane and experiences a small vertical displacement with
streamlining {(see Figure 4.2). Straight wall data for o = Ooand,i;ﬁu
shows the extent of flow pexturbations in SSWT (see Figure 4.3).

These are considered acceptable. HNote that streaﬁlining of SSWT removes
any freestream velocity error due to wake blockage which is presént with
stréight walls, signifying the elimination of blockage interference

{see Figure 4.2).

Comparisons of 7 x 5 and SSWT wake profiles for ¢ = 12° ana &°
are made in figures 4.4 — 4.5. The 7 z 5 data shows some flow velocity
anomolies particularly at o = 12D , due to inherent tunnel faultgs., Fox
both values of o the wake is displaced wvertically by a small amount in
SSWT compared with 7 ¥ 5. For o = 60 . correction for the freestream

velocity error in 7 x 5 data reduces CD to 0.0246 improving comparisoh
Q

with SSWT results. Uanfortunately, few conclusiqns can be drawn f£rom Fhese-
comparisons since o is set geometrically and alse the model was a different
way upvin each series of tests.

Integration of wing pressures round the mid span point produced
the 1ift coefficlent data plotted in figure 4.6 LTPT and 7 x 5 data are_
compared, with poéitive and negative angle of attack datz shown together
due to a paucity of high negative a LTPT dat;. Figure 4.7 shows a
comparison of ITPT and 7 x 5 model pressure distributions for o- = GOand 120.
The suction peak is the area of major difference for both 4. For o = 12°
the 7 x 5 tests veveal a similar pressurée distribution to SSWT results. For

o =8° the 7 ® 5 data has the appearance of a lower effective angle of

I
attack, also the LTPT data has a very localised suction peak which is
sensitive to Reynold's rumber { see Figure 4.8}

There are several approaches to analysing the 7 x 5 data. Firstly,

consider the rxaw data. For o 5_80 there is a reducktion in lift curve slope

- 10 -



due to classical Finite span effects. This is illustrated by Ffitting
least sguare curves to all the available sets of Cr, data in the. o range

+&° to -8°. The slopes are:—

Data Source Slope per radian

SSWT Streamlined-—

Wall Rc = 287,000 4.767
LIPT Rb = 265,000 4.Qlé
LIPT Rc % 285,000 4.847
LITET Rb = 315,000 4.625
x5 th = 236,500 4.062

The threes sets of LTPT data are plot?ed in Figure 4.85.

A correction to the aspect ratio to account for end plates was
apélied to the 7 x 5 mode16 by assuming elliptical loading over the
correcged wodel's span giving a corrected 1ift curve slopé of 4,904 per
radian. This compares favourably with the 1ift ;urve slope of 4,916 for

LIPT deta at the closest Reynold's number of 265,000.

. o}
Surface flow visualisation ont the 7 x 5 model for o = -6 and ~ lf

. . R 0 . .

is shown in Figure 4.10. 2t o = -6 flow was-uniform over the entire

span on both modesl surfaces, but at o = - 12 the separated flow region on

the sucéion surface had some strong three-dimensional componéntg as could
be exﬁected with the shallow end plates. The flow pattern ié symmatrica
about the mid span point.
A second approach to 7 x 5 data analysis might be to correct o
by matching CL from the TTPT and 7 x 5 tests, and then to compare CD values.
Thirdly, an effective 7 x 5 model aspect ratio could be found

which eliminates any 1ift curve slope errors. A downwash correction could

then be calculated for a finite span wing with no end plates. The

- 11 -



effective angle of attack would yield new values of C;, for comparison.
These two approaches have yvet to be attempted.

Work to correct SSWT angle of attack is continuing with an
investigation of wing tip loading to allow the application of a
downwash correction at mwid span.

Unfortunately, Rc has not been matched in all SSWT, 7 x 5 and
LTPT tests. The effects of these differences are ambiguous. Variation
of ¢ with R_for 7 x 5 tests at a = -12° was as expected, that is a
gradual incresse of Cp with RC as shown in Figuré 4.8. But the CD data
shows no c¢lear trend with Rc’ similar to LTPT data. Note that in LTPT-
the 1ift reduces with increase of R_ at & = 1_60.

Force data was taken on the 7 x 5 model but this has yet to be

fully analysed.

- 17 -



5. SIMULATION OF STEADY PITCHING

The range of flows which can be generated in a flexible walled
wind tunnel has béen extended by curving the test section axis in ordexr to
simulaté steady pitching of the model. The baées for this type of testing
were laid down by the userg of the Langley Stability Tunnelg.

The ideal test sectiocn would _have these featurés -

(1) be curved along its centerline

(2) contain forced vortex E£low

(3) have streamlined walls to eliminate wall interference.

The Langley Stability funnel had 1 and 2 above; the tests in SSWT‘with a
high blockage model (C012-64 with c/h = 0.9) had features 1 and 3. It
should be noted, howevex, that as there wag no streaﬁlining‘critexion
a;ailable at the time, thé policy was adopted of curving streamlined wall
contours which had sarlier been determined in non-pitching tests. The
walls may, therefors, not have been curved to proper streamlines in pitching
flow.

The test section axis was arced about an axis below the airfoil
quarter-chord point, with several radii qf curvature to simulate various
negative values of pitch rate. The jacké immediately above and below the
c/4 point were not moved, therefore the test section was pulied down by
varying émounts particularly near the ends. Curvature in the adapter
sections {upstream of jack 1, downstream pf Jack 16} took up the local
misaligmment between the walls and the fixed contraction and diffuser.

The test section and model are sketched cn the right‘of Figure 5.1,
showing straight and curved test sections. The test data is bresented in
the form of the changes in the normal force and pitching moment
coefficients AC and ACM respectively, as functions of the measurs of pitch

N

rate sij. Data was taken at two angles of attack. Forces and moments

- 13 -



vere determined from inteqrated airfoil pressures. Plotted over the
data are lines which show the variations of ACN and ACM:with q/U°°
pradicted by thin airfoil theory. The agreement between theory and

experiment is encouraging despite the several recognized weaknesses in

the test arrangement.

- 14 -



6. TRANSONIC SELF-STREAMLINING WIND TUNNEL (TSWT)

6.1 FIRST RUNS

The new test section for the transonic induced flow tunnel wa:
completed during this report pericd. Two photographs are included,
figgres 6.1 and 6.2. Figure 6.1 shows the test section region with the

_near sidewall paitly disassembled, and an airfoil model in position.
Much-of the test section instrumentation is visible. Rumning off to £t
left of the figure ave wiring harnesses from Scanivalve transducers, )
stepper motors and lipnear potentiometers to readout and control eguipmen
just off the picture..

Temporarily the jacks are being motored individually. -The jack:
are switch-selectable and as each ig selected the output of its position
measuring potentiometer is displayed digitally. The initial exercising
of the Jjacking mechanisms has shown that at the closest jack‘spacingg

sufficient wall curvature can be generated before the motors stall. Early

tests with a jack prototypel had shown that the walls could not be
damaged by a Jjack motor at stall toxque.

Figure 6.2 is a close-up of the central region of the test section.
The near sidswall sections are removed and constructional_details are
clearly ;isible. The details can be related to the drawings 5n figures £.3a
to 5.3d of reference Z.

Tﬁe initial wind~on tests have been carried out with an eupty
test section, merely to explore the upper Mach number limit. For this
_purpose a throat was produced by the upstream jacks, and a Mach number of
1.1 reached with ease along the remaining length of the test section. Some
minor leaks were revealed, through small gaps in sideplates, which were

being corrected at the end of this report period

= 15 -~



The next series of wind-on tests will be aimed at streamlining
the walls with an empty test section and at various-Mach numbers up
to about 0.8. Present experience has shown that a continuous run time of
about 3 minutes is available at M = 0.8. This time shoﬁld be sufficient

for Fully automatic wall streamlining, wind on.

- 16 ~



6.2 TRANSONIC SELF-STREAMLINING WIND TUNNEYL CONTROL SOFTWARE

2,3
The wall setting algorithm described in previous reports '

has been linked with a manual control system for TSWT. The basis of the
control system is exactly that for SSWT.

An iteration process starts with the sampling of wind tunnel
pressures. This data is fed manually to the contrxol system software and
analysed. The wall setting output is then used to manually reset the
tunnel walls. The procedure is repeated until streamlining is achieved.

Alterations to the SSWT contrel software2 included detailed
changes of data input and cutput and the introduction of compressible £}~
correction texms in the wall setting algorithﬁ. Alsc the TSWT controi
software has been generalised.

Linearised compressible f£low theory yvields the compressibility
factor B . By scaling wind tunnel wall pressure coefficients arnd ordinates
by the term 1/5 ; all flow calculations can be treated as‘incompressible foxr
suh-critical Mach numbers up to about 0.8. ' This sgaling
is included in the TSWT control sofitwaxe, with a compressibi;ity correction

to tunnel dynamic head g. This has the form

q
B R Iy 2T o SO

9x
from isentropic flow theory.

The format of the data input now accommodates Scanivalve pressure
transducer data. A check of the four pressure transducer calibrations
is performed with e;ch Ctunnell run.

Wall setting output is in units of volts, since the TSWT wall
position is monitored by linear potentiometers. Integrated wing pressuxe
forces are computed with each program run using subroutine LIFT wﬁich is

a standard wing pressure analysis program.

- 17 -



The complete TSWT control software is listed in Appendix B.
Its link with the TSWT scaniwvalve svstem and jack contxol system will
reduce the wall streamlining time to less than the previous SSWT kest
of 240 minutes. Duéing 1979 the TSWF control system loop will be closed,
with further large reductions in the time.to streamline. Further software
devélopment will involve the breakdown of one main program into managable
subroutines. One possible configuration of the cloged loop control

software is as follows:

File Type Function
Main Program Control and seguence subroutine calls
Subroutine 1 On—line data aguisition
Subroutine 2 Data input presentation
Subroutine 3 Wall setting calculaticns
Subrxoutine 4 Residual error analysis
Subroutine 5 Wing forces calculations
Subroutine & Wall movemeﬁt control

Subroutine 7 Data output presentaticn

....18_



PRINCIPAL CONCLUSICONS

Checks on the Predictive Method fqr Rapid Wall Adjustment have
revealed that the wall streamlines szlected by thismethod are
satisfactor&.

Wake surveys behind an airfoil model in near Ffree air conditions
and in SSWI are roughly the same. Imperfectiéns in the test
environment prevent a more positive claim. However, the surveys
in SSWT suggest that a reason for 1lift data dispariﬁf may be éhe
absence of zones of potential flow near the downstream portions of
the flexible walls when the medel was at a high angle ;f attack.
Measurements of purely rotary derivatives with high blockage models
in a streamlined test section agree well with thecry.

The operéting mechanics and the empty-test—section aervuyucwses we
the new transonic flexible walled test-section have provead

satisfactoxy.

- 10 -



SYMBCLS

a = Lift curve slope
o = Model chord
Cc = Chordwise force coefficien?
CD = Pressure drag coefficient
CD = Form drag coefficient

o
CL = Lift coefficient
CM = Pitching moment coefficient about airfoil leading edgé
ACM, ACN = Change in CM or CN due to pitching
CN = Normal force coefficient
h = Test section height
M T = Freestream mach no.
q = Dynamic head, or xate of p%tch.
R, = Chord Reynold's nurnbexr
U = Local velocity
LU = Reference velocity
x = chordwise position downstream of leading edge.
o = Angle of attack
g = Compressibility factor = V1 - u%
Suffix I = Incompressible

C = Compressible



REFERENCES

5.W.D. Wolf

S.W.D. Wolf and

M.J. Goodyer

M. Judd, S.W.D. Wolf

M.J. Goodyer

M.J. Goocdyer

M. Judd, M.Jd. Goodyer

and 5.W.D. Wolf

S.F. Hoerner and

H.V. Bonst

W.J. Duncan, A.S. Thom
and’ A.D. Young

W.B. Kemp

- 21 -

'Self Streamlining Wind Tunnel -

Further Low Speed Testing and Final
Design Studies for the Transonic
Pacility' NASA CR-158900 June 1978 .
'Self Streamlining Wind Tunnel -

Low Speed Testing and Transonic Test
Section Design' NASA CR-145257 October 1877
'analytical Work in Support of the

Design and Operation of Two Dimensional
Self Streamlining Test Sections?

NASA CR-145019 July 1976

'"The Self Streamlining Wind Tunnel’

NASA TMX-72699 August 1975
'Applications of the Computer for on site
Definition and Control of Wind Tunnel
Shape for Minimum Boundary Interference’
AGARD Confarence Proceedings No. ?10
Numarical Mefhods and Wind Tunnel Testing,
June 1976.

'Fluid-Dynanmic Life'

Publishad by Hoerner

'Mechanics of Fluids'

Fublished by Arnold

"Toward theACorxectable - iIntexference
Transonic Wind Tunnel'. AlAR

Ninth Aerodynsmic Testing Conference

June 1976



J.D. Bird, B.M. Jaquet

and J.W. Cowan

22 -

'Bffect of Fuselage and Tail Surfaces
on I.;ow—Speed Yawing Characteristics

of a Swept-Wing Model as Determined in
Curved-Flow Test Section of Langl;ay
Stapility Tunnel:' WACA TN 2483, 1951

(Supérsedes NACA RM L8GL3, 1948).



APPENDIX A

Listing of the SSWT software WALLS 1, WALLS 2, WALL Pl and WALL P2

WALLS

WALL D

WALLS 1

S0

146,150

170,180

200,210
230,240

250,260

270,280

is used to analyse the wall adjacent to the airfoil suction surface,

for that adjacent to the pressure surface.

DATA

WALL P1

60

110,120

140,150

170,180

2C0,210

220,230

240,250

PRECEDING PAGE

test sectiog reference pressure (inches alcohol
below ambient), ambient pressure (inches mercury),
temperature ©

sixteen jack position feadings {inches) with walls
curved.

gixteen values of boundary layer displacement
thickness (inches) at wall orifices, empty Ctes
sectio;, correct uwnit Reynolds nunber.

jack positions (inches), walls straight

wall prassures, inches alcohol below ambient

wall orifice rositions measursd downstream (in
iﬁches) from wall leading edga. No crifices at
0.27 and 39.88.

wall position monitor points. 0.37 is upstream

anchor point

BLANK NOT. FILIES

Al
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420
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FIG. 5.1 RATE - OF - PITCH DERIVATIVE MEASUREMENT BY FLOWFIELD CURVATURE
AND WALL STREAMLINING.
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