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SUMMARY

A study was conducted to define the technology and data needed to support

the introduction of advanced composite materials in the wing structure of

future production aircraft. In the course of the study, diseussion.s were

held with key personnel from airlines, the Federal Aviation Administration

(FAA), and Douglas Aircraft Company management. Their participation

ensured that the study findings are representative for a broad segment of
the commercial transport aircraft community.

The study accomplished the following:

•	 Definition of acceptance factors

•	 Identification of technology issues

•	 Evaluation of six candidate wing structures

•	 Evaluation of five program options

•	 Definition of a composite wing technology development plan

•	 Identification of full-scale tests

•	 Estimation of program costs for the total development plan

•	 Forecast of future utilization of composites in commercial transport

aircraft

•	 Identification of critical technologies for timely program planning.

A comprehensive list of acceptance factors was . formulated for the..manu-

factures, airlines, and FAA. . Concurrence with the factors listed has been
received from cognizant personnel from each of the three sectors.

A set of 24 issues was derived from the acceptance factors to form the basis

for a technology assessment. Each issue was examined to determine which

technological or economic problems must be resolved by a composite wing

technology prograrn. Recognition was given to prob?ble contributions to the

technology by other composite programs in Government and industry so that

they need not be repeated in a composite wing technology program.
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Eight of the issues were classified as key issues-

0	 Durability

0 Damage tole. ran"

• Crashworthiness

• Repair of major damage

46	 Lightning protection

• Molding methods

0	 Nondestructive inspection methods

Large-scale tools.

These key issues are addressed in the development plan. Other issues will

be addressed in the. process of conducting a composite wing technology

program, as defined herein.

Six candidate wing structures were evaluated for the baseline wing compp-

nent. The DC-9-32 wing was selected on the basis of size, availability for

commercial transport, availability of design data,, and . the presence of

design features that cover a realistic and comprehensive range of composite

wing technology.

Five program options were formulated. Based on the technology assess-

ment, it was determined that a common thread existed for all options-

9	 Design synthesis

0	 Development tests

•	 Manufacturing technology

0	 Operational technology

e	 Detail design.

2



The program options vary only in the si„e and quantity of full-scale hardware

produced, in the amount of verification. testing conducted, and in the scope

of flight development and flight evaluation. Details of the program option

which was selected for the composite wing technology program are defined

in the development plan.

A conceptual composite wing box was designed which accounted for inter-

face with adjoining structure and aircraft subsystems .. A 2$-percent weight

saving was realized for this design compared to the existing metal wing

design.

A development plan has been defined for the DC-9-32 composite wing box.

Development activities are divided into six phases:

Phase Z

Phase II

Phase III

Phase IV

Phase V

Phase VI

Preliminary .Design

Detail Design

Manufacturing

Full-Scale Tests

F' light Development

Flight Evaluation.

Full-scale semispan composite wing box hardware will be fabricated rather

than full-span hardware. This approach will eliminate the need for

opposite-hand tools and reduce the quantity of hardware produced., which

will lower costs.

The following full-scale tests are specified:

e	 Static ultimate

•	 Durability and damage tolerance

•	 Crashworthiness

e Repair of major damage

r	 Vibration.

The prodnct4on facilities and equipment forecast for composite wing strue-

tunes was made with the awareness that primary wing structure would be

3
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preceded by secondary and medium primary structure utilization throughout

the airframe. A total floor "space buildup to 55., 742 square meters (600, 000

square feet) dedicated to composite structures would be required to produce

a production airplane with composite primary wing structure:

Total program costs for a composite wing development program are est}mated

at $74. 9 million (ROM) based on 1978 dollars. Of this total, 32 percent is

allocated to the Phase I preliminary design and 45 percent to the Phase III
manufacturing (includes tooling). The remaining 23 percent is approxi-

mately evenly divided among the other four phases,

A road map is presented for utilization of composite structures on future

Douglas production commercial transport aircraft, This road map reveals

Company plans for a logical progression to a composite wing box on a short-

haul transport, planned for first production delivery in 1990.

The study concludes that it is highly improbable that a production commit-

ment will be made until a comprehensive composite wing development

program has produced data and technology sufficient to resolve the

economic, programmatic, and technological risks identified b'y this study.

If the study objective of a composite wing box on a 1985-1990 production

aircraft is to be .realized, activity must be started in 1979 on the following

key issues for which data are needed at the start of the preiiri}inary design

(Phase I) or which must be started early due to the time required to produce

data and develop technology;

• Repair of major damage

•	 Impact damage (included in durability issue)

•	 Damage tolerance design studies and tests

•	 Innovative molding methods

•	 Tooling methods for large composite structures

•	 Lightning protection,.

4



Activity on the remainder of the durability issue and the other two key issues
of crashworthine.ss and nondestructive inspection methods can be started
later in Phase I since basic data for these technologies are available to
support early preliminary design tasks.

5



FACILITIES AND
EOUIPMENT

DEFINITION

V
i

SECTION 1

INTRODUCTION

The overall wing study objectives are to study and plan the effort required

by manufacturers of commercial transport aircraft to accomplish the

transition from current conventional materials and practices to extensive

use of advanced composites in wings of aircraft that will enter service in

the 1985 - 1990 time period.

Specific wing study objectives are to define the technology and data needed

to support an aircraft manufacturer's commitment to utilize composite

primary wing structure in future production aircraft and to davelop plans

for a composite wing technology program which will provide the needed

technology and data.

Figure 1- 1 presents a task flow diagram to achieve study objectives.

FINAL REPORTACCEPTANCE
FACTORS

[TECHNOLOGY
ASSESSMENT :^:

DEVELOPMENT PLAN ORAL
OUTLINE	 REVIEW

CONCEPTUALI	 DEVELOPMENT PLAN
DESIGN	 J	 REQUIREMENTS

• DESIGN
• TEST• MATERIALS
• MANUFACTURING

FIGURE 1-1. COMPOSITE WING STUDY FLOW DIAGRAM
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...SECTION 2

ACCEPTANCE FACTORS

A, manufacturer's decision to utilize composite wing box . .str•ucture in corn-

inercial transport aircraft will be strongly influenced by the attitude of the

airlig,ie operators and the FAA. Each .considers many of th( ,; same factors,

rn,^;t notably structural. integrity. Factors related to cost are of primary

concern to the manufacturers and the airlines.

The acceptance factors listed in Table 2-1 form the basis for the technology
assessment to identify those issues which must be resolved to gain airline
acceptance, approval for airworthiness, and a manufacturer ' s commitment
to production of composite wing box structure.

AIRLINE ACCEPTANCE FACTORS

During the past 2 years, the airlines' attitude toward advanced composite
structure has been. changing from skepticism to a positive approach of
wanting to learn more about the new materials and to prepare for their
eventual introduction as production structural materials. To quote one
airline Engineering Vice President, "It seems .inevitable that we are going
to have to take advantage of these new materials to reduce fuel consumption.
If this is the case, then we must start the gradual introduction now on
secondary structure so that we can be prepared for more extensive utiliza-
tic)n inthe future. " Toward this objective, a number of airlines are currently
flying advanced composite structure in the following components;

•	 DC-10 rudder

•	 DC-10 vertical stabilizer trailing edge pane l

•	 DC-10 pylon fairing

•	 B737 spoiler

•	 B707 flap vane

•	 L.-1011 a ileron fairings

•	 DG-9 nacelle cowl doors.
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Douglas has contacted a -large number of airline officials to determine what
they feel is nece.ssary before they could aceE Ot an. advanced composite

primary °wing box structure. The . contacts have been made by several

Cornpany departments.

The airlines' acceptance of composite structure appears to depend on

assurance of structural integrity and cost. The general consensus is that

if the manufacturer and the FAA are satisfied with the level of structural

integrity of composite structure, the material can be proven acceptable

to the airlines.

On a cost basis, the airlines are concerned with acquisition costs, mainte-

nance costs, inspection costs, special equipment and facilities, out-.of-

service time, and replacement costs. An excellent in-depth discussion of

this subject is provided in Reference 1.

Cost-oriented airline acceptance factors have been identified under the

following general headings:

r Reliability —Unscheduled time out of service is an extremely high Lost

factor. Data must be provided to the airlines to assure dispatch reli-

c_bility equivalent to that of conventional structural materials.

r	 Maintainability — Maintenance and inspection costs fall in this category.

Airlines will expect to see evidence that composite wing box. structures

can be maintained as readily as conventional aluminum structure.

Inspection is a major concern. The airlines need to know what equip-

ment they must acquire for inspections, and must train personnel to

conduct the inspections. The manufacturer must supply them with

inspection methods and FAA-approved intervals.

•	 Durability —Durability in a service environment must be proven. Chaste

laboratory tests must be supplemented with environemtal exposure tests

(heat, cold, ice, slush, skydr.ol, fuel, etc.) to provide credible evidence

of durability.

•	 Repairability — The airlines will not accept structure unless workable

repair schemes have been demonstrated. Repair of major damage of

11



composite s:truetiire is the fbremost concern. Facilities and equipment

must be available at a major repair depot, and cost effective repairs

must be accomplished in the same time span as for aluminum wing

structure repairs. The airlines currently consider the repairs of

major damage as a major risk it 	 and evidence tnust be presented

that major damage to composite wing box •structure can be repaired

without. incurring time -out-of-service costs greater than the equiv-

alent coste for metal structure.

Warranty — The airlines expect the manufacturers to provide the same

level of warranty as for aluminum structure. During recent years,

warranty coverage for cornmercial transport aircraft has escalated

for conventional structure due to the improvement in structural designs

on successive riew models. The airlines feel that this upward trend

should not be interrupted by the introduction of composite st-uctures.

7	 Tangible. Benefits — The airlines must be presented with evidence that

they will benefit financially through the utilization of composite

materials. There is a risk factor associated with new designs and the

composite wing box will not be wanted unless a payoff is apparent. This

should be expressed in terms of reduced fuel costs, higher payload

capability; reduced maintenance costs, and lower replacement costs.

•	 Acquisition — The original equipment costs must be reasonable to allow

the aircraft to be competitively priced.

FAA. ACCEPTANCE FACTORS

FAA acceptance factors for advanced composite materials have been well

defined. Guidelines have been drafted and FAA. Advisory Circular AC20-107,

entitled "Certification Guidelines for Civil Composite Aircraft structures,  ''

has been published (Reference 2). These guidelines are considr,-red accept-

able to the FAA for showing compliance with certification requirements of

cavil composite structure. It is expected that the guidelines will be modi-

fied periodically to reflect advances in technology.
a

Table 2- 21ists the general topics for which guideline material is provided

and includes an index to applicable FAR requirements.

12
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TABLE 2-2
CERTIFICATION GUIDELINES FOR CIVIL COMPOSITE WING AIRCRAFT STRUCTURES

• MATERIAL ALLOWABLES

• PROOF OF STRUCTURE — STATIC

• PROOF OF STRUCTURE — FATIGUEIDAMAGE TOLERANCE.

• CRASHIS'ORTHINESS

• FLAMMABILITY

• LIGHTNING PROTECTION

i PROTECTION OF STRUCTURE

• QUALITY CONTROL

• REPAIR

• FABRICATION METHODS

FAR 25.603, 25,613 AND 25.615

FAR 25.30.5 AND 25.307(a)

FAR 25.57.1 (PROPOSED NEW AND APPENDIX)

— FAR 25.561„25.72.1, 25.8011b) (e), AND 25.963(4)

— FAR 25.863(5).  (5), 25.667, 25.1191 AND 25.1193

-- FAR 25.581

— FAR 25.609

— FAR 21.143

— FAR 121.367(a) AND FAR 43.13(a)

— FAR 25.603 AND 25.605

MANUFACTURER ACCEPTANCE FACTORS

The decision to produce composite wing box structure will be made at the

highest management level. Both technical and economic factors will be

assessed in the evaluation process.

The first factor to be addressed deals with the motive for the utilization of

composite wing box structures. Manufacturing cost data and the increase in

aircraft performance due to weight savings will be assessed to determine if

the benefits outweigh the risk of a new venture.

The second factor to be considered is the proven structural integrity of

composite wing box structure. Management must be presented with evidence

that the strength, reliability, durability, damage tolerance, etc. of

composite structure have been demonstrated to be sufficient to satisfy

concerns of the manufacturer and airline with function and safety.

Additional evidence with respect to maintenance, inspection, and repair-

ability is required to assure that the structural integrity of the composite

wing box can be maintained throughout the life of the aircraft. The evidence

should also demonstrate that compliance with FAA regulations can b-

accomplished without undue delays in meeting the schedule or unanticipated.

.expenses.

13



Once the benefit motive and technical feasibility have been established, the

manufacturer must have the capability to design and produce the com. posite

wing box structure. Management must he confident that a love-weight design
can be created, tools . built, certifiable components manufactured, and the

airplane certified in accordance with delivery schednles and within the

predicted costs to ensure that the motives for utilization of composite .
structure have not been compromised.

The capability required covers a broad spectrum in the field of composite

structures.

•	 An engineering data base for composite structures must be available

to support early design tasks and to minimize the development costs,

•	 Manufacturing technology must be developed to provide low-risk, cost-

effective manufacturing methods. The manufacturing methods to be used

must be established during the preliminary design:; a deficiency in

manufacturing technology will affect ,cost, schedules, and structural

integrity.

•	 Facilities and equipment must exist or must be provided as required to

meet delivery schedules. The facilities and equipment utilized for a

production composite wing box structure influences the selection of

manufacturing method, which in turn has a significant impact on

manufacturing cost.

•	 A staff of design engineers ., materials and process engineers, manu-

facturing engineers, quality assurance personnel, and production

workers must be available with the necessary experience in composite

structures to serve as the cadre for training and supervising the

expanded staff required for production of composite wing box structure.

j
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SECTION 3
TECHNOLOGY ASSESSMENT

The acceptance factors have been translated into a set of issues which need
to be assessed as a prelude to defining the contents of a.composite wing
technology program. The issues can be categorized into four basic groups,
as shown in Figure 3-I,.

In making the assessment, each issue has been examined to determine
what additional technology and data are needed to promote acceptance of
composite primary wing structure. It is assumed that all technology and
data required to design, manufacture, and certify the earlier NASA ACEE
secondary and medium primary structures will be available. For example,
the secondary and medium primary structures utilize more thin-gauge panels,
and the need for postbuckling strength allowables is greater. than for strain-
critical wing cover panels. Therefore, although a knowledge of postbuckling
strength is desirable for minimum-weight wing structure, it is assumed the
technology will be available and is not addressed in the wing technology
assessment. Contributions from other Government, industry, and in-house
projects have also been anticipated to minimize . the composite wing tech- .
no.logy program costs. Information on some aircraft composite structure
programs which was used as reference material for the state-of-the-art
assessment is presented in Table 3-1.

Twenty-four issues have been selected for the technology assessment, as
shown in Figure 3-2. Of these, eight have been cla:ss'ified as key issues
since favorabhe resolution is essential to the timely production of composite
wing structure and specific technology development plans for their resolution
must be included in the overall development program.

STRUCTURAL TECHNOLOGY ISSUES

Five of the seven structural technology issues shown in Figure 3-2 are
classified as key issues, Composite wing structure must be produced with
the same level of structural integrity as for conventional aircraft wing
structure and evidence of this must be provided as a - condition of acceptance.
Technical data must be. generated during the design synthesis of a prototype

15
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y

ECONOM IC
ISSUES

MATERIALS ANIJ
PROOUCOBILITY
TECHNOLOGY
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MANUFACTURING
TECHNOLOGY

ISSUES

6-GEN-21791

ACCEPTANC E
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FIGURE 3- 1: KEY ISSUE GROUPS

DURABILITY	 - DAMAGE TDLERANCE]J . -
MOLDING
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CRASHWORTHINESS
pEWORK FOR _

MANUFACTURING -
DEVIATIONS STRUCTURAL MANUFACTURING4,

TECHNOLOGY TECHNOLOGY`r.
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Y  ........ REPAIR QF

MAJOR DAMAGE
^

TO{1L
FHERMAL LIGHTNiNC.. DEVELOPMENT
INCOMPATIBILITY PpOTECT10N

LJ DENOTES KEY ISSUE

NONDESTFIUCTIVE QUALITY - -
-	 TEST CONTROL

MATERIAL, -
SELECTION

- CO5T	 - - WEIGHT
MACi;IP?ING ESTIMATES ESTIMATES_
OF COMPOSITES MATERIALS AND MICROBIOLOGICAL

PRObUCIfilLIFY FUEL
ISSUES' CONTAMINATION

ST -
PROGRAMMATIC

FABRIC
FABRICATION

ISSUES

- -	 INSULATION AND- -	 - -
CORROSION -	 - -

ApHESiVE CONTROL SCHEpULES BATA
-BONDING BASE.

SEALiNGNKCOATINGS
-

EXPERIENCE

FIGURE 3-2. BASIS FOR TECHNOLOGY ASSESSMENT
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.- STRUCTURAL MANUFACTURING -	 -
PROGRAM CONCEPT CONCLDT COMMENTS

DC-10 AFT RUDDER o HOX BEAM -e- INTEGRAL ONE PIECE 9 REQUIRESONE EXPENSIVE FEMALE MOLDING TOOL - ECONOMIC FOR MASS
DOUGLAS AIRCRAFT	 - PRODUCTION
C[1MPANY - MDC o MULTIRIB o	 USING TRAPPED RUBBER	 -
'ACES - PROGRAM - PRESSURING SYSTEM a PREFORMIN&OF PARTS

- o	 THINSKIN
-,	 -	 - a ASSEMBLY OF PARTS AND SILICONE RUBBER IN TOOL	 -

o ELIMINATES MECHANICAL FASTENERS AND COSTLY ASSEMBLY

o MAXIMIZES WEIGHT SAVING

o ACCESS HOLES ALLOW INSPECTION AND REPAIR

a RUDDERS PRESENTLY FLYING ON DC-10 AIRCRAFT

- ATP JAN 1974 - PRODUCTION CONTINUING
"ADVANCED COMPOSITE. RUDDERS FOR OC-10 AIRCRAFT -DESIGN MANUFACTURING
AND GROUND TESTS" REPORT NO. NASA CR-145068

NASA LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA, CONTRACT NO, NASI -14724

DC-10 VERTICAL STABILIZER - o MULTISPAR	 - o SPARS, RIBS, AND SKINS o LOW MANUFACTURING RISK	 -
DOUGLAS AIRCRAFT SEPARATELY FABRICATED
COMPANY - MDC o SINEWAVE SHEAR-WEBS a HIGH TOOLING COST
ACEEPROGRAM a SKINS ASSEMBLED TO SUB.

o SINEWAVE RIBS	 - STRUCTURE WITH o ASSEMBLY LESS COSTLY THAN METAL VERSION BECAUSE OF FEWER PARTS
MECHANICAL FASTENERS

9 SANDWICH.SKINS a HEAVIER THAN A COCURED INTEGRAL DESIGN

0 EASIER TO INSPECT AND REPAIR

ATP APRIL 1977 - DEVELOPMENT IN PROGRESS,
"ADVANCED COMPOSITE VERTICAL STABILIZER FOR DC-10 TRANSPORT AIRCRAFT.-
REPORT NO. ACES -03-PR-7177, 7240; AND B232, 20 JAN 1978

NASA, LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA. CONTRACT NO, NASIA4869

BOEING 737 HORIZONTAL a BOX BEAM a FABRICATION-OF SEPARATE - e LOW MANUFACTURING: RISK
STABILIZER SPARS AND RIBS

.

ACEE PROGRAM a SKIN WITH ISECTION o HIGH TOOLING COST
STRINGERS a SKIN-STRINGERS COCURED

. g o ASSEMBLY LESS COSTLY THAN METAL VERSION BECAUSE OF FEWER PARTS
e MECHANICAL FASTENE RS

USED FOR ASSEMBLY o EASIER TO INSPECT ANDRfPAIR

y, ATP JULY 1977 - DEVELOPMENT IN PROGRESS,
"ADVANCED COMPOSITE STABILIZER FOR BOEING 737 AIRCRAFT" FIRST QUARTERLY'

(	 _ - PROGRESS REPORT, 16 JULY 77-- 18 OCTOBER 77

I{ NASA, LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA, CONTRACT NO. NAS145025

I	 TABLE 3-1

I	 SOME ADVANCED COMPOSITES APPLICATIONS IN AIRCRAFT STRUCTURES



TABLE 3-1

SOME ADVANCED COMPOSITES APPLICATIONS IN AIRCRAFT'STRUCTURESICONT1

00

STRUCTURAL	 - MANUFACTURING
-	 PROGRAM CONCEPT CONCEPTS	 _ COMMENTS

BOEING 727 ELEVATOR _a BOX BEAM a FABRICATION OFSEPARATE s COMMENTS MADE FOR BOEING 737 HORIZONTALSTABILI2ER APPLY HERE
ACEE PROGRAM	 - SPARS. RIBS. AND SKINS

9 SANDWICH RIBS ATP MAY 1977 —DEVELOPMENT IN-PROGRESS
"ADVANCED COMPOSITE ELEVATOR FOR BOEING 727 AIRCRAFT" FIRST QUARTERLY .

a SANDWICH SKINS PROGRESS REPORT, 24 MAY 77 —'22 AUGUST 77

a MECHANICAL FASTENERS NASA. LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA, CONTRACT NO. NASI.14952
USED FORASSEMBLY

L•101I VERTICAL STABILIZER o BOX BEAM WITH RIBS a SEPARATE FABRICATION o LOW MANUFACTURING RISK
LOCKHEED AIRCRAFT COMPANY OF SPARS, RIBS, SKIN• . -	 -
8UFIBANK,CALIFORNIA 0 RIBS — TRUSS•TYPEAND STIFFENERS o HIGH TOOLING COST, ESPECIALLY WITH MULTIPLE-RIB DESIGNS
ACEE PROGRAM PANEL STIFFENED-TYPE

o	 HAT STIFFENERS COCURED a ASSEMBLY LESS COSTLY THAN METAL VERSION BECAUSE OF FEWER PARTS
o SKINS STIFFENED WITH WITH SKIN

HOT STRINGERS a LIGHTER THAN METAL VERSION
- a SPARS ARE INTEGRALLY -
- STIFFENED a EASE. OF INSPECTION : AND REPAIR

o ASSEMBLED WITH ATP AUGUST 1975 — DEVELOPMENT IN PROGRESS,
MECHANICAL FASTENERS "ADVANCED MANUFACTURING DEVELOPMENT OF A COMPOSITE EMPENNAGE

COMPONENT FOR L•1011 AIRCRAFT," LR 28325 — 14 0CTOBER 77,OUARTERLY
TECHNICAL REPORT NO. 7

NASA, LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA, CONTRACTNO. NASl•14000

L• 1 011 INBOARD AILERON 0 GRAPHIT71EPDXY FRONT SPAR a - SEPARATE FABRICATION a LOW MANUFACTURING RISK	 -
LOCKHEED OF RIBS, SPARS, COVER
ACES PROGRAM	 - a	 GRAPHITEIEPDXY RIBS SKIN o COST EFFECTIVE DUE TO REDUCED PART COUNT

- o GRAPHITEIEPDXYFACE o ASSEMBLEDWITH o ESTIMATED 30% WEIGHT SAVINGS_ SHEETS WITH SYNTACTIC MECHANICAL FASTENERSEPDXY CORE FOR COVER
SKIN

a	 LOWER COVER REMOVABLE FOR INSPECTION -AND REPAIR.

0 ALUMINUM HEAR SPAR
-

ATP SEPTEMBER 1971 LApVANCEO COMPOSITE AILERON FOR L4011
TRANSPORT AIRCRAFT" - QUARTERLY REPORT NO.3, LR 28663,

-
a	 FIBERGLASS END FAIRINGS NASA, LANG LEY RESEARCH;CENTER', HAMPTON. VA.,.CONTRACT

NO: NASI-15059, JULY 1978,	 -
- o	 KEVLARTRAILING-EOGE

BOEING 737 TRANSPORT o	 FULL-DEPTH SANDWICH GIE a SKINS LAMINATED AND o LOW MANUFACTURING RISK
AIRCRAFT FLIGHTSPOILEAS SKINSIALUMINUM CURED IN AUTOCLAVE
IREPLACING ALUMINUM HONEYCOMB

-
o TOOLING COST COMPARABLE TO METAL VERSION

SANDWICH SKIN WITH G1E o SKIN SECONDARY BONDED
SKINS)	 - o SUBSTRUCTURE, SPARS TO CORE-SPAR-END RIBS, a ASSEMBLY COST ABOUT SAME AS METAL VERSION

'	 - ALUMINUM, FIBERGLASS END
-

AS WELL AS BOLTEDTO
[

S

RIBS	 - THE SPAR AND ENO RIBS a CSCAN INSPECTION FOR BOND AND DELAMINATION POSSIBLE

- o THE ALUMINUM SUB. a	 REPAIR NOT DIFFICULT 	 -
' STRUCTURE ASSEMBLED

- WITH-MECHANICAL ATP JUNE 1972 CONTRACT EXTENDED TO 1980 — IN PRODUCTION AND PRESENTLY
FASTENERS FLYING'

"DEVELOPMENT MANUFACTURING AND TEST OF GIE COMPOSITE SPOILERS FOR

'

FLIGHT SERVICE ON 8737 TRANSPORT AIRCRAFT" —OCTOBER 1976

- NASA, LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA, CONTRACT NO. NASI.11668



TABLE 3-1

SOME ADVANCED COMPOSITES APPLICATIONS IN AIRCRAFT STRUCTURES WONT)

I.—

PROGRAM
STRUCTURAL
CONCEPT

MANUFACTURING
CONCEPT COMMENTS

AV-88 WING HARRK :9 • MULTISPAR • FABRICATION OF SEPARATE • LOW MANUFACTURINGRISK
AIRCRAFT -- SPAR AND RIBS	

-MCOONNELL AIRCRAFT a RIB BULKHEADS . • HIGH TOOLING COST	 -
COMPANY - - MDC • UPPER AND LOWER SKINS

• SEPARATE TOP AND. ARE EACH MONOLITHIC • ASSEMBLY COST LESS THAN FOR METAL VERSION BECAUSE OF FEWER PARTS
BOTTOM. SKINS -	 -

- • ASSEMBLED THROUGH
MECHANICAL FASTENERS -	 -

• EASIER TO INSPECT AND REPAIR

ATP OCTOBER 1975 - DEVELOPMENT IN PROGRESS.
"COMPOSITE WING DESIGN FOR ADVANCED DESIGN" REPORT NO. NAOC•76249-30

- NAVAL AIR DEVELOPMENT CENTE.1, WARMINSTER.., PENN., CONTRACT NO.
- N62269C-0424

1:-'5  WING EAGLE a MULTISPAR • FABRICATION OF SEPARATE a COMMENTS FOR HARRIER, AIRCRAFT APPLY HERE. TOO.
MCDONNELL AIRCRAFT SPAR RIBS, SKINS,
COMPANY - MDC •	 RIBS	 - STRINGERS ATP MAY 1971 - DECEMBER 1974 R&D PROGRAM

"F.15COMPOSITE W I NG;' VOLUMES I AND:II,M. AY 1475,AFML •TR•75.78
• SKINS BORON/EPDXY o STRINGERS BONDED TO THE -

SKINS AFMI., WR IGHT-PATTERSON AFB, OHIO, CONTRACT NO. F33615 . 71C • i 1536
- • SANDWICH WITH

-	 - ALUMINUM CORE - • SKINS ATTACHED WITH
MECHANICAL FASTENERS

• STRINGERS HYBRID -
i80RON1GRAPHITEI

- EPDXYI

• SPARS AND RIBS
- GRAPHITE/EPDXY. -

' SANDWICH SHEAR WEBS

A•4 SKYHAWK HORIZONTAL • MULTISPAR • SPAR, RIBS, AND SKIN • LOW MANUFACTURING RISK
STABILIZER SEPARATELY FABRICATED
DOUGLAS AIRCRAFT	 - • RIB BULKHEAM; - • HIGH TOOLING COST
COMPANY - MOC ! SPAR AND RI2S BONDED

a SPAR AND RIBS USE TOGETHER ATCORNCRS r ASSEMBLY LESS COSTLY THAN METAL VERSION BECAUSE OF FEWER PARTS
SANDWICH SHEAR WEBS WITH GIE ANGLES -

a HEAVIER THAN A . 000URED INTEGRAL DESIGN
w THIN SKIN MECHANICALLY

FASTENED ! EASIER TO INSPECT AND REPAIR

0 c) ATP NOVEMBER 1969.1974
r^ "DEVELOPMENT OF A GRAPHITE HORIZONTALSTABILIZER" FINAL REPORT -

MDC J-6902 OR, NA DC-76078.310 00, ADA-023 .767, MARCH 1976

Q NAVAL AIR DEVELOPMENT CENTER. WARMINSTER. PENN.. CONTRACTNO.
Q N00156.70t•1321

40 c^
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TABLE :3 1

SOME ADVANCED COMPOSITES APPLICATIONSIIN AIRCRAFT STRUCTURES (CONT)

LvO

STRUCTURAL MANUFACTURING
PROGRAM CONCEPT CONCEPT COMMENTS

ROCKWELL B•1 BOMBER • MULTISPAR WITH FEW RIBS i FARRICA-r ION -OF SEPARATE :• COMMENTS'MADE "TOR-BOEWO 737-HORIZONTAL-STABILIZER • APP.LY HERE
HORIZONTAL STABILIZER SPARSAND'RIBS
STA81LIZFA MANUFACTURER • SKIN WITH INTEGRAL "ADVANCED DFdELOPMENT CF CONCEPTUAL HARDWARE HORIZONTAL
GRUMMAN STIFFENERS AND ALSO WITH a SKIN-STRINGERS INTEGRAL STABILIZER." ATP JULY 1973 - DECEMBER 1977
AEROSPACE CORP. BORON FILAMENTS

• MECHANCAL FASTENERS AIR FORCE FLIGHT DYNAMICS LABORATORY, DAYTON, OHIO. CONTRACT
USED-FOR ,ASSEMBLY NO, F33615.73-C•5173

S-3A SPOILER LOCKHEED • SANDWICH CONSTRUCTION • SANDWICH COCURED -• LOW MANUFACTURING RISK
-WITH HRP- HONEYCOMB CORE
WITH G/E . SKINS	 - -• FITTINGS ATTACHED • LOW TOOLING COST

- .LATER
- • HINGE FITTINGS: BOLTED TO .• LOW ASSEMBLY COST

THREADED CORE-INSERTS
BOLTED '1NTO THE-GLASS HIGH-STIFFNESS/WEIGHT-RATIO
REINFORCED CORE

ACCESSIBLE TOtNSPECTION AND REPAIR

- ATP 1974 -- FLYING ON-S-•3A-AtRCRAFT
•B-3A GRAPHITEIEPDXY SPOILER FABRICATION OF TEA SHIPSETS•AND.-DAMAGE
REPAIR STUDY-'

NADS-76234.30, FINAL TECHNICALREPORT, ' MAY 1976, NAVAL AIR-DEVELOPMENT
CENTER, WARMINSTER, PENN, CONTRACT 'NO. NE2269.7"4428

6-1 FLAP FABRICATED BY -FULL +DEPTH ALUMINUM -•	 SPARS, RIBS,. SKINS .• USES PROVEN -TECHNOLOGY, LOW MANUFACTSURINGiRISK
NORTHROP CORPORATION ' HONEYCOMB-wiTkl WE HONEYCOMB SEPARATELY -

SKINS FABRICATED ® ASSEMBLY COST LESS THAN METAL VERSION BECAUSE OFFEWERTARTS

• ALUMINUM END R93S •• ALL COMPONENTS :• COST A_ PPARENTL'Y IS 10 PERCENT L;SSTHAN'METAI, VERSION
ASSEMBLEOTH HOUGH

• G1E SPAR AND NOSE BONDING • CSCAN INSPECTION FOR DEFECTS POSSIBLE

•	 LEADING , EDGE: SKIN • REPAIRNOT DIFFICULT
STABILIZED BY 1-tN.-
THICK SLICED HONEYCOMB ATP MAY 1974 - 31 JANUARY1975, SUCCESSFULLY PASSED TESTS,
CORE RIBS "COMPOSITE LOW COST SECONDARY AIRFRAME STRUCTURES;' AUGUST 1976,

FINAL REPORT AFFIL -TR-76A. VOLUMES 1 AND It, AFFIL - WRIGHT ' PATTERSON
AFB, OHIO, CONTRACT NO, F33615.74-C•51 'I I

ADVANCEDSTRUCTURAL • COMPOSITE LOWER SKIN • ASSEMBLY OF LOWER SKIN INITIAL TOOLING 15 COSTLY
DESIGN F,OR FIGHTER INTEGRAL WITH COMPOSITE AND SPARS IN A-MOLD
COMPOSITE WING : BOX SPARS FROM INBOARD • LOW MANUFACTURING RISK THROUGH ELIMINATION OF VACUUMAAG AND
F-16 GENERAL DYNAMICS PYLON LOCATION TO OUT- • USE AIR BLADDER AND AUTOCLAVE
FORT WORTH DI .V„ TEXAS ' BOARD WING TIP .RUBBER-EXPANSION TO -	 -

APPLY PRESSURE DURING ` s COST WILL BE LE:SSTHAWMETAL VERSION AS PER LEARNINO F CURVE
• ALUMINUM 'SPARS INBOARD CURE IN AN.OVEN

OF INBOARD PYLON ATTACH O WEIGHT	 T. SAVING ABOU$-PERCENT
- TO EMBEODSD TITANIUM 0	 UPPER SKIN IS MECHANI-

INSERT CALLY FASTENED TO THE :• REPAIRABLE BECAUSE UPPER SKIN MAY BE REMOVED
SUBSTRUCTURE

• USE BUFFERED CONSTRUC- ATP JANUARY 1917 - APRIL 1979, QUARTERLY REPORT OCTOBER 1977 -JANUARY 1878.
^TtONTO ABSORB.DAMAGE .CONTRACT NO. F33615.77•C•3042

F	 -



TABLE 3-1

SOME ADVANCED COMPOSITES APPLICATIONS IN AIRCRAFT STRUCTURES (CONT)

iV

PROGRAM
STRUCTURAL
CONCEPT

MANUFACTURING
CONCEPT COMMENTS

CGMPOSITE STRUCTURE OF • THE FUSELAGE IS DIVIDED a FEMALE MOLD ON WHICH THE • COST IS ABOUT THE SAME AS ALUMINUM VERSION, GRIEP VERSION MAY RESULT
. THE F • 16 FORWARD FUSELAGE INTO MANY COMPONENTS SKINS ARE LAMINATED IN ABOUT 10 PERCENT COSTSAViNG PROVIDED COSTOF GRIEP PREPREG TAPE
.GENERAL DYNAMICS, DROPS BY 50 PERCa T
FT. WORTH DIVISION, TEXAS • EACH COMPONENT IS a RUBBER MANDRELS FOR THE
PUSELAGE SECTION FROM SEPARATELY FABRICATED HAT STRINGERS ARE USED. a WEIGHTSAVINGISCLAIMEDTOBE-20PERCENT
STA 60 TO STA 227 INCLUDES RUBBER MANDRELS ARE
FORWARD ELECTRONICS • COMPONENTS ARE THEN POSITIONED OVER LAMINATED ♦ REPAIRABLE BECAUSE OF ACCESSIBILITY AND REPLACEMENT OF DAMAGED
DAY, COCKPIT SECTION. MECHANICALLY FASTENED SKINS, AND HOT LAMINATED COMPONENTS	 -
EQUIPMENT BAY, AND A TOGETHER OVER IT
FUEL TANK ATP AUGUST 1973 - NOVEMBER 1976, FINAL REPORT OCTOBE -A 1977, REPORT

• GR/EP, KEVLAR, AND FIBER . ♦ PART tS BAGGED AND ' NO. AFFDL TH -77 .67, CONTRACT NO. F33615 .73-C-513D
GLASS ARE JSED AS AUTOCLAVED

' MATERIALS. SOME OF THE
. STIFFENERS ARE OF KEVLAP

AND SOME OF GLASS

• BULKHEADS ARE OF SAND . - -
WICH CONSTRUCTION -

COMPOSITE HORIZONTAL a THE HORIZONTAL STABILIZER • THE SPAR CONSISTS OF • DESIGN ISSIMPLE
Tf.IL OF THE F • 16 IS OF THE SINGLE SPAR GRIEP COCUREDTO A
GENERAL DYNAMICS TYPE RECTANGULAR STEEL	 - ! COSTMAY BE LOWER
FT. WORTH OI V ISION, TEXAS SPAR

♦ THE SPAR CONSISTS OF A • LIGHTER WEIGHT
STEEL MEMBER TO WHICH 0 SPAR IS FITTED INTO A

- GRIEP ARE LAMINATED TOOL AND LOWER SKIN • REPAIRABLE BECAUSE OF SIMPLICITY OF STRUCTURE
IS LAMINATED, BONDED,

0 FULL-DEPTH CORE IS USED AND COCURED TO SPAR ATP AUGUST 1973 - NOVEMBER 1976, FINAL REPORT OCTOBER 1977
REPORT NO. AFFDL TR•77 .67, CONTRACT NO. F33615.73-C-5130

^• SKINS ARE BONDED TO THE • THE LOWER SKIN i5 
CORE INVERTED AND A FULL.

DEPTH NOME% HONEY.
COMB CORE IS	 ED
AND BONDED TO CORE

• UPPER SKIN IS LAMINATED '-mot
OVER CORE AND SPAR ^TJ

- WITH AN ADHESIVE FILM
IN BETWEEN AND 15
COCUREO IN PLACE

1
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development composite wing and proof o, structural integrity must be

demonstrated by full-scale testing.
{f

Durability

For the purpose of the technology assessment, durability can be defined as
the capability of structure to maintain its structural integrity throughout its
intended service life with reasonable maintenance costs.

The durability of metal structures is usually measured in terms of fatigue
strength and resistance to pitting, stress, intergranular, and other forms
of corrosion. Composites exhibit different modes of damage such as
delarr oration, matrix crazing/cracking, fiber failure, void growth, fiber/
matrix disbonding, and composite cracking.

Data on the durability of aluminum alloys have been accumulated for about
50 years. The capability to design efficient fatigue-resistant structures by
means of establishing the proper working stress levels and avoiding high
stress concentrations has progressed-.t ^a.n advanced state. Intergranular
and stress corrosion protlen	 ave been minimized by new tempering
processes which provide virtual immunization against these types of cor-
rosion, while improvements in surface coatings have drastically reduced
costs associated with pitting corrosion.

As a minimum, the airlines expect equal durability performance from com-
posite materials. Although graphite/epoxy composite materials V -̂	 been
demonstrated to have excellent resistance to the civil air transpo 	 hviron-
ment, long-term exposure data in this environment have not yet been accu-
mulated. The fatigue strength of graphite/epoxy composite materials is
superior to metal structure for cyclic loads in the plane of tte laminate, but
their fatigue strengths for the interlaminar shear and flatwise tension failure
modes are significantly inferior to the in-plane composite cracking mode.
At present, the airlines and the manufacturers want to see far more data to
prove the durability of graphite/epoxy composite win8 box structure, particu,=.
larly since wing components are permanently joined to the fuselage structure
and cannot be economically replaced.
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The FAA position, as stated in Reference 1, is that structural integrity
safety levels shall be at least as high as for metal structures. The reten-
tion of material strength after long-term envircnmental exposure must be
proven 'by sufficient tests on components, subcomponents or coupons to
establish the fatigue scatter aknd environmental :;ffects; Full-scale fatigue
tests, accounting for effects of the appropriate environment:, must be con-
ducted to substantiate the fatigue strength.

Five cases have been identified where the technology does not exist to
properly measure the durability of graphite/epoxy composite structures

1. The vulnerability' to impact damage

2. The resistance to loads normal to the plane of the laminate

3. The long-term effects of environment on material allowable strengths.

4. The effect of cyclic loads on component stiffness

5. The effects of imperfections resulting from material and'manufacturing
deviations.

Impact damage is a key issue because of the constant exposure of the wing
structure to runway debris, tine/wheel fragments, hailstones, and other
foreign objects as :well as to damage inflicted by machinery or personnel
while servicing or maintaining the aircraft.

An aEsessment of the durability of a composite wing for a particular aircraft
with respect to impact damage entails an investigation of several phenomena:

A determination of the impact frequencies for a range of impact energies
and forms as a function of location on. the wing box. Experimental
evidence is desirable and can probably be obtained only by some type
of in-service flight evaluation.

a	 Th.-, degree of damage sustained by the composite structure as a function
of the impact forces. Methodology and supporting experimental data
should be developed to predict the amount of damage.
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0	 The residual strength of the impacted structure, ""his phenomenon will
be further . discussed in.the damage tolerance assessment.

Graphite/epoxy composite materials do not exhibit superior durability for

the interlarn.ina.r shear (Reference 3) and f'atwise tension failures modes.
A durable design can be created by avoiding internal loads in the structure

which produce significant interlaminar forces. However, wing structures

contain s-)me rather complex design features, and the flexing of the wing
under load can often induce internal loads within the structure which are

normal to the plane of the laminate and are not readily identified by the

current analysis methods. If these loads are not accounted for in the

design, delamination may occur, which could cause a joint to fail or reduce

panel. stability. Interlaminar shear forces can usually be controlled by the

ply pattern and stacking sequences which unfortunately may also increase

manufacturing costs. Data on interlaminar shear fatigue streng "h will. be

necessary, for tradeoff studies of durability with manufacturing costs,

The long-term effects of environment on the allowable strength of composite

material can only be proven with the passage of time. Current NASA ACEE

and other composite technology programs should address this problem.

More on this subject is "'iscussed. as a materials issue.

Some test data have indicated the possibility that the stiffness of graphite/

epoxy composite structures may be noticeably reduced after the structure is

exposed to a high number of repeated load cycles,

Army helicopter rotors measured. before and after cyclic loading tests have

shown a significant loss in stiffness. The stiffness of the DC-10 upper aft

composite rudder was measured before test and again after exposure ro 108

random vibrations of 350-to 1800-Hz bandwidths. A reduction in stiffness of

approximately 10 percent was attributed to a disbond of shims at the hinge

bracket installation, but could have been partly due to.reduced material

stiffness properties of the composite laminate. Su, h changes in bending

and torsional stiffness after long-term exposure to a service load environ-

ment could result in unsafe flutter speed margins unless properly accounted

for in the design.
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Current NASA ACEE programs on medium primary structure must investi-
gate the effects of cyclic loads on structural stiffness and. perforal tests.to .
determine if changes in stiffness occur in order to substantiate flutter speed

margins and provide for safe aircraft operation. Much of the existing tech-
nology gap should be resolved by these programs,. but they should be sup-
plemented with test specimens representative of wing structure.

Defects can also be introduced in the composite structure during the manu-

facturing process which can degrade the durability of the structure. Data

should be developed to establish durability as a function of the product
quality level. Other data should be developed to establish the relationship

between quality and manufacturing cost. Together, the data will permit a

tradeoff between structural weight and manufacturing costs since fora given

durability criterion, the design strain levels are influenced by the structural

quality of the product. Additionally, the data will assist in the engineering

disposition of manufacturing deviations, as discussed later.

In summary, much of the durability technology gap for composite wing

structures will need to be resolved by other composite technology programs,

particularly the question of strength degradation due to lcng-term environ-

mental exposure and the reduction of stiffness due to cyclic loads. Some

contribution will be made to interlaminar shear fatigue strength and the

effects of defects on composite wing durability. Plans must. be  made to
resolve the impact damage issue.

The composite wing technology program will require provisions for acquir-

ing durability test data, exercising the capability for designing durable

structure, and demonstrating durable qualities by means -of a full-scale

fatigue test and an-in-service flight evaluation.

Damage Tolerance	 I

The damage tolerance of a structure is a measure of its capability to sustain

loads in the presence of damage. For civil transport aircraft, the level of

darnage tolerance required by the FAA is . specified in Reference 4. In

Reference 2, the FAA emphasizes the importance of experience with previous

damage tolerance. designs,- constructions, test., and service usage. To
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date,. this experience has not been accumulated for civil transport committee

primary wing structure.

For purposes of this study, the damage tolerance capability of graphite/,
epoxy laminates is assessed for the damage modes discussed in the durability

assessment: delamination, matrix crazing/cracking, fiber failure, void
growth,. fiber/matrix disbond, and composite cracking. Fatigue, environs...
mental exposure, and accidental damage must be considered..

The extent of permissible damage must be consistent with damage detection
capability. The development of damage detection methods using no,ndestruc -,
tine testing technology will be discussed later. In areas where the damage
is not easily detectable or measurable, the structure must be designed to
ensure a;1 extremely low probability of failure throughout its operational

life. The damag e tolerance assessment is based upon the assumption of the
initial presence of flaws or defects associated with a design quality level.

The main body of research into . the damage tolerance of graphite/epoxy

structure appears to have been conducted by investigators with a previous

background in the field of fracture mechanics as applied to metal structures.

Much of their work deals with the .residual .strength of through-cracks,

holes, and cutouts subjected to both tension and compression loads; Crack
growth does not appear to be a problem since available data (Reference 4)

showed no crack growth at the tip of an induced sharp stress concentration

after 10 6 cycles at $0 percent of static .ultimate load for a [0" 901 pattern.
Therefore, the presence of through-cracks in the structure should be from
a discrete damage source rather than from the gradual crack propagation
often . ex.perienced with metal .structures.

A damage tolerance study was made for the lower wing panel . of the concep-
tua.l wing described .in Section 6 using linear elastic fracture mechanics
methods to demonstrate the existing methodology. The study assumed a
through-crack which severed both the cover skin and the integral blade
stiffener being subjected to tension loads. In order to apply the linear
elastic fracture mechanics methods, the material was modeled as a
homogeneous, linear elastic, anisotro.pic cont ; nuum exhibiting a simple
enlargement of the crack without branching or directional change. The
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study results shown in Figure 3-3 indicate that design features such as low-
modulus crack arrestment strips are probably necessary for the conceptual
design to satisfy FAA damage tolerance criteria.

The residual strength 'of graphite/epoxy panels subjected to impact damage
has also been extensively investigated. The investigations cover several
impact forms and various energy levels for different layup ' patterns and
thicknesses. The improvement in impact resistance by the addition of .layers
of Kevlar 49 fabrics has also been established. Methodology has been
developed to predi.ct . the residual tension strength of graphite/epoxy lami-
wites subjected to impact damage from a known form and energy source.
The residual compression strength cannot be similarly predicted (.Ref-
erences 5 and 6)...

There is little information avadlabLe on another major area of concern in
damage tolerance. This deals with the reduction in compressive residual .
strength through instability due to panel delamination, fiber disbond, or
the loss of an integrally cured joint which connects a panel to a stabilizing
member. Applied to induced loads which produce interlaminar shear or
flatwise tension can promote initiation or growth of these types of failures
and progressively reduce the residual instability strength. of the structure
to less than the strength required for design limit load. Much more
emphasis needs to be'placed on research directed toward the determination
of the growth and compressive residual strength characteristics of structure
with delaminations which are initiated by impact damage, or interlaminar
shear, or flatwise tension forces

Much of the methodology and experimental test data to support the design
and verification of damage-tolerant composite structures trust be developed
in order to qualify the current NASA ACEE medium primary structural
program for FAA certification. Additionally, the AV-8 Harrier wing
(Reference 7), the F18A wing, the B-1 horizontal. stabilizer, and other
military aircraft composite structure require extensive development to
provide compliance with similar military damage-tolerance requirements.

The composite wing structure of a civil transport aircraft will be sufficiently
different from these .earlier programs to require further development of
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methodology correlated with experimental test data in order to develop an

efficient wing design with adequate damage-tolerance capability. The struc-

tural integrity can only be prover; by full-scale damage -tolerance tests

during a wing technology development program to demonstrate this capa-

bility to the satisfaction of the manufacturer and the airlines before embark-

ing on a production program.

Crashworthiness

The FAA criterion for crashwarthiriess of the airframe is to ensure that

occupants have every reasonable chance Of escaping serious injury under

realistic and survivable crash conditions (Reference 3). Airframe s.truc -

tures which utilize advanced composite material must provide the. same

level of safety as conventional construction (Reference 2)0

For wing structures, the goal is to avoid fuel spillage frorn the integral.

wing tanks by a design that maintains fuel tank integrity for a reasonable
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The following failure
I

set of crash conditions or off-runway incidents.

conditions must be considered:

1. The tank within the fuselage contour must be protected so that exposure

to ground scraping action . is unlikely for 'a wheels -up landing,

2. The tank within the fuselage Contour must be capable of sustaining 9-g

forward crash loads.,

3. Airframe components supported by the main wing box integral tank

structure must be designed to break away from the wing . box without

rupturing the wing tank..

This crashworthiness criterion is satisfied for a DC-9 aircraft with

advanced composite wing box structure in our current NASA ACEE study.

The DC-9 center wing box is located inside the fuselage and has a fuel

capacity of 3.528 cubic meters (932 gallons). The tanks are protected

against scraping during a wheels -up landing by the fuselage shell and the

heavy main keel member in the wheel well. The lower surface of the

wing is 58.42 centimeters (23 inches) above the lower fuselage loft line at

the front spar and 4.3. 18 centimeters (17 inches) above the rear spar.

In addition, there are two cant beams plus the keel beam directly under

the. wing which shield the wing box structure (see Figure 3-4).

In over 15 million flight-hours accumulated by the DC-9 fleet, there has

been no damage to the center wing box in survivable incidents. The compos -

ite wing box is afforded the same level of protection as the conventional

wing box and. the lower ductility of composite materials is not a factor.

_	 Inertia fuel crash loads of 9g must be sustained by the wing box structure

inside the fuselage. Pressure loads are derived based on a full. fuel tank

with a 9-g head for this condition. The less ductile characteristics of com-

posites can be accounted for in the detail design, however, and do not

impose any special design problems.

Fusing of conventional structures allows specific components to break free

at predetermined load values to preclude penetration or other damage to the

fuel tank, landing gear support fittings, and some flight control fittings.
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The landing gear may be subjected to loads far in excess of design loads

after contact with ditches, runway light standards, or other obstacles when

involved in off - runway incidents. These incidents are infrequent but must
be accounted for in the design to prevent fuel tank rupture in accordance
with FAR Z5. 721. The DC-9 main gear is designed to fail in the gear
cylinder for high-drag load conditions, but other fuse points must be
utilized for high resultant vertical and drag load combinations. The con-

cept used for the DC-9 composite wing design allows for the main gear to
remain intact. The. failure will occur aft of the tank boundary in the follow-
ing sequence

s	 The lower cover skin and titanium doubler will fail aft of the rear
spar.

s	 The two tension bolts attaching the suppor+ fitting to the lower bulkhead
cap will. fail.
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0 The shear bolts attaching the support to the rear spar web will fail in

	

the thin bolt heads. 	 ;I

e The upper two . bolts and upper cover skin and doubler will bend

i upwards as the intact gear and support fitting rotate upwards due to
lack of a restraining moment.

A conceptual breakaway design for a . composite wing box structure is
illustrated in Figure 3-5. The primary tank is designed to ensure that the
bulkhead inside the tank is stronger than the two tension bolts attaching
the supporting fitting to the bulkhead.

The wing flaps in the landing flap position and wing-mounted engines will
contact the runway if the landing gear collapses during landing. FAR 25. 963
specifies that fuel tank integrity must be maintained. for this condition.

The DC-9 wing flap is attached to the main composite wing box at three
support locations. Four bolts attach the hinge fittings at each location (see
Figure 3-6). The .lower two bolts at each hinge fitting are nec:=ed down

REAR	 -
SPAR r

_	 _	 r OUTBOARD	 FORWARD	 .

	

I	 WING BULKHEAD DESIGNED
TO BE STRONGER THAN

FAILURE.SEQUENCE 	 _	 ATTACH BOLTS

I LOWER SKIN AND DOUBLER DESIGNED
TO FAIL AFT OF REAR SPAR IN TENSION	 i
LOWER ATTACH BOLTS FAIL IN TENSION

3 THIN HEAD SHEAR BOLTS
FAIL INTENSION AS	 -
SUPPORT FITTING
ROTATES CLOCKWISE

®	 WING LOWER SURFACE.3 .

-	 2
1

FIGURE 3-5. DC-9 MAIN LANDING GEAR SUPPORT STRUCTURE
OVERLOAD BREAKAWAY DESIGN
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t for high-tonsipp (pads causedouts;dp the tank boundary to form 4 fuse ppin
when t e flap structure str ikes the ru;IW4y. The fi i	 -_tt , n& will t4pq p; tate

about the two	 t r4q qpper bolts and the win g tan^ will z.	 pture. The primary

design.. task is to ensure that the flap bulkhead inF!ide the tank

	

	 ,ris stronger

than the fuse point of the attach bolt.

Cr4phwqrthiness design of composite wing structure appear s within . the

state of the art, but should be exercised and demonstrated as part of a com-.

posite wing technology program.

Repair of Major Damage

To date, all composite structural components built and installed 
on 

flight

aircraft have been designed s.Q that in the event of major ' damage. to a. corn-

ponent, it could be readily rerr.Qved from the aircraft and replaced with a

new part- The damaged part could either be scrapped or repaired. Auto-

clave facilities could be used if necessary. For this reason, repair, tech-'

zjplpgy as been developed only fQr lesser damage which can be economically

repaired on the aircraft.

VP
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FIGURE 3-6. DC-9 FLAP SUPPORT STRUCTURE
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A survey of current programs investigating damage repair technology for
miiitaTy and commercial application is presented in Table 3 -2e

GRIGDJ A- r r :"

TABLE 3-2
REPAIR TECHNOLOGY PROGRAM SURVEY

GRAPHITE/EPDXY AIRCRAFT STRUCTURES

TITLE AND
COMPANY AGENCY CONTRACT NO. SUMMAR Y A ND REPORT NO.

NORTHROP CORPD- AIR. FORCE FLIGHT LARGE AREA COM . LARGE-AREA DAMAGE IS DEFINED TO BE HOLES 4 INCHES TD 12 INCHES IN
RATION DYNAMICS LAB POSITE STRUCTURE SIZE- DATA PRESENTED ON PROPERTIES OF LAMINATES: AND ADHESIVES,
HAWTHORNE. CA	 - WRIGHT- PATTERSON REPAIR TEST RESULTS OF VACUUM BAG CURED SCARF JOINTS WITH AND WITHOUT

- AFB, OHIO
F33615 - 76-C 3017 DOUBLERS ARE PRESENTED. EFFECT OF MOISTURE AND TEMP IN REDUC•

ING THE JOINT c TRENGTH IS COVERED.
REPORT NO, AFFDL•TR•77 .5, MAY 1977, JULY 1977
ATP JUNE 1976. R&D Sl1 LL M' PROGRESS

LOS ANGELES AFR FORCE MATE- ADVANCED COM . A COMPREHENSIVE STUDY OP REPAIR TO AIRCRAFT STRUCTURE IS PRESENTED.
AIRCRAFT DIV., '	 RFALS LAB POSITES DESIGN THIS REPORT APPLIED TO BORONIEPDXY, HOWEVER. SOME BASIC DESIGN	 -
ROCKWELL INTERNA • WRIGHT . PATTER50N GUIDE VOL. III-MFG CONCEPTS, INSPECTION METHODS, ETC., ARE APPLICABLE TO ALL TYPES OF
TIONAL CORPO, AFB, OHIO	 - JAN. 1973 COMPOSITE. ONE REFERENCE ONLY IS GIVEN, REPAIR TECHNOLOGY P444RATION

I
F3305-71-CC.13132 RORONIEPDXY COMPOSITES,

REPORT NO, AFML-TR-71,270, CONTRACT NO. F33615-69 . C . 1496, GRUMMAN
AEROSPACE CORPORATION

COMPANY AI RCRA FTT NAY4 BO LTEDJOINT
COMPANY, DIV.

IV. 
OF: WASHINGTON OC IN	 E COM SPECIMENS WITH OPEN HOLES WERE TESTED IN TEN	 NSIO	 TO DETERMINE STRESS

PO
SI

TES CONCENTRATION INDUCED BY THE PRESENCE OF THE HOLE. DIFFERENT BOLTED-UGLAS LL
DOUG LAS CORP0- JOINT DESLGNS WERE TESTED. ANALYTICAL, 	 OF THE RESULTS WEREL

I RATION NA51-13172 MADE AND REDUCED FOR DESIGN APPLICATION.
} LONG BEACH, CA REPORT N0. NASA CR-144699,JAN 1977
I BOEING COMMER. NASA DESIGN FAD OF THE PROGRAM WAS CONDUCTED TO DELIVER SEVEN GRAPHITEIEPDXY BOLTED
' COAL AIRPLANE Iw-%SHI%GTO.%-, DC	 i G.E BOLTED WING JOINTSPECIMENS OF DIFFERENT CONFIGURATIONS TO NASA - LANGLEY FORCOMPANY SKIN SPLICE "TEST PURPOSES. SOME OF THE JOINT DESIGN COULD BE USED IN REPAIRS,SEATTLE SPECIMENS REPORT NO. NASA CR •145716. MAY 1977

NASI-14327

VQUGHT	 AIR VEHICLE S•3A GEE SPOILER DIFFERENT CASES OF DAMAGE AND WEAR OF SANDWICH CONSTRUCTION ARE
I CORPORATION	 TECHNOLOGY TAB OF TEN CONSIDERFO, THE SPOILER STRUCTURE IS DIVIDED INTO ZONES, A7.C; THE

51-STEMS DIV-	 I	 UEVELOPMENT SHIPSETS AND EXTENT OF DAMAGE REQUIRING REPAIR IN EACH ZONE IS DIFFERENT. SKIN
DALLAS tiaOC

1
DAMAGE REPAIR IS PATCHEDYIITH PREPREG GRAPHITEIEPDXY AND FG1E. VACUUM BAG AND

V:AR:'INSTER. PA STUDY HEATING BLANKETS ARE USEDFOR CURING THE RESIN- CORE DAMAGE ISi
N62269 75-CO428 REPAIRED BY A CLEANUP FOLLOWED BY POTTING, A COOKBOOK APPROACH

TO REPAIRING IS ALSO PRESENTED.
REPORT NO. NAOS -711234,30, MAY 1976, FINAL TECH REPORT, ATP 74 — FLYING
ON 5^3A AIRCRAFT

} GENERAL DYNAMICS	 AIR FORCE FLIGHT REPAIR PROCE . DEVELOPMENT WORK IN PROCEDURES FOR REPAIRING STIFFENED AIRCRAFT
3 FOR V\ORTH DIV. 	 J OYNA1J ICS LAB DURES FOR STRUCTURES IS DISCUSSED, FABRICATION OF STRUCTURAL COMPONENTS -
I TEXAS	 17RIGHT . PAt1ERS0N ADVANCED COM. FOLLOWED BY DAMAGING AND THEN REPAIRING AND TESTING ARE REPORTED,

AFC, OHIO POSFTE REPAIR OF HYBRID LAMINATE 1S ALSO COVERED. DAMAGE AREA IS ON THE
STRUCTURES OROER OF 34NCH SIZE HOLES.
T33615 74-C 5133 REPORT NO. AFFDL-TR -7657, DEC t976, FINAL. REPORT IN TWO VOLUMES

ATP JUNE 1974	 FEB 1976.

MCDONNELL AIR- COMPOSITE REPAIRS IN THIN AND THICK LAMINATES WERE MADE. ANOTESTED. BOTH
CRAFT COMPANY DEVELOPMENT BRITTLE AND DUCTILE AOHESIV£SWERE. TESTED. TWO TYPES OF PATCH
DIV OF PROGRAM GIL Wt RE USED, ONE USING TITANIUM FOIL AND THE OTHER GRAPHITE18PDXY.

REPAIR CONCEPTS, THE THICK LAMINATE WITH A4-INCH - DIAMETER HOLE WAS REPAIRED USING

!

COONNELL
DOUGLAS I VOL. IV A LAMINATION OP TITANIUM PLIES AND ADHE51VE- IN ADDITION TO THE
CORPORATION

I IRAD BONDING, EACH PLY WAS SEPARATELY BOLTED TO THEPARENT LAMINATE
ST LOUIS 70 REDUCE FEELING ACTION, AS LYELL AS PICK UP SO41E SHEAR. STUDY OF

MATERIALS WITH EXTENDED SHELF LIFE WAS ALSO MADE.
REPORT NO. MDC A3715 22. MARCH 1976

DOUGLAS. AIRCRAFT -	 -	 - F=EPAIR	 - THE REPORT IS A-COMPFLAT ' ION OF AVAILABLE INFORMATION WITH RESPECT
COMPANY, DIV OF 1'ECIINIQUFSFOR TO REPAIRING COMPOSITE STRUCTURE LAMINATES AS WELL ASSANDWICHES.
%1CDONNE LL DOUGLAS I G:F CONIPOS11 ES DAMAGES ARE ON THE C 't UEH OF 3-INCH DIAMETER AND UNDER. INSPECTION
CORPORATION MAD  PROCEDURES AND TEST RES ULTS .ARE .ALSO GIVEN.
LONG BEACH, CA

I
REPORT NO. MDC J724(i, SEPT 1977

BELL HELICOPI ER A7 NIL	 I)URA6FLFTY OI' AARESWES FOR BONDING METAL TO-METAL AND COMPOSITE,TO•COMPOSITE
FORT WOR TH . 7 X	 - i	 ADHESIVE 11MADED WERE EVALUAT E-13 AND PROCESSESDEVELOPED. - INFORMATION IS APPLICABLE

JOINTS TQ REPAIR OF COMPOSITES,
AF33G III II (: 1168 JUNE 71 III MARCH 74, REPORT NO AFML-TR.74-26

BOEING COMMERCIA1 NASA ADVANCED COM Il 15 1NTENDI; D TO FABRICATE STIFPENED PAN ELS • WHICH WILL THEN BE
A IRPLAN E COMP AN V. LANGt. EY RESEARCH POSITS STAB 11. DAMAGED. ITEPAIRED, AND TESTED - TO DEMONSTRATE REPAIRABILITY OF
SEATTLE CEN1£R, HAMPTON IZEH FOH BOEING StFtUCTURE,

- VA 737 AIRCRAFT JULY 1977, H&D STILL IN PROGRESS.
NAS145112 b 	- FIRST QUARTERLY TECHNICAL. PROGRESS REPORT, 18 OCT 1977.

I I8 JULY 1977 THROUGH 18 OCT 19771 	 -
I
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A connposa.:: wing box for a commercial transport aircraft is built into the
fuselage structure. in a manner which mattes wing replacement extremely
costly and replacement cannot therefore be considered as a viable alterna-
tive to repair, nor 'can a throwaway a ;.rcraft be considexed.. As stated
earlier, one , of the clearly defined conditions for airline acceptance is that
the composite wing box structure can be repaired and returned _ to service.
Repair costs and downtime should compare favorably with those of conven-
tional wing structure. For extensive damage, temporary field repairs can
be made for a ferry flight to a major repair depot.

For study purposes,. the , assumption is made that major damage , will occur
in a. .regi,on where the damaged .structure can be cut out of the airplane. as
required and repairs effected with new ,structure arid/or repair doublers
which are either bolted or bonded together.

Repair criteria are established which exclude attachment of primary wing
members by adhesive bonding only. Primary wing structure repair joints
must have mechanical fastener strength to s;xstain limit loads. Adhesive
bonding of the: joint may then be utilized to develop ,strength to sustain
ultimate . design loads. The adhesive .bonds used for this purpose must
have a demonstrated long life. Based on current bonding technology, this
implies that the bonds must be made under heat and pressure, since
present cold-bond systems have not shown the required durability in a
service environment.

Specimen tests have shown that the strength of composite structure decreases
as bearing stresses increase. Ultimate strain design levels for basic wing
structure will probably be established at around 4000 pin. /in. to allow for
damage from foreign objects or small unloaded holes. Lower design
strain levels would proportionately reduce weight savings. Bolted-on
repair doublers would produce high bearing loads in the parent structure
which. would reduce allowable strain levels below those required to sustain
ultimate design loads.

One approach to resolve the problem is to bond doublers to the parent strut
tural member adhesively to reduce strain levels. After the stress level
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is reduced in the parent structure, bolts can be installed to provide
istrength for design limit load.
f.

Although the solution can be simply stated, it remains to be accomplished.
Technology development is required to select adhesives, to determine heat
and pressure requirements for bonding, field cutting, and drilling tools, and
nondestructive inspection methods. Design studies must be conducted to
establish the sizes of typical repair members and accessibility requirements.
Joint load distribution mu p- 11 be investigated to ensure joint strength integrity
and durability. Much of this technology must be available- during the design
synthesis phase to establish a repairable structural arrangement..

Conflicting data have been obtained on the capability of interference fit
fasteners to increase the ultimate strength and durability of joints. Pre-
liminary results of tests being currently conducted at NASA-Langley on
composite joints attached with 0.4$-cm (3/16-inch) taper-lok fasteners
indicate the possibility that interference fit fasteners can provide better
repair strength than clearance fit bolts. Further investigations should be
undertaken in this area as soon as possible.

Considerable testing will be required to provide repair technology data and
to prove to the airlines that proposed repair methods are viable and com-
pare favorably with methods now used to repair conventional wing structure.
Tests will be selected to supplement repair data being made available from
other programs.

Three areas for test investigation are recommended:

1. Specimen tests of joints utilizing various candidate interference fit
fasteners. Test variables will include the amount of interference fit,
specimen thickness, environmental effects, type of loading, and with
and without adhesive bonds.

2. Subcomponent panel tests of bolted and bonded joints subjected to com-
bined loadings (e. g. , compression and shear) representative of typical
wing load conditions.
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Panels would be designed to represent typical composite wing box con-

struction and would be fabricated by methods to be utilized to repair
composite wing damage at major repair depots. Autoclave methods

should not be used.

3. The major subcomponent test article will be repaired after the crash-

worthiness test failure and retested to verify static strength capabilities,.

The full -scale fatigue and damage tolerance test article may also be
repaired and retested.

It is believed,„that this program will provide the data base required for the

design synthesis of a composite wing box design for a new production air-

craft, provide evidence for airline acceptance, and satisfy FAA compliance

requirements for type certification of the developmer t plan flight article.

Thermal Incompatibility

One of the material characteristics of graphite fibers is that they exhibit a

decreasing coefficient of thermal expansion with an increasing fiber modulus.

The high-modulus fibers actually have a negative coefficient of thermal

expansion and provide a quasi-isotropic laminate with a near-zero thermal

expansion.

A problem related to thermal cycling of a composite wing is that the large

difference in expansion coefficients between graphite/epoxy composites and

metallic alloys (aluminum, titanium, etc.) induces internal structural loads

at interfaces where the structures are bonded or mechanically attached.

After components of dissimilar materials such as metallic and graphite/

epoxy comps-sites are joined by a number of rows of fasteners or by

adhesive bonding, thermal loads develop in the components (and the attach-

ment medium) with excursions from ambient temperature.

Static and fatigue analyses which account for internal thermal loads in ccn-

junction with external load conditions must be performed to assure struc-

tural integrity. This can be particularly significant at the end fasteners in

a hybrid joint. This location is fatigue-critic p.l for externally applied loads

and is also the location where the highest bolt loads occur due to thermal
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loads. A computer analysis is usually required to determine the rec;undant

bolt load distributions. The stiffness of the structure, hole clearances, and

friction all affect the final load distribution An a bolt pattern. This type of

analysis is not normally required for commercial transport, and design

and analytical methods must be updated to include this capability. Tests

will. need to be conducted to verify th£ analytical predictions.

The need for thermal load analyses will decrease with the utilization of com-

posite structure. Whereas early components may feature a composite wing

box structure in combination with metallic leading and trailing edge compo-

nents, latex models will probably convert the secondary structure to the

same advanced composite materials.

Wing structural interfaces to be examined for the effects of thermal loads

include the following: wing leading edge, slat, flap, main landing gear

support fitting, spoilers, ailerons, wing trailing edge, and fuselage. The

design must include flexibility to avoid the buildup of thermal loads and

provide structural capability to resist the loads.

The thermal incompatibility technology issue for composite wing box struc-

tures will be largely resolved by current NASA ACEE composite programs

which feature hybrid structure. In addition, the technology will be further

exercised. by the accomplishment of the composite wing box development

plan, as described in Section 7,

Manufacturing Deviations

Deviations from engineering drawing requirements are inevitable in the

manufacturing process. These deviations must be investigated by the

design engineering department and one of the following engineering disposi-

tions must be prescribed:

1. Parts may be rejected as unacceptable for strength, fit and function,

or quality.

2. Parts may be found acceptable for use even though not in agreement

with the engineering drawing.°

3. Parts may be reworked to meet engineering requirements.
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Common sources of manufacturing deviation for composite structures

inelude the following:

t.^

1

•	 Voids, d elarinina.ti,ons, foreign material inclusions
6	 Poor resin content

Improper- cure cycle
0	 Loss of pressure during_ the cure oyele	 .
•	 Geometric distortion due to warping and bowing
•	 c tting, drilling, and trimming operations
i	 Surface finish.

Prompt action must be taken by- Engineering to support manufacturing opera-
tions in order to avoid delays ' and to control the cost of the final product by

niinirnizing rejection rates, providing low-cost rework instruction, and

avoiding the high cost of unscheduled out-of-sequence assembly operations.

The problem of warping and bowing of long composite parts during fabrica-

tion must be investi,gatedo Limits of acceptability must be determined with

respect to fit and function and structural integrity. Metal parts are fre-

quently s-, raightened by hot-forming to obtain a fit with acceptable residual
stress levels. This rework method obviously cannot be applied to the

brittle composite materials. Experience in state-of-the-art composites is

that they must fit the assembly without undue preload or they must be

rejected, undue preload being an undefined quantity for individual parts.

Another related concern is warpage of the completed wing box after it is

removed from an assembly jig or molding tool. It is important to prove

that the wing box warpage can be controlled or reworked to restore the box

to limits which are acceptable for aerodynamic qualities.

Some experience with the disposition of manufacturing deviation will be

obtained in ongoing NASA ACEE programs and in-house development work.

However, many of the deviations will be unique for a composite wing box

structure, and experience with full-scale composite wing box hardware is

necessary if the issue is to be resolved.

The composite wing box. structural development plan. described in Section 7

should identify the potential sources of deviations and provide a realistic
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demonstration that manufacturing deviations can be disposed of by methods
acceptable to Engineering, with a-minimum impact on cost and schedule.

Lightning Protection

When the lightning attaches to the aircraft, the structure becomes part of
.the lightning channel. Since .graphite/epoxy structures are 1000 times less
conductive than aluminum structures, there is concern that this phenomenon
may produce structural damage and aircraft system disturbances in
graphite/epoxy structures which are not encountered with conventional
aluminum structures.

Aircraft skin panels are subject to static charge. buildup. For highly con-
ductive aluminum panels, the charge is quickly dissipated. Less conductive	 Y.

graphite/epoxy pa:-:els may slow down the redistribution process and cause
precipitation static (p-static) or in-tank arcing problems. 	

i
Lightning Strike - When struck by lightning, an aircraft becomes involved
in various phases of lightning current transfer. Figure 3-7 shows the
critical lightning current waveforms associated with various phases of a
severe lightning strike (Reference .8). For the purpose of defining lightning
protection requirements, the aircraft surfaces can be divided into three
lightning strike zones (Reference 9):

Zone 1: Surfaces of aircraft for which there is a high probability of a
direct lightning strike.

Zone 2: Surfaces of aircraft for which there is a high probability of

lightning strike being swept rearward from a Zone 1 point of
direct strike.

Zone 3: The aircraft areas other than those covered by Zone 1 and
Zone 2.

Figure 3-8 shows the lightning strike zones of the DC-9 wing. These zonal
regions were defined by an analysis of the natural lightning strike phenom-
ena and laboratory lightning attach point studies using scale aircraft models.
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The wing tip section is located in the Zone l direct lightning strike region.

The trailing edge of the wing tip section, is vulnerable to all three phases of

the lightning "current waveform shown in Figure 3-7.

The current flow activity of a severe lightning strike can last for 1 second, .

and during this time, an aircraft traveling at a speed of 505 kilometers

per hour (500 miles per hour) could move forward 104 meters (340 feet) in

relation to a stationary lightning channel. For a lightning channel initially

attaching. to the aircraft nose area, the channel would be swept over the

fuselage and wing root. area, making. these surface area's vulnerable to the

swept-stroke phase of lightning currant waveform shown in Figure 3-7.

The wing root area within 46 centimeters (18 inches) of the fuselage loft

line is thus classified as the Zone 2 swept-stroke/restrike region

(Reference 9).

When a lightning channel attaches to a wing tip, the associated lightning

current flows from the wing tip along the. wing box structure . to other air-

craft extremities. Thus, the entire wing box structure is classified as the

Zone 3 lightning current transfer region. The electrical and fuel instrument

.wiring inside the wing structure is also vulnerable to lightning current-

induced transient effects.

The existing DC-9 aluminum wing. design has incorporated adequate lightning

protection designs for the direct lightning strike, swept-stroke/restrike,

lightning current transfer, and the lightning-induced. transient effects... The

user of an all-graphite composite box .structure integrated with the existing

aluminum wing .tip, leading edge, and trailing edge sections will introduce

new lightning hazards, and additional lightening protection design considera-

tions must be addressed to ensure the safety of the wing structure and the

associated subsystems during a lightning strike.

Graphite/epoxy composite structures are much less conductive than the con-

ventional aluminum aircraft structures, both electrically and thermally.

Laboratory lightning test results have indicated that a lightning strike on

an improperly designed graphite composite structure can seriously degrade

its structural integrity (Reference 10). New design. approaches to lightning

protection are required for graphite composite structures with special
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emphasis on low-cost, lightweight, and ease of maintenance aspects of the
protective hardware designs,

The DC-9 wing box structure is primarily in a Zone 3 lightning current
transfer region, as shown in Figure 3-8, except for the wing root area which
is also in a Zone 2 swept-stroke/restrike region. The existing aluminum
leading edge c°iid trailing edge structures would conduct most of the lightning
current flow to and from the wing tip area. The aluminum trailing edge
structure would also conduct the lightning currents from the main landing
gear when struck by lightning during a landing approach. A small amount
of lightning current , could flow in the skin panels o f the composite wing box
structure since they are parallel conductive paths. For a continuous box

structure with no discontinuities, this limited amount of lightning current
flow would be harmless to the integrity of the graphite composite panel.

The concentrated current flow along the wing leading edge and trailing edge
aluminum structures could increase the energy level of the lightning-
induced transients in the wiring circuits along the front and rear spars.
The low shield of effectiveness of the graphite composite skin and spar
structure would also increase the transient coupling energy level. This
increase in the transient energy level should be determined, and unless it
is demonstrated to be acceptable for critical electrical or fuel instrumenta-
tion wiring systems, additional electromagnetic shielding or transient sup-
pression devices will be required.

The wing root area is also vulnerable to swept-stroke/restrike lightning
attachments. Adequate lightning protection designs must be incorporated
in the graphite composite skin panels, doors, and structural joints. in this.
area to protect the structural integrity as well as to prevent the arc -
initiated fuel ignition hazard.

The existing aluminum wing tip and landing gear installation for the com-

posite wing concept is designed with adequate protection against the direct
lightning strike, arid the graphite composite wing box structure does not
require direct protection from lightning strike in the design.

McDonnell Douglas test data indicate that graphite composite panels have
electrical conductive. characteristics 'sufficient to conduct 100-kiloampere
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restrike attachments and disperse large amounts of lightning currents with-

out causing., a fuel ignition .hazard or significant degradation in strength

(References 11 and 12). Therefore, the proposed graphite composite skin

panels of the box structure would not require additional lightning protection_

hardware design for the swept-stroke/r.estrike attachment or lightning

current transfer protection purposes.

Lightning test data (Reference 13) indicate that lightning attachment to

fastener heads and lightning current flow through adhesively bonded or

bolted joints in the fuel tank area could cause an arc-initiated fuel ignition

hazard. The AFFDL-sponsored composite structure lightning protection

programs (References 14 through 16) are not intended to investigate this

problem. It should. be noted that certain fighter aircraft incorporate fire-

inerting systems in the wet wing box area and thus arcing inside the fuel

tank may not be a fuel ignition hazard. Also, certain types of fighter air-

craft incorporate fire-retardant systems which control the fuel ignition

hazard caused by projectile penetration. However, current commercial

aircraft do not incorporate these fire-inerting or retardant systems and

lightning-initiated arcing inside fuel tank must be prevented.

Both the Government and industry have been conducting tests and analyses.

to determine the electromagnetic shileding properties of graphite composite

structures (References 14 through 16). Several metallized surface protec-

tion systems such as aluma..ium mesh, spray, or foil systems have been

developed which will provide a certain degree of electromagnetic shielding.

When evaluating these protection systems; special consideration must be

given to the weight/cost penalties and associated manufacturing and mainte-

nance problems. These considerations become very significant for large-

area applications such as wing box structure in commercial aircraft.

The electromagnetic shielding required for certain critical electrical wiring

components may also be provided by local shielding or by using transient

suppression or filter devises. These protection devices are usually not

required in an aluminum wing box. The requirement for using these . pro-

tection devices as well as their design criteria should be determined for
each critical wiring circuit through analysis or test.

43



yL,

i

A lightning test program sloiild be conducted to investigate the fastener

installations th the wing root fuel tank area viil..tierable to s*epi stroke/
restrike ligixtning attachments. Critical design - ^ata are needed for pre-
venting high-energy-level arcing from occurring inside a eritical fuel vapor
Area when lightning stripes the exposed fastener heads.

An arialVsis and test program should be conducted to investigate a possible
Yequ'iremeint for local shielding or the use of tralisieiit suppression devices
for protection of critical wiring or components located in the graphite com-
posite wing. A trac eoft study Should also be conducted to evaluate the
current tnetailized surface shielding protection systerns ver"su"s the use of
local shielding and/or transient suppression devices. The stud y should
consider shielding effectiveziess, weight and cost penalties; and ease of
manufachike and maiiitehanee.

Static Electricity - Aircraft can accumulate "static electric charges by
triboelectric charging when operating in an environment of precipitation
(Reference 17.). This charge raises the aircraft potential until it reaches
a critical value at which corona discharges take place at high gradient
point's of aircraft. These corona discharges consist of a series of short
current pulses that; when coupled into aircraft coinnlunications and naviga-
tion systems, can cause radio interference known a's 0-static (Reference 18).
Other sources of p-static include arcing between isolated skin panels and
streamers or St. Elmo's fire over dielectric surfaces; The p-static
problem can seriously affect the performance of antenna systems, such as
Loran, ADF, HF, and VHF. The p-static problem is usually controllable
through the installation of a p-static discharger systerri oil aircraft extremi-
ties, adequate electrical bonding practices in skin panels, and sometimes

antistatic .coatings over dielectric surfaces (kefe rehce 18).

Static charges can also be accumulated inside the fuel tank through fuel
sloshing during flight or during refueling. Arcing can- occur inside the fuel
tank between fuel probe and fuel surfaces and t he fuel tank wall due to this
static charge buildup. However, the energy level of these arcing a'c'tivities
inside the conventional aluminum fuel tank is usually well below the thresh-
old to cause a fuel ignition hazard.
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Aircraft skin panels are subject to static charge buildup caused. by particle
impingement of snow, ice, rain, sand, and the likes For conventional
aluminum aircraft, the static charge deposited on the aluminum skin panels
quickly drains through the surface coating to the metal skin and is distrib-
uted throughout the metal parts of aircraft.. There has been concern that
graphite. composite skin panels may slow down . this charge redistribution
process due to its lower conductive properties, thus causing p-static prob-
lems. However, Douglas has demonstrated that graphite composite skin
panels have adequate conductivity to dissipate static charges without causing
p-static interference (Reference 10).

Another critical consideration associated with the application of graphite
composite structures is the static charge-initiated arcing inside a composite
fuel tank.. It is known that static charges accumulated inside fuel tanks during
fuel sloshing or refueling have initiated arcing inside the tanks across fuel
surfaces to fuel probes and tank walls. However, the energy level of this
arcing activity is below the fuel vapor ignition level and this arcing has not
posed a problem in the conventional aluminum aircraft. For a graphite/

epoxy composite fuel tank construction, the energy level of the arcing activity
might be greatly increased due to the lower conductivity of graphite com-
posite structures, the nonconductive adhesive banding process frequency
used, and the special sealing .coatings. Graphite composite structures,
although they possess good electrical conductive properties, are neverthe-
less 1000 times less conductive than aluminum structures. This higher-
energy level of arcing activity should be investigated as a possible fuel

ignition hazard

General Dynamics has conducted a preliminary investigation of the fuel
electrification problem associated with a graphite composite fuel tank
(Reference 13). The study concluded that a graphite ,composite fuel tank
will behave in a manner similar to an aluminum fuel tank in dissipating
static charge buildups. The detailed description of the General Dynamics
test program is not available at this time. It is reasonable to believe that
a composite wing fuel tank design for commercial transport is different

from the composite fuselage fuel tank design simulated by General Dynamics.
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Ten issues have been identified in the category of Materials and Produci-

bility Technology (see Figure 3-2). Of these, only the nondestructive inspec-
tion methods represent a key issue critical to the success of the program.
An assessment of the 16 issues follows:

Material Selection

A broad base of structural advanced composite materials now .exists, The

great majority of these materials are supplied as "prepregs" — resin in a
partially polymerized state (B-stage) preimpregnated in structural fibers to

a controlled amount and a desired degree of advantiernent. Soiree are avail-

able as "wet layup" where the resin is applied to the fiber as it is applied
to the part, as in filament-winding or pultrusion. Epoxy resins are the
primary matrix materials, with some polyimides and phenolics available.

Graphite fibers predominate, although boron and Xevlar find some applica-

tions.

The current suppliers of graphite/epoxy prepregs and a brief summary of

some key properties are shown in Table 3-3. There are multiple sources

of both resin and fiber although properties will vary somewhat between some

combinations. Table 3-4 indicates the major resin manufacturers and
Table 3-; 5 the graphite fiberr ma.nufactur er s .

Efforts are being made to improve the existing fiber /resin systems. Each

of the prepreg firms has in -house programs oriented toward improvement

of one or more characteristics of his current products. In addition, there
are several DOD and NASA-funded programs to directly or indirectly

improve product performance, processing, or cost. Brief summaries of

some of these programs are given in References 19 through 29.

The final material selection will be made at the start of the wing prograrn.

However, it is intended to select the material from state-of-the-art systems

available at that time.

Aggressive Aircraft . Environmental Resistance: - The materials selected

must resist the aircraft environment, both in flight and on the ground, for
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TABLE 3-3

COMPARATIVE GRAPHITE /EPDXY PREPREG PROPERTIES

MATERIAL MANUFACTURER
TENSILE STRENGTH

MPASCAL IPSI	 10^3Y
TENSILE MODULUS

GPASCAL 4P51 a 16- 61
COMPRESSIVE STRENGTH

MPASCAL. [PSI x 10-3 1
COMPRESSIVEMODULUS

GPASCAI IPSI M n 10`6 1
SHEAR STRENGTH

MPASCAL (PSI n 10-31

5206/7300 NARMCO 1516.9 (220) 137,9 120,0) 1516.9 _ 12201 131.0 i19.01 122.7 (17.81
5200IT6300 NARMCO 1447-9 12;01 1379 120.0) . 14479 (210) 131.0 11901 117.2 (17.0)
520SICELIONWW NARMCO 16479 1239) 15110 (21.9) 1458,6 (2131 144.6 120.41 124,9 118.11
510810ELION 6000 NARMCO 1654.7 1240) 147.5 121.41 15169 (220) 151,7 122.0) 1?4.1 118.0)
9761T300 FISERITE 1606.5 12331 148,2 121.51 - - 117,9 07.1)
6788116300 US.POLYMERIC 1790.5 12611 159,9 (23,21 1669.1 12451 124,1 (?&G) 109.5 (1591
F2631T3W HEXCEL 1413.4 1305) 141-3 (20.5) 1413.4 47051 136.5 119.81 120.7 117.51
CE9009&300 FERRO 1469.3 (2161 1399. 120.3) 151619 12201 134,4 119,5E 104;1 (15,11	 -
3501 . 61AS HERCULES 105.8 1230) 137.9 120,01 - 126.2 11B.51 120.6 (17.5)

TAB L E. 3-4

MAJOR RESIN MANUFACTURERS

EPDXY POLYMIDE PHENOLIC

DOW CHEMICAL DUPONT REICHHOLD
CIBA-GEIGY ClBA-GEIGY MONSANTO
SHELL GULF OIL CIBA-GEIGY

RHODIA
MONSANTO

TABLE 3-5

GRAPHITE FIBER MANUFACTURERS

TYPE PRODUCT MANUFACTURER

HIGH MODULUS, THORNEL T300 UNION CARBIDE
HIGH STRENGTH

AS,HTS HERCULES

CELION CELANESE

TYPE II MORGAN

3T, 4T GREAT LAKES CARBON

HI-TEX HITCO

PANEX STACKPOLE

VERY HIGH MODULUS, GY 70 CELANESE
MODERATE STRENGTH -

T75 UNION CARBIDE

TYPE MORGAN

HMS HERCULES

5T, 6T GREAT LAKES CARBON
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the planned lifetime without degradation of material strength properties.
Assurance of this capability will require testing during and after exposure
to a variety of aggressive environments. Much of this testing has already
been started. Some engineering judgment will have to be exercised since
real-tithe testing for n ultiple lifetimes would not permit the introduction of

new materials in a timely manner. Extrapolation of ongoing tests based on

the test results and of the flight history of current composite hardware
would appear to be necessary for those cases where an accelerated test is
not available. Some of the effort now .going on is discussed in References. 19,
20, 22, 23, 26 and 28 through 35.

It will be instructive to list and discuss 'some of the more .critical
environments.

1. Fluids

The commercial transport wing will come in contact with the following
fluids: jet fuel, salt spray, hydraulic fluid, water, oil, and de-icing
fluid. The effect of jet fuel trust be assessed'since the wing is ;vet.
No problem is expected with the fuel itself. However, there is some
evidence of microbial attack on the structure from impurities common
to the fuel after extended flight. This condition and a suggested pro-
gram are covered in another section of this report.

Industry standard tests for salt spray, hydraulic fluid, water, -and oil
do not indicate a problem with graphite composites (Reference 36). The
design data program for the wing should adequately assess these
environments.

z. Other Environments

A. Temperature and Humidity There is strong evidence that the
effects of temperature and humidity cannot be treated independently.
The combined effects are synergistic in a direction unfavorable to.

performance. When graphite epoxy laminates with high moisture
content are exposed to high temperatures 'or rapid temperature.
rise, the strengths decrease ;markedly: .. For'tunateiy, there is no
evidence of irreversible damage within the envelope of commercial
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aircraft operating ,conditions,- The reduction in strength at tempera-

tures up to 93 0C (2000F) appears to be minimal (less than 10 percent)

even for laminates saturated with moisture when tested statically.

Data are sparse on low- to high-temperature cycling combined with

humidity exposure, or with superimposed ivad profiles. It is

believed that additional investigative efforts will be necessary.

Even though a real problem probably exists only for supersonic

aircraft, the publicity already given to this exposure makes it a

sensitive issue that must be addressed.. Currently funded pro-

grams will provide much greater insight into this potential problem

and into a definition of accelerated test methods (References 36

and 37).

B. Microbial Attack - The effects of microbial attack are discussed

in those sections of this report dealing with the evaluation of coat-

ings and jet fuel,

3. Interaction

It would be highly desirable to develop tests that would provide data on

logical combinations of several of the critical environments. Super-

position of load profiles would also be helpful.

Impact Resistance - Recent studies at NASA and elsewhere have shown that

impact damage, undetectable visually, can cause drastic reductions in com-

pression strength, as much as 40 percent. Consequently, corrective.

measures must be taken. There are some currently funded programs

addressing this problem, but more are needed. The solution may come

through one or more of the following:

1. Use a more ductile resin.

2. Improve the resin-fiber'interface bond.

3. Use combinations of different fibers (e.g., glass or Kevlar).

..	 4. Alter the pattern (e.g., more transverse fibers).

5. Alter the design to provide crack stoppers.

6. Sacrificial surface layer (rubber, fiberglass, Kevlar, screen, etc.).

7. Combinations of the above.
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In addition to the above, close attention must be given to minimum-gauge

requirements for typical impacting objects such as gravel or dropped tools.

Since this is primarily a design consideration, -it is covered in that section

of the report. Significant effort is now being expended on these require-

ments, as indicated in the literature. See, for example, References 21,

33, and 38 through 44.

Smoke and Flame Resistance - There are no special requirements for smoke

or flame resistance in wing structure at present. There does not appear to

be any significant activity in this direction. Should such requirements

appear, the ongoing efforts f-r interior structure would provide insight into

the material modifications necessary. However, current hot-melt graphite/

epoxy composites are self-extinguishing.

Material Variability - Currently available graphite/epoxy prepregs exhibit

considerable variability. Following are some of the problem areas:

1. Variation in resin content.

2. Variation in degree of advancement.

3. Poor fiber alignment (particularly in unidirectionally woven fabrics).

4. Nonuniform wet-out of the resin.

5. Weaving defects, splices, etc.

6. Variation in strand count.

7. Possible variation in resin composition.

Variability in the testing makes evaluation of many of the above particularly

difficult. Work is in progress in some tests (References 45 through 47).

While these variations are not critical to design or fabricability, they will

affect design efficiency and manufacturing cost.

A composite wing technology design data test program that will be observed

and approved by the FAA should be su fficient to verify material conformance

in all of the foregoing areas except microbial attack and impact resistance.

Development programs are recommended in these two areas.

Electrical Hazard Evaluation - In addition to she preceding requirements,

the material used in commercial aircraft may have to meet new standards
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for reducing the risk of dispersion of bare fibers in the event of fire and
impact. This problem is currently being assessed by a risk analysis to

ascertain the expected loss and by considering what material changes would

be needed to alleviate or eliminate the problem, if there is one. There are

several contracts in progress or being bid for work in this area. It is

apparent that a material change would necessitate a large-scale test program

to cover not only the environmental characteristics but the structural. charac-

teristics as well. However, this potential problem relates to all graphite/

epoxy . on the aircraft and is not unique to the wing.

Nondestructive Tests

Nondestructive testing or inspection of graphite/epoxy composite structure

presents many challenges when a large structure such as file composite

wing is considered, The wing structure must .be inspected after fabrication

for defects such as voids, cracks, porosity, and delaminations. Experience

in inspecting graphite composites has shown that such defects can lie detected

using x-ray radiography, ultrasound, and dye-penetrant (References 48 and

49).

The selection of nondestructive test method is generally based on part

geometry and composition, potential minimum defect size, location, orienta-

tion, and availability of test equipment. Very often, more than one non-

destructive test method is used because different r.anditions or defects are

revealed by each method.

The DC-9 composite baseline concept is to be made from graphite/epoxy

composite laminates. This design concept indicates that ultrasonic C-scan

is the most promising method for inspection of the wing skin and spar cap

laminates. This concept is described in Figure 3-9.

Special and costly automated C-scan equipment will need to be purchased to

inspect the 15.24-meter (50-foot) long skins and spars. Typical defects

that can be detected by ultrasonic C-scan inspection in g raphite/epoxy .

laminates are shown in Figure 3-10. X-rays will also be used in identify-

ing foreign objects detected by ultrasonics. It is envisioned that X-ray

work will be done using portable equipment and shields.
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Bond testers such as the Fokker and NDT-210 will be required to determine

the quality of adhesive bonds. Adhesive bonds are somewhat difficult to
inspect if the parts are cocured and bonded, and if delarnination or porosity
is contained in the graphite composite. A defect in the composite laminate
will prevent the ultrasonic energy from reaching the bond joint; hence, the
quality of the bond cannot be determined. Also, graphite-to-metal bond
joints are more difficult to inspect than graphite -to-graphite bond joints
because the acoustic impedance mismatch is greater for the graphite-to-
metal joint, which reduces the signal amplitude ratio between a bond/unbond
condition.

In any case, special built-in deflect standards will need to .be fabricated to
calibrate the bond testers prior to inspection for the cocured skins and
titanium doublers. Nondestructive test technology for bond joints should
be developed during other ACEE programs and be available for the wing
program,

For process control during fabrication, the dielectric test method shows
promise in evaluating or monitoring the curing of the resin (Reference 50).
The degree of cure is dependent on a tune . versus temperature relationship,
B-stage condition of the resin and on thickness and heat sink from tooling
adjacent to the composite material. A critical variable of the cure cycle
is the correct time to apply pressure. The optimum time for applying
pressure is when the resin reaches a certain viscosity so that it will flow

under pressure, all volatiles having escaped, and consequently produce a
void-free structure. This process is presently being studied under produc-
tion conditions and should be ready for use on the wing program,

One of the most common flaws encountered in graphite/epoxy composite
laminates is interlam.inar porosity. Both theoretical predictions and experi-
mental evidence sho%i, that there are decreases in mechanical properties in
the presence of voids (Reference 51). Data show that the interlaminar shear
strength of.composites decreases by about 7 percent for each 1 percent of
voids, up to at least 4 percent void content. Other resin-critical mechan-
ical properties may be affected to a similar extent. Hence, essentially
void-free composites are necessary for primary aircraft structures.

t
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All the methods used for quantitative measurement of void content have

limitations. It is doubtful, at the present time, whether an accuracy much

better than void content -i-0.5 percent can be attained with any of the available

techniques (References 52 and 53). There is thus a need for an accurate

method of measuring void content, especially at the 0 to 1 percent level. An

example of. ultrasonic C-scan comparing laminate void content is shown in

Figure 3-11. The laminates can be made with variable resin-starved or

resin-rich areas. Void content is best measured by ultrasonic attenuation

whereas neutron gauging appears as the best method for measuring resin

content (Reference 54). The developments during other current ACES pro-

grams with similar structural requirements and low-void-content laminate

requirements suggest that these measurement techniques can be expected

to be available by the time of the wing .program,

VOI D CONTENT %

4.75	 3.0	 j 0

FIGURE .3-17. ULTRASONIC C-SCAN Ai' 2.25 MHz .OF 32 PLY CARBON FIBER REINFORCED PLASTIC
LAMINATE (VARIABLE VOID CONTENT ► REFERENCE STANDARDS
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More effort needs to be directed at investigating the effects of defects.

Production parts trust be inspected to sortie kind of accept/reject criterion

and this criterion must be realistic. ."A major decision must be trade when

very I-arge and expensive parts contain defects. If the Material Review Board

elects to accept the rejected part, then it can become a problem for the

personnel performing in-service inspections. During the in-service inspec-

tion, the production defects may be detected and considered as flaws devel-

oped during service. Therefore, pictorial records of useful nondestructive

tests are necessary. The relationship between flaws and their effect on

mechanical properties must be firmly established for primary structures.

Tentative acceptance criteria have been and will be set for graphite /epoxy

composite structure (Reference 54). Specimens need to be fabricated with

various built-in defects measured by nondestructive test methods. The speci-

mens will then be fatigue-tested to determine flaw growth characteristics

Some programs have been conducted, but a relationship needs to be estab-

lished . for Qpecific materials used for the wing. All these things will lead

to realistic accept/reject criteria for production and in-service inspections;

To. establish durability, in-service inspection of selected critical areas of

the wing structure will require in-service nondestructive inspections. Parts

with flaws may find their way into service and this can cause difficulty to

the personnel performing the . nondestructive inspections unless the inspection

is being conducted in an area away from the initial production flaws or dis-

continuities. Copies of the rejection records would be required by in-service

inspection personnel. Photographs of fabrication inspection C-scans will

provide a printed record for reference during in-field inspection.

Early in the detail design phase, the areas to be inspected during service and

the inspection frequency nee : Lv be defined. Also, the accept/reject criteria

must be determined. The inspection methods must be documented and must

be very specific.

Guidelines for in-service nondestructive . ins pectio.ns 'should be forthcoming .

from a NASA-Langley Research Center program entitled "Evaluation and

Development of In-Service Inspection Methods for Grahpite/Epoxy Composite

Structures on "Commercial Aircraft.."
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There . are additional problem areas connected with in-service durability of
graphite/epoxy composite structure. One is aging and environmental damage
to composite materials. A program has been started with Boeing to deter-

j•mine the environmental effects on graphite/epoxy composite structure.
However, no nondestructive test method will ' be evaluated in this program -
only mechanical tests are to be periodically performed. If graphite/e 'poxy
composites are to be used on primary structure for commercial aircraft,

• nondestructive test methods may be required to determine the degradation
of the structure as related to strength and fatigue life.

Another anticipated problem is fire damage. Aircraft structure, especially
wing structure, is subject to fire damage in the area of the wheel well. The
significance of fire damage must be determined. Nondestructive test methods
must be evaluated to determine if they can relate the fire damage to loss in
physical properties or fatigue life. Similar relationships have been estab-
lished between eddy current conductivity, hardness, and loss in yield or
ultimate strength in . metals. This program is extensive and will require
study to define the range of parameters to be examined. There are no known
programs involving assessment of fire damage.

Quality Control

The structural integrity of the aircraft must be assured during its manufac-
ture and throughout a long period of commercial service. Assurance that
the necessary quality exists at all. times is essential. Since mechanical
testing of the final item is not a viable approach, this quality assurance.
must come from nondestructive means coupled with inspections and tests
during manufacture and in-service use.

Quality assurance is a .technological issue for the wing because of the work
needed to 'develop efficient methods of process verification and nondestructive
test standards. In addition, the effect of defects must be known so that
technically sound decisions Can be made as to their disposition (e, g., accept
as is, repair, or . reject)...
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The present state of the art of quality assurance for advanced composites is
somewhat uneven in coverage. Some activities are well defined while others
are not.. The status of the various activities is given below.

1. Weil-Defined Activities

A. Raw material control and testing

B. Dimensional checks

C. Traceability

D. Tool inspection

E. Equipment certification

F. Procedural control.

2. Activities Needing Modest Improvement

A. Process control

B. In-process quality tests other than dimensional or nondestructive

C. Defect standards (e. g., type, size, or location)

D. La.yup verification

E. Evaluation of repairs.

3. Activities Needing Development

A. In-service tests

B. Nondestructive tests

C. Nondestructive test standards.

All of the well-defined activities will be readily incorporated into the

quality assurance plan and consequently need not be discussed in this report.

Currently, programs funded at Douglas and at other aerospace firms will

provide the necessary improvements for the intermediate category of activi-

ties.; (See References 28, 30, 32, 33, 45, 46,.4.7, and 55 through 59). In
addition to the efforts referenced, Douglas is currently monitoring the cur-

ing process dielectrically, evaluating the efficiency and i.nspectability of

repair techniques, and is closely following industry efforts. The improve-

ments needed in layup verification, defect standards, and in-process quality

tests are in reducing the cost of present techniques (e..g., one-on.-one inspec-
tion of layup versus black-on-white or computerized scanning). The develop-

ment work on the effect of defects will help to decrease the total number of

standards necessary and to minimize their complexity.
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Machining of Composites

Manufacturing development in composite airframe assembly applications in

the past several years has generated improved drilling, reaming, counter-

sinking, cutting, machining, sawing, and routing methods that can produce

high-quality cut surfaces. Significant machining data have been gathered

from NASA and military contracts at Grumman Aerospace Corporation,

Rockwell International, and Rohr Industries (References 60 through 6Z).

McDonnell Douglas and others have developed acceptable and useful machin-

ing technology on independent research and development and many contracted

programs,

The most widely used machining and cutting technique is with a high-speed

diamond wheel or abrasive cutoff wheel. This technique can be expected to

be utilized in the long, straight cuts expected in the large-wing structure.

Large machines capable of supporting the great size of the wing structure

and locating with precision the cutoff wheels, dust collectors, and coolants

must be designed and built. Irregular cutouts are successfully made using

diamond or abrasive wheel routers or diamond blade band saws.

High-quality holes are drilled using specially shaped carbide or diamond

core drills, reamers, and countersink cutters with controlled feed and

speed. Back side support is frequently used to minimize or eliminate

"breakout. " This support is usually either a hard surface such as aluminum

or hard board or a ply of fiberglass that stays with the part (as part of the

electrical insulation) or may be removed as a peel ply after the holes are

drilled. These procedures seem appropriate for the large, contoured wing

where conventional drilling jigs or fixtures are supplied.

Possible low-cost drilling or cutting techniques may be forthcoming from

some of the developments in progress, such as cavitation, ultrasound,

laser, water jet, or new, more conventional tool geometry concepts.

Potential Problems - There are several potential problem areas that may

influence the wing problem.
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f1. The great size of the composite -structure presents pervasive processing

problems, along. with the massive tools required to scale up from known

machining methods.

2. Drilling and cutting methods for mixed graphite composite and metal

(titanium, aluminum, or steel for local reinforcement) have not been

optimized. Trouble could arise from overheating or metal chips

damaging the composite areas of a hole or edge during the machining

operation. The many existing contracts and the need for integral metal

local reinforcement in these pieces of hardware can be expected to

produce adequate machining methods.

3. The full effect of flaws in holes and edge cuts has not yet been estab-

lished for the long-range durability of the structure. These investiga-

tions are now underway. The allowable hole tolerances, both for

dimension and for flaws, will directly affect the costs of the drilling

operations.

4. The process of machining, cutting, and drilling is a. significant portion

of the overall cost of a composite structure. Where a part is of mar-

ginal cost-effectiveness, the expected lower-cost machining techniques

may be necessary for a design to be released for production.

5. Personnel health, safety, disposal of composite, dust, and parts handling

have not been a problem on current programs. For large-scale produc-

tion, training will be required for personnel prior to their exposure to

the shop. Suitable and economical equipment for meeting possible OSHA

requirements on collection and disposal of composite dust will require

careful planning,

Microbiological Fuel Contamination

Microbiological contamination of turbine fuels (kerosene type) in integral

fuel tanks and fuel distribution systems has , been a quality control problem

since the late 1950s. Left unchecked, microorganisms can affect fuel quality

and aircraft reliability. They suspend water and particulate matter in fuel
and promote the formation of sediment and gums. Under the right set of

conditions, microorganisms can eventually cause vying tank corrosion, fuel
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pump and filter clogging, and capacitance gage malfunctions, and can
contribute to engine failure.

The problem was most acute during the late 1950s and . early 1960x, particu-
larly in humid regions of the world such as the Far East (Reference 63),

+	 Also, aircraft in the United States were found with large amounts of sludge
and fungal and bacterial growth in the wing tanks (References 64 and 65).

The microorganisms that contaminate kerosene fuels have been isolated and
identified by many investigations (References 63 and 66 through 69). The
predominate organisms are the fungus Cladosporium resinae, the bacteria
Pseudornonas, and the yeast Candida. These microorganisms utilize hydro-
carbon fuels as a carbon source for energy and concentrate at the interface
between the two phases of water and hydrocarbons. Water serves as an
electrolyte in a corrosion cell and is an essential nutrient needed by micro-
organisms. It is through the medium of water that some microorganisms
can change the environment to one that is corrosive to aluminum. It is
thought that microorganisms Can instigate the corrosion of aluminum in fuel
tanks by more than . one mechanism. Possible mechanisms include creation
of a galvanic corrosion cell mediated by the microbial enzyme hydrogenase,
establishment of a differential oxygen cell, direct utilization of the metal,
and a change of the environment to one that is more corrosive by excretion
of organic acids as metabolic byproducts (References 70 through 74).

Since microorganisms require water to grow, good housekeeping in fuel
handling is important from the fuel distribution system to the aircraft. By
allowing sufficient storage tank settling time, maintaining filter/ separator
equipment and regular su3rnping of free water from storage tanks, and using
filter sumps and aircraft fuel tank drains, the fuel may be free from water
and particulate matter. Often, this is not enough. Microbiological fuel tank

v	 contamination. problems vary considerably from one airline operation to
another. In September 1976, the Aircraft Fuel Tank Corrosion Group of the
Coordinating Research, .Council (Reference 75) prepared and distributed
approximately 140 questionnaires to 110 airlines, of which 86 were foreign.
The questionnaire was aimed at determining the economic impact resulting
from microbial .contamination of fuel in jet aircraft and the airlines' experi-
ence with fuel biocides. Of the 41 airlines responding, most have experi-
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enced microbiological fuel contamination problems and only 18 of the

responders do not use fuel biocides.

In addition to good housekeeping practices, which are sometimes beyond the

airline's control, there are many other variables. Some of these factors

are the type of aircraft in a fleet; how well the aircraft tanks drain and if

they have a water scavenging system.; the geographic routes and flight

schedules; fuel tank inspection practices and frequency; and use of fuel

biocides.

Thus, if aircraft fuel tanks are to be constructed of graphite/epo. xy com-

posites, the possible effects of periodic microbiological fuel tank contamina-

tion in localized areas must be considered. Microorganisms usually attack

plastic polymers with their extracellular enzymes and utilize the carbon

molecules in the plasticizer for their metabolic processes. Usually, this

type of attack results in visible pitting with subsequent loss of mechanical

strength and loss of flexibility (Reference 76). However, since a composite

such as graphite/epoxy contains a thermosetting resin system brought to a

cured state by heat activation and contains no plasticizers, direct utilization

of the plastic is not likely.

When microorganisms grow in jet fuel, they oxidize the aliphatic fractions

in the kerosene fuel most rapidly, and formwate .r-soluble fatty acids, higher

alcohols, aldehydes, and other intermediates. Some of the lower fatty acids

(organic acids) such as acetic, formic, propionic, or butyric may in time

have a deleterious effect on the epoxy resin since they are less resistant to

these types of materials. A preliminary study was conducted on the resist-

ance of a graphite/epoxy composite to microbial attack in a fuel/water

environment (Reference 77). It was shown to be relatively unaffected by

short-term (14 days) microbial attack but, in a two-month exposure test,

there was an .indication of microbial degradation. Thus, the long-term.

effects of microbiological fuel tank contamination remain uncertain.

Two military aircraft programs, the F-18 and the AV-8B, feature integral

wing fuel tanks with graphite/epoxy structure. It is expected that much of

the microbiological fuel contamination issue will be resolved by these pro-

grams. Some additional testing is recommended with regard to materials

and design concepts typical for commercial transport aircraft.
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Fuel Tank Sea ling

The seams, joints, and mechanical attachments in an integral fuel tank box

structure require a precision sealing operation to preclude fuel leakage.

This is true for the present aluminum construction and will be true for the

proposed composite wing construction.

Standard procedures developed for sealing the seams and joints that form the

boundary of integral tanks and faste:er sealing have been highly successful

on the DC-9 and DC-10 aluminum wing airplanes. A combination of a poly-

urethane base internal coating for corrosion and microbic control and a poly-

sulfide base sealant has been in use for well over 10 years and no problems

have been encountered in production or in service. ThP polysulfide base

sealant has elongation in excess of 200 percent, `which allows it to accept

the relative movement of the structure under load.

The same polyurethane interior coating and polysulfide sealant materials and

processing system are .in current use with the graphite /epoxy , integral wing

fuel tanks on the F-18 and Harrier aircraft at McDonnell Douglas Corpora-

tion. Careful, proven * ~1 =i-- =-rust be used to achieve reliable wing tank

sealing. In general, the following procedures are recommended:

1. Coat the parts of the structure which form the fuel tank botmdary and

the parts in the boundary with a. polyurethane-based coating

(MIL-C-27725) prior to assembly or installation.

2. Prepare the polyurethane surface for bonding and assemble the joints

or seams that form the fuel tank boundary with elastomeric polysulfide-

based sealant (MIL-S-81733) on the contacting surfaces (faying surfaces).

See Figure 3-12.

3. Apply a fillet of elastomeric polysulfide-base sealant (MIL-S-8802) .

after assembly to all joints and seams that form the tank boundary.

See Figure 3-12.

4. Install all fasteners through the fuel tank boundary with polysulfide-base

sealant in the hole and in the countersink or under the head and both

surfaces of all washers. See Figure 3-12.

L^
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LESS THAN 0.54 cm
1114 INCH)

A

GREATER THAN 0.64 cm
1714 INCH)

A

A

A = 0.64 cm 014 INCH) MINIMUM

A

FILLET SIZE AND SHAPE

_" ' =T SEAL

_ ! n.— .,^„.. __ SEAL

r

5. Seal all fasteners by the same techniques through graphite/epoxy cam-

po to parts or assemblies regardless of whether they penetrate the

fuel tank boundary or not (corrosion protection)..

6. Seal all faying surfaces of all metallic parts that contact the graphite/

epoxy parts or assemblies with polysulfide-base sealant.

7. Pressure-test the completed tank to check for 100-percent seal.

BOLT SEALING

FIGURE 3-12 FUEL TANK BOUNDARY SEALING
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IAdhesive Bonding

Increased use of adhesive bonding has been seen with each new aircraft,

both in .amount. of area. adhesiv eU-bonded and in.. the size o.f the bonded assembly..

Examples are fuselage bonding on the L-1011 and B747 wide-bodied aircraft.

This increased size of bondtnent has complicated the requirements for the

selection of an adhesive system. An adhesive.. has been selected primarily

for its mechanical properties such as tensile lap shear, peel, and creep.

In addition, the adhesive's resistance to environmental exposure such as

temperature-cycling during its service life is considered. The adhesives

must also resist immersion in fluids such as engine oil, hydraulic fluid,

jet fuel, water . salt spray, and .deicing fluid, and high humidity. Large-

are•^ '-ending has required that adhesive formulations . be modified to give

higher flow characteristics to allow volatiles and air to escape from the

bondline and provide acceptable bond joint strength. Additional types of

testing have been conducted combining cyclic or sustained loading in hostile

environments. This type . of testing was done when .it was determined after

evaluating service type failures that a hot, wet environment was one of the

most adverse conditions an aluminum-bonded structure could be subjected to.

Present adhesive resins most widely in use are modified epoxies designed

to cure at temperature ranges of 121 0C (250,1F), 1490C (300 0F), or 1.770C

(350 0F). These materials are an intermediate or low-modulus system

no 	 having high peel characteristics. One example of this type of

material is FM300. This material has been selected for use on the F-1.8

aircraft both on metal and composite adhesive bonding. The material cures

at 1770C (350 0F) and is compatible with the epoxy resin systems used in

present epoxy/graphite prepregs. FM300 can operate at a service tempera-

ture of 140 0C (300 0F), which was a requirement for the aircraft. Adhesives

can be used with precured laminates as well as in cocured prepreg epoxy/

graphite and titanium details (References 78 through 81). If higher operating

temperatures are necessary, there are epoxies such as FM400 which also

cures at 177o C (350 oF) but can operate at higher service temperatures
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[216 .°C (4200F)J. . Polyimide adhesive systems such as F.M34 can be used

with epoxy /graphite and polyimide /graphite .prepregs for temperatures in

excess of 2040C (4.00°F).

Surface Preparation - This operation is one of the most critical in the bond-
ing sequence. Many efforts have been made to develop optimum surface
preparations. In recent years, it has been discovered that inadequate
surface preparationo have led to premature 'service failures of adhesive-
bond.ed aluminum panels that operated in areas of high humidity. . Programs
such as the Air Force Primary Adhesive-Bonded Structure. (PABST)
(References 82 through 84) have shown the improved surface preparations
such as the optimized phosphoric acid anodize initially developed by Boeing
.and the optirr.i-_,.:?J chromic acid anodize initially developed by Forest
Product Laboratory gave increased environmental resistance to an

adhesive-bonded aluminuirn panel.

Surface preparations of cured epoxy/graphite laminates have been studied

(Reference 83). These methods are mainly mechanical, such as grit blast-

ing or hand abrading, or the use of a peel fabric whi ch can be removed ^o.ter

a laminate is cured to produce a clean, prepared surface or bonding.

Surface preparations for titanium have been, studied by many agencies, with

many va-riations in the methods of preparing the surface. The most widely

used method is the Pasa-Jell 107 process. , employing a hydrofluoric,

chromic, nitric acid solution. This is currently in use on the F-14,. F-15,

and F- 18 fighter aircraft for titanium adhesive bonding. This system

requires that material be mechanically cleaned as well as chemically

treated.. The environmental durability of this system and other processes

has not been evaluated to the .extent of aluminum bond. A Company-sponsored

program is i :esently underway at DouglaEs to evaluate the environmental

durability of this system and several others such as phosphoric acid anodize

and a chromic anodize developed at Boeing. Additional programs are

presently being proposed by the Air Force to evalua.t.e the compat.ibility.of

various adhesive systems and titanium surface preparations.

66



Processing - Pressure and rate of Beat-up and cure temperature are critical
in obtaining the optimum properties of the adhesive. A positive pressure
can be applied by several methods; in an envelope membrane which is

placed in a heated. pressure vessel (autoclave) ; by a press; and by mech-.
apical means such as clamps, springs, or rubber bladders. Vacuum
pressure is undesirable for curing many epoxy adhesives due to the expan-
sion of the volatiles in the adhesive resulting in a porous bond joint and
reduced properties. The autoclave pressure range can be from 69 to 1034
kPa (10 to 150. psi). Wide-area bondments require the highest pressures,
69 GPa (100 psi) or higher, to aid in forcing the air and volatiles from the
bond joint. The heat-up rate of the adhesive, if cocured, must be compati-
ble with the epoxy-graphite laminate cure cycle (from 0.50 to 5. 5C (l. o to
100 F)per minute]. Most epoxy adhesives such as the FM300 are compatible

with this; epoxy/nylon adhesives being exceptions, Epoxy/nylon adhesives
require a high rate of heat-up to allow the adhesive to flow properly
[approximately 4. 8 to 6.5 0 C (7 0 to 12 0F) per minute]. Laminates having a
large ma.ss.camiot meet this type of heat-up.rate unless integral heated
tooling is made available.

Resins in the adhesive system muss; be compatible with the resin matrix in
the graphite prepreg for purposes of cocured prepreg laminates to metals or
precured ' Aminates. Adhesives must be able to cure in the same range.
Bonding of dissimilar materials such as aluminum or titanium to graphite/
epoxy requires development of a cure cycle that can help relieve the stresses
induced by the difference in the coefficient of thermal expansion of the dis-
similar materials. The selection of a low-modulus adhesive helps to alleviate

this  problem.

Current Programs - The current ACEE programs, the vertical stabilizers
at Douglas Aircraft and Lockheed, the horizontal stabilizer at Boeing, and
the military programs at McDonnell Aircraft all are considering major
cocured titanium to graphite/epoxy structural joints. This means that suf-
ficient information must be obtained to assume longterm durability of this
type of construction in aggressive aircraft environments. Vacant spots in
current knowledge, such as PAB5T type temperature/humidity load condi-
tions, can be expected to be filled in existing programs which will.all be

completed prior to a wing program. Although load levels may be higher

f; n•
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for rna,)or wing structure, the stress level alpng the bgrAd lines (load transfer

at bond lines) is expected to be similar.

A rriajgr wing prggr4m will have its own. specific design, - subcomponent fabri-

cation, a'nd.test program. The baseline technology should be available con-

ce.rning adhesive strength, environmental effects, durability, thermal 	 -

e.)tpansiop, cocuring, and secondary bonding

Insulation and Corrosion Control

Graphite/epoxy composites have been found to cause accelerated galvanic cor-

rosion of the major aircraft structural metals, including the aluminum, steel,

and certain stainless steels. The highly corrosion-resistant metals, such

as titanium and high-nickel alloys, are not significantly attacked, The gal-

vanic attack results from the fact that when two dissimilar metals are

electrically connected in the presence of moisture, an electrical current

flows from the metal with the Least corrosion-resistance through the moisture 	 fi

path to the metal with the greatest corrosion-resistance. The current flow

accelerates the rate of metal removal, or corrosion, of the least resistant

metal. The metals having . the greatest corrosion-resistance are known as

noble, or cathodic. The active metals are known as active, or anodic

metals. A classic example of accelerated galvanic corrosion is the electrol-

ysis of steel boat hulls.

Studies have d. et.ermined that graphite /epoxy composites react in the galvanic

series of metals as a noble, or cathodic, metal (the metal, not the graphite/

epoxy is attacked). When the galvanic potential is measured against a

standard colomel or hydrogen electrode, the graphite/epoxy is found to be

considerably more noble than titanium alloys and high-nickel alloys such as

Inconel and Rene' 41.. Only gold and platinum were found to be cathodic to
graphite.	 A

In order to assess the potential damage to metals coupled to graphite/epoxy,

tests were run in which the actual corrosion currents were recorded, Since

the amount of current flow is a direct measure of the amount of oxidized

(corroded) metal, galvanic current corrosion tests are considered to be

representative of service conditions.
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Grahhite/epoxy composites have undergone extensive corrosion tests to
determine the effect of coupling to aircraft structural parts and fasteners.
Typical investigations are `reported in References 85 through 88, by Air
Force and Navy Laboratories, McDonnell Douglas has conducted static
salt-fog environmental exposure tests of various metal-fastener c.ombina- .
tions with graphite/epoxy which . confirm the results of these investigations
(see Reference 89). The test results showed that aluminum, steel, and
lower-alloy, corrosion resistant steels would be severely damaged if
coupled directly to graphite/epoxy in a corrosive environment. However, .

titanium alloys and the high nickel-chrome alloys such as Inconel and
Rene' 41, due to their high inherent corrosion resistance and .surface pas -
sivity, are not prone to galvanic corrosion.

Advanced design techniques must be used to prevent accelerated galvanic
attack of aircraft structure by graphite/epoxy. In general, the following
procedures should. be implemented:

a. Eliminate all crevices and traps between graphite/epoxy and metals
by extensive faying surface sealing.

b. Install all attachments and inserts with wet sealant.

C. Use corrosion-resistant fasteners.

d. Apply primer and topcoat to structural parts before assembly.

Exterior Coatings

Graphite/epoxy composites require organic coatings for the following
reasons:

1. Protection of the composite from ultraviolet degradation.
Z. Retard ir:oisture absorption -in the composite,

3. Customer color preferences - aesthetics.

4. Protection from rain, hail, and dust erosion.

The aircraft industry has considerable experience in painting graphite/epoxy
composites, both on an experimental and pilot production scale. One of the

applications at Douglas has been the .DC-10 composite rudder. The produc-

tion rudders h;^ve been successfully coated with conventional aircraft coat-

ings, i.e., epoxy , polyarnide primer and linear. diisocyanate cured poly-
urethanes. No new development of coating systems is anticipated other than
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a minimal effort to determine the optimum surface preparation to ensure
long -term paint adhesion.

The main surface .preparation effort will be to determine if unique problems

occur in removal of mold relea-e materials used with the composites.

Otherwise., surface preparation is expected to be the same as used for years

on glass fiber-epoxy laminates. This entails thorough cleaning with a

detergent scrub and solvent scrub to remove- mold and surface contaminants

and then abrading the surface with abrasive pads or sandpaper, filling any

pinholes with epoxy putty materials,. and surface-smoothing with epoxy

smoothing .compounds.

Coatings have been discussed with other aircraft manufacturers who have

been building graphite/epoxy .composites. Two of the other manufacturers

have indicated no problems when coating their composites with epoxy pruner

and polyurethane coatings, as Douglas has been doing. One manufactarer

indicated there . were problems in obtaining adhesion. Two manufacturers.

indicated problems in obtaining sufficient moisture protection of the com-

posite in their skin honeycomb application.

Rain-erosion-resistant polyuretbane coating systems will be required if

leading edges are constructed of graphite composite, Kevlar composite, or

glass fiber laminates. The coating systems will be elastomeric urethanes

similar to those specified by MIL-C-.$3231. The same rain-erosion-resistant

coating and methods of application used on all fiberglass leading edge details

and fiberglass radomes will be prescribed for applicable structural composite

details.

Stripping of organic coatings from the composite wing will eventually be

required after the wing has been in a normal service environment. Surface

coatings may also need to be removed for repair of damaged structure while

still in the manufacturing facility or while in later service. It is expected

that strippers currently used to remove polyurethanes from aircraft struc-

tures may result in damage to the composites. Stripper development or

development of mechanical techniques or water fan jet abrasion may be

involved, but. at a moderate expense, and can be expected to be resolved as

an issue on current industry pilot production programs.
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Low-Cost. Fabrication
i

The manufacturing costs of graphite composite structures must be minimized

if it is to be competitive with conventional metal structures. A well-coordi-

nated design, processing, tooling, and manufacturing team, where the influence

of each discipline is considered from initial concept of design, can greatly

influence the cost of the end product. Most aircraft firm, ms .now follow this

team, design synthesis concept.

A number of low-cost development programs have either been completed or

are proceeding in a continuing effort. A few of the most promising low-cost

development programs that perhaps may have direct influence on large com-

posite wing design and fabrication are reviewed,

1. Fabrication Guide

The .Air Force Materials Laboratory has, on contract to Rockwell Inter-

national Corporation, the task of preparing an Advanced Composite

Design Guide (Refer !_=nce .90). The AFML has also contracted with

Lockheed, GA,, for the preparation of a Structural Fabrication Guide for

Advanced Composites (Reference 42). These documents present an

excellent summary for design, tooling, and manufacturing concepts.

They will save original design time, be valuable for reference, and

present many useful low-cost directed. manufacturing methods.

2, Reduce Part Count

There is general agreement in the industry that substitution of graphite/

epoxy for metal cornponents on a detail part-by-part concept cannot be

cost-effective..The direction for composite fabrication and design is to

minimize the number of individual details. The use of honeycomb con-

struction, to reduce part count has, for example, been successfully

y	 applied at Rockwell . International, Northrup Corporation and Grumman

(References 91 through 93).

Minimizing the number of manufacturing steps, such as autoclave temp-

erature/pressure cure'eycies, to produce a finished part, 'results in

lower . fabrication. costs. Northrup has produced cocured and bonded .

honeycomb composite skin sandwich construction (Reference,,.9,2.). -Douglas
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Aircraft Company has fai.ricated the DC_ 10 upper aft rudder which has
structure of skirls, spars and ribs., all solid laminate, but all integrally

cured in one curing cycle (Reference 94).

3. Automated Tape Layup Machine.

A r.uinber of manufacturers have explored the economics of using numer-
ical control automatic tape layup machines for cost reduction. General
Dynamics, LTV, Boeing, Lockheed, and others are evaluating these

machines (References 95 through 97).

Their advantages are: (1) rapid, automated, precision layup; (2) mini-

mal human error; and (3) automatic documentation.

Their disadvantages are: (1) high initial cost; (2) large production
order of parts required (usual practice for commercial aircraft is a
block-by-block release for production); (3) limits on doubler buildup;
and (4) requires higher uniformity of prepre.g tape (downtime to remove
local .defects in tape is costly).

The cost-effective applications for automatic tape layup machines should.
be established by these manufacturers. The machines will have their
place in industry where large 'numbers of repeat parts are required.
The detail design of the wing and subcomponent elements of the
wing will determine their pons ;ble use.

4. Pultrusion .

Subcomponent details similar in shape to many roll-form details can be
formed by a continuous automated pultrusion process. Rolls of material
(with prepreg or wet resin impregnation) can be pulled through reducing
dies to a final cross section and partially cured to a hard B-stage.
This shape can then be handled and installed in a complex structure and
cocured and bonded in a later process cycle. Boeing and Goldsworthy
Engineering have performed successful development with this process
(Reference. 21). Mechanical properties of cured graphite/epoxy pultru-

u
	 sions reported to date have not been as high as the press-cured or auto-

ciave-cured specimens. A hard B-stag y pultrusion, later cured- in the
autoclave, does produce typical autoclave type mechanical properties.
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Graphite fibers are woven in to many cloth configurations that vary from
95 percent unidirectional 0 degrees. to 50/50 bidirectional fabric. It
may also be woven at 95 percent 45 degrees .fiber direction with 5 percent
0 degrees Dacron tie yarn. It can be woven in a variety of weaving
styles and thicknesses. ' The -weaving process is automatic and this. tends
to prepare an economical and uniform building block material. All
fabricators have reporfed reduced layup time using woven cloth, by as
much as 75 percent compared to hand layup (References 41, 92 and 98).
The wide, thick woven cloth layup time may be competitive with auto-
matic tape machine layup. The material can be pulled over the same
contour and does not split, unlike unidirectional tape, particularly
when the material ages or starts to dry.

The woven form of graphite offers a mechanical means of obtaining a
uniform hybrid, mixed fiber content in a panel that may act as a crack
stopper, to improve impact, orsimply lower cost by dilution with a
lower-cost fiber in a noncritical direction (References 98 and 99).

b. Low Resin Content Prepreg

Investigations by Northrup (Reference 92) and others have been success-
ful in reducing manufacturing costs by purchasing prepreg materials with
close to the desired product resin content. The excess resin bleed is
not thrown away — this was previously thought necessary to facilitate
removal of trapped air during layup and, further, the procedure
eliminates the need for most of the bleeder cloth. This represents
real savings in labor and materials. The low resin content is particu-
larly attractive with the woven materials where splitting is not a
problem.

7. Hybrid Materials

Dupont (Reference 100) and Boeing (Reference 101), among others, have
evaluated the benefits to be gained by hybrid or mixed fibers in a
laminate. The hybrid fiber may be included for .specific property

improvements. Low-cost glass fibers can be interrmxed, in prescribed
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locations and amounts, possibly in nonmaximum load direction, and may

be used to reduce costs.

8. Design for Ease of Fabrication

McDonnell Aircraft has designed the Harrier wing with full consideration

given to manufacturing (Reference 1.02). The concept was to make the

design as simple and low risk as possible as a tradeoff with weight

optimization. The aim was to minimize layup time and risk of loss of

the part during fabrication.

9. Material Control

The contribution of material control in reducing manufacturing costs

must not be overlooked. Material control includes storage conditions,

packaging, and special handling procedures. Useful, efficient handling

of material is essential to minimize waste. Lockheed Missiles presents

lmsights and suggestions on the proper control of composite materials

(Reference 34).

10. Out of Autoclave

An autoclave (or press) of sufficient size to produce a full-size DC-9

wing represents a major investrnent in equipment. Many development

activities are underway to eliminate the need for the autoclave.

A. The pultrusion and roll-forming processes do not yet produce

final cured parts of acceptable quality. Final cure under heat

and pressure is required..

B. Vacuum Curing Resin

Resin systems are under development that can be used with

graphite and processed with heat and vacuum bag pressure alone.

The usual epoxy systems that perform well with autoclave pressure

will cure with air or gas bubbles and high void content when cured

under a vacuum, bag. TRW and several prepreg and resin suppliers

are working on a solution. Northrup RReference 92) reports major

cost savings and only marginal lowering of strength properties with

a vacuum bag cure.

74



4
Y.'

1

• y	 <

C. Trapped Rubber. Molding

The trapped rubber molding process has been partially developed

at Lockheed and at-Douglas. Douglas has manufactured a series

DC-10 upper rudder by this process - (Reference .94).. The concept
uses -the high coefficient of expansion. of silicone rubber; enclosed
in a rigid metal box so that with heat, the box contains the silicone
and develops pressures suitable for compacting a composite part
during cure. Heat is supplied by an oven or by electrical heaters
imbedded in the tool.. This process is presented with. further detail
in Section 7.

D. Inflatable Fire Hose Pressure

The fire hose pressure molding concept supplies pressure to the back
side of a mold,surface much like a large hydraulic press. A
typical installation would have a rigid lower surface tool in a

fixed location (D. An upper surface tool would m' atch-mold the
upper surface of the part d . The back side of the tool would be
virtually flat. A series of inflatable fire hoses O would then 	 i
be located . between the upper tool and a rigid upper surface (perhaps
a rigid frame truss construction) 5Q

The hoses are inflated to produce the desired effective pressure on
the part. Movement is fairly restricted and requires proper' design
to allow placement of the part to be cured in the tool. Only small .
potential energy is stored in the volume of the hoses, there is
no pressure bag to break, and the support tool is n:ot .expensive to
build compared to an autoclave. This concept has been user? occa-

sionally throughout the industry with the most notable known succes s
at . Bell Helicopter.

I
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Real energy savings potential exists for a. tool	 'and Q that
contains an electrically heated surface plate bac C . 4 lhy a rigid
insulation structure. In this ease, only the tool surface and the

part itself wouldbe heated t.o the high curing temperatures, If the

tool surface were made of graphite/epoxy, of the same fiber pattern

as the part to be cured, and-if the backing ' insula*ion had low

thermal coefficient of expansion and low thermal conductivity, the

resulting tool should be very stable to thermal distortion due to

curing temperatures.. Close dimensional control should then be

possible for the fabricated parts.

11. Low -Cost Tooling

Tooling for composite manufacture for long wing-type structures is pre-

sented in Section 7. The following text.presents a discussion of two

unique low-cost tooling concepts used to produce large composite parts

that may prove useful . for the wing program..

A. Graphite /Epoxy Sandwich Tool

A large tool was fabricated by .General Dynamics and used to manu-

facture the F-5 fuselage midsectipn (Reference 10.5). A plaster

master. mold was built using standard plaster technology. A

graphite /epox-y skin was cured under vacuum bag pressure and low

60°C (1490F)] heat on the plaster mold. The .outer skin was then

cocured and bonded to the honeycomb with the same temperature and

pressure. After cure, the part was removed from. the unharmed

plaster, placed in a holding fixture, and postcured to 177°C (350oF).

A wet epoxy resin system was catalyzed to partially cure at 600C

(1400F and to completely cure at 177 90 (350oF) to obtain 17700

(3500F) elevated strength properties after postcure without resin

softening and without distortion. General Dynamics claim for the

concept was-

(1) Low cost for a large, complex shape compared . to. conventional

metal tools,..
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(2) Excellent thermal stability. 'The graphite skin was the same
fiber pattern as the part to be made later, and no-thermal

distortion occurred.

(3) The tool was lightweight and did not place severe . lixnits on
heat-up capability for a final part autoclave cure cycle.

B. Quartz Fiber/Epoxy Tool

A large tool was fabricated by Boeing for a structural component

that was designed similar to'the General Dynamics approach except

that quartz fiber cloth was used in' place of graphite cloth or tape.

A general-purpose high-temperature epoxy resin system was used

and autoclave curing pressures. The use of quartz was a-cost-

saving material substitution,, and good dimensional stability was

also reported (Reference 104).

MANUFACTURING TECHNOLOGY ISSUES

The successes achieved by , Douglas Aircraft Company in curing monolithic.

graphite/epoxy structures such as the DC-10 upper aft rudder have reinforced

the manufacturing philosophy that integrally cured structural assemblies will

ultimately become the most efficient and cost-effective aircraft construction

method. This belief is predicated on the fact that integrally cured

assemblies eliminate most mechanical joints, ensure . proper fit-up of details,

minimize structural weight, and can result in lower manufacturing costs by
reducing the time required for assembly. We realize that the technology

available today is not sufficient to permit immediate commitments to rnanu-
factoring an integrally cured wing. Considerable research effort must be .

devoted to developing manufacturing techniques to permit large-scale curing

of wings. If composite wing structures are to replace aluminum. wings on .

commercial ,aircraft, then advances in the manufacturing technology must be

oriented to take full advantage of the net molding possibilities afforded by

composites. Straight replacement of aluminum by graphitelepoxy on a 'part-

for-•part approach is not yet cost-effective because of the high cost of the

graphite material. Additionally, lower design strain level allowable-s must.

be used when graphite parts are joined with ine.r_hanical fasteners. * Adhesive
bonding for primary structural joints is not yet perfected with sufficient
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reliability for long-term .(20 -year) continuous service. From today's view-
point, the maximum cost /weight benefit from composites will. coincide with
maximum integral curing of assemblies.

Under present manufacturing capabilities, a composite wing can be produced
using a more conventional approach. his approach is to fabricate details-	 1

such as stiffened wing skins and individual spars and" separate ribs or bulk-
heads, and join the parts with mechanical fasteners. Advantages . over.
aluminum structure may be gained if.wing skins are .made in one piece, - with
the stiffening elements incorporated as integral components of the skin.
Ribs can be fabricated with lightening holes and stiffer. ers, and buildups
molded in one piece. Metal attachment "fittings can be .incorporated in the
lay-up and cured in position. This concept of wing production is possible
today, with a minimum of development effort; however, the total potential
benefits, in terms of reduced manufacturing costs, are not as lucrative as
those for more integrally cured assemblies.

The manufacturing technology issues discussed in the following paragraphs
support the concept of monolithic structure..` Descriptions of .specialized
molding methods, such as inflatable .mandrels and trapped rubber, are more
applicable to integral curing than to conventional piecemeal construction.
The goal presently invisioned for composite wing production is to cure the
lower stiffened wing skin with both.front and rear spars and to . include the
22 ribs in one structure. The upper stiffened skin, molded with the lower

structure, is separable after curing by us-ulg a Teflon barrier. The removable
cover skin provides access to the wing for t,7o1 removal and subsequent assem-

bly installations, and still provides perfect nmtchup of the skin because all
parts are cured together. The cover` skin, Y.ar,chanically fastened to the
substructure, completes the wing as s embly.

Admittedly, this is a rather imaginative approach to wing fabrication, but
it is one that we believe should be pursued for more favorable long-.term
results.

Molding Methods

Adtocla.ve — The autoclave was ..initially used in the curing process to atld 	 9

pressure to. the laminate,. allowing better resin infiltration around fibers
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and developing a more uniform finished product. The current autoclaves
have been boosted to meet higher temperature and pressure requirements.
THE forced heating systems to be converted from the tool to the, autoclave
atmosphere. As autoclave size increases, the cost of operation rises in
proportion to the diameter squared: Also, the cost of the facility rises

exponentially-with the increase in size.

With this economics-limited situation, manufacturing requires that wing or
fuselage structures which are too large to be fabricated in one piece have
splices designed for ir..odular construction.

With these larger structures,. the risk of loss during cure becomes greater.
The large stationary autoclave also dictates the location of the assembly lines
and limits the flexibility of the plant layout due to its size. The basic
module size developed at Douglas in 1970 for structural component handling
was 3. 05 meters (10 feet) in diameter and 9.. 1 meters (30 feet) long, Because
of the need for fewer parts and integrated design, along with the weight saving
of fewer splices, this size may need modification. The autoclave tooling is
operated wifk balanced pressures in all sides, allowing the use of lightweight
mold surfaces just heavy enough to prevent distortion.

A&H.tion of splices to the wing design takes a large penalty in weight,
fabrication complexity, and cos?.. The current design concept involves com-
ponent sizes for an autoclave with the equipment now available in industry.

Press Molding — Press molding has been the industry standard from the early
days of plastics. It is the production approach for most components, but
due to its mechanical configuration, the size and shape of the .parts limit
the use of presses.

The typical press has tie rods at each of the corners, and these limit the
size of the tool or part that may be ;produced. A typical component of
graphite/epoxy requires the molding/cure pressure of 0. 69 MPa (100 psi.) and
1770C (3500F) to properly process the resin. A large aircraft wing panel
component measuring 20 by 3 meters (65 by 10 feet) requires a press of
nearly 4540 metric tons (5000 tons) and, combined with the platen rigidity
necessary,'thi;, would cost more than $3 .,_zillion to acquire. This press would
still have problems due to the tooling complexity.
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To achieve the goals of this program, the use of presses requires develop-

Ment. The ability to process epoicy resin Sybtems'.sing a hot platen press

hinges on the deVelopment of the hot strength of the cured resin, to allow

the rapid cyclftig possible on a press. Too!L*ig setups for 'short ruxis on a

press are efficient only for large-v,:)!U-rie parts. Clips are ideal configura-

tions as they are used in many areas.

Press tooling costs 100 to 150 percent more than similar tools used in an
autoclave. The dimensional control is better in the press because of the
!'matched tool concept" where both surfaces are hard tooled:

An epoxy resins chopped graphite form, compression molding compound that
could achieve 80 percent of the strength of the continuous fiber cured laminate

would be press-rriolded to produce clips and other small components. The
labor costs of using bulk inolding compounds and. the compression molding
process are low compared to hand layup and the autoclave cure process.

Compression-molded details are usually molded net to shape, including holes,

countersinks, cutouts, and other openings.

Inflatable Elastomeric Mandrels — A new development at Douglas has been the
use of silicone rubber inflatable mai: cdkels. inside a composite structural cavity
to provide pneumatically controlled levels of molding pressure. An inflatable

mandrel has distinct advantages over other types of molding tools in that it

has low thermal mass, is reusable, and can be collapsed and withdrawn

through small openings such as access holes in the cured structure.

The i.nflata.blf.s are formed from uncured silicone rubber sheet stock calendered

to uniform thickness. Sheet silicone rubber is available with a Dacron woven
insert within the sheet which provides a greater tensile strength. This rein-

forced rubber is generally used around radii %vhe.re  stresses can be high

enough to tear the plain rubber sheet. It also acts as an effective doubler

over joints and seams.

The uncured rubber is layed up into a female mold, built up to wall thicknesses

of 3 mm (:0. 125 inch) or _Afore., and the..n vacuu Yn bagged and cured at 177°C

(350 F). A pneumatic fitting is embedded and cured in the mandrel w_11 to

introduce pneumatic pressure later during part cure.
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When uaing inflatabies to mold straight parts such as..blade stiffeners on a
skin-, the mandrel must be. stiffened along its length to ensure straightness of

the cured part. Metal. inserts and hingeable inserts have both been very effec-
tive in maintaining alignment of the mandrel: They also provide a rigid Tnold .

surface which can be used for layup.

The present state of inflatable mandrel technology is so-rnewhat unreliable

because of leakage through the rubber mandrels. This is the basic problem

in extended use of the inflatable molding system. If the mandrel leaks during

the cure cycle, the differential pressure between the inside and . outside of the

tool is lost and a poorly molded part results. One concept for avoiding some

of the pitfalls mentioned above is to use a very high elongation (1000 percent),

thin-wall bladder that is not preshaped. It may be possible to buy mandrels

in on1v a few standard shapes, inflate them to pressurize the part, then peel

them out of the , part cavity and discard there. Development work is required

to find a high-temperature rubber with high elongation properties, like a

simple balloon.

The inflatable mandrel molding process is a prime candidate for producing

integrally cured composite wing structure. Figure 3-13 illustrates a poten.-

V.al method of employing inflatables to fit between rib bays in .the wing. Each

mandrel is formed to mold the wing skin stiffeners and the ribs simultaneously.

The mandrels are pressurized via a common pneumatic line to provide equal

pressure. As shown, the cover skin is cured with the spars and ribs, but

separated from them by a barrier film. The cover skin is reattached to the

wing structure later after tooling is removed and piping installations are completed.

Trapped Rubber Processing — Trapped. rubber processing, using the thermal

expansion method, has proven to . be a. viable-means for producing. one- piece

cocured composite box structures such as the DC-10 upper aft rudder. Tool-

ing is currently being initiated to produce a DC-10 nose landing bear door by

this method. The process is still in its infancy and there are many unknowns

and variables. As these problems surface and are resolved, the process .will

become a valuable. manufacturing technique and could prove bene-ficial in the

fabrication' of a composite wing box:

$1



•	 1
i

p

i	 .	 le	
r

i	
SECTIQN A-A

-
l'i^ d

„ r s. d. ri/ ff

1',f-
' j ^,!/ ,//r s

	

'5KIN W,ITI INTEGRALLY 	 •'	 rf^ < •//`r. f,
STIFFENED BLADES

PLM

'O-'

elP,	 L^	 ®	 r

J u~1	 -°
jj %a.

-:	 FRONT SPAR

REAR SPAR

SKIN W ITH INTEGRALLY
0. '	 STIFFENED BLADES

r }, f̂	 ^,, 0	 `. ...... d	 — BULKHEAD(TYP)

PLM

0.4
	 I	 c	 RUBBER BAG iTYP)

3. Xx
PRESSURE HOSE (TYP)

^l 4L	 ,.^.

.	
^ TAO  ^   	 .

F IGURE 3-13. DC-9 COMPOSITE WING CONCEPT

82



Trapped rubber processing is predicated on the-thermal expansion properties
of elastomeric-type materials, primarily room temperature vulcanizing (RTV)

silicone rubbers. The term applies to a molding process for Composite

materials in which precast- silicone rubber is placed within a closed (but not

airtight) cavity and: allowed to thermally expand against the composite's sur-

face supported by the. walls. of the vessel. . This generatea pressure internally

rather. than externally as- by standard means (vacuum bag, autoclave, or

platen pres-sY. The process can be modified and used in conjunction with

vacuum bag and autoclave methods where high pressures [i n excess of 0. 69

MPa (100 psi)] are not required.

Among the advantages over conventional methods, trapped rubber processing:

• Eliminate s the use of an autoclave and its costly operation

• Eliminates standard vacuum bag techniques and the problems associated

with leakage and bag failures during the cure cycle

• Eliminates costly bagging materials which can be used only once

•	 Requires only a standard air-circulating oven (or the tool,can be self-

contained with internal and/or external heaters)

• Eliminates the risk of losing a part during a cure cycle due to faulty

bagging or pressure. loss

• Permits reuse of mandrels without danger of pressure loss.

The disadvantages of the process are-,

• Extremely heavy and bulky tooling (dependent upon part configuration)

• Slower heating rates due to tooling mass

• Part configuration must be adaptable to this process.

The composite wing box. could be a choice candidate for production by trapped

rubber processing as it lends itself to an open box configuration; i.e. , the

integral curing of nibs,. bulkheads, 'and spars to a lower skin with a remov-

able upper skin, or a cured egg-crate construction with separately attached
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upper and lower skins. Tooling could be limited. to: '(1) a closed system with

an air-circulating oven and internal heaters as requited to enhance the heating

rate, or (2) an open system utilizing a vacuum bag and autoclave. Within the

time span allotted for design and development, problems associated . with the

process should be resolved; namely, gap control, pressure control, and

rubber stabilization. Currently, the process is dependent-upon RTV-type

silicone. rubbers.beeau.s.e ' of .their high thermal eXpansion : rates; but evaluation

of other materials such as Teflon or Nomex, should theyexhibit more efficient

pre s s ure . and tempe rature. 'control and Bette r tool indexing, could make them

desirable candidates as pressure media.

The DC-10 upper aft rudder investigation will address pressure- sensitive

param.e:te,rs of trapped rubber.. Sufficient technical information will be avail-

able to permit an accurate definition of -the rubber configuration in order to

control press ure levels as a function of rubber and cavity volume s. Additional'

development work shoLild be initiated to eliminate the precision gap require-

ment by incorporating controlled voids within the cast rubber that will collapse

and automatically limit pressure at a chosen value. This capability would

permit the casting of rubber net into the tooi.volume' without careful adjustment

of gap through accurate fabrication of a dummy-part.

Combination Molding Process — Inflatable . and Trapped Rubber Process — The

trapped rubber process .has.been used. advantageously in. sections less than

30 cm (12 inches) deep, with access holes to permit removal of rubber tooling

after. cure. Cont , cl of molding pressure is accomplished.by correct sizing of

rubber and cavity volume ratios during tooling construction. For deep sections

that would require large volumes of rubber, the pressure control is more dif-

ficult and the rubber provides a considerable thermal mas.s.which increases.

the curing cycle time. Additionally, silicone rubber is expensive and adds

considerably to the tooling costs. Minimizing the volume of trapped rubber

within the tool can. reduce rubber costs,. energy utilization, and cycle times

to make a more efficient process. Thus, efficiency can be enhanced by com-

bining the trapped rubber with an inflatable mandrel to occupy a high per_ent-

age of the tool volume and provide molding pre.s_sure,

A Company-sponsored program is underway to incorporate trapped. rubber

molding in conjunction with an inflatable mandrel to fabricate a wing box
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section. The test box will_de.termine the effectiveness of curing components

of a wing, including' blade-stiffened skins, with the cover skin separable from

the box after cure. A removable cover is necessary for extracting tooling,

for access to install subsystems such as fuel piping, and for inspection of the_ .

cured composite. The cover is mechanically attached to the front and rear

spars and to separately cured chordwise ribs which are installed after the

box is cured.

Figure 3-14 is a schematic view of the box end showing the trapped rubber

strips used to generate horizontal molding pressures on the sides of the

blade stiffeners. Metal mandrels between the blades provide straight molding

surfaces and also act as layup and densifying forms for the graphite/epoxy

tape used on the box. Each mandrel was densified to compact the layup close

to final thickness, enabling fitup into the tool.

100 PSI AUTOCLAVE PRESSURE

TL-:^LON BARRIER
t

SILICONE RUBBER STRIP
FOR HORIZONTAL PRESSURE

ALU GRAPHITEv	
/	 METAL

METAL
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FIGURE 3-94. COCURED WING BOX MOLDING METHOD
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Pressure to cure the skin areas was provided by an inflatable silicone rubber

bag formed within the tool on dummy parts prior to layup. By venting the bag

to autoclave pressure, control of molding pressure normal to the bag surface

can be achieved by the normal autoclave pressurizing system. The net dif-

ferential pressure level across the tool wall is zero.

The female box tool was .purposely designed . as a low-cost, low-mass tool

which would be vacuum-bagged and would not be required to withstand high

differential pressures between the interior and exterior surfaces. Aluminum

was selected as the tooling material because of its availability, high thermal

conductivity, and machinabili,ty.

The first part has been successfully cured using the inflatable mandrel formed

from uncured silicone rubber with a seam along the upper edge where the bag

contacts the sidewall.

This concept of the combination process has a high potential for curing wing

sections with ribs, and is considered as a viable method for future assemblies.

More development work must be conducted to find a reliable inflatable man-

drel and to simplify layup of composite into the tool.

In order to integrally cure a wing structure and avoid the fastener installation

costs, weight penalties, and part fitup problems associated with joining sepa-

rately molded composite parts, the combination process requires a develop-

ment program to address the following areas:

0	 Construction of reliable inflatable mandrels

s	 Verification of the combination process on a subscale part

s	 Manufacturing cost data to determine effectiveness of cocure molding

concept.

t
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Tool Development

Low-cost Tooling Concepts — Tooling required for molding large structural

parts can be massive, causing high thermal lag, and is expensive to construct.

Simplified tooling approaches are desirable in , conjunction with combination

molding processes to avoid large pressure differentials across molding tool

walls.

Conventional composite tooling generally consists of steel molding surfaces

machined to contour on multiaxis N/C milling machines, then supported by

complex truss work. The costs associated with producing such tools are

high, and they can be justified only where many parts will be produced. As

the composite wing technology program will construct only three wing box

sections, the use of low-cost tooling would be very advantageous.

Low-cost tools can be fabricated with plane surfaces and containment of

molding elements in picture frames, Figure 315, A flat or curved sheet of

aluminum or titanium defines the contour of a stiffened skin. Integral blade

stiffeners are cured by trapped rubber pressure and the autoclave generates

curing pressure in orthogonal directions. Such simple tooling has been used

to construct test panels for the NASA Composite Specimen Program (NAS1-

12675).

Another approach to low-cost tooling is the use of castable materials which

are readily swept into final form by the use of templates. Castable ceramics

have been demonstrated to be effective in curing graphite and Kevlar epoxy

parts; By sweeping the mold to shape, little or no machining is necessary to

generate compound curved surfaces. The ceramic tool can be integrally

heated for curing the composites and. the mold surface can be permanently

i x

	 coated with a release material to ensure that parts will not bind to the mold.

The thermal coefficient of expansion of ceramics is on. the order of 0. 56 x

10 6 cm/cm/oC (1 x 10 6 in. /in. / O F), which closely matches that of graphite/

epoxy.

Tooling has been fabricated using graphite/epoxy layups wit-^ flex core stif-

fening.. This approach provides excellent thermal match between the mold

and part, but is costly to construct because of the maw.-,al laysp of the

graphite.
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FIGURE ,3-15. LOW-COST TOOLING

Block graphite has been used as a tooling material where . thermal expanF.ion

must be very low. However, the nature of graphite block is such that the

material must be machined in a special facility to minimize dust and contami-

nation of equipment. Douglas has jobbed out all block. tooling because o€ the

machining problems. A special sealing coat must be applied to the contact

surfaces to prevent adherence of the part to the mold. We have used graphite

block tooling to only a limited degree.
r
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The applicaL,.on of simple tooling is predicated upon the configuration of the

final part.. A very simple aluminum mandrel formers from bar stock can be

used back-to-back to-produce H-beams. By designing the web surface to

remain. flat, the relative motion. between the part and tool during cooldown.

does not load the part. In fact, the aluminum tool will shrink away from the

graphite part, enhancing release.

Very accurate aluminum tooling has been used to mold integral hat-stiffened

panels of high quality representing wing skin thicknesses and compression

loads, Aluminum is readily machinable with good surface . finish. Cast.

aluminum plate has been tested as tooling material but lacks the smooth

finish possible with 6061-T6. alloy.

The greatest potential for low-cost tooling is in the castable tool where

machining can be avoided. Splashes taken from plaster master parts can be .

used to ?wild tools either by back-casting or by making female molds from

materials such as fiberglass. Tooling can be developed. for the contoured

wing skins by using several castable materials to determine tool costs,

dimensional control of the final part, and longevity of the tool after repeated

curing cycles.

Stationary Tooling — Three approaches for the in-line stationary tool that

could be incorporated into the production line for a single-use dedicated

facility are: (1) autoclave, (Z) hot-oil bladder, and (3) thermal expansion

rubber.

Autoclavg Curing — This is the conventional approach but involves using

multiple and :single-purpose tools in an autoclave-type pressure vessel.

The small-volume autoclaves would be adjacent to the assembly line. The

autoclave design would conform to the shape of the part v-',h self.-contained

heating and cooling capabilities.

The disadvantage of this type of curing is the bagging and potential for

leakage. Better systems need to be developed for assembly of the prepreg on

the tool, applying the bleeder materials, sealing the vacuum bag film to the

tool, and testing and loading prior to cure, as well as the need for develop-

ment of the curing mechanism itself.

le;
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For high-cycle curing, abetter heat transfer is offered by the use of a

built-in rubber blanket tool that circulates heated oil instead of static gas

for pressurization. This nuts the heat source in direct contact with the

composite material for maximum efficiency. After satisfying the cooling

requirements, the oil temperature is easily reduced by circulating it through

e,;cchangers, and then circulating to cool the tool and part. The feasible

pump pressure available for circulating hot oil is about 0. 35 MPa (50 psi).

This technique has limitations, especially with the silicone rubber bags

because of their low strength at elevated temperature. With circulating hot

oil, further hazards may arise from leaks, Aside from damage to the curing

parts, personnel. safety must also be addressed.

The borderline pressure of 0. 35 MPa (50 psi) on the system can also create

cure problems. Normal process specifications require 0. 69 MPa (100 psi)

for curing structural epoxies. Pressure below the amount specified may

result in a deficiency in sharp corners or in deep draw areas.

Thermal expansion molding has rapidly developed in the last five years. The

unique characteristics of certain silicone rubber compounds permitted the

development of a tooling material called R T V. R T V rubber expands under

heating, a characteristic which can be converted into pressure for curing

composites; it contracts on cooling, causing a tooling mandrel to shrink and

ease its removal from inside a cured part.

The major program using this approach is the DC-- 10 composite upper aft

rudder. This is a stru' tural part over 3. 5 meters (12 feet ) i7lgh, molded in

one piece using a steel tool to the outer mold line.. The prepreg grap%itef

epoxy broad goods and tape are lzyed up, densified, and formed. These

details are then stored in the freezer until assembly. The details are loaded into

a mold for final cocuring and bonding in. one operation. The tool-is bolted

together; the assembly is rolled into the oven. Using external convective

heating with the internal heat through cartridge heaters, the rubber expands

and the part is cured.

Large-.Scale Tools — Composite molding tools for 15-meter (50-foot) parts

have not been designed or tested to determine where problem areas might.

occur. Wing contours employ compound curvatures and twist along the wing
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axis. Dimensional control of the contour is very important and extrataeous -

warpage of a wing skin during cure would be unacceptable. Conventional
tooling experience is limited to relatively small parts where- thermal effects

cannot be adequately extrapolated to full-sized wing sections.

Tooling materials have historically stressed longevity over economy or.
thermal properties. A serious consideration for large molding tools is the

thermal mass which directly influences the heating: .rate during cure. Tool

designers .customarily using massive plates to construct large. tools .must

reexamine the traditional materials and masses surrounding the composite

material to prPmote uniform heating'at the prescribed rates.

One of the basic problems associated with maintaining dimensional control

of a cured wing is the thermal expansion of the tool and the compressive

stresses ik-.Auced on the part during cooldown. When expandable rubber curing

is used, this problem can be severe enough to fracture parts. Methods of

relieving compressive forces on-the part by the tool could ' be used to avoid

breaking good parts. The problem may be attacked by the selection of low

expansion tooling materials to match the thermal expansion characteristics of

the graphite/epoxy material or by designing relaxation mechanisms into the tool.

Many aircraft tools use welding to fabricate strong, rigid . joints from steel

stock shapes. The residual stresses induced by the welding operation could

produce undesirable-warping of the -tool when subjected to the 1-770C .(350'F)

temperatures associated with curing graphite /epoxy.' Stress relieving may be

necessary at progressive stages of tool construction. Tool designs .may'

require symmetry of sections or balanced masses about a specific axis to

avoid warping.

The present programs funded by NASA will not deal with tools on a size typica'1

of the composite. wing. Answers to these problems will be found by construct-

ing large tools, measuring the thermal and fabrication effects, and compensat-

ing the design of tooling to minimize these problems on the production

tooling.

PROGRAMMATIC ISSUES

The programmatic issues shown in Figure 3-2 are not classified as key

issues because they will be demonstrated in the :nurse of constructing and
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testing flightworthy hardware. An airframe manufacturer will not commit to

production of composite wings until a high degree of confidence exists that

low-weight flightworthy structure can be produced on schedule for predictable

costs. The data and experience needed can. only be gained by the design,

manufacture, and test of a flightworthy composite wing box which contains. a

range of design features representative of those to b p: encountered inn a new

commercial transport -wing.

Data Base

A comprehensive design data base is essential in the .development and qualifi-

cation of any new wing design. A data base for in-house commercial transport

aircraft ha$ accumulated over the years from developT-rent , and qualification

testing of the DC-6/7, DC-8, DC-9., and DC- 10 aircraft, supplemented by many

tests on Douglas-built military aircraft and oth,: r data from NASA and various

industry and government sources. The data base includes test data correlated

with analytical prediction, data on the development of analytical methods,

and a library of technical manuals and standards.

The data base for a new model is composed of all applicable data supplemented

by additional test and technology development to account for new design

features, size effects, and recent regulatory changes. The expansion of an
existing data base represents a modest investment in time and cost when

compared to the generation of a totally new data base. .

The existing data base for aluminum wing structure cannot be used for a

composite wing box design and a new data base must be generated. Data accrued

from the NASA ACEE and other government-funded composite structures programs

and from in-house composite development projects will form the nucleus of

the new data base. This base must be supplemented by data representative of

the composite wing box size, materials, layup patternE thicknesses,

processes, manufacturing methods, structural design features, and other

characteristics.

The DC-10 program can be used to illustrate the application and expansion of

a data base. (See Figure 3= 16. ) Results . of more than 2000 DC-8/DC-9 fatigue

and fail-safe tests were used to evaluate the preliminary decign configuration

of the DC- 10. During the DC- 10 development and detail design phases, 300
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bow-tie specimens and 140 wing subcomponent specimens were added to

establish the lg stress levels for the DC- .10 Wing structure. Many other devel'op-

rsent and verification test, were conducted for static strength, corrosion protec-

tion, and the like. Full-scale static proof load tests were conducted on the

4Ncond flight article, and. the fourth production airframe was dedicated for

.full-scale fatigue and faii-cafe verification tests.

100 PERCENT
INITIAL DRAWING	 FIRST

ATP	 RELEASE	 FIRST FLT	 DELIVERY

4 P4O 9 MO ^	 12 MO 9 MO 11 MO
LONG-LEAD ITEMS DETAIL DESIGN FABIASSY FLIGHT TEST

\—PRELIMINARY
DESIGN

12 MO	 11 Mo	 12 MO	 19 MO

SPECIMEN TESTS	 SUBCOMPONENT TESTS	 FULL-SCALE. FATIGUE TESTS

DC•8I9
TESTS

FIGURE 3-16. DC-10 STRUCTURAL DESIGN AND TEST SCHEDULE

The existence of an applicable data base at the onset of a new composite wing

box production aircraft program serves the following purposes.

1. To .provide evidence to management and airlines that a structurally

reliable composite wing box can be produced.

2. To have data m=ediately available for the design synthesis phase.

Otherwise, schedules must be extended to account for time to conduct

development tests.

Further, the cost of producing a totally new data base could adversely affect

a production commitment to CWB structure.

Weight E stim ate s

The decision to utilize a composite wing box design in a new production air-

craft is'highly dependent upon the weight savings that , are obtainable

projected weight savings based upon an optimi,tic conceptual design may be

comprolm:ised as the design synthesis progresses and design parameters are
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introduced which adversely affect the optimum weight. More data are required

to establish that predicted weight savings are valid.

• Durability and damage tolerance criteria may require that louver design

strain levels be established than those on which weight predictions were

based,

• Increased accessibility requirements for manufacturing, inspection, and

in-service maintenance and repair may impose structure inefficiencies

greater than those reflected in the conceptual design.

• Fabrication and assembly methods required to produce cost-effective

structure may require weight tradeoffs.

• Less weight-efficient layup and ply orientation patterns may be required

to avoid geometric distortions for proper fit.

• Additional lightning protection features may be required to preclude

in-tank arcing and other damage.

• The addition of .metal parts may be required to improve strength irn a

direction normal to the ply layup.

The negative case has been presented. Zn. the same sense, the conceptual

design could be conservative and additional weight savings nay be attainable

to enhance the selection of a composite wing box structure.

The weight-estimating techniques used for composite structures are based on

techniques proven by correlation of predicted and actual weights of metal and

fiberglass parts. Additional correlation is derived from parts produced for

the in-house NASA ACEE composite structure programs and the DC- 10 upper aft

rudder and . vertical stabilizer. In-house composite flight evaluation hard-

ware and test articles have also been used to validate the estimating tech-

niques. It has been found that most of the variance of structural weight

sterns from potential variables in the design r^.ther than in weight-estimating

techniques.

Schedules

Delivery schedules for nee=., aircraft are highly competitive and the .composite

wing box structures must be available to meet the assembly schedules.
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Figure 3- 17 presents a schedule which is considered typical . for a new air -

craft to be developed in the mid- 1980s. This schedule shows that the. wing

must be completed and ready to be joined to the fuselage structure '19 months

before the first aircraft delivery date.

AUTHORITY	 FLIGHT TYPE
TO PROCEED	 CERT

r

PRELIMINARY DESIGN

WING DETAIL DESIGN

WING FABRICATION
WING ASSEMBLY
AIRCRAFT INSTALLATIONS
PREPARATION FOR FLIGHT
FLIGHT TEST

FIGURE 3-17. TYPICAL SCHEDULE DATA FOR A NEW PRODUCTION AIRPLANE

The composite wing box structure poses two schedule issues:

1. A low risk must be associated with composite wing box• production

schedules. If the wing is not ready on schedule, the aircraft will be

delivered late. Contracts for the delivery of new airplanes usually

include late delivery clauses to the effect that the airline must be

recompensed to offset the added expense of providing alternate aircraft

and for the loss of revenue which the newer model would have generated.

2. The new aircraft go-ahead decision is made after airplanes have been sold

and delivery schedules are firm. At this point, only 19 months remain to

complete the detail design and produce the first composite wing box. To

reach this point, management must have committed to a cona:posite wing.

box preliminary design several years earlier. Unless a -very high confi-

dence level exists, or-f- would also need to carry forward a conventional
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wing design with the implied added development costs to prevent any
delays in meeting the schedule.

Cost Estimates

In snaking a commitment to utilize composite primary wing structure in anew
production aircraft, the manufacturer will want the increase in benefits of
the venture to be proportionate to the increase in risk. The reliability of
cost predictions is a fundamental risk element.

At .present, it would be inappropriate to attempt anything more than a
rough-order- magnitude cost estimate for composite primary wing structure
for civil transport aircraft. Design data and manufacturing data are available
from, other programs which, coupled with a preliminary design, could provide
a cost model.. However., for a'.targe wing structure, too many factors must

be considered which interact to affect the cost of the final product.

Gost estimates to support a firm production program commitment must be
made on the basis of very early preliminary design information. As the
design progresses, it may happen that design features will have to be incor-

porated which prevent the use of the intended cost-efficient concepts.

The synthesis of the preliminary design for composite structure involves a
knowledge of the manufacturing methods, inspection methods, and a need for
accessibility for manufacturing, inspection, and in- service maintenance and
repair. Weight optimization and structural integrity must also be considered.

The facilities and equipment that will be available must be compatible with the
production rates and may dictate a less efficient manufacturing approach..

Engineering ma y specify ply stacking sequences for structural integrity which
exclude cost-effective automated. methods. Advanced but unproven low-cost

manufacturing methods must be weighted against the risk of delays and

higher rejecti-)n rates.

When all of these and other factors are considered, there is little justification

to place much credence in cost predictions based on a preliminary d'e:sign

with no historical wing data to support the predictions.
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A composite wing technology program which includes options for the design,

manufacture, and test of full-scale c:om' :pjsite primary wing structure for

civil transport is essential before the manufacturer can place any reliance

on his predicted costs.

Experience

A large, experienced staff will be required for the composite wing box pro-

duction program. Management must be assured that capable personnel are

available to create a minimum-weight, low-cost design, and to produce.

high-quality, certifiable structure on schedule.

The new airplane's first delivery schedule limits the time available to expand

and train the composite wing box staff. An. experienced cadre must exist to

train and supervise new personnel, to develop structural and manufacturing

technology for long-lead-time tasks, and to provide technical expertise to

develop a technically acceptable preliminary design..

Capability must be established in the structural design team., materials and

process engineers, manufacturing engineers, quality assurance personnel, and

production fabrication and assembly workers to assure a balanced and

coordinated composite wing box production program.

The experience base that will be provided by NASA ACEE composite structure

programs, in-house programs, and other government-funded composite

programs must be further expanded before the composite wing box production

program is started..
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SECTION 4

WING SELECTION

A baseline wing design is a prerequisite to the conceptual design of the

cornpo^site wing b
o
x structure for the following reasons: (1) forweight

saving, cost, schedule, and trade study comparison, (2) to define the

scope of the development program, and (3) to determine facilities and

equipment requ i red.

Five aircraft wings were evaluated as prospective candidates for the com-

posite wing technology program. Parameters considered included the

following:

1. The vehicle should be a commercial transport aircraft with a range of

design features to adequately demonstrate wing technology.

1. The wing should be a reasonable size to be cost-effective.

3. It should have the geometry, structural loads, environmental exposure,

utilization rates, and.FAA certification requirements typical for a

future production aircraft.

4. Design data such as criteria, external loads,. loft lines, and interface

requirements must be readily available.

5. An aircraft must be available for a composite wing flight evaluation

program. This implies certification by the AA and subsequent revenue

operation by a commercial airline.

These factors imply that the candidate wing options are limited to civil

transport aircraft manufactured by the development plan contractor and

currently in airline service, or at least far enough into development to

ensure that design data are available and that an airplane will eventually

be available for flight evaluation.

Accordingly, the five candidate wing options shown in Figure 4-1 were con-

sidered. during the wing study.-

1. The wing of the model C-15 STOP aixrra,ft for the United St-ate Air Force.
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Two prototype YC-15 aircraft have been built and. flown. Since the study

started, the Air Force has discontinued plans for C-15 production and

NASA now owns the two prototype aircraft. , This airplane wing has the

right size for the development plan with adequate structural features

for :resolution of key issues. .However, the airplane is not a civil trans-

port and would not be suitable for in-service evaluation,

2. A DC-X-Z00 is currently in advanced design. Wing design data are

available. The wing is a high-aspect-ratio supercritical wing which is

probably representative of a 1985-1990 production aircraft and might be

a good choice if a flight evaluation phase were not required in the

development plan.

3. The DC-10 wing satisfies all requirements except that it is too large for

cost and schedule factors. The design of the wing box does not lend

itself to a spliced outer composite wing except outboard of the fuel tanks.

This outboard section does not sufficiently represent inboard wing design

features to address all the key issues (fuel tank wing to-fuselage joining, .

main landing gear attach heavy structure, etc. ).

4. Many DC-8 aircraft are still flying and design data are readily available,

The full-span wing box is too large for an economical program, but the

outboard wing has a design joint to the inboard wing. The size of the

outboard DC_8 wing is ideal, but the objection mentioned for the DC_ 10

outboard wing applies equally to the DC-8 outboard wing: it is not repre-

sentative enough to address all the key issues.

5. The DC-9 wing has the best attributes for the composite wing structural

development plan. It is small enough so that the full wing can 'be used,

data are available, many aircraft are in commercial service, and the

wing .design is representative.. Figure 4-2 shows the sirinilarity of the,

main box geometry of the DC-9 wing to the next-generation. DC-X-200

supercritical wing box .geometry.

Of the five wing options considered (Figure 4-1), the DC-9 aircraft easily

outranked the other candidates on the basis of t.ie parameters. There have

been many different DC-9 models delivered to airlines. More than 320

model DC-9_3Zs have been delivered and-the same wing is use-d on several
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DC-9 WING BOYS
(CONVENTIONAL AIRFOIL)

MAX

•PANEL

LOAD AREA COMMERCIAL 1985-1990
MODEL A/1N. SQ FT AIRPLANE COMPLEXITY PRODUCTION

CIS 12 461 NO MAXIMUM POSSIBLE

(4 ENGINES)

DC-X-200 12 510 YES MAXIMUM YES
12 ENGINES)

DC-9 18 209 YES MINIMAL YES

(TOTAL PROBLEM

RANGE)
DC-10 26 941 YES MAXIMUM YES

(2 ENGINES)

DC-8
J

4 186 YES INADEQUATE NO

(14) (LOCAL PROBLEM

AREA)

9-CEN•71433

FIGURE 4-1. WING OPTIONS

DC-X-200 WING BOX
(SUPERCRITICAL AIRFOIL)

C
7- G&N.2S763

FIGURE 4 Z. COMPARISON OF WING BOX GEOMETRY
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other models, including freighter versions, the Air Force C-9A/VC-9C, arid

the Navy C-9S aircraft; The DC-9-32 airplane is still in production, and

the vehicle will be available for flight evaluation in the mid_ 1980s. For

these reasons, the DC-9-32 was sleeted for the conceptual. design and

development plan. The DC-9-32 wing structural arrangement is shown in

Figure 4-3.
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FIGURE 4-3. DC-9-32 WING STRUCTURAL. ARRANGEMENT
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SECTION 5

PROGRAM OPTIONS

Five program options have been conceived to provide a realistic basis for a

contractual technology development effort that will resolve the issues which

have been assessed for composite wing box structure. The options are

shown in Figure 5- 1. All options feature a DC-9-32 aircraft as the base

line configuration around which consistent, well.-balanced, and comprehen-

sive plans are formulated. In composing the candidate options, the aim

was to establish a set of alternatives which could be used to compare cost,

technical risk, and schedule. The timeliness of completing the technology

development in relation to future aircraft programs is an important

selection factor.

PROGRAM PHASING

Program phasing has been implemented for better management control.

Progress can be monitored within each phase and each phase can be

separately funded, reviewed, and evaluated for effectiveness in achieving

program objectives.

Phase I — Preliminary Design

Phase I of the development plan includes a technology development and the

preliminary design of a DC-9-32 composite wing box structure. All tech-

nologies which affect the preliminary design are exercised in this first

phase. Structural design criteria must be established., trade studies

conducted, and design layouts completed. A comprehensive structural test

program must be conducted (see Figure 5-2) to provide data to support the

choice of structural arrangement and design features.

Unlike metal structures, the manufacturing methods to be used must be

decided during initial design. Extensive manufacturing t&Shkiology develop-

ment is included to ensure that a practical design.is developed. See Figure

5-3. This holds true for access for inspection and repair, lightning pro-

tection design features, and other technical. and economic design paratnters.

A synthesis of these preliminary design parameters is presented in

Figure 5-4.
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OPTION

I

i

3

4

5

.	 .	 —	 ..	 L
GROUND TEST

GROUND TEST

GROUND TEST

FUGHt EVALUATION

GROUND TEST AND. I
FLIGHT EVALUATION

GROUND TEST AND
FLIGHT EVALUATION

A^r"-Wfil.

iFIOLIRE81. 0R'i (jGRAMbPTiONS EVALUATED

BASIC

COVER

PANELS

CENTER.
LINE <i^

JOINT

JOINT

DAMAGE	 JREPAIRI^^----->-

ACCESS
PANEL

LE.
JOINT

SPAR

I

wiNC  TO

-FUS JOINT

7 -GEN-2,S 764

FIGURE 5-2, STRUCTURAL DEVELOPMENT TESTING - ALL OPTIONS
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COCUi2ED, REMOVABLE SKIM
MECHANICALLY FASTENED-

RIBS

EXTERNAL STIFFENERS
SECONDARY BOND

STIFFENED SKINS
BGEN-21764

FIGURE 5-3. MANUFACTURING TECHNOLOGY -ALL OPTIONS

OPTIMIZATION LOADS
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WEIGHT

DEVELOPMENT
TEST DATA DESIGN

SYNTHESIS
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METHODS
INSPECTION
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MAINT.
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PROTECTION f>DITCDI,A

MATERIALS

SCHEDULES

`-LAYOUTS

""'ANALYSIS

COST

B-GEN-21763A

FIGURE 5-4. PRELIMINARY DESIGN -ALL OPTIONS
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Phase II — Detail Design

Phase II converts the preliminary de€ign layouts into a detail design from

which drawings are produced in order to manufacture hardware. Strength

analyses are performed to ensure structural integrity and final criteria.

Leads analysis, strength analysis, and weights analysis reports are prepared

and submitted to the FAA for substantiatioi- of compliance with applicable

regulations. Verification tests are conducted on specimens representative

of the final design to provide allowable strength data and to validate manufac-

turing processes before starting component manufacture. For a Phase II

summary, see Figure 5 -5.

DRAWINGS	 VERIFICATION
O	 TESTS

PDR
	

LYSIS

DETAIL DESIGN

MENTATION

MANUFACTURING
VERIFICATION

FIGURE 5-5. PHASE I! DETAIL DESIGN

Phase III -- Nfanufacturing

Phase III covers the manufacture of components for full-scale ground testing.

Tool design and tool fabrication :, manufacturing planning, specifications,

process controls, and quality assurance are all included in. the manufacturing

phase. See Figure 5-6.
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Phase IV — Verification Testing

Phase IV covers the full-scale static, fatigue and damage tolerance, and

crashworthiness testing. Tasks in this phase include preparation of the

composite wing box to accept test loading fixtures, test planning, fabrication

and setup of test hardware, the actual testing, data acquisition, and. prepara-

tion of test reports. The objectives of Phase IV are to validate the struc-

tural integrity of the final product in accordance with FAR Part 25 require-

ments. The test articles will also be utilized for crashworthiness and repair

of major damage tests. See Figure 5-7.

FATIGUE	 DAMAGE
TOLERANCE

STAT
WORTHINESS

FULL-SCALE
VERIFICATION

TESTS

VIBRATION. 	 "'	 REPAIR

FIGURE 5 .7. PHASE IV FULL-SCALE VERI FICATIOIN TESTS
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Phase V -- Flight Development

Phase V covers flight development, and starts with the fabrication of a com-

posite wing box for installation on an aircraft. The acquisition of a DC-9-32'
aircraft and the <modification of the aircraft to accept the composite wing box
are Phase V tasks. FAA and manufacturer-required ground tests of the

aircraft in the flight cvnizguration must be completed and data submitted to

the FAA for type inspection  approval (TLA) before FAA pilots will fly on the

aircraft to witness and approve flight tests required for type certification

(TC). After flight tests are completed, the aircraft is refurbished to remove
teat equipment -tnd configured for delivery to a commercial airline. See
Figure 5-8.

• MODIFICATIONS	 • INSTALLATIONS

o FLIGHT TESTS

FIGURE 5-8. PHASE V FLIGHT DEVELOPMENT
	 8•GEN•2I882

Phase VI — In-Service Evaluation.

Phase VI covers monitoring of the aircraft with a composite wing box after

the airplane is delivered to an airline operator for normal revenue operations.

The composite wing box will be inspected at intervals and by methods in

accordance with an FAA-approved plan. The manufacturer will monitor the

inspection program, provide special repair procedures as required, evaluate

durability in the civil transport environment, and submit periodic reports. to

NASA and the FAA to document the Structural performance of the composite
wing box. See Figure 5-9.

GROUND TESTS
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• DURABILIT
• REPAIR

iPECTION

• AIRLINE COMMERCIAL FLIGHTS

• MAINTENANCE

FIGURE 5-9. PHASE VI FLIGHT EVALUATION

DESCRIPTION OF PROGRAM OPTIONS

Table 5- 1 presents a summary of all five program options considered. It was

considered essential to include provisions in all five options to (1) acquire

technology and data, (2) gain design experience, (3) manufacture representa-

tive wing hardware, and (4) interface with the FAA to demonstrate the certi-

fication procedures for composite structures. The variation between options

is therefore limited to the size and quantity of hardware to be manufactured,

the amount of testing to be accomplished, and whether a flight evaluation

program, should be included:.

The quality of the technology and data is influenced by how closely the develop-

ment programs is representative of a new aircraft program. Options which

do not produce flight hardware can feature structural arrangements and

design concepts more ideally suited to composite structures. Options which

specify a flight evaluation program are . constrained by the need for composite

hardware to interface with existing subsystems and adjoining metal structures

as discussed in Section 6. Compromises must be made which reduce the cost/

weight .benefits of the composite wing. These compro mw ises are offset by the

touch of realism added to a program which produces flightworthy hardware.
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TABLE s•1

PROGRAM OPTION SUMMARY

t

PHASE PI400RAM FEATURES
PROGRAM OPTION...

Z _ 3 4 5

PHASE I
PRELIMINARY
DESIGN

DESIGN. SYNTHESIS
LAYOUTS
STRUCTURAL DEVELOPMENT TESTS
MANUFACTURING TECHNOLOGY REV
REPAIR TECHNOLOGY

X X X X X

X. X . X X. X
X X X _ _X_ X
X X_ X X X
X X X X X

PHASE 11
DETAIL
DESIGN

DETAIL aESIGN
SUSOMPONENT VERIFICATION TESTS

VERIFICATION

X_ X X X X

X. X .. _	 .X X X
_ X X X X_ X

PHASE ill
MANUFACTURING

MAJOR SUBCOMPONENT
SEMISPAN WING 13OX
FULL-SPAN WING BOX
CRASHWORTHINESS TEST BOX

141
131 131 (3( 1.11

- (2)
01 (1)	 ... (1) 1	 ('1)

PHASE IV
FULL-SCALE	 ^,,
VERWICAjIOW TESTS

JR

STATIC
FATIGUE AND DAMAGE TOLERANCE
CRASHWORTHINESS
REPAIR OF MAJOR DAMAGE
VIBRATION

X X X X X
X X X X X

X X. X X X
X X X X X.
X X X X X

PHASE V
FLIGHT DEVELOPMENT

SEMISPAN WING BOX
FULL-SPAN WING BOX
OUTBOARD WING BOX

1l1

('il
(1)

PHASE Vi
SERVICE EVALUATION

SEMISPAN WING BOX
FULL-SPAN WING BOX
OUTBOARD WING BOX

X
X

X

X INDICATES OPTION CONTAINS PROVISIONS FOR THE NOTED FEATUNE
I I INDICATES NUMBER OF UNITS TO RE MANUFACTURED

Knowing that the final product will eventually be used in revenue service will

imbue the same attitudes in the members of the development program team
that exist in those assoicated with a production program. In the same sense,
g_-eater confidence in the technology and data produced from a flight program
can be expected from the commercial transport aircraft community.

Option 1 — Subcomponent Wing Development

Program Option 1 is composed of uncon:strain.ed Phase I preliminary design
tasks and Phase II detail design and subcomponent verification testing.
Phase III full-scale manufacturing technology development and validation are
limited to the fabrication of four major subcomponent articles; as shown in
Figure 5- 10. Phase IV tests do not include a representation of wing-fuselage
interaction effects. Analytical substantiation will be provided to the FAA to
verify the structural integrity of the composite wing box and the FAA will
witness and approve all tests and test data which are used to demonstrate
compliance with Federal airwo.rthiness requirements,
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TRANSITION SECTION
	 TEST FIXTURE

COMPOSITE WING BOX SPECIMEN- ►

TEST FIXTURE
LANDING GEAR

O,^I

7•GEN,29776.1

FIGURE 5-10. WING BOX TEST SETUP --OPTION 1 	 QUA f,y r^

Option 1 is a least-cost program., requires fewer facilities and equipment,

and produces data sooner to support a management commitment to a production

composite wing box, However, it supplies the least amount of data, does not

exercise rnanufa.cturing technology to the same extent, does not verify struc-

tural integrity to the same extent as other program options which feature full-

scale test hardware, and does not provide flight hardware..

Option 2 — Full-Scale Wing Development — Ground Test

Program Option 2 also features an unconstrained engineering design and is

different from Option 1 in that the three major subcomponent tests are

replaced by the full-scale semispan composite wing box components for static

test, fatigue and damage tolerance tests, and a manufacturing development

article. The test setups are shown in Figure 5- 11. For test purposes, the

composite wing box is joined to a production (aluminum) DC:-9 wing box, as

shown in Figure 5 - 11. A major subcomponent is added to Phase IV for

crashworthiness and repair of major damage ver.i€ication tests, as shown in

Figure 5-12. Option. 2 does produce full-scale hardware and. can be designed

to be more weight efficient than a design which is constrained to meet

DC-9-32 criteria and interface requii.rements, 	
Y
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Option 2 is adequate to resolve most of the structural and manufacturing
technology and economic issues. The elimination of flight development and
in-service eva'luat'ion phases offers a significant reduction in program costs
as compared to Option's 4 and 5.

Option 3 -- Full-Scale Wing Development Mini -Flight Evaluation

Program Option 3 is identical to Option 2 except that a composite outer wing
boat has been added for flight evaluation. The intention is to design the
composite wing box without regard for eventual installation of the outer wing
box on a DC-9-32 aircraft. After the initial design is completed and used
for the manufacture and verification test phases, the composite wing box
design would be modified to ad-apt the composite outer wing to a DC-9-32
aircraft.

Option 3 provides for an unconstrained composite wing box des'ig'n with a
limited flight development and in-service flight evaluation program. The
flight component would be outboard of the fuel tank and would not be repre-
sentative of many of the significant design features of the inboard wing See
Figure 5-13.

1	 OPTION 3 -- COMPOSITE
-	 WING TIP

y
OPTION 4 - SEMISPAN

±	 -iii1	 CWB

OPTION 5 - FULL SPAN CWB

7•GEN•25772.1A

FIGURE 5-13. FLIGHT EVALUATION PROGRAM
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Option 4 — Full-Scale Wing Development — Flight Evaluation

Option 4 adds the flight development and in-service evaluation phases to the

Option 2 program. Option 2 features an unconstrained design for better

weight savings, but the Option 4 design must be constrained to satisfy DC-9-32

criteria and interface requirements. The manufacturing effort is increased

to fabricate a semispan. composite wing box For flight development. A semispan

composite wing box will eliminate the need for the opposite wing tooling and

reduce the composite wing box fabrication effort. Since there is a possibility

that. a favorable rnanagernent decision can be made without benefit of the flight

development or in- service evaluation phases, the program has been organized

so that all tasks to produce flight hardware, including engineering redesign

of aircraft structure and subsystems (Phase V), can be deferred until data are

available from the Phase 1V full-scale verification tests.

Option 5 — Fuld-Scale Wing Development — Full-S pan Flight Evaluation

Option 5 is very similar to Option 4. The primary difference in the two

programs is that a full-span composite wing box is featured in lieu of a semi-

span composite wing box which is spliced at the airplane centerline to an

existing aluminum box. Schedules would. be the same as for Option 4 and the

cost would be increased by the cost to produce right-hand composite wing box

tooling and three additional right -hand semispan components, less the cost of

two right- hand production aluminum wing box components. The manufacturing

development box could still be left-hand only, and the third right-hand box

comes with the acquisition of a DC-9-32 aircraft in Phase V.

The full-span composite wing box hardware featured in Option 5 increases

program costs over Option 4 with no real gain in technology.

EVALUATION OF ALTERNATIVES

The five program options have been compared to select the option best

qualified to form the basis for a. contractual technology development effort.

The five options were evaluated in terms of relative cost, the time when

technology and data would be available, and the extent that the technology

gained from each option would fulfill program objectives.
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Table 5-2 summarizes the results of the comparison. The range of the varia-

tion of relative cost is 47 percent. This can be attributed to the fact that many

features are considered essential and are common to all options. The schedule

in Table 5-2 refers to the elapsed time from the start of the composite wing

technology program to the delivery of the FAA-certified aircraft to an airline

for flight evaluation, or to completion of the test prograra for the option where

no flight evaluation is included. The estimated five years to conduct the

Phase VI flight evaluation is not included in the table.

TABLE 5.2
PROGRAM OPTIONS

EVALUATION

TECHNOLOGY
RELATIVE SCHEDULE GAIN

OPTION COST (YEARS) (PERCENT)

1 0.77 5 70
2 0.93 6 85
3 0.95 6 90
4 1.00 6 100
5 1.13 6 100

Program Option 4 offers the best combination of technology gain versus cost

with the same availability of technology and data. Option 4 provides the air-

line with the opportunity for routine inspection, experience, and -maintenance.

The expected technology gain is considered adequate to impart the level of

confidence required for acceptance. Option 5 does not add a significant gain

in. technology to justify the 13-percent increase in program costs.

From the comparison of the five options, Option 4 is judged to be the most

outstanding and will be used as the basis for the formulation of the development

plan discussed in Section 7.
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SECTION 6

CONCEPTUAL DESIGN

A conceptual design of a DC-9 composite wing box that can replace a metal

wing on an airplane was developed for flight evaluation. It forms the basis

for the development plan which outlines the design, manufacturing, and

testing efforts required for the application of composite materials to the

wing of a DC-9 flight article. The design layouts emphasize those aspects

of the structure that are unique to composite components and assemblies as

well as interfaces with adjoining structure, control surfaces, and systems.

This design is also the basis for the weight estimate which indicates the

potential for this type of construction.

The intent of the conceptual design was to depict the types, forms, and

approximate sizes of structure involved in composite wing design so that

associated problems could be foreseen, possible solutions outlined., and the

magnitude of the development effort defined. The design is merely offered

as representative composite structure. Detail comparative design studies

are to be accomplished during the preliminary design phase of the develop-

ment program itself.

STRUCTURAL DESIGN CRITERIA AND LOADS

The design criteria used for the conceptual design included interface

requirements, stiffness, and strength. This approach. permitted the

definition of the general arrangement and preliminary sizing of structural

elements by layout, existing analytical design methods, and available data.

Interface criteria dictate the locations of external support structure. The

development program is to be limited to the wing box, but existing slats,

aileron, spoilers, flap, landing gear, and fixed leading edge and trailing

edge structure :must be installed on the box,. which is in turn installed on an

existing fuselage. This requires that all support structure associated with

these installations be located in the same position it now has on the

metal wing. Otherwise, the attaching external structure and systems

would require redesign.
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Previous in-house studies of composite wing and stabilizer structure indicate

that the bending and torsional stiffness provided by the metal box should be

maintained in the composite configuration. This ensures that the same load

distributions will be imposed on both wing box and attaching structure, such

as flaps and slats, and eliminates the need for new loads analysis or redesign

of attached structural components. It also ensures the same flutter charac-

teristics and flying qualities. Existing values of bending and torsional stiff

tress of the DC-9 metal wing are presented in Figure 6-1. These are the

values required of the composite wing box concept.

Strength is always a basic criterion in any design. All structural elements

including skin panels, spar webs, ribs, attachment fitting installation, and

major joints were checked for static strength. Elerneilts not sized for

stiffness were designed for strength.

The loads used in this design effort were the same as those determined for

the DC-9 metal wing. These include the basic wing bending, shear, torque,

and fuel pressure loads shown in Figure 6-2. Skin panel loading is presented

in Figure 6-3, and concentrated support reactions are given in Figure 6-4.

CONCEPT SELECTION

The general arrangement selected for the conceptual design is a two-spar,

multirib configuration with the spars and ribs in the sarne locations as in

the existing metal design. This selection was based primarily on the inter-

face criteria. The multirib arrangement provides an established approach.

to the solution of all major problems associated with load paths, interface

provisions, and fuel tank requirements. An effort was made to establish

viable concepts for composite application to the extent required for develop-

ment plan definition.

The basic structure consists of blade-stiffened skin panels and shear-

resistant, stiffened laminate spar and rib webs. This choice was based on

stiffness criteria and previous Company-sponsored studies of the application

of graphite/epoxy structure to the DC-9 wing box. These studies included

the evaluation of a number of different skin panel concepts. A multirib

arrangern.ent was assurned, and T-stiffened., blade-stiffened, hat-stiffened,
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and T-stiffened panels, shown in Figure 6-5, were evaluated on the basis of

strength; stiffness, and weight.

The structural efficiency of these concepts unconstrained by stiffness cri-

teria (. e, , for strength. only) was evaluated as presented in Figure 6-6.

Here, curves showing weight variation with compressive load intensity indi-

cate significant differences in structural efficiency, with blade-stiffened

panels being the least efficient. However, further investigation showed. that

the panel area required to satisfy bending and torsional stiffness criteria

was the same in all cases, and greater than the area required by strength.

This resulted in equal weights for all concepts. Blade-stiffening was

selected as the least complex for fabrication and thus the one which would

minimize costs.

Three candidate configurations shown in Figure 6-7  were evaluated for the

spar and rib conceptual design. These configurations are of blade-stiffened,

sine wave, and sandwich construction. The structural efficiency advantages

of the sme wave and sandwich panels were offset by the structural provisions

for subsystem installation and access: (1) subsystems --- control, fuel,

hydraulic, and electrical, and (2) access — assembly, inspection, mainte-

nance, and repair. The lower-cost blade-stiffened concept was selected

since it would result in fewer changes in subsystem installation design and

structural interface while maintaining the same access provisions as the

metal wing at no appreciable weight increase.

STRUCTURAL DESCRIPTION

The DC-9 wing consists of a main structural box which forms the fuel tank

and supports the fixed leading edge and slats off the :front spar and the fixed.

trailing edge panels., aileron, spoilers, flap., and main landing gear off the

rear spar, as shown in Figures 6-8 and 6-9. The structural box continuity

is maintained across the fuselage. It is joined to the fuselage at the wing-

fuselage intersection ( cw = 58. 500). The sweepbxeak is also at this

location, as noted in Figure 6-8.

The conceptual design of composite application to this wing is limited to the

main structural box on the left-hand side. Attaching structure and control

surfaces are assumed to be of existing aluminum construction. The
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composite left -hand box is joined to an aluminum right -hand . boas at the

centerline of the airplane and to the fuselage at the sidewall.

The composite box is approximately 15. 25 meters (50 feet) long, 3. 5 meters

(12 feet) wide, and 0. 5 meter (2 feet) deep. It is a two.-spar, multirib

arrangement with each component in the same location as its 1etal counter-

part. Each composite member performs the same function and resists the

same loads as the aluminum member it replaces.

Wing Skin Panel

The shear-resistant wing cover panels are composed of graphite/epoxy

laminated skins with integrally stiffened blade stringers., as shown in Fig-

ure 6-10. Composite spar caps are interlaminated and cocured with this

wing panel. Figure 6-11 details a typical access cover installation that is

provided in the skin to allow access to the wing box for assembly as well as

fuel tank inspection and maintenance.

The blade stringers are in tl-..Le same location on the lower wing panel as on

the aluminum DC-9 Series 30 wing to facilitate installation of existing fuel

pumps and their associated plumbing. The upper panel blade stringers were

relocated to prevent skin panel buckling at design ultimate load.. These

blade stringers as well as the wing skins are tapered outboard to the wing

tip bulkhead, as shown in Figure 6-10. Slotted holes are designed into the

wing panel blade stringers to eliminate fuel entrapment. Cocured shear

clips nested between the blade stringer attach the wing panel to the rib webs.

These shear clips also allow passage of fuel through the rib boundary.

Access through the wing skin is required for fuel venting, dipsticks (fuel

quantity gages), and fuel .probes. Their approximate number and location

are given in Figure 6-8.

Wing Spar

Two major load-carrying members of the wing are the wing front and rear.

spars. Figure 6-12 details the spar configuration and .its relation to the

wing panel and indicates the laminate construction. The composite spar cap

which is cocured to the'wing skin is mechanically attached with titanium

fasteners to a blade-stiffened 15-meter (50-foot) long composite spar web,

F
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as shown in Figure 6-13. Highly loaded areas of the spar web such as the

landing gear fitting and trapezoidal fitting are reinforced with additional

laminates.

Typical Wing Rib

The composite wing rib as nhown in Figure 6-14 is composed of a shear-

resistant web with integrally cocured, vertically running stiffeners and an

integrally formed spar attach tee. The web is attached mechanically to the

wing skin by means of shear clips cocured to the skin as previously noted. .

Lightening holes in the web reduce weight and allow access to the wing

assembly components and routing of the fuel piping system.

B affled Fuel Bulkhead

This composite bulkhead, as shown in Figure 6-15, provides a barrier in

the fuel tank to reduce the hydrostatic pressure at the end bulkheads and at

the front and rear spars that could occur i ,nder certain flight maneuver

conditions. The bulkhead is a sealed barrier with flapper doors located at

the lower wing skin and in the middle of the bulkhead web. These flapper

doors allow iuel to pass freely inboard to the fuel pumps and not outboard.

Access doors in the web are provided for bulkhead assembly and inspection.

This bulkhead is similar in design to the wing rib.

Main Landing Gear Support Structure

This structux a consists of the main landing gear support fitting that is

bolted to the wing rear spar, special upper and lower wing skin doublers,

and landing gear rib, as shown in Figures 6-16 and 6-17. The upper and

lower titanium tapered doublers are cocured into the wing skins. These

doublers provide enough attachment bearing material to allow the use of the

existing forged aluminum main landing gear feting as well as provide a

load path to redistribute these concentrated loads into the wing box skins.

The in-tank integrally machined alum. - i:num. rib stabilizes the wing box

similar to other wing ribs and also .distributes the loads from the main gear

into the wing box. Vertical gear loads are sheared directly into the wing

rear spar. The rnain gear fitting is gi^'en torsional rigidity and side load

stability by the auxiliary spar members.
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Fuselage-Wing Intersection Bulkhead XCw -58.688

At the fuselage intersection, the wing skin blade stringers are blended into

a thickened pad. This pad is interlaminated with a cocured composite blade

to function as an attachment for the bulkhead web. The aluminum trapezoidal

fitting is attached to this bulkhead immediately aftof the rear spar and a

titanium tee t'es the bulkhead and trapezoidal fitting to the fuselage skin

panels, as shown in Figure 6-18. The primary function of the X C W = 58.688

bulkhead is to transfer wing loads into the fuselage shell, stabilize the wing

box structure, and provide a closing fuel tank barrier. The titanium tee

located on top of the wing is designed to transfer wing horizontal, shear into

the fuselage, to maintain the cabin pressure boundary at the upper wring-

fuselage intersection, and to provide structural continuity across the wing-

fuselage cutout. Vertical loads are transferred from the rear spar into a

specially machined fuselage frame by way of the trapezoidal fitting. This

fitting transfers the landing gear retract link vertical loads into this same

fuselage frame.

Aileron Hinge Support and Fuel Tank Bulkhead

This bulkhead, as shown in Figure 6-19, transfers the aileron loads intro-

duced at the rear spar--mounted supporting fitting to the wring box structure.

Titanium fittings are cocured into. this bulkhead to transmit the load from

the aileron. The bulkhead is also the outboard closing end for the wing fuel

tank. To facilitate tank sealing, the wing blade stringers are faired into the

wing skin under the bulkhead tee.

Flap Hinge Support Rib

The flap support rib is similar in. design to the aileron bulkhead except it is

not a fuel tank barrier. The wing blade stiffeners pass through the bulkhead

plane and are connected to the bulkhead in the same manner as . the intermedi-

ate ribs. Design details of the flap support rib are shown in Figure 6-20.

Center Wing Joint

This joint mechanically attaches the left-hand side composite wing to the

right-hand side conventional aluminum wing through the use of metal splice

plat 3 and spar splice ang cs. Figure 6=2$ shows a. section cut at the air-

plane centerline. Figure 6-22 details how stringers are blended into lands or

pads to minimize stress concentrations and are indirectly joined by conventional

-	 i
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butt splicing. The spar caps are tapered and joined with tapered splice angles

and plates, as shown in Figures 6-23 and 6-24.

Wing Leading Edge

The fixed leading edge uses aluminum structure .of the DC-9 Series 30 which

is modified to .adapt to the composite front spar, as shown in Figure 6-25.

This structure consists of skin stiffened by chordwise r pos and formers that

are permanently attached to the wing. Double ribs support the slat-track

assembly as shown in Figure 6-9. Sealed cans supported off the front spar

web encase the slat track to allow penetration into the fuel tank cavity.

Wing Trailing Edge
5

The aluminum trailing edge structure is located between the rear spar and

control surfaces (spoiler, flaps, and ailerons), as shown in-Figure 6-25.

WEIGHT ESTIMATE

A weight estimate of the conceptual design and a comparison with the existing

metal wing box are presented in Table 6-1.. The weight includes only those

items that are functionally chargeable to wing structure. Not included are

many small clips and fasteners' on the spars and bulkheads which are used to

assist the wing's secondary function as a fuel tank. Significant items`-that

are not included in the weight estimate are the wing bulkheads at station.'

Xrs = +111. 5 which	 care charged to landing gear support structure. In all

cases, the composite box weight includes exactly the same items that are in

the metal design's weight.

A study was conducted to determine the effect of appropriate design constraints

on the weight of the DC-9 composite wing box. In addition to the Stiffness-

limited conceptual design, weight estimates were made for two strain-limited

configurations, both singly and in combination with stiffness limitations.

Strain limitations may be required by damage tolerance considerations.

These are compared with conventional strength critical or unconstrained

designs. The criteria used in: this study are as follows:

Stiffness — Maintain the same bending (EI) and torsional .(1G:) stiffness

in the composite wing box as in. the aluminum configuration.

Strain — 0. 004 in. /in. md.xi-mum. perr-is s: ble strain in . any cc*r:ponent..

(0.004)
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LEADING EDGE (DC-9) — MODIFIED TO ADAPT TO
(ALUMINUM)	 COMPOSITE FRONT SPAR

r'	 FRONT SPAR (COMPOSITE)

WING LEADING EDGE INTERFACE
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FIGURE 6-25. LEADING AND TRAILING EDGE INTERFACES

TABLE 6-1
CONCEPTUAL DC-9 CWB WEIGHT SUMMARY

WEIGHT WEIGHT SAVINGS

METAL CWB
DESIGN DESIGN

COMPONENT kg	 (LB) kg	 (LB) kg {Eel PERCENT

SKIN PANELS 2090 (4607) 1324 {2920) 765 0G67) 37

SPAR CAPS 518	 (1143) 384 1846) 135 {	 297) 26

SPAR WEBS 202 1445) 159	 1351) 43 {	 941 21

RIBS AND BFIDS 362 f 797) 266 ( 587) 95 (	 210) 26

CONTINGENCIES N/A 156 ( 344) <156> (<344>) -

[
TOTAL ____	317E (6992) 2290 (5048) 882 (1944) 28
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Strain — 0. 003 in. /iii. maximum permissible strain in any component.
(0.003)

Strength — Component fracture or buckling under ultimate static loads.

This investigation was limited to the weight variations of the cover skin

panels. For the purposes of this study, rib and spar weight savings are.

assumed to be unaffected by the above criteria for all design conditions and

the weights shown in Table 6-1 are used for all study cases.

The stiffness critical design used in this comparative study is the conceptual

design utilizing blade-stiffened skin panels and shear-resistant . spar and rib

webs. T-stiffened skin panels with the same spar and rib webs were used

for both strain- and strength-constrained designs.

Panel design proceeded along the swine lines in , each case. Element sizes

were computed for both upper and lower skin panels at a number of stations

along the span of the wing for DC--9-32 loads and appropriate limitations.

The unit panel weights were computed and added to spar, rill, and contingency

unit weights to give the total unit wing box weights at each station. These

are presented in Figure 6--26 and extended in Figure 6-27, which shows

cumulative weight from the centerline of the airplane outboard. A summary

of total wing box weights and percentages of aluminum wing box weight and

airplane operators empty weight are presented in Table 6-2. The "strength

criteria (K.T = 1. 0) is the lower bound for all conditions, The computations

of cumulative and total weights are derived from the unit weights of Figure

6-26.

The results show significant weight savings for all design conditi;ons.. However,

the full strength/weight potential pf graphite/epoxy structures is severely

limited by the imposition of stiffness and/or strain constraints. Table 6-2

shows the weight savings resulting from stiffness, 0. 0.04-in. /in. strain, and

the combination of the two as being roughly the same with the 0. 0.04 in. /in.

strain alone as producing the greatest weight saving. This is 64 percent of

the weight reduction provided by a strength-limited design. The smallest

saving results from a design constrained by O. 003 in. /in:. strain and stiffness

limitation, which is only 41 percent of the full strength/weight potential.

This is a realistic evaluation of. the range of weight reduction that can be

expected from composite wing design and serves- to emphasize the importance

of minimizing stiffness and strain constraints.
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FIGURE 6-27. DC-9 WING BOX ACCUMULATIVE WEIGHT DISTRIBUTION

TABLE 6-2
COM"OSITE DC-9 WING.BOX WEIGHT SAVING POTENTIAL

WING BOX WING BOX WING BOX OEW
TOTAL WEIGHT - WEIGHT 'WEIGHT'

WING BOX WEIGHT SAVED_ SAVED 'SAVED
DESIGN kg lL. e1 k9 (LB) IPERCENT) .(PERCENT)

GR":P 1740 (3835) 1432 (3157) .45 5.36
STRENGTH
CONSTRAINED

GRIEP STRAIN 2250 149601 922 {2032} 29 3.45
0:004 IN_IIN.
CONSTRAINED

GRIEP 2290 (5048) 882 (19441 28 3.30
STIFFNESS
CONSTRAINED

GRIEP STRAIN 2359 15200) 813 11792) 26 3.04
0,004 IN./ft
+ STIFFNESS
CONSTRAINED

GRIEP STRAIN 2498 (5508) 67304M 21 2.52
0.003 1N.IIN-
CONSTRAINED

GRIEP STRAIN 2582 (5692 590 (1300) 19 2-21
O.od:s IN'IIN.
I STIFFNESS
COteS i RAINED

ALUMINUM 3172 (69921 - — —

s'
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SECTION 7

THE DEVELOPMENT PLAN

A composite wing technology- program has been defined which will provde

the needed technology and data to support. the introduction of primary

composite wing structure into production aircraft. The parameters upon

which the program was constructed, as discussed earlier, include the

acceptance factors, the technology assessment, the selection of a DC'-9-32

wing for the basic wing configuration, and the selection of program Option 4

to define the details . of the plan.

On this basis, a low-cost .program has been. esta.blished,which-will meet

program objectives with an acceptable risk .level and will address the issues

considered most critical by the commercial air transport community.

The statement of work for the development plan has been sequentially

scheduled in six phases, as shown in Figure 7-1. Table 7-1 summarizes the

tasks to be accomplished by departmental functions for the six program

phases.. Cost, schedule, and technical performance can be monitored  and

evaluated, and program redirection- can be, effected as downstream develop-

ments diverge from predictions. Each phase can. be  separately funded to

allow a reallocation of funds to support the redirection.. This'will tend to

minimize the programmatic risk associated with creative endeavors.

The development plan contains the following provisions; as in Figure 7-2.

• A comprehensive 'technology development program.

• Design of a DC-9-32 composite wring based on the conceptual design.

•	 Design and construction of large tools for composite parts.

•	 Production of fl.i.ghtworthy hardware.

•	 Test verification to meet FAA structural integrity requirements. .

• Installation of a composite wing box on a certified DC-9-32 aircraft

with subsequent .ground and flight tests. to qualify it for- r_omirnercial.

revenue service.
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SCHEDULE	 YEARS FROM CONT
" Z..	 4	 5	 6	 73	

CT _AWARD

PHASE 1 Al	 AR	 ,M COM.11'"TM

PRELIMINARY DESIGN_p^

PHASE II
DETAIL DESIGN

PHASE .III TOOLS FAD r^8L
MANUFACTURING

PHASE IV
FULL-SCALE
VERIFICATION; TESTS
PHASE V

FLIGHT DEVELOPMENT
PHASE VI

FLIGHT EVALUATION

MAT. ERIAL AND QUALITY TEST
ENGINEERING PROCESSES MANUFACTURING ASSURANCE PLAN

PLAN PLAN" PLAN PLAN

PHASEI DESIGN TECHNOLOGY TECHNOLOGY CONCEPT COMPONENT
PRELIMINARY SYNTHESIS DEVELOPMENT "DEVELOPMENT REVIEW DEVELOPMENT
DESIGN TEST

CONCEPT MATERIALS RISK
SELECTION SELECTION ASSESSMENT

PHASE 11 FINAL DESIGN MATERIAL. AND COMPONENT SPECIFICATIONS COMPONENT
DETAIL AND ANALYSIS PRODUClBILITY MANUFACTURING VERIFICATION.
DESIGN STANDARDS VERIFICATION PROCEDURES TESTS

PRODUCTION
DRAWINGS TRAINING

PHASE 111 SUPPORT SUPPORT 1 FULL -SCALE MATERIAL
MANUFACTURING SUBCDMPONENT PROCESSES

DESIGN CHANGES 3 CWB SEMISP-ANS COMPONENTS
AND ASSEMBLIES

PHASE IV TEST FULL-SCALE
FULL-SCALE REQUIREMENTS SUBCOMPONENT
VERIFICATION AND CWB SEMI-
TESTS SUPPORT - - SPAN GROUND

TESTS
DATA ANALYSIS

PHASE V WING INSTALLATION AIRPLANE AIRPLANE GROUND
FLIGHT DESIGN CODIFICATION TESTS AND

DEVELOPMENT TEST
_

1 CWB SEMI5RAN
1 _ FLIGHT TESTS

REQUIREMENTS FABRICATION

DATA ANALYSIS CW5 INSTALLATION

PHASE VI MONITOR
FLIGHT
EVALUATION - - -

EVALUATION
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• Monitoring and evaluation of he performance of the . composite wiri.g box

for 5 years while in revenue s6rVide.-O

The development plan also includes the engineering plan, materials and

process plan, manufacturing plan; quality assurance plan, and test plan.

ENGiNEEFiNG PIAN

The Engineering Plan consists of the design synthesis in Phase I, detail.-

design in Phase II, engineering support throughout the entire-'program, and.
FAA certification.

Design Synthesis

Engineering activity in the design synthesis phase will be devoted.to  prelim-

inary design, evaluation, and selection of structural concepts for further'

development. The structural requirements, potential structural concepts,

candidate materials, and methods of analysis of composite structures will be

brought together in various designs. These designs will form the basis of

evaluations in terms of weight, cost, and risk.

The design synthesis process shown in Figure 7-3 is an iterative one which

will parallel and interface with the. manufacturing, development test, and

maintenance and repairability activities. .Initial evaluation of structural

candidates will determine which conee:pts . are to be . designated for develop-

ment and test. Data from these evaluations will be fed back- to the layout

effort for design refinerrient and "to the trade studies for reevaluation and
elimination. of the less efficient concepts. This. process will result in the

prelimin:a.ry design of the concept selected for detail design and fabrication

of a full-size composite wing box.

Structural Design Criteria and Loads -- The basic criterion to be used .through-

out this program is that the com- posi:te wing must be comparable to the

aluminum. wing in all areas of structural integrity, flight performance,

ground Handling, and maintenance. To achieve this, the composite wing will

be designed to satisfy all Federal Aviation Regulations applicable to the

DC-9  32 -aircraft. Compliance will be shown in. accordance with the guide-

lines described in Reference 2.
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FIGURE 7-3. DESIGN'SYNTHESIS PROCESS

Additional design criteria are required to ensure proper installation and

performance of a com;po.site wing box on a DC-9 flight article. These -include

the stiffness criteria requiring the composite box'to have the same bending

and torsional stiffness as the metal box it replaces and interface criteria

which require the locations of all interface structure to remain where they

are in existing aircraft. These are the same as applied "to the conceptual

design, described in Section 6. An FAA criteria summary along with the

source of each requirement is presented in Table 7-2.

The loads to be used for composite wing design are the existing DC- 9 wing

loads. A complete set of these loads was compiled for the conceptual design

effort and is presented in Section 6.

Candidate Concepts — Structural concepts are considered in three categories:

general arrangements, com- ponent concepts, and joints and fittings. General

arrangements are the locations of major components such as spars, ribs,

and inte rface structure Co mponent concepts . refer to thevarious forms of

skin panel, spar, and rib construction.. The category of joints and fittings

includes panel and web joints and fittings required at structural interfaces

and system attachment locations.
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TABLE 7-2.
CERTIFICATION GUIDELINES FOR CIVIL COMPOSITE WING AIRCRAFT STRUCTURES

{

w^

* MATERIAL ALLOWABLES

• PROOF OF STRUCTURE — STATIC

• PROOF of STRUCTURE -- FATIGUE/DAMAGE TOLERANCE

• CRASHWORTHI NESS

• FLAMMABILITY

• LIGHTNING PROTECTION

• PROTECTION OF STRUCTURE

• QUALITY CONTROL

• REPAIR

• FABRICATION METHODS

-- FAR 25.603, 25.613 AND 25.615

— FAR 25.305 AND 25.3071a)

— FAR 25.571 {PROPOSED NEW AND APPENDIX)

— FAR 25.561, 25.721, 25,801(b) (e1, AND 25.9631d)

FAR 25.863(b) 15 1 , 25.HG7, 25.1191 AND 25.1193

FAR 25.581

FAR 25.609

FAR 21.143

- FAR 121.367(a) AND FAR 43.13(a)

— FAR 25.603 AND 25.605

Multirib construction has been selected as the general arrangement for the

composite wing box. Other arrangements, including multispar and truss-

web, have been considered in previous studies which have verified the

multirib concept as the most efficient for most transport wing designs. it

is a proven concept and the one chosen for the conceptual design. This is

a simple yet versatile approach. The arrangement satisfies all require-

ments without the use of intersecting internal spars and ribs. This rib

orientation permits efficient use of both skin-stringer and sandwich skin

panels. The composites will be applied to this con;:ept by direct substitution

of composite components for metal ones in the same locations. The composite

components will not be identical configurations,. but will be designed to utilize

the advantages of composite materials most efficiently.

Candidate component concepts, joints, and fittings to be included in the

de-sign synthesis are presented in Figure 7-4. Skin panel and web concepts

include skin stringer, corrugation, grid-stiffened, and sandwich configurations

that have demonstrated efficient application to composite designs in previous

efforts. Investigations to date have tended to indicate blade-stiffened panels

as the most cost- and weight-effective in this application because of the

required stiffness constraints. However, these studies have been preliminary.

All concepts presented will be considered candidates until eliminated by a

more thorough investigation. Candidate joints and fittings are the standard

ones generally considered for cox -iposite applications. These include

158



APPLICATION

SPARTYPE CONFIGURATION
SKIN AND
PANEL RIB

IHEGS

FLAT
PANEL

BLADE x x

T x x

•^ r• x
SKIN-

STRINGER

HAT x x

HAT x x

HC
BLADE

x

HC	 = i75^	 2D
x 

SKN STR

SINE
WAVE

x

CORRUGATION

BEAD X

oti-9Q°
x^

GRID
STIFFENED -450 x x

LSOGRID x x

HC
CORE I. x x

SANDWICH

FOAM
CORE	 p °°^ ' 'r°' x x

TYPE CONFIGURATION

INTEGRAL	

-IFBOND

JOINTS

MECHANICAL
ATTACH

BONDED
TI

O -

FITTINGS BOLTED
AL

COCURED
COMPOSITE

FIGURE 7-4. CANDIDATE COMPONENT CONCEPTS.
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mechanical attachment either alone or in combination with secondary bonding,

cocured titanium fittings, and integral composite fittings. Each will be

evaluated for specific applications as required during design.

Structural Optimization — Structural optimization is the initial concept

evaluation effort. It serves a twofold purpose. The first is to narrow the

field of candidate component concepts to a manageable number for design

development. The second is to provide preliminary structural sizing and

weight estimates for remaining concepts. The optimization process entails

determining the sectional geometry and element sizes which result in the

least weight for each candidate. The relative weights of the candidates are

then compared and those demonstrating a high degree of structural efficiency

without indicating a potential for excessively high cost or risk are retained

for further study.

Optimum design studies have been conducted for DC-9 composite wing skin

panels during previous in-house programs. The studies were limited to

skin-stringer panels and were used for the conceptual design. These studies

are applicable to this development program and will be reviewed for

completeness and updated and extended as required.

Lightning Protection Features — The nonconductive nature of graphite

composite structures relative to aluminum results in potential hazards which

require special design considerations. The graphite composite structure

design approach wili be examined. The associated electrical and instrumenta-

tion wiring components will also be reviewed. Critical structure fuel tank

and wiring components vulnerable to the adverse lightning and static

electricity effects, due to the use of graphite composite structures, will be

identified. The lightning and static electricity protection requirements will

then be determined.

A tradeoff study will be made to determine the optimum lightning and static

electricity protection techniques which will satisfy the design. requirements.

The study criteria include protection effectiveness, weight, cost, manufac-

turing ease, and maintainability.

Design Layout -- The design layout effort will serve two basin functions.

First, it will be used to set geometric constraints on the candidate concepts
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SLAT TRACK
PENETRATION

MAIN LANDING
GEAR SUPPORT

for optimization studies. Second, it will be used to determine how these

concepts can be incorporated into an integrate d wing box design and what

the penalties will be.

Preliminary layouts of the structural candidates will be generated in enough

detail to determine limitations on element size and spacing for optimization

studies. These will include advanced design of joints between skin? panels,

spars, and ribs, rough layouts of interfacing systems, and laminate patterns

in areas of low loading. Particular emphasis will be placed on the fuel

system requirements which may affect the stringer spacing on skin-stringer

type panels. The limitations required by manufacturing and service consider-

ations will be defined and incorporated.

Advanced design layouts of those concepts selected as a result of the optimi-

zation studies will be developed. These layouts will define the major struc-

tural and manufacturing aspects of concepts integration into a complete wing

box structure. This effort will proceed along the same .lines as described

for the conceptual design. Layouts will be made of major structural members

and typical substructures, jumts, and interface structure, as shown in

Figure 7-5. The basic sections of the skin panels and spar webs will be

designed at a number of stations along the wing span to determine how they

can be tapered for minirnurn weight. Typical panel-to-spar and i=>anel.-to--rib

WING/FUS ATT/,CH
SWEEPBREAK
FUEL TANK Sit I EWALL---%	/-'— (L WING JOINT

INTERMEDIATE. RIB

BAFFLE

FRONT SPAR	 s ^%

WING PANEL

ACCESS DOOR---,^^^'

SUPPORT

— REAR SPAR

AILERON SUPPORT

OUTBOARD FUEL
TANK BULKHEAD

FIGURE 7 .5. PRELIMINARY DESIGN LAYOUT SCOPE
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joints will be laid out. The internal substructure will be defined by prelimi-

nary layouts of a typical support rib, one fuel baffle, and the outboard tank

bulkhead. Interface supportin.g ribs and fittings will be designed at the wing

centerline joint, the wing-to-fuselage attachment, the landing gear support,

one flap support, one aileron support, and one slat track support and

penetration.

Advanced design layout of this scope will adequately define each candidate

to the degree required for trade study evaluation and determination of develop-

ment test requirements and specimen design. The layouts will be continually

updated as more complete strength analyses refine component sizing, and

manufacturing ., and maintenance, and test data indicate required design

changes. The changing layouts will be continually reevaluated in trade studies

as the design is synthesized.

Trade Studies — The trade studies will be the second evaluation effort after

structural optimization. These studies will compare the candidate concepts

as defined by design layout in terms of weight, cost, ax-id risk. The result

is the selection of the concept designated for detail design and fabrication.

Initial trade studies will narrow the field of candidates down to a number

that can reasonably be carried thoroughly through the development and test

efforts while permittiin.g the program to remain within budget. The general

arrangement concepts will be limited to one, that of multiweb construction.

It is intended that skin .panel, spar web, and rib candidates be narrowed

down to two or possibly three by initial trades. It is doubtful that any of

the joint or fitting concepts included in Figure 7-4 will be eliminated without

the benefit of manufacturing and test data.

The trade studies will keep abreast of all development efforts. As the layouts

are revised by application and analysis of new data, the trade studies will

be updated. Candidates will be eliminated as deficiencies are established

until one concept is clearly established as the most efficient, considering

all areas of design, fabrication, maintenance, and repair.
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Structural Analysis — The structural analysis effort entails methods develop-

ment and structural sizing. The approach includes theoretical analysis and

the definition of develr =eat test plan requirements and interpretation of

results.

Plate and shell analysis methods are used in the design synthesis phdse.

This is primarily a .preliminary design and evaluation effort. Composite

structural analysis is based on orthotropic analysis techniques which have

been developed at Douglas during the past few years on both in-house and

contracted programs. Both design charts and computer programs are

available for composite structural analysis, but the computer programs are

the !n..ist versatile and generally provide the most complete analysis. Pro-

grarn.s which can be used to optimize and analyze basic components are

presented in Table 7-3. Programs available for analysis of the types of

joints and fittings applicable to wing box design are presented in Table 7-4.-

Blank boxes in Tables 7--3 and 7-4 indicate that no computer program (or

design chart) its available at this time for the specified structure and loading

condition. The analytical approach to development of missing programs is

known. Only time and effort are required to complete all those required

for wing box structural analysis.

The strength of skin panels, spars, and ribs under basic wing bending, shear.,

and torque will be considered in the structural optimization. Additional

strength analysis of these components will include critical combinations of
loadings as well as internal fuel pressure. All modes of failure will be

investigated, including stability and fracture resulting from, critical combina-

tions of tension, compression, and shear.

Special attention will be given. to joints, fittings, and supporting structure..

Analysis of strength of mechanical attachments and local areas in the

vicinity of fittings will require analysis of stress distribution, theoretical

strength prediction, and interpretation of data as they become available from

development tests.

163



TABLE 7-3
AVAILABLE COMPUTER PROGRAMS

BASIC COMPONENTS

APPLICATION LOADING CONDITION

SPAR AXIAL SHEAR NORMAL
TYPE CONFIGURATION

SKIN
PANEL

AND
RIB

--b-
JClr

PRESSURE

WEBS

FLAT PSB PSB PSI
PANEL PCB PCB PSPI

PS FB

BLADE X X 85C BSC 111

T X X JSC JSC (1)

J X X JSC JSC (1)
SKI N-

STRINGER

'l-1AT X X HSC HSC (1)

HAT	 Q X X

Hc XBLADE ^	 1-^
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TABLE 7-a

AVAILABLE C_.MPWTER PROGRAMS

.JOINTS hND FITTINGS .

LOADING CONDITION

(1) PANEL SMEAR
TYPE CONFIGURATION

IN fEGRAL DBLJT
BOND SCARF

JOINTS

MECHANICAL (2)
ATTACH C65Y-1

BONDED 08LJT
TI SCARF

FITTINGS BOLTED
A L C6S Y-2

A

COCURED
COMPOSITE

DBLJT
SCARF

(1) FOR DOUBLE LAP, SCARFED, AND SUPPORTED SINGLE-LAP
JOINTS

(2) FOR PSEUDO ISOTROPIC LAMINATE JOINTS ONLY

Structural analysis of components, joints, fittings, and assemblies will

include assessment of damage tolerance, durability, and repair .procedures.

These analyses will be largely based on interpretation of test data.

Structural analysis results will be applied to the design layouts in the form

of refinements to structural sizing.

Detail Design

The final design of the ground and flight test articles will be accomplished

in Phase It. The design of the concept selected as most efficient in the
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preliminary design phase .will be finalized. Each component of the structure

must be designed in detail and analyzed for all critica l loading conditions.

All aspects of the structure will be considered. Structural concepts deter-

mined as the best approaches and designed for representative applications

during preliminary design will be designed in detail for all applications.

Design layouts will be .made to include all major components, joints, inter-

face structure, and system provision's. Detail drawings will be made to

permit fabrication of verification test specimens and completewing box

structure. Verification test requirements will be defined.

Design Layouts — The final detail design layout effort will consist of

updating and extending the preliminary layout of the concept selected for

detail design in the .preliminary -design phase. The layouts will define com-

ponent geometry including planform and element spacing as well as
.
 element

sizes. The sizes of composite elements such as skins and stiffeners will

be defined by a number of plies and orientation . of each. as well as dimension's.

Provisions for cutouts. integral stiffening., joints, and any other special

features will be defined by detail Payout of laminate patterns in each area

involved. The sizing will be based on detail structural analysis and manufac-

turing cost considerations.

Detail Drawings — Detail drawings will be made of the designs defined by

layout. Prototype drawing of structural components, assemblies, and

installations will be made in the detail required for fabrication of test

specimens and full-size wing box structural assemblies. The drawings

will take a form similar to drawings of metal parts with definitions added.

on the number of plies, their orientation, and location.

Structural Analysis — Strength analysis of final detail composite design will

be based on finite-element analysis. Internal loads included in skin panels,

spar webs, and ribs as well as local stres',s distribution in areas of high

concentrated loads such as wing-to-fuselage joint and landing gear support

will be calculated by in-house computer program. s. Co M., 	 graphics are

used to assist input and output while finite-elerne'nt programs generate

internal loads. Initial structural modeling will be done with the Douglas

Computer Graphics Structural Analysis (CG-11) program which interfaces

directly with both NASTRAN and Computer-Aided Structural Design (CASD),
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a Douglas program. Either of these programs can be used to generate

finite-element analysis. The output is presented graphically as internal

loads superimposed on the structural model. A hard copy of the output

r_an.be obtained by a Gerber plot.

The analysis of the strength of the structural members under the influence of

these internal loads as well as damage tolerance and durability analysis is

performed in the same way as the preliminary structural analysis. Assess-

ment of crashworthiness provisions will be included and will entail

theoretical analysis and interpretation of test results.

Lightning and Static Electricity Protection — The overall design will be

determined for protection of the composite wing from lightning and static

electricity. The manufacturing and processing methods for incorporating

the protect-ion techniques will be established.

The existing electrical subsystems and the associated wiring installations

will be retained in the composite wing design. Additional bonding, ground-

ing, and transient suppression/filter devices will be incorporated as required.

Weight Analysis - The total weight of the composite component will be 'esti-

mate.d. All weights will be updated to incorporate revisions as they are

released. Reports will be published comparing the composite design to the

metal design at the lowest practicable level of detail. A target weight for

the composite component will be established. The current weight of the

component will be monitored continuousl y and solutions to any overweight

problems will be discussed with the designers and management. Fabricated

parts of the composite wing component will be weighed. The calculated

weights will be corzipared with actual weights and any discrepancies will be

reconciled.

Sustaining Engineering

Engineering design and analysis support will be provided throughout the

program.. Design changes and rework drawings will be provided as required

during the Phase III manufacturing effort. Ground test requirements for

the composite wing box will be defined and support provided for setup,

design, and construction of tests during Phase IV. The tests will be
	 4

167



monitored and .results interpreted. Modification drawings will be prepared
in Phase V to permit the adaptation of the composite wing box to a DC-9

flight article. Aircraft ground vibration test and flight tests will be defined,

monitored, and results evaluated. The Phase VI in-service flight program

will be defined and reviewed at de^.gnated periods.

FAA Certification

A comprehensive FAA certification plan will be prepared in Phase 1. Results

of design parameters analysis and test data will be compiled in reports

designated by the plan as they become available and submitted for FAA

approval. These reports will include design criteria, external loads, and

material properties compiled in Phase l; internal loads, stress analysis,

fatigue/damage tolerance analysis, and component verification test results

of Phase II; ground tests of Phase IV; and flight tests of Phas e V.

MATERIALS AND PROCESS PLAN

The Materials and Prodncibility Engineering department will support the

Engineering Design section during the preliminary design (Phase I) and detail

design (Phase II). This support will include the selection of materials, the

environmental conditions, and the assessment of the manufacturing ease or

producibility of the design.

The material systems to be used for the wing stricture will be selected at

the time of the actual prograrr,. The materials selc • ''ted will have proven

handling and processing characteristics and acceptable mechanical and

environmental properties, resistance to microbiological contamination of

fuel, and impact toughness.

Design data specimens will be fabricated, conditioned, and tested as prescribed

by Structural Engineering, using manufacturing techniques proposed for

fabrication of the large wing structure (time, temperature, pressure, and
methods)..

ti
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Phase I.

Technology development by Materials and Producibility Engineering is

recommended in Phase I for two disciplines -- nondestructive testing and

long-term contaminated fuel environment — as discussed in the following

text.

Nondestructive Testing

Resin Content Measurement — Ultrasonic velocity variations and neutron

gauging techniques appear as viable methods for quantitatively measuring

resin content in graphite/epoxy composite structures. Panels containing

variations in resin content will be fabricated, analyzed for .resin content

by nondestructive testing techniques, and checked for resin content by

chemical digestion as reference. The panels will be cut and tested for

flexural strength and short beam shear strength to verify their mechanical

quality. An analysis will be conducted to correlate the relationships for

nondestructive testing to measure and establish the laminate resin content.

Void Content Measurement Ultrasonic attenuation appears to be a viable

method of quantitatively measuring void content. Studies will be made on

typical thickness graphite/epoxy composite laminate specimens to determine

the optimum ultrasonic test frequency, test methods (e. g. , pulse-echo or

through.-transmission), and search-unit size. Various void content

reference standards will be fabricated and tested to arrive 'at a relationship

between void content and ultrasonic attenuation. All specimens will be

mechanically tested to establish the relationship between void content and

strength.

In-Service Aging and Environmental Effects — Boeing is working on a program.

to determine the environmental effects on graphite/epoxy composite structures.

However, no nondestructive testing method of evaluation was included in this

program; only mechanical tests are performed periodically.. if graphite/

epoxy composite structures are to be used on primary structure for commer-

cial aircraft,. nondestructive testing methods will be required to determine

the degradation of the structure as related to strength and fatigue life.

Development of - a quick, low'-cost, and reliable nondestructive testing

technique to determine a change in structural characteristics will be a goal of

this program...

4
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Fire Damage -- Aircraft structure, especially wing structure, is subject to

fire damage in the area of the wheel well.. The significance of fire damage

must be determined. Nondestructive testing methods will be .evaluated to

determine if they can relate the fire damage to loss in physical properties

of fatigue life. Similar relationships have been established between eddy-

current conductivity, hardness, and loss in yield or . ultimate strength.

This program will consist of fabrication of composite panels, nondestructive

testing control tests, exposure to controlled fire environment, determination

of extent of damage area by nondestructive testing, and final testing for

retained mechanical strength properties.

Effects of Defects Determination — A relationship will be established

between the frequency/severity of defects, such as interply porosity,.

delaminations, voids, and resin and void (.porosity) content, and the strength

and durability of the graphite/epoxy composite structure for the wing program.

Specimens of flat configuration and later specimens of wing structure config-

uration will be fabricate d with various defects intentionally included. These

defects will be located and measured by nondestructive testing methods. The

specimens will. be fatigue-tested and flaw growth will be monitored as a

function of applied load cycles. The objective is to establish nondestructive

testing standards for the size and location of the critical defects that have

a significant effect on the durability of a composite wing structure.

Long-Term Fuel Environment

The resistance of composite materials to a long-term contaminated fuel

environment must be proven. Graphite/epoxy composite specimens, both

uncoated and coated, will be fabricated with polyurethane fuel tank coating

(MIL-C-27225) and immersed in a kerosene fuel/mineral salt water environ-

ment for 6 months to a year. These tests will immerse specimens in a

sterile kerosene/mineral salt control, using test media inoculated with

microbial-contaminated fuel with and without fuel biocides added periodically,

and running other tests where selected organic acids are added.. At the end

of the exposure period the specimens will be examined visually and micro-

scopically; weight, volume, and electrical resi-lance changes measured;

and the specimens then tested for changes in nechanical properties (flexural

strength and modulus and horizontal. shear).
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Phases Il and III

A materials specification will be prepared in Phase II to identify the basic

material handling, physical, and composite laminate structural material

properties. The specification will document purchasing instructions,

quality control test procedures for incoming material., and acceptance

requirements, storage conditions, and requalification procedures for material

B- stage and cured laminate.

A processing standard will be prepared that will prescribe the materials and

the detailed., step-by-step manufacturing process for the wing structure.

The processing standard will include direction for quality assurance provisions

and acceptance/rejection requirements and procedures.

A nondestructive test specification will be prepared to prescribe the detail

nondestructive testing methods and acceptance criteria to be used for the

wing structure.

Materials and Producibility Engineering will assist and support Manufacturing

during fabrication. of the Phase II subcomponents and Phase III wing struc-

ture sections. Their efforts will include surveillance of manufacturing

operations, procedural techniques, quality control and inspection records,

and participation in any rework that may be necessary.

MANUFACTURING PLAN

The prospective manufacturing problems associated with producing a com-

posite wing, as discussed in the technology assessment, are based upon the

experience we .have gained so far. In any major program which extends

technical capabilities, more questions arise during the development effort

than were anticipated. A study program can only discuss the predictable

problems and propose paths for solutions. An innovative program that

extends the limits of existing technology requires nnore development to

support the advanced work. Our concepts for producing composite wings

for a production line are intended to eventually make the cost of a composite

wing equal to or less than the cost of an aluminum wing. The scope of a

wing program should not be lim. ited to satisfying the imm, ediate need for
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producing one part, but rather to open up the potential applications of

composites so that the full advantages of integrally cured products can be

realized.

Phas e I — Technology Development

In order to determine the manufacturi-ng costs, identify the technical problems,

and select the most feasible method of molding a full-scale wing, subscale

tests must be condurted to supply data. This is a basic requirement if any

degree of integral curing will be propsed for the flight articles. Even for

a less sophisticated approach, with mechanically joined components, build-

ing a series of subscale boxes will generate expe .rience and reliability in less

elapsed time and with a lower risk of loss than would be the case with a full

wing section.

Through a series of increasingly sophisticated manufacturing trials on graph-

ite -tiring box sections, alternatives can be evaluated with reliable, realistic

data.

It is recommended that a subscale box approximately 8. 5 meters (28 feet)

long and 1. 5 meters (5 feet) wide be constructed as a test case for comparing

various manufacturing procedures, Figure 7-6. This box will fit into our

existing autoclave, and represents a half-sized version of a DG-9 wing. The

box is large enough to demonstrate and explore the manufacturing details,

but not so massive as to require special facilities.

The choice of tooling design, materials, and fabrication methods must be

explored to select a combination that will maintain dimensional control of

the part, not introduce cooldown stresses on the cured party avoid expensive

machining processes, minimize thermal expansion mismatch., be easy to

handle, and be cost-effective.

Figure 7-7 represents a tool structure used on the PABST program for large,

metal-bonded, curved panels. An egg-crate substructure was fitted with

adjustable stud attachments which permitted a lofted surface to be rough-

formed and set to proper contour by locally a.di llsting the height of studs

supporting the surface. Typically, the lofted surface was aluminum.

i
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FIGURE 7-6. SUBSCALE COMPOSITE WING BOX DESIGNED TO VERIFY
TOO LINIGIMANUFACTURiNIG FEASIBILITY

FIGURE 7-7. PLASTIC LAMINATING MOLD (P LM)
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For molding graphite composite wings, a caul sheet of titanium placed on the

alumintan will reduce the thermal mismatch. The subscale test box will be

fabricated using a similar tool to verify the accuracy of the final part to the

drawing. It will also enable tooling corrections to be made to compensate

for thermal effects.

The final choice of a fabrication method for the fuii-scale composite box will

depend upon the most economical and reliable method demonstrated on the

subscale box.

Three methods of construction are proposed for evaluation:

1. Conventional-Bolted

Stiffened skins are mechanically joined to individual front and rear spars

and ribs are secured to spars with fasteners (Figure 7-8). This repre-

sents the conventional approach to wing construction. No significant

advances in integral curing technology will be obtained by this approach;

however, it is lowest risk in terms of potential material loss.

2. Egg-Crate

The egg-crate approach, where front and rear spars and ribs are cocured

(Figure 7-9). Stiffened skims are separately cored., then fastened to the

egg-crate substructure. Several molding concepts can be used to cure

the spar/rib structure such as inflatable mandrels or trapped rubber.

3. Integrally Cured

An integrally cured box uses a combination of inflatable mandrels and

trapped rubber similar to the box developed in a Cornpany- sponsored

program (Figure 7-10). This concept represents the most radical

approach with the greatest chance for cost reduction and also the greatest

risk.

Each of these methods Will be carefully monitored for tooling and manufactur-

ing cost data to permit valid comparisons to be made of the process on an

economic basis.

An assessment of each assembly method was i,aade for the risk of failure

during the cure cycle. Table 7-5 compares each method, showing the

corresponding molding process and the manufacturing risk expected.
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FIGURE 7-8. CONVENTIONAL-BOLTED CONCEPT
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INTEGRALLY STIFFENED SKINS
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FIGURE 7-9. EGG-CRATE CONCEPT

FIGURE 7-10. INTEGRALLY CURED CONCEPT
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TABLE 7-5
RISK ASSESSMENT

ASSEMBLY MOLDING PROCESS MANUFACTURING RISKMETHOD

CONVENTIONAL AUTOCLAVE RELATIVELY LOW —
CURRENT TECHNOLOGY

EGG-CRATE TRAPPED RUBBER
UNIfORM

 MODERATE
PRESSURE CONTROLAND AUTOCLAVE DETAIL LOCAT!ONOR OVEN BAG FAILURE

INTEGRALLY INFLATABLE HIGH —
INFLATABLE LEAKAGECURED MANDRELS AND LAYUP ON MANDRELS

AUTOCLAVE AUTOCLAVE FAILURE

..E., ?to..

The conventional assembly method, using standard autoclave cur. , is the

baseline approach. As part sizes increase to span lengths of 15, 25 meters

(50 feet), some additional risk is introduced because of the increased

possibility of vacuum bag failure. The main drawback of the conventional

method is the lack of integral construction with this process. All substruc-

tural components, spars, and ribs are individually cured and assembled with

mechanical fasteners.

By using the cocured substructure approach (egg-crate) in combination with

separately cured stiffened skins, the spars and. ribs can be produced without

need for fasteners. Further, the fit-up of ribs to the spars will automatically

be a net fit. This eliminates the require-men.t for liquid shimming and tedious

inspection efforts to verify gap tolerance. It also reduces the potential fuel

leak paths around fasteners by eliminating 1,undreds of fasteners.

The risk associated with the e—g-crate method is judged to be moderate

because of the requirement to hold the part location, the need for uniform

p ressure, and the possibility of bag failure if the autoclave is used for

final cure. A method for reducing the risk is to avoid the autoclave by using

the trapped rubber process. Figure 7-11 shows a: method of curing with

rubberfaced inserts that fit between each rib. An isometric view of this

concept is presented in Figure 7- 12. The silicone rubber expands to cure

the ribs and spars together.
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FIGURE 7 -11. EGG -CRATE TOOLING
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RECESSED FOR RIB TAB

SILICONE RUBBER FACES

FIGURE 7 - 12. MEDIUM -RISK CONCEPT

The assembly is cured in an oven without external pressure. Tooling can be

fabricated from aluminum to increase thermal conductivity and reduce heat-

ing time.

The most innovative concept for molding composite wings is to integrally

cure the stiffenLd skins, spars, and possibly the ribs in one cure cycle.

This approach would drastically re c.uce the work now required to assemble

the wing by eliminating most of the mechanical at tack-meets. The drilling,

countersinking, fastener installation, inspection, record-keeping, and fit-up

problems that are t ypical for metal wings would. be reduced, with a correspond-

ing reduction in man.ufacturing costs.
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Douglas has demonstrated that, small wing box sections can be fabricated by

the use of inflatable mandrels and trapped rubber. However, scale-up from

a 2-meter (7-foot) box to a full-sized 15-meter (50-foot) wing represents a

very substantial increase in complexity and risk of loss during cure with

today's manufacturing technology. In order to improve the reliability of the

process and decrease the risk, development work must be continued toward

perfecting the construction and longevity of inflatable mandrels. Monolithic

curing of the full wing semispan poses too great a risk at the present, but

it is conceivable that such G manufacturing approach may become feasible

in the future.

Phase II — Production Readiness

A variety of composite specimens and test parts will be fabricated to verify

design and to provide data on strength, joint characteristics, fasteners, etc.

The manufacturing composites center will produce these spe.ci anens and

parts as required. Autoclave facilities., machining equipment, and technicians

familiar with graphite/epoxy laminates will be assigned to this area. In

addition, specialized tooling support from manufacturing research engineers

will expedite test parts on a quick-response basis without the need for

formal tool designs. Other parts will be fabricated. beyond those required

for the test program if needed to verify manufacturing methods and processes.

Where feasible, large test parts can be used for verification of thy; fabrica-

tion processes where planning papers, procedures, and quality assurance

methods can be demonstrated. The usual problem areas that arise i.n

support of building first article parts can be resolved early to reduce the

impact on the full-scale composite wing box.

Phase III— Manufacturing

Phase III covers the +-echnology, processes, and other tasks required to

produce graphite/epoxy composite full-scale wing structures for commercial

aircraft.

In Phase III, Manufacturing will produce three full-scale, left-hand DC-9

wing boxes and one majo- .3ubcompon.-arzt for laboratory test:. Advanced
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techniques in composite application will be utilized, along with internally

applied pressure curing techniques.

The program will be directed toward techniques for rapid and repetitive layup

of composite preimpregnated materials. Extensive utilization of automated

and memory-controlled 'tooling is planned for tape and broad goods.

Facilities will be provided for the composite wing production, including

receiving, la.yup, cold storage, curing inspection., trimming, and subassembly.

Fabrication will proceed as though in a production mode with all associated

planning documentation., proof of compliance with drawings, personnel train-

ing and certification, inspection criteria, and facility development.

Major emphasis will be placed on curing large assemblies as integrated units

made up of skins and associated structural support elements. Assembly of

major composite elements will require minimal mechanical fastening while

maxiwi.zing the new technology and structural integrity of composite integrated

assemblies.

Manufacturing Approach — The DC-9 composite wing is to be produced as a

fo-ar-element assembly. The skins will be formed with integral stiffening

blades; ribs will be individual parts mechanically fastened to the skin

structure, and spars will be fabricated separately and mechanically attached

to the ski:i closeout structure. This approach is compatible with the conceptual

design defined earlier.

Manufacture of the composite wing is to be undertaken on an individual bF-.sis;

however, the methods of rranufacture will be oriented toward large produc-

tion runs typical of commercial manufacturing operations.

Composite structures will be produced utilizing manufacturing technology

obtained from the DC-10 upper aft rudder and the DC-10 vertical stabilizer

programs.

Production and manufactuxing cost-estimating systems and records will be

used to generate costs for tooling, composites, fabrication, assembly, and

metal components.
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Planning will utilize a low-cost, one-of-a=kind producibility approach for

hardware generation, but will .provide data for subsequent input to produc-

tion costs.

The planning control center will be responsible for re.leasin,g documents to

the manufactrrhig R&D center, quirk-response tooling aids, and machine

shops.

Release planning will utilize existing DC-9 document control procedures.

Fabrication orders will be processed through production control for work

assignment and status with respect to the schedule.

Large skin tools will be rolled from metal, with final contours N/C

machined. The surface will be supported on aluminum egg-crate supports

with stud-welded attachments. Titanium caul sheets will be used to mini-

mize the rural expansion mismatch between the graphite skins and the tool

surface. Forming tools will be designed for oven and autoclave usage with

provisions for bagging, sensor application, and a temperature rise capa-

bility of Z. 25 0 C per minute (40
F per minute), whether externally applied

or boosted through. use of cal-rod heating elements buried in tool components.

Assembly tooling will be for a lim.ite.d production run, but of the type that

can be converted. to long-run, permanent tools. Master tools will be con-

fined to existing tooling for provision of hingeline and contours and for

overall dimensioning of the wing box. No new tools are anticipated.

Tools will be designed to compensate for thermal expansion during the

curing cycles.

Assembly Plans — The detail parts and large stiffened skins will be fabri-

cated in the composite manufacturing facility shown in Figure 7- 13. This

area is dedicated to preparation, layup, and curing of composite aircraft

parts. Metal details such as the titanium doubler and aluminum bulkheads

will be fabricated in the normal production shops. Other parts and assem-

blies cornm,o:n to conventional DC - 9 aircraft wings will be available through

normal. production control groups.

Parts and assemblies will be sent to the composite center for final asse-mbly

and acceptance of completed wing box units. Subassemblies will be joined
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FIGURE 7-13. COMPOSITE WING DEVELOPMENT FACILITY

by fasteners in a manner similar to normal production methods.

Fabrication Plans — Specially fabricated metallic details will be required in

three areas: titanium landing gear fitting cocured to the wing skins (upper

anal. Tower), aluminur bulkheads attaching upper and lower titanium landing

gear webs, and aluminum splice plates at the wing cen:teriin.e area.

Titanium doublers are designed to s-traight-taper in three directions and may

therefore be machined from 18- ceiitimeter (7-inch) plate stork and., by design,

will require numerically controlled fabrication. Use of forgi.n:g.s for initial

stock requirement is being considered. Splice plates will be straight-tapered

stock, with no unusual machine work anticipated.

Of the 22 ribs, 21 will be composite layups with edge- reinforced lightening

holes for access during assembly. Attachment to intercostals will be by

bolt-type fasteners.

Leading and trailing edge spars will be basically flat layu:ps (with aerodynamic

break) stiffened vertically by molded, blade-type stiffeners in. parallel rows.

Spars will run uninterrupted from the centerline of the aircraft to the wing tip.

Alo:7g the front spar at each location, a composite cup-shaped past will be

bonded for clearance of the slat guide fitting in the fully retracted position.
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The cup will afford fully encapsulated coverage of the aft end of the slat

mechanism.

Localized material buildups will be incorporated during the rear spar layup

for flaps, spoilers, and hinges. The design of the spar and buildups will

accommodate existing components.

The wing upper surface will contain openings for six access holes. Three

outboard holes, oval in shape, will be interchangeable, and three inboard

holes of larger size will be interchangeable. On. the lower surface, 10

access holes in the rmdwing area will also be interchangeable with each other.

Numerous fuel probe locations will require small., configured access covers.

Fabrication Outline - Each integrally cured section will be fabricated

individually on special tooling with provision for contours. The curvature

of the upper and lower skins differs; additionally, a controlled arnount of

twist is designed. into the wing to compensate for torsional deflection of the

wing from. flight loads.

The width of the wing box ;caries from 2. 75 meters (9 feet) at the fuselage to

0.9 meter (3 feet) at the tip. Broad goods currently available in widths of

12.2 or 152 centimeters (48 or 60 inches) will be purchased preim.pregnated

with a B-staged resin system (5208). The material will be spooled so that a

full se-rnispan length [18 meters (60 feet)] can be placed upon a skin tool in

one continuous ply. P.replied graphite/epoxy is presently available from

companies such as Hercules in +45-degree, 0-degree, and 90-degree orien-

tations. Where convenient, the ply orientation for ti-.e skin will be preplied

by the supplier to facilitate fast, easy layup on a tool.

By pulling the material lengthwise along the tool, only a simple cutoff opera-

Lion is required to rapidly build up section thickness. The use of preplied

materials precludes the use of many individual Mylar templates which is a

time-consuming process both for layup and for verification by inspection.

Once the skin has been applied to the tool, mandrels wrapped with channel.

shaped graphite sections will be placed on the skin.. Between each channel,

longitudinal 0-degree preplied strips will be placed to provide the bending

1^4
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resistance for the blades. Each of these layups will be built up to form the

blades over the skin (Figure 7-14). The, channels will be stacked up from

one edge of the skin to the other edge.

was included in our conceptual design.

A total of 12 blade stiffeners per skin

PREPREG G/E-SKIN TRIM	 PLM LAYUP

MANDREL
450 WOVENFORM

^CtIAIVNELS

0 0 BLADES ^^
DENSIFY	 MnNpRei

0'
45°

.4[F•SI1f

FIGURE 7-14. WING SKIN LAYUP

Between each blade stiffener, running fore and aft, are 22 intercostals that

act as tie-in points rib clips. The intercostals will be back-to-back angles

in cross section that cure as inverted tees (Figure 7-15), Aluminum blocks

faced with silicone rubber approximately 1, 25 cm (1/2 inch) thick will serve

as molding forms for the intercostals. The intercostals will be applied to

the ends of the blocks as an angle in cross section. Each block will be placed

between the blade channels and. the block will be aligned and anchored so as

to maintain dimensional accuracy and precise location of the graphite c.om. -

ponents during cure. Either longitudinal metal members will align the blocks

or a cover plate with alignment lugs will correctly position each block

(Figure 7-16), As heat for the curing cycle elevates the rubber facing temper-

ature, expansion of the rubber will provide horizontal pressure that molds the

blades and intercostal simultaneously. Pressure to cure the skin is derived

from the autoclave,
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ALUMiNQN1	 ALUMINUM

RUBREfj	 /^^`,	 RUBBER

..I

/

1

1	 1

1!{ 45q PLIES

FIGURE 7 .15. COVER SKIN INTERCOSTAL CONSTRUCTION

v

FIGURE 7-16. SKIN-STIFFENER LAYUP

1
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After all the blocks are locked in position, the complete tool and graphite
layup will be vacuum bagged with a silicone rubber blanket and cured in the
autoclave at 0.69 MPa (100 psig). The titre-temperature cycle will be estab-
lished by Materials and Process Engineering, Thermocouples imbedded in
the thermal lagging areas of the part will be monitored on a permanent
record 4o document the cure cycle.

During the manufacturing and tooling development, it may be indicated that
supplementary heaters are necessary to improve the heating rates of the blade
mandrels. Such heaters could readily be incorporated at multiple locations in
the metal mandrels and wired to automatic microprocessor controls similar
to the method on the DC-10 upper aft rudder program.

The conceptual design employed separate chordwise ribs of varying cross
sections with lightening holes and integral stiffeners. Because of the generally
flat shape of the ribs, a heated press would be a logical method for curing
these parts.

Part layup could be accomplished with automated equipment, with the localized
hole stiffeners manually added to the laminate. Integral stiffeners cured with
the ribs can be molded by using silicone rubber pads faced with aluminum at
the stiffener contact face. Horizontal pressure  is produced by the t nal
expansion of the rubber reacting against the molding tool boundaries.

h

Figure 7-17 presents a schematic of a simplified molding Arrani gement,

The front and rear spars are flat, shear-resistant webs with vertical stiffen-
ing elements added after cure. The cross-sectional thickness of the spars
changes with length, which lends itself to simple layup on a flat tool surface.
Buildups for attachment points will. be  added to locally increase the spar
thickness. An autoclave will be used to cure the spars.

Manufacturing will. receive prepreg material (tape and broad goods) ready for
use. Prepreg rolls are stored at - 180 C (O oF) until required for actual layup
ope rations

Table 7-6 outlines the fabrication sequence for the wing elements.

Mylar templates can be used with ware'rjet cutting equipment to rapidly trim
plies to required profiles. Multiple stacks of graphite/epoxy prepreg have
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been cut with a water jet at Douglas. The effect of water on the prepreg has

been evaluated by Materials and Process Engineering, and it is not considered

detrirnental to part quality.

Material plies will be applied to the plastic laminating mold (P LM) with veri-

fication of each ply position in the stacktzp controlled by the fabrication orders

and Quality Assurance inspectors. Skins laid out on the PLM will then be put

on the titanium landing gear doubler and covered (after the final ply) with

mandrels for location blade stiffeners and intercostals.

ILCn)l. )1

FIGURE 7-17. MOLDING RIBS

TABLE 7-6
FABRXATION SEQUENCE

SKIN. STR
BLADE

INGERS INTERCOSTAL RIBS

MATERIAL: SROADGOODS BROADGOODS BROADGOODS BROADGOODS
PLUS TAPE

TOOLS 1
SKIN MOLD

1

PREFORM
1

BLOCK 1MOLD
MANDRELS MANDREL

FABRICATION 1 1 1 1
LAYUP 4,,50 LAYUP LAYUP
METAL CHANNELS

INSERTS 00 BLADES

DENSIFY DENSIFY DENSIFY DENSIFY I
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The PLM will be kept in a -18oC (O oF) freezer when not being actively worked

upon, thereby retaining the workability of the pre.preg material, On comple-

tion of layup, the part and tool will be vacuum bagged and cured in the auto-

clave under heat and positive pressure.

Access doors will be fabricated by hand layup and trimmed by router to

portable trim tool dimensions.

Slat track cups will be laid up in an exterior mold with a silicone rubber

plug and cured in small quantities with the larger parts.

Spars will be long, narrow, flat layups applied to a PLM with the required

aerodynamic break. Mandrels will control stiffener shape and access hole

definition. Both forward and aft spars will be cured on the same substructure

on. side-by-side PLM tools.

Immediately following cure, composite parts will be trimmed by diamond saw,

track-mounted router, or tracer router tooling. Holes will be drilled to size

utilizing drill jigs and portable drilling equipment.

During the final fabrication and assembly operations, coupons will be provided

from trimmed excess material for evaluation by Quality Assurance.

Assembly Outline — Final assembly will be accomplished in a vertical jig with

the wing oriented forward spar down, as shown in Figure 7-18. The upper

skin will be loaded first with ribs, the spars following. The final step will be

the application of the Lower skin panel, slat track cups, centerline splice webs,

and access panel. cover.

The completed box will be subjected to inspection and nondestructive evalua-

tion. Upon acceptance as a structurally sound unit, the rei!'. fining assembly

operations will be performed., including leading and trailing edge attachment;

installation of hinge fittings, slats, flaps, spoilers, cable runs, and fuel

components; and final painting.

A flow diagram of the assembly sequence is shown in Figure 7-19.

All operations will be controlled by assembly outline documentation and

tracked on 1Z5A position control charts by Industrial Engineering personnel.
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FIGURE 7 .16. WING ASSEMBLY JIG
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FIGURE 7 -1 9. ASSEMB LY FLOW
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Attachments through graph-ite /epoxy will be made through clearance holes

with titanium fasteners installed wet. The sealant acts'to prevent fuel leak-

age and to minimize galvanic corrosion between the graphite and fastener.

On completion of the cure cycle, the assembly will be transferred to the trim

area for trimming of edges and mating surfaces by a diamond saw. Holes for

fastener installations will be located by a jig and drilled following trim

operations.

Holes have been effectively drilled through graphite/epoxy using "dagger"

drills of solid carbide at 2000 rpm. These drills resemble spade drills with

special modifications of the cutting edge and a sharp iticluded point angle..

One of the advantages of this style of drill is the minimum breakout 'on the

back of the graphite/epoxy and the elimination of reaming because of close

tolerance and good surface . finish as drilled. By avoiding the reaming - opera-

tion, both tooling and time. are saved.

Composites may be drilled and trimmed dry; however, the tool life,is enhanced

by using liquid or spra y coolants. The dust problem associated',ki'th composites

is reduced by the application o£ coolants. Where coolants cause contamination

for secondary bonding, vacuum pickups , can be uGed at the work site.

Tooling Plans — Skin and parts layup will be placed on - a contoured plastic

laminating mold for curing operations. The contour'will simulate lofted sur-

faces of the parts during cure, ' and will be _mounted on an egg-crate type

structure for rigidity. The surface contour of the skip_ PLM and spar PLM

tools will be derived by rolling or braking sheet aluminum to yough .contour,

and final precision finishing surfaces by N/C milling to tF-- required shape

and contour.

Smaller PLM tools will allow fabrication of access doors and small pasts

suitable for curing in available autoclaves other than the large, wing.-sized

unit.

Aluminum machined mandrils covered with a uniform coating of silicone rubber

Will be fabricated for molding interstices between stiffeners, intercostals, spar

buildups, and access panel openings. Mandrels will be Iti/C machined to con-

189



tour with programmed allowances for coefficient of expansion and rubber

encapsulation thickness. In areas with mandrels, cal-rod heaters will assist

in maintaining uniform distribution and proper temperature rise,

Mylar drawings produced by the Gerber plotter will provide direct full-size

patterns for prepreg layup, positioning, inspet-tion, and placement on the

PLM. The same N f C data which produced the numerical control draft tools

will also direct the water-jet trimming machine, Drafts will be produced

through the Computer-Aided. Design Tooling (CADT) process to keep layout

time at a mini-mum cost.

Nondesigned tooling will be provided for drilling fastener locations, trimming

access openings, panel edges, slat hinge cups, and splice plate details.

Normally, these will be flat sheet metal tools or fiberglass blanket-type tools

with tiZxshed hole locations and steel trite bar edges referenced from. master

tooling shapes and flat master layouts.

Hard master tooling for control of hinge line, contour source, and hinge loca-

tion will utilize existing master tooling now provided for the conventional

wing.

The wing will be held during final assembly utilizing a vertical (leading edge

down) assembly jig constructed to perm- it loading and fastening of bulkheads,

spars, and fasteners in one position. Movement of composite 1. ayups and

parts within the fabricatio-n . reas will be accomplished by the use of a variety

of rolling table and rack -type fixtures, designated as handling fixtures.

Overhead rail-mounted cranes will move and position jigs, bulk material rolls,

tools, parts, and assembled wing boxes.

Phase V — Composite Wing Box Flight Preparation

To prepare the composite wing for flight evaluation, a DC-9 Series 32 air-

craft will be obtained and modified for installation of a composite wing box.

The existing left-hand wing, from the center wing splice outboard, will be

removed from the aircraft. The aluminum right-hand wing will remain in

place with splices incorporated at the ce .nterlin-- junction of both halves. As

this is a wet wing ; appropriate fuel sealing methods will be used .to prevent

leakage. Plumbing for fuel supply must be added to the composite wing box
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and integrated into the existing onboard systems. The left-'hand control sur
faces, fairings, an!d leading A	

-
-nd trailing . edges from.a, m the existing metal wing

will be used. Similarly, the hydraulic systems and landing gear are normal
production items that will be installed by . produ.ction personnel who. have
become familiar with gr4;ivite tepoxy materials.

TUe manufacture of the left-whand composite wing box for flight development is
charged. to Phase V. The flight composite wing box will be manufactured . in a.
similar m anner as the three components produced in Phase -111 for laboratory
test.

Some engineering modification drawings for metal and composite . parts are
anticipated to facilitate installation of the composite wing box . on an existing
DC-9-32. These special parts will be fabricated in accordance with existing
procedures for metal parts and according. to Phase III composite''proced.gres
for the composite parts. Since Phase III tasks will have been already accom--

P'll shed, the production of any special composite parts should provide no
particular probleTris.

TEST PLAN

Figure 7-20 presents the overall test program and task relationships from
de.-sign requirements for tests through air-craft FAQ... flight certification..

Some techn; cal development .for test purposes is anticipated for this -program
as a result of the use of co Mposite materials and composite design and produc-
tion techniques. Attachment of lead application fittings to an aerodynamic
surface formed of composite material is an example of an item to be tested in
technical development. Load application-to. conventional metal aerodynamic
components (wings, stabilizers, etc. ) is normally accomplished by attaching
load fittings to the structure for hydraulic jacks-by rernoving normal produc-
tion fasteners — rivets, screws, and bolts — and attaching the fittings using
fasteners in the vacated holes. Composite aerodynamic surfaces, however,
will have A greatly reduced number of .fasteners which can be removed and used
for load fitting. attachments. Accordingly, it is anticipated that a certain
amountount o! test design and de ve lo pt-nent will be " re*quire d to produce a c e 6 t a b Ie
fitting attachment methods which do not adversely or unrealistically affect the
specimen strength Or fatigue life.
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Mate riai allowables and design verification tests will be performed to demon-

strate compliance with applicable requirements of Federal Aviation Regula-

tions, Part 25,. and the current FAA Composite Structures Guidelines.. FAA

will inspect the test articles for design conformity, approve the test plans

including load conditions, witness the 'test, and appr:?ve the final test report.

Final, reports . of the test results and, as appropriate, -their correlation with

the predicted values will be prepared.

Design Development Tests

A design development program will b ,^ conducted in Phase r to determine com-

p;;site material properties and structural component performance that are not

available in hand eeks or other. approved: sources and to develop design con-

cepts that will meet strength, damage tolerance and fatigue, lightning strike,

and static electricity requirements.

The development test program will be determined considering the background

available for composite =x aterial from research, in-house composite programs,

other programs in industry, and Qovernment agencies.. A representative, struc-

turai development test program is presented in the following parag*a.phs.

Structural Design Development Tests — The structural design development

plan includes concept development testing of critical structural elements.

joints, and fittings, and testing to.determine laminate mechanical properties

and fracture mechanics data. Pre:.li.minary de sign studies will lead to the
definition of several candidate design elements, joints, and fittings. These

candidates will undergo de velopme nt to sti ,=g to determine comparative per-

formance s of diffe rent concepts.

Critical structural elements of the composite wing box are to be selected for

design :develo,pment testis°g. Tables. 7-.7 through 7- 10 illustrate typical test

specimens and conditions for concept evaluation for wing skin panels, spar

and rib webs, joints, and fittings. The 26.0 specimens illustrated with 25

different types of design detail sections are considered representative of a

concept design development program to.r a DC- 9 -32 composite wing box.

More than one configaration, as noted ire the column entitled "Structural

Concept" in Tables 7-7 through 7_10, would be tested for a given detail,

It I
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section'.	 cal 6tferences in configuration might be, for example, dif-

ferences in element dimensions, number and orientation of plies, or

stiffener depth,',

OF 
ft4R { AGE	 TABLE 7-7

SKIN PANEL CONCEPT DESIGN DEVELOPMENT TESTS

NO. OF SPECIMENS
SPEC
512E

- PRETEST
_ -C. NOITIDNING

a;	
6TESTTEMP. C I	 .1

TEMP PERCENTTEST MA an - STRUCT -54
I TOTALND. TEST SPECIMENS IIN. i IN:I TEST PURPOSE TEST LOAOINO CONCEPT °C I°Ff RH I-851 AMSi	 B7 1180E

1 BASIC PANELS 122«61 TENSION STRENGTH LONGITUDINAL TENSION 6 82 [1801_ 95. 2 7
- !48. AND STIFFNESS AMB AM13

2 122 a 2139 COMDR ESSIDN LONGITUDINAL 6 82 IF801 95 2 7 2 11
{48.901 STHENGT:I ANOCOMPRESSION AMB AMB!^

STIFFNESS

3 ,SHEAR STRENGTH INPLANESHEAR 6 8211601 95 2 7 2 11
_ AND STIFFN

E
SS AMB- AMB -

-	 -	 -
4 _ 122.229 SENDING STRENGTH NORMAL PRESSURE	 - -

6..

AMB AMB 6 6
149 . 907

5 STRENGTH UNDER :TENSION ANO SHEAR. 3 AMB AMB 9 9
COMB) ED LOADING

6 STRENGTH LINDEN COMPRESSION AND 3 AMB AM6 9 9
_ COMBINED LOADING SHEAR

7 STRENGTH UNDER COMPRESSION AND 3 AMR AMB 3 3
COMBINED LOADING NORMAL PRESSURE

8 36.61 FATIGUE STRENGTH LONGITUDI N AL R ^ -1,0 3 AMB AMB 3 3
114 , 741

9 ACCESS PANEL . 127. 229 TENSILE . STRENGTH LONGITUDINAL TENSION 2 AMU AMB 2 2

.18.90.

COMPRESSION LONGITUDINAL 2 AMB AMB	 - 2 2
STRENGTH COMPRESSION.

N12

SHEAflSTRENGTH' IN•P LANE SH EAR 2 AMB AMB 2 2

COMBINED COMPRES • LONGITUDINAL COMPRES . 2 AMB AMB 6 6
SION- ANU SHEAR SION. AND EN.RLANE

SHEAR

13 .FATIGUE STRENGTH LONGITUDINAL R • -L0 2 Ah7B AMR
-.. 2

^EFFEC7SOFFUEL NORh7ALPRESSURE 2 Ah7B AMR 2 274
PRESSURE

-15 DAMAGEDPANEL	 - 36.61 POS70AMAGE LONUITUOINALTEN51ON 82 11801 95 2 3 2 7
ISMALL AREA , 14 +!4^ TENSION STRENGTH Ah1B	 - AMB

16 122. 229 POSTDAMAGE CONG.ITUDINAL 2 82 1180] 95 2 3 2 7
^•,- .48+901 COMPRESSION COMPRESSIO)'_ AMB AMB

STRENGTH

17 36.61 POSTOAMAGE FATIGUE LONGITUDINAL R	 -1 0 2 AM71 AMB 2 2
f 14 . 241

16 DAMAGED PANEL -36461 FOSTOAMAGE LONGITUDINAL TENSION 2 82 11801 95 3 2 7
LLARGE AREAL 614.241 TENSION STRENGTH AMB AMB

172 	 229 POSTOAM AGE LONGITUDINAL 1 '82	 11801. 95 _ 3	 - 2 7. 19

^^JJ
48- 90 1 COMPRESSION COMPRES S ION AMR AMO

STRENGTH

36. 67 POSTDAMAGE FATIGUE
-

LONGITUDINAL R • - 1.0 2 AMB AMB 2 220
- 114 .241 - -

21 REPAIRED PANEL 36.61 (TENSILE STRENGTH LONGITUOINAL TENSION 2 82 1-I80I 95 2 3 2 7

-

(SMALL AREA)

-' 1^ . ,.^

114 x 241 ! AMB AMR

22 1213. 229 COMPRESSION LONGITUDINAL 2 82 1180! 95 2 3 -2 7
'	 O •48-.901

-
STRENGTH COMPRESSION AMB. AMB- -

23 .. 3G • fiP FATIGUE STRENGTH .LONGITUDINAL R - --I 0 2 Ah1B Ah16 2 2
614 + 247

24 gfPAIR ED PANEL 36 .61 TE NSICE STRENGTH LONGITUDINAL TENSION _	 - . 821.1601 95 2 3 2 7.
(LARGE AREA)

,.%__'^^•.^•.^

114 r 241 AMB AMB	 -

2S 122..729 COMPRESSION LONGITUDINAL 2 R2 11801 95. 2 3 2 7
148+901 STRENGTH COMPRESSION AMB	 - AMB -

36. 61 FATIGUE STRENGTH LONGITUDINAL R • -1.0 2 AMB AMB 2 7
114. 241

21 SWEEP-0REA KPAREL -61. 752 TENSION 5T q ENGTH . LONGITUDINAL TENSION 3 A,MS Ah7B .. 3 3
124. 601

r'S
IIESSION LONGITUDINAL 3 AMB	 - AM6 3 326

RENGTH -COMPRESSION

47
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TABLE 7-T

SPAR AND RIB CONCEPT DESIGN DEVELOPMENT TEST

NO. OF SPECIMENS

- SPEC PRETEST
COTFOMIONING .jTfIaTE

-o
.e,	 -

F1:.C.1.
.

I 512E
TEMP - PERffiENTTEST - tiSIx Em `— '(

NO.NO. TEST SPECIMENS ( IN. x 111:1 TEST PURPOSE TEST LOADING- CONCEPT °C( F) F.H (S AMB' 82 11801 TOTAL

1 SPAR WEB 61 a 183 WE13 Z':EAR STRENGTH 3-PCINT BEAM BENDING 6 82 11801.. 95 2, 7 2 11

T.
124 a 721 AND STIFFNESS AMB AMB

2^;" 1
-

WEB LATERAL LATERAL PRESSURE 3 AMB
-

AMB 1 3
BENDING STRENGTH

3 RIB ANUBULKHEADS WEB SHEAR STRENGTH IN,PLANESHEAR 6 8211801 95 2- 7 2 11

}f	 ,^

AND STIFFNESS AMB All

4 WEB LATERALIATERAL PRESSURE 3 AMB AMB 3 3
BENOING STRENGTH

TABLE 7=9

JOINT CONCEPT DESIGN DEVELOPMENT TEST

.. _	 .: ....	 ....	 ... .. NO.OF WECLMENS
SPEC

PRETEST .... ....	 .

slzE CONDITIONING - ..: .TEST TEMP

:STRUCT - TEMP PERCENT —54.TEST cmxem -
NO. TEST SPECIMENS IIN. R INA TEST PURPOSE TEST LOADING CONCEPT °C 1 0 F1 RH f-651 AMB 82 080) TOTAL.

1 WING TO PUS JOINT 30.61 SHEAR STRENGTH STATIC SHEAR 3 62 41801  95 2 4 2 8
112:24! AMB AMB

2 CENTERLINE JOINT 51 .76 TENSION STRENGTH LONGITUOINALTENSLON 3 X82 11801 95	 - 2 -	 4 2 8
120 • 301 AMB AMB

3 FATIGUE STRENGTH LONGITUDINAL ii • —'1;0 3 AMB AMS. 3 3

4 SPAR WEB TO	 j 25 , 76 SHEAR STRENGTH STATIC SHEAR 6 -82	 11801 . -	 95 -	 2 7 2 11
PANEL KINT 110 • 3Di AMB AMB

5 RIB TOPANEL JOINT	
I

30 • 61 SHEAR STRENGTH STATIC SHEAR - 6 82 11801 - 95 2 7 2 11
112. 241 AMB AMB

:FUEL . PFIESSURE LATERAL TENSION	 - 1 AMB AMB 1 I
RESISTANCE

7 RIB TO : SPAR JOINT SHEAR STRENGTH STATIC SHEAR 6 82 118011 95 2 7 2 11
AMB AMB

8 FU EL PRESSURE LONGITUDINAL TENSION 3 AMB ANTS 3 3
RESISTANCE' -

9 LEADING EDGE JOINT 25.76 STATICSTRENGTH BIAXIALTENSION	 - 3 'AMB AMB 3 3
-	 - I ID 	 301

10 EF FECT OFTHERMAL TENSION CYCLING R • 0.1 3 82	 BD!- 95 7 171 7

-	 -

MISMATCH A.Me AMB

:	 it TRAILING. EDGE JOINT STATICSTRENGTH BIAXIALTENSION 3 AMB AMB- 3 3

i
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TABLE 7-10:
FITTING CONCEPT DESIGN! DEVELOPMENT TEST

TRETEST NO, OF.SPECIMFM
SPEC

TIONING TEST TEMP 'C (' 0

TEST T EST
SIZE
x cm TEST TEST STRUCT —54'TEMP %

NO, SPECIMENS .(IN. x IN.) ; PURPOSE LOADING CONCEPT ioF) RH (-651	 AME	 82 41801 'TOTAL.

1 AliLERON FITTING 20 x 51 STATIC MAX 3 AMB AMB 3
(8 x 20) STRENGTH COMBINED

LOADS

2 SPOILER SUPPORT 30 x $il 3 AMB AMB 3 3
11 2 x 24,1

u

u

Li

3 FLAP FITTING 20 x 51 3 AMB' AMB 3 3
16 x20)

4 LANDING GEAR .25 x 2r̂ 3 AMB AMB - .3 3
FITTING (10 x I

o)

5 TRAP PANEL INSTL 61 x 102 3 AMB AMB 3 3
124 x 401

6 SLAT TRACK SUPT 30 x 61 3 AMB AMB	 i 3 .3.
(T2  x 241)



-... 1 =i

Design development tests are to be performed to establish laminate configu-
rations and obtain laminate properties data that will meet the strength, fatigue,
and diiamage tolerance requirements for a composite wing box. This is to be
done by selecting basic . laminate configurations,. fabricating coupons repre-

senta-Ov6 of the design, and testing these coupons with static, dynamic, and
repeated loads to determine laminate properties design data. Approximately

12 test specimen configurations, as shown in Table 7-11, with a total of 1346

specimens are to be tested in the structural design, development test program.

Lightning and Static Electricity Tests — A lightning test will :be conducted

with restrike tests on. fastener heads for fuel ignition hazards and lightning

transient tests on critical electrical wiring components for transient

suppression/shielding designs.

A static electricity test will evaluate the sta.ticcharge c?ispersioncl1iaracteristies

of graphite composite fuel tank structures. A static charge spray test- or tank.

will be fabricated. The proposed protection techniques will be evaluated and

demonstrated for their effectiveness.

Design Verification Tests

Design verification tests are to be conducted in Phase II on panels, comnponent

sections, joints, fittings-, and the landing gear attachment to verify that design

details from the development tests satisfy the design and FAA require rimen.ts.

These tests are to be completed before the engineering drawings are released

for fabrication of the first full-scale composite wing box for static test.

The results of the design development tests and previous composite component

development .programns will be utilized to design detail parts for a f X1'1-scale

composite wing box. Subcomponents representative of the final design will be

tested to verify the static strength and fatigue and damage tolerance charac-

teristics of critical design details of the composite wing box and to demonstrate

sat'isfaetory repairability of a wing panel including stiffeners. Table 7--12

presents typical design detail verification tests. These tests will be initiated

as soon as possible after development tests conducted on a particular design

detail are completed.
f
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Full-Scale Verification Tests

Verification tests are to be performed on two full- scale semispani composite

wing boxes and one major subcomponent in Phase IV, The first semispan

box will be used to verify design static strength requirements. The major

subcumponent article will be ased for crashworth-mess tes ts. The second

seitrnispan box will demonstrate fatigue life and damage tolerance, The two

semispan boxes and the major subcomponent article, after failure or with

flaws induced, are to be used to demoi.Aeate repair procedures and strength

.after repair. Vibration tests are to be performed on all three semispan

specimens to determine the composite wing box free/free and installed vib-

ration characteristics,

Full-,Scale Wing Static Streng`-. Design Verification Test— A full- scale com-

posite wing :box semispan is to be tested to verify the wing box design stiffness

design limit strength., and de sign ultimate strength to DC- 9 design specifications

for the critical load 7onditions. The test article will then be loaded to failure

for the most critical condition.

The test article will be a structurally complete semispan composite wing box

produced by ..Manufacturing. It will include all structurally significant fittings

and access panels and any additional fittings required for handling and test

loading. The composite wing box will be joined . with a production DC-9 metal-

lic right wing and a DC-9 fuselage center section, Dummy landing gear will

be fabricated, installed, and utilized as part of the loading fixture. Inspec-

tions will be performed on the composite wing. box during its manufacture,

assembly, and test setup in accordance with FAA conformity inspection pro-

cedures. A typical test setup is shown in Figure 7-21.

Instrumentation will consist of deflectometers, strain gages, load cells,

p.re:ssure transducers, and associated signal conditioning, calibration equip..

meet, power supplies, cabling, oscilloscopes, and other instruments.

One of the major design goals for this test is to design a composite wing box

with a stiffness equivalent to the DC-.9 metal wing. Accordingly, deflection

data will be obtained on the first two composite wing boxes. Data will be

com- pared to analytical finite raodel deflection data to verify that deflection

characteristics of the composite wing box conform to design requirements.

w 
r :.

n
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ESTRAINT BULKHEADS

PRODUCTIONa
DC-9 WING BOX
(ALUMINUM!

TRANSI rION
SHELL (JIGI TRANSITION SHE LL (JIG)

y y	 COMPOSITE WING BOX
SPECIMEN

"RESTRAINT BULKHEADS	 I' *Iw+

FIGURE 7,21. COMPOSITE WING BOX DESIGN VERIFICATION STATIC TEST

The ultimate strength (failure) test may require load application in excess of

the ultimate strength of the balancing metal wing. Accordingly, analyses will

be performed to define unsymmetrical bending rnoments to unload the metal

wing and load the composite. wing box at the critical locations. to produce

failure in the composite wing box.

The sequencing for this test is shown in Figure 7-22.

The test plan will be approved and the test witnessed by the FAA for com-

pliance with FAR requirements..

C rashworthine s s Design Verification Test -- A test will be conducted to demon.

strate that landing gear failure due to overloads during takeoff or after landing

(assuming overload-s act in the upward and aft direction) does not result in fuel

2Q?
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VIBRATION TEST WITHOUT LOAD FITTINGS-
,.REPAIR.

	

FREE VIER ATION TEST -21-11	 -

	

VYING TANK OVERFILL PRESSURE TEST ..

INSTALL LOAD FITTINGS -

TEST SETUPCHECKOUt AND STATIC LOAD TO -
TEST 	 30 PERCENT DLL

	OPERATIONS	 STATIC LOAD TO 80 PERCENT DLL ..

STATIC LOAD TO 100 PERCENT DLL

STATIC LOAD Tp 175 PERCENT DLL

STATIC LOAD TO 150 PERCENT DLL 	 TE5T

- IL	 s7ATIC LOAD TO DESIGN ULY IMATE
STRENGTH

'JUtiLIYv
'ASSURANCE

FIGURE 7-22. COMPOS ITE WING STATIC TEST PROGRAM

spillage from the wing tank sufficient to con stitute a fire hazard, [See Para,
25.721 (a) (2) of Reference 3,

Ve-rification. that the main landing gear will separate from the wing without
significant fuel spillage will be demonstrated by test on a typical composite

wing box section, as shown. in Figure 7.23, with a dummy landing gear and

landing gear side brace, The test plan will he approved and the test

witnessed by the FAA for compliance. with Federal Avi,:O-ion Regulations.	 ^^^•
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COHi! s;SITE
WINQLOX SECTION

ds 4^ XRS 16

LEGEND:

P1 - MLG JACKS FOR AFT LOADS
P2 -MILG JACKS FOR VERTICAL LOADS

XR5 69
-, -TEST FIXTURE

tl

P3

TEST FIXTURE
END PLATE--

 \ - "^- ^-
P2	 P1

LANDING GEAR
SIDE BRACE
MAIN LANDING GEAR

LOAD JACK UNIVERSAL JOINT (TYP)	 `

FIGURE 7-23. LANDING GEAR CRASHWORTHINESS TEST SETUP

Repairs will be made of damage resulting from the intital crashworthiness

tests, and the specimen will be tested again to determine the static strength

of the repairs.

Full-Scale Wing Fatigue and Damage Tolerance Design Verification Tests —

Tests are to be .performed to verify .attainment of fatigue and damage tolerance

design requirements for the composite wing box. A full-scale composite wing

box semispan will be subjected to design service loads spectra equivalent to

two aircraft service lifetimes to identify critical areas of the composite wing

box not previously identified by analysis or component tests and to provide a

basis for service. inspection intervals and repair proedure.s. The test article

will consist of a composite wing box semispan, an aluminum wing boat semi-

span, and a center fuselage section. The composite wing box will be repre-

sentative of the flight article. It ca''n utilize t'-e same test fixtures and

equipment as the static test with modifications as required. for any itern s that

Lre utilized only for fatigue and damage tolerance tests. The test sequence

for this test is shown in Figure 7-24.
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FIGURE 7-24. COMPOSITE WING FATIGUE AND TOLERANCE TEST PROGRAM
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Detail test conditions and loads are to be provided by Design Engineering for

the tests noted in Table 7-13. Loads will be de.fine'd based on DC-9 Series 30

specifications. Loads spectra will be flight-by-flight, with random ode.ring

of both flights and load peaks and valleys. Simplified profiles will !)e devel-

oped from typical service operations. Cond.f^nsed spectra will be used when-	 k

ever p-lvp sibl.e to reduce com pate r tune and test costs. These spectra will be

prepared and submitted for FAA. approval.
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Instrumentation will consist of deflectometers., strain gages, load cells,

Pressure transducers and associated signal conditionirs, calibration equip-

ment, power supplies, cabling, oscilloscopes, and other instrurhents to

obtain structural response and for correlation to analysis. The fatigue test

article will also be used to obtain vibration test data.

A stiffness test is to be conducted as the. first installed structural test on the

test article. Loads will be applied to the wing to 100 percent design limit

load to measure wing bending and torsional deflection prior to fatigue testing.

A second wing stiffness test will be conducted in a like r-nanner after the first

lifetime of cyclic loading is completed and a third test at the end of the second

lifetime of cyclic loading. Data from these tests will be compared with the

deflection data obtained from the first test to determine if the c. om:posite wing

box deflection characteristics change as a function of loading and aging during

the .te st.

CVcyic loads are to be applied as flight-by-flight spectra for fatigue and damage

tolerance evaluation. Each service life will be divided into periods (cycle) With.

visual and nondestructive inspection of the complete test article at the end of

each period. Tacks and whffletrees will be disconnected at half of the first

lifetime and a second vibration test conducted and at the end of the first life-

time. Significant damage which would result in premature test article failure

will then be repaired. Flaws will. be introduced in selected critical .areas, if

none exist, for the second service life to evaluate flaw growth characteristics

and prove. the structure: is damage-tolerant. Load equipment will be reattached

and cyclic tests continued for a second service lifetime in the same manner as

for the first lifetime except that mo-- Y,Jcal inspections are anticipated to moni-

tor flaw growth . in damaged area..

A fail'-safe limit load condition will be applied after corn,pletion of the second

service life of load cycling. Flaws will then be placed in selected undamaged

areas and limit load applied. Data-age will then be repaired, where practical,

and tests conducted to ultimate design load to prove the capability to repair

major- dam, age to the .composite wing. box strt ctu:re.

Full-Scale Wing Design Verification Modal Vibration Tests--- Design Verifica-

tion modal vibration tests are to be perforw-, e. d using the three .full-scale
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sernis,pan composite wing box test articles. Tests are to be conducted (1) on

all semispan components immediately after assembly and before joining with

the alurninum wing box, (2) on the two assembled ground test composite wing

box test articles, and (3) on the composite wing box installed as the left wing

of the flight test aircraft. These tests are to be. performex-I to (1) determine .
normal cOm.posite wing box semispan basic vibration characteristics +-- mode

shapes, frequencies, damping, and linearity, (2) obtain vibration data indica-

tive of manufacturing reproducibility, 3). obtain vibration data for evaluation

of possible structural degradation as a result of fatigue testing, (4) obtain

data for correlation with modal vibration analysts, and (5) provide data neces-

sary in demonstrating that the aircraft with a semi-span composite wing box

installed has flutter and vibration .characteristics acceptable for aircraft

flight. Table 7-14 summarizes all design verification vibration tosts. Test

No. 9 of the .table is discussed. separately under Structural and Aerodynamic

Damping Tests,

A free/free pendulum type vibration test fixture will be provided, essentially

a-s shown in Figure 7-25. This fixture will be used for Tests No. 1., 2, and

8 of Table 7-14. Data from the free/'free tests performed on the three test

articles will be correlated with dynamic analyses as an indicator of m'anu'-

facturing reproducibility.

Vibration tests will be conducted on the assembled composite wing box as

part of the complete test article, as shown in Figure 7-21. Five tests will

be performed on the fatigue test article. Tg sts will be conducted to check

for possible changes in frequency response of the composite wing box as a

result of fatigue cyclic testing. Changes could be indicative of degradation

of the test article as a res;uIt of load cycling or aging. All of these tests will.

be conducted in the same manner. Reference a-ec-elerom. , eters will be installed

at locations on the com:po-site wing box upper surf ace. . Roving accelerometers

will be used to measure the modes of vibration. Shakers will be installed

under the wing and attached with suction pads to . excite the wing in bending and

torsion. Mode shape, frequency, and damping data will then be obtained for

three modes. Test -results will be correlated with design analysis data after

accounting for the jack pads attached to the composite wing oox skin.

207



TABLE 7-14
COMPOSITE WING'BOXDESI:GN VERIFI.CA ,TION'`VI.BRATION TESTS

N
O
Oo

-
TE57 . ARTICLE

TEST;,

ND. , TYPE TEST PURPOSE
ARTICLE ^
SUPPORT TIME •PHASING

 TEST

^	 COND[TIDNS DATA ^ REOUIREO' -REMARKS

FULL-SCALE STA-71G
- TEST AF7TICLE

1	 ',
:'ICWBSEMiSPAN1
:FREE/FREE - OETERMIMF NORMAL	 -

MODES OF VIBRATION;
FREOLIENCIE S

- BUNGEE PRIOR TOWING
- JOINING

.5 TO,50 Hz
. . EXCITA

VIBRATION MODEST
WITH EREGUENCY - !
AND!DAMPING	 j

' FREE., UNJOINED 'I. STRUCTURE IN ' CENTERTANK
i AREXMUST,BE RESTRAINED (TYPICAL FOR
+SEMISPAN TESTS)

-
2 FREEIFREE	 .'. COMPARE

IIGWBSEMISPANI
RESULTS WITH

"TEST NMI
SAME AS ; FOR TESTNO: : 1 ! iCORRELATION^OFTeSTNO , 1;AND:2RESUL'75

jIS '.I NDiCATIVE . OF"P,RODUCTION REPRODUCI•
BILITY

ASSEMBLED TEST
:ARTICLE,	 -

CANRILEVERED

: COMPARE 13ESULTS WITH
j TESTN0,2

3 :TEST FIXTURE !' PRIOR TO : LOADrPAD ;
INSTALLATi0N5

-

2TO^50Hr
: EXCITATION

-

REFERENCE LEVEL^VIBRATFON^DATA=FOR
! COMP. ARISON WITH ' PATA FROM TESTS 5 , 7, AND 

FULLSCA' LE
FATIGUE AND
DAMAGE TO.L-
'FRANCE TEST

: OBTAIN FATIGUE AND
; DAMAGE TOLEIJANCE
; TEST BASELINE -L'!BHA-

DATA`'TION^

AFTER LOADIPAD
INSTALLATIONS,
PRIOR TO LOAD
VERSUS DEFLEG
7ION TESTS

^

SAME AS FOR TEST Fi0, 3

4
-.3-WITH!
,SAME AS TEST MD (

LOA 1) , PAUS;

.

EVALUATE DATA FOR^VIBRATION ! CHARACTER-
ISTIC ;CHANGES,A] TEWNDTED HOURS .OF LOAD
CYCLING, CHANGES - IN -CHARAGT £ RISTICS'MAY
'BE- INDICATLVEOF LOSS OF RtGIDITY : DUE T.D
(AGING AND ' FATEGUE . OF FIBERS

5 ! OBTAIN VIBRATION DATA
:AFTEH- ONE^HALFSERVICE

AFTER ' 20;000 HOURS (
OFLOADZYCONG_ . - -	 -

- -	 - 'LIFE.OFSTRUCT URA L
LOADiCYCLING - -

5 OBTAIN VIBRATION DATA
- AFTER. ONE SERVICE LIFE ^

AFTER -40,000HOURS'
OF LOAD_CYGLiNG;'

-

OF LOAD CYCLiNG

OBTAIN. VIBRATION DATA
AFTER TWO I SERUICE

AFTER= 80; BOOM OURS
OF LOAO CY.CL•ING

' LIVES.OF LOAD CYCLING

-FLIGHT TEST

8
-

FREEIFREF-
ICWB'SEMISPANI

-	 -	 -	 -	 SAME AS i FOR TEST ! NO.I
- 'CORRELATE RF,SULTS,WITH: TESTS NO. Ii.AND.3

AIRCRAFT	 -

-
:GROUND VIBRA •
TION TEST

^
-	 ^''PLETE

g^ ..AIRCRAFT OBTAIN'SYMMETRICAND
ANTISYMMETRIC VIBRA-
TION. MODES, FREOUEN-
G[ES, AND DAMPING

aDATA FOR -FINAL, COM,
A'IRCR'AFT

AlRCRfAFTON -
SOFT- BUNGEE
SUPPORTS

-

r.	 -

''PRIOR -fOFIRST
FLIGHT

-

ZERO; -HALF,
A.NDTULL
FUEL

M,DES'.WITH
FRECiUENGIES
-ANP1DAMP,ING

DATA TO'BECt)RRELATED ' WITHIWING,FLU,TTER
AND GUST ANALYSES-
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COMPOSITE WING BOX
TEST ARTICLE

GROUND PLANE—Oe

FIGURE 745. COMPOSITE WING BOX FREEIFREE VIBRATION TEST SETUP

Repair and Test of Major Damageage — Repair of damage covers-many areas of

the compositeposite wing box development program — repair of components damaged

dtiring manufacture, parts damage.d during test, and parts damaged during

in-service flight operation. Major 'fie st articles, including the c rashworthine s s

box section and the two ground test composite wing box semispan test articles,

will be repaired and tested where practical to develop approved techniques

and pro,cedure-s, for in-service repairs. Through these repairs and tests,

repair techniques will be developed for use on full-scale major test articles

suitable for repairing parts during manufacture and aircraft in-service

repairs and to demonstrate that the structural integrity of the repaired parts

is equivalent to the original unrepaired structured. (See Reference 2.,

Para. 7. g)

Aircraft Installations Ground Tests

Certain ground tests are required on the flight test aircraft composite wing

box and its subsystems during as sem, -bly or after installations are made on

.the flight test aircraft and before the first. flight. These tests are perforined

In Phase V and are described in subsequent pa-ragraphs'.
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SubsysteTp Functional Tests — System functional tests are performed during

manuf. acture of an aircraft. These tests are to be accomplished with on-air-

craft test procedures prepared by Engineering. Existing procedures will be

used for system functional tests of the DC-9 produced with an advanced com-

posite left wing box. These will be reviewed, modified as reqqired, and

utilized to demonstrate the satisfactory fu4ctiop of all systems in or inter-

facing with the left wing composite wing box. The following systems, in

particular, will be examined closely to determine if changes are needed in

procedures and during performance of th .6 procedures for responses different

than for a normal D'C'_9. (1) composite wing, fuel tank proof pressure and

leakage test (2) electrical system (grounding and EMI), 3) flap system,

(4) hydraulic system, (5) lateral control system, and (6) main landing gear.

No unusual conditions are anticipated for or. in these systern functions with

the use of the cam. posite wing box.

Fuel $yste-rn. Calibration and Gaging — A test will be performed to verify the

physical and functional characteristics of the composite wing box portion -of.

the aircraft fuel system before the first flight. It will :be demonstrated thatat

the composite wing box portion of the fuel system meets or exceeds the DC-9

fuel system containment and gaging specifications and FAR requirements.

This test will be perforrned on the flight test aircraft.

Design analysis supplem eilted by computer programs is used to determine the

fuel tank physical characteristics -such As trapped fuel volume, tank expansion

volume, higli--level fill valve shut-off voIUT.ne, and- pumlP runout volumes. These

fuel. system characteristics as well as the accuracy of the fuel quantity gag-

ing system will be confirmed by this test before the first flight of the test

aircraft.

This test will be conducted after manufacturing acceptance and the dry func-

tional testing of the fuel systern and i m-mediately before the ground vibration

testing of the aircraft.

Lateral Control System Proof and Operation Test — A lateral control system

proof and operation test will be performed to dem. onstrate the structural and

functional integrity of the lateral control systern installed in the composite

wing before the first flight. A succe ss ful  test will have been a chie ve d when

210



the lateral control system and associated support structure have sustained

100 percent design limit load with no permanent deformation and no slack
cable fouling on adjacent structure. This test will be :performed on the flight

test aircraft assembled with a normal DC-9 right wing and an advanced com-
posite left wing box. This test will simulate malfuctions and apply design

limit loads to the cockpit controls. Data analysis and visual .inspection of the

lateral control system will substantiate the lateral control system structural

and functional integrity as installed in the composite wing. These tests are

to be conducted before the first flight.

Aircraft Ground Vibration Test-. An aircraft ground vibration test will be

performed to obtain structural normal modes of vibrations and corresponding
frequencies and damping characteristics of the overall aircraft with a com-

posite structure left wing and a normal DC-9 metal right wing. The test

aircraft will be structurally complete with all major weight items included.

Any major weight item missing is to be adequately simulated and installed in
its prosper,  position. Determination of important structural modes is required

for evaluating flutter characteristics, gust analyses, and the airplane struc-

tural responses to ensure compliance with applicable FAA requirements.

Detection and me.as:urement of structural modes of vibration will be made up

to 10 Hz with orthogonality within 10 percent.

The aircraft will be positioned for soft support with the landing gear suspended

on bungees. It will be weighed and ballasted as required for each test config-

uration. Force shakers will be used to excite vibration, with the vibration.

sensed using accelerometers and the response data recorded.

Tests will be conducted with zero fuel, full fuel, and one intermediate fuel

loading.

The aircraft ground vibration tests will be completed before the first flight.

Flight Test Program

The fourth test composite setnispan wing box will be ii stalled as the left-hand

wing and will undergo flight testing after the ground vibration tests are co m-

pleted and an experimental certificate has been received from the FAA

Details of the flight test program will be developed in accordance with the

requirements discussed in the following text.
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FAA Certification The flight test demonstration of a semispan composite

wing installed on a DC-9 aircraft will be limited to those items that could be

affected by this change.

An FAA certification test requirement program will be prepared by the Douglas
flight test engineers with .nordination and agreement with FAA personnel to

show compliance with pertinent FAA regulations.

Ground Test— A friction check of the lateral control system will be conducted

to verify that any revised routing of lateral control system cables has not

changed the established friction characteristics of the system.

Flying Qualities — Flying .qualitiee s will be investigated to verify that the
aeroelastic characteristics of the- com.posite wing produce the same handling

qualities as the conventional structure. The following tests will be qualita-

tively evaluated: (1) maneuvering stability— +0. 5.g increment, cruise config-

ration; (2) roll rates -- high speed:; (3) static longitudinal stability _- high speed,

climb configuration, and (4) static lateral stability -- cruise configuration.

Structural and Aerodynamic Damping Tests — Structural and aerodynamicc

damping tests will. be conducted to ensure the com- posite wing is free from.

flutter and excessive vibration for all flight conditions to V D /MD. The

aircraft will be tested at the most critical configurations as deter , m- . 	by

analysis.

The aircraft will be tested at three discrete altitudes :to VD./NMD. The .aileron

damper on the composite wing will have rotational free play of +0. 5 degree to

simulate excessive wear cases. The aileron control surface on the composite

wing will be mass-balanced to the critical end of limits established for flight

test. (Flight test limits are more severe than 'in-service mass balance

lim, Its. ) The wing structural mode  will be. excited by. mean-s of aileron,

rudder, and elevator inputs consisting of two basic techniques, surface pulse

and surface oscillation.

Instrumentation r.-equirements for the structural and aeredynaria:ic darn;ping

program are as follows:

•	 Left and right wing tip norm-nal acceleration
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• Left and right horizontal stabilizer tip normal acceleration

• Vertical stabilizer tip lateral acceleration

• Aircraft center-of-gravity normal acceleration

• Aircraft center-of-gravity lateral acceleration

Cockpit normal acceleration

• Cockpit lateral acceleration

• Left-hand wing aileron position (assumes a composite wing)

• Left-hand elevator position:

• Rudder position

• Captain's airspeed, altitude., and Mach number.

Flight Loads - A number of strain gages will be installed and monitored on

various wing structural components throughout the flight test program. The

data from these gages will be compared to analytical and static test data.

Airline Service — Following the flight test program and FAA certification,
the flight test composite wing will be refurbished and the aircraft delivered

to the user airline to begin in- service flight evaluation.

QUALITY ASSURANCE PLAN

Quality assurance activities will begin early in Phase I of the wing program

to ensure that the design allows for access. for inspection and to inmate areas

of activity unique to this design. Quality control procedures will be written

oar- revised to cover activities .needed. because of unique aspects of the wing.

Inputs fro  the development programs will be incorporated at the earliest

possible. moment. Specifications will be revised as appropriate to cover

material procurement and process control:. These efforts will`result in a
corn.pTehensive quality assurance plan tailored to the mw anufacture of the corn-
p.o s ite wing.
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This Quality assurance Plan has been prepared as a guide to the duality

assurance system to be used for the composite wing .program,..

The quality system is designed to conform to Part 21 of the Federal Aviation

Regulations.

The Quality Assurance Plan provides the controls that will ensure quality

and conformity of the composite wing components. Specialized controls are

described for the production of the graphite/epoxy components.

The quality system incorporates all necessary controls for the effective assur-

ance of product quality. The quality assurance management system provides

senior management with visibility of the program. General quality informa-

tion and records will be available to NASA representatives.

Specification Review, Inspection Review, Drawing and Change Control

The specification review is conducted by Design Engineering and the Materials

and Producibili:ty Engineering groups. Specifications are reviewed and, where

applicable, are incorporated into engineering drawings and process standards.

Quality Assurance reviews preliminary design layouts and final design draw-

ings to verify that all composite components are readily accessible for normal

and nondestructive inspection.

Change control is maintained for produced hardware, including status of parts

and assemblies adapted from other programs. Change control is effected by

cognizant engineering and planning personnel. Engineering assigns a change

letter to a drawing to identify the change, and this identity is included on the

planning paper, and the product. Quality Assurance verifies the change con-

formity as past of the hardware acceptance..

Processing. Instructions, Material Specifications, and Quality Specifications

Douglas process standards convey detailed processing instructions, material

usage, quality control procedures, and quality requirements used to rnanu-

facture and evaluate the quality of parts.

Material specifications doc.0 Ment material handling, processing,, and mechan-

ic-al and phijelzal properties of materials to ensure that materials used will

Z14



t	 7	

+Y . .yet ,
r

V

produce hardware that meets design requirements. These specifications

detail material properties as well as testing requirements which are imposed

upon material suppliers.

Quality specifications are written to convey to both suppliers and the manu-

facturer the quality control information necessary for ensuring compliance

with engineering, quality assurance, contractual, and regulatory requirements,

Process standards and material, specifications are indicated on the engineer-

ing drawings as applicable. Process standards, material specifications., and

quality spec.ifcations are indicated on material purchaF-e orders. All these

items are specified on the manufacturing paper, as required.

Personnel Training and Qualification and Assignment of Quality and Inspection -

Stamps

Specially train_^d and qualified employes are required to perform highly tech-

nical work operations. Training courses are provided for employes involved

in such work. Upon completion of training, the employes are given tests to

demonstrate their proficiency in perform ing_the task. Only employes who

show proficiency and pass the qualification tests are used to manufacture and

lay up composite parts.

Training is provided to Quality Assurance personnel for br:h technical and

procedural subjects. Both classroom and on-the-job training are utilized.

Courses are designed to ensure the technical competency of .personnel and

effective itr,plexnentation of quality assurance system requirements. Where

applicable, certifications to perform spewific inspection operations are issued.

Quality Assurance personnel directly assigned to product verification activities

are issued inspection stamps.

Both the quality stamp and inspection stamp are uniquely designed tc give

traceability to the individual employe. A com.ptkiterized system is wised to pro-

vide traceability to the employe as well as certification status.

Supplier Evaluation

Prospective .suppliers are evaluated to determine if they . hale acceptable

quality assurance systems and capabilities.
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Follow-up surveys are conducted as necessary to verify correction of defi-
ciencies disclosed by initial. surveys.

Postaward supplier surveys are conducted for corrective action purposes, as

required.

Quality Manning

Quality planning ensures effective control of quality throughout procurement,
fabrication, and assembly.

Purchase requisition analysis is performed to verify that adequate quality

requirements are incorporated. This analysis includes a review of the

applicable engineering requirements and—quality specifications.

Tnspection requirements a.-e established for fabrication operations and the

fabrication outline is checked to ensure adequate inspection operations are

specified on the fabrication outline.	 {

Assembly operations and associated inspection functions are planned and doeu- 	 i

rnented on assembly outline w- ships record forms. Quality Assurance personnel

coordinate with Manufacturing Planning to ensure that appropriate inspection

operations are indicated on the assembly outline — ships record.

Process Control

Process surveillance is conducted by Quality Assurance Process Control to

ensurre that product-related technical processes utilized at the manufacturing

facilities comply with specifications. Corrective action is required for

reported deficiencies.

Processing suppliers are qualified in accordance with quality .specifications.

Res.urveys are trade periodically of qualified sources.

Equipment Certification

Measuring and testing equipment used to ensure or verify ,prod.sct conformity

is calibrated and ceritif eL for .accuracy prior to its initial use and at pre-

scribed intervals thereafter. Calibration of primary and secondary measure•.
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ment standards used for equipment certification is traceable to the National
Bureau of Standards.

Inspection and Tests

Inspections and tests are conducted to verify compliance of the product with
specifications and procedures. Quality Assurance personnel witness all tests
to ensure this compliance. Documented inspection and test results are trace-
able to personnel performing the function. Equipment utilized for testing is
monitored to ensure that its control, maintenance, and calibration are in
compliance with procedures and specifications.

Tooling Inspection

Tooling inspection ensures design conformity of product features controlled
by production tooling. Tooling is visually inspected before and during use to
detect any condition that may affect product conformity or acceptance. When.
required by Tool Design, periodic dimensional checks are made. The quality
assurance record — tooling and the tooling order are utilized to specify ar.d
record tooling inspections.

Receiving Inspection

Receiving inspection of product Materials is conducted in accordance with
applicable material specifications and purchase orders. Visual inspections
are conducted in the receiving area. Material requiring physical or chemical
testing is routed to the appropriate laboratory for analysis.

Graphite/epoxy material procured for the program undergoes receiving
inspection and acceptance testing by Quality Assurance to requirements set
forth by Materials and Producibility Engineering..

Nonconforming materials are segregated and processed for disposition and
corrective action in accordance with applicable control procedures. Accepted
materials are routed to the appropriate cold storage, stockroom, or use area.
Acceptance or rejection by Quality Assurance is documented on receiving
documents.
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Raw Material Control

Raw materials  are 'purchased. under applicable specifications  and accompaniedd
by documented certification when reqqi-Led by pr9curejm,. er,..t,. documents. The

results of tests (e.g., chemical or physical) conducted on raw m, ater i4l ape ci-

mens are docurnented ". Traceability of graphit-0/ppox-y raw material is verified

by Quality Assurance frorn rnateiAgi procur-e-m-'ent through as ,scrobly as recorded

on production Work orders.

Raw materials that require cold storage are certified for a specific period
of time. Materials that exceed this storage age are tagged and held for retest

by the appropriate laboratory for recertification. Accepted-epted rn.	raterials are

marked for a new specified time period.

Fabrication Inspection

Parts and assemblies manufactured in the fabrication. areas are inspected in

accordance with quality instructiopq as provided on 
the 

fabrication outlines.

Quality and completeness	 r signifiedAeteness of fabrication items are sign	 by the application

of quality stamps by manufacturing personnel. Quality Assurance verifies

that batch or lot nu m be r of graphite /e poxy m	 and. material and. se rialization of com

ponents (as applicable) are recorded on the fabrication outline for traceability.

When. specified on the fabrication outline tag end s pecitnens are prepared and

tested in accordance with engineering. in-stru'c'tions- -and recorded. Quality

Assurance visually inspects each layer of material prior to layup to verify

proper orientation. Fabrication outlines provide . uyoff for each layer.

The completed.d _. -cor6 ponents are virou.ally inspected for cracks, delaminations,plet 

and other flaws which are documented and dispositioned pursuant to directions

from the Material Review Board. Ultrasonic and/or Fokker bond.test and

radiog raphic inspection are performed by Quality Assurance per a detailed

written procedure to detect dela minations. Unacceptable conditions are

documented and dispositione .d per the, Material Review Board.

Assernbily Inspection

.Quality and completeness of assembly operations are signified by the applica-

tion. of manufacturing quality stamps to the assembly outline — ships records.

LIZA
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Quality Assurance personnel provide acceptance of subassemblies and final

assemblies by applying a quality assurance inspection stamp on each item

inspected. Quality.Assurance verifies that serial numbers of the components

are recorded on the assembly outline —: ships records to ensure traceability,
as required. Completed assembly outline ships records are retainer by

Quality Assurance. in data records.

Flight Ramp Inspe ction

Flight ramp inspection operations are performed by manufacturing

personnel, in parallel with preflight functions and production flight test

support activities. Inspections are planned, conducted, and recorded

as an extension of assembly inspection activities. Production flight

testing is accomplished by the Flight and Laboratory Development

organization.

Mate vial Re view

Prod:uct . -nonconformances are controlled to ensure their correction or dispo-

sition per the Material Review Board. Nonconforming manufactured items

that can be corrected to comply with specifications are returned to Manufac-

turing for correction. Other nonconforming items are rejected and withheld:

for material: review processing. The Material Review Board consists of a

cognizant engineer, a cognizant Quality Assurance representative, and a

cognizant .Government representative (when required),.

Corrective Action

Material Review Board actions and discrepancies disclosed by inspections and

surveillance are analyzed. Corrective action is obtained. as necessary.

Follow-up measures ,provide for verification of effec t*ivene.ss of reported

corr.eetiors. In-service . problems are . reported to Quality Assurance by

Product Support for in-house corrective action as req.uire.d.

Quality Audits

Quality audits are conducted to verify corspliance with established procedures

and specifications and to identify any apparent deficiencies in the quality sys-

tem. Detailed audit reports are furnished to affected su'bdivision's listing
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audit findings and any recommended actions to be taken. Responses are

reviewed and follow-up audits conducted to ve-rify the satisfactory resolution

of repo-rted deficiencies.

Inspec tion and Test Records and Data

Those records that provide objective evidence of assembly acceptance are

retained by Quality Assurance. These records and s+-ptorting data .provide

documentation of inspection and test results.

PROGRAM COSTS

The determination of the coat of a composite wing technology program was

not included in the study task. However, rough=order-of-magnitude costs

were estimated in order to compare program options and to define a minimum-

cost development plan without comp-rorris Ing the program objectives.

The development plan cost breakdown is presented in Figure 726 and

Table 7-15 to provide insight into the scope of the various program tasks.

These cost data were not developed through the rigorous and lengthy bid-work

sheet and costing department procedures; and therefore should not be construed

as suitable for any other purpose.

FIGURE 7-26. OISTR'IBUTION OF FUNDS AMONG PHASES
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TABLE 7-15
DEVELOPMENT PLAN COST SUMMARY

APPROXIMATE
1978 DOLLARS

i
I	 '^

Y

IMILLiUNI1
PHASE I

ENGINEERING PRELIMINARY DESIGN 4.0

MANUFACTURING TECHNOLOGY DEVELOPMENT 11.5
DEVELOPMENT TESTING 10.1

PHASE II

ENGINEERING DETAIL DESIGN 2.5

VERIFICATION TESTS 0.5

MANUFACTURING VERIFICATION 0.5

PHASE III

TOOLING 29.4

MANUFACTURING (3CWB) 6:3

PHASE IV

FULL-SCALE VERIFICATION TESTS 4.8

PHASE V

MANUFACTURING (1 CWB) 2.1

GROUND TESTS 0.4

FLIGHT TESTING 1.0

AIRCRAFT' MODIFICATIONS 1.3

ENGINEERING MODIFICATIONS 0.4

74.8

TRAVEL, COMPUTER, MISCELLANEOUS 0.8
75.6:



SECTION 8

FACILITIES AND EQUIPMENT

The facilities section of this study is divided between the development and

productions programs for the purpose of furnishing 
an 

overview of what is

required during each phase.. Basically, the facilities requirement for the

development phase of composite wing manufacture will not differ greatly

from the production phase except for the additional. space and equipment

necessary to achieve the production rate.

A plant design and work flow for structures laminated from composite

materials is substantially different from those used in the metallic producing

facilities of today's airftatne .manufacturers. This report is to define the

facilities requirement for each. phase of the composite wing manufacturing

program.

A one-of -a-kind approach is used in development for manufacture of the four

full-size compositeposite wing box structures. The primary purposes are to

develop technology, train personnel, and acquire a manufacturing capability

for large primary composite structures for a reasonable capital outlay. In

the real-world situation, the development program would be conducted in R&D

facilities at Douglas which would . be available in that time period. The only

new capital eo T-enditure.s would be for equipment -which was large enough to

manufacture the.wing panels and spars. Hand operations would be utilized

except where technical  innovation required study for development in these

areas. In addition,, the basic R&D effort would require a study of handling

and processing techniques necessary to manufacture com posite wings on a

product-ion basis.

The facilities for the production program must include the latest techniques

available to make composite wing production cost-competitivepetitive with metallic

components. Hand layup will give way to automated broad goods dispensing,

as well as nu m-erically controlled tr•m equipment.ent.

The key to co m posite wing production will be not only the pxoducibility of the

design but also the methods and equipment used to manufacture the wings

at a sustained rate of production.
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The production study will examine the mantifacture of an aircraft wing in the
1985-1990 time frame, iri which much of the equipment necessary to produce
other primary and secondary structures would be available.

Facility and equipment requirements for the eornposite wing development

tests and full-scale verification test's are essentially the same as those .

required for development of a metal wing of similar size. 130 unique regar.re=

merits are .foreseen at this time.

FACILITY REQUIREMENTS FOR DEVELOPMENT

This section defines the facilities necessary to produce one major subcom-

ponent and four- full-sized composite wring structures.

The facility will be based. on a one-of-a-kind: approach with the wing-half

space envelope utilizing a DC-9 size aircraft. The objective is to develop

ixtetlads applicable to production.

The equipment required d'u'ring the development program will be of the type

and size needed. during production and would later be used in a production

facility. Hand layup and trim would be utilized, where possible, to minimize

expenditures for capita: equipment. However, the composite wing develop-

ment program will require that the development facility have sufficient

capacity in the following areas: storage, layup, cure, nondestructive testing,

trim, final assembly, portable Band tools and tooling support, surface treat-

ment for metallic parts, and refrigerated storage area for work-in-process

storage. Sufficient freezer capacity is necessary to a:c.c.ornmodate the quantity

of prepreg material to be used during the development phase with two wing-

halves in process at aiiy one time.

Material to be used in the development program will be kept separate from

materials used in any production application.

Movement of completed major subassemblies will be v- .i:a handling dollies

until the posteure state where the overhead crane is available for transfer

of large parts.

Initial fabrication of composite parts occurs in the layup room With the dig

pensing of tape and :broad goods onto the skin molds, blade stringer mandrels,

A
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intercostal mandrels ., and rib molds. After metallic inserts have been made,
parts are densified and returned to storage or final assembly from the -100 C
(OOF) freezer or 40C (400k) holding room storage, depending on length of
timee to be stored.

Final assemblybly is performed before vacuum bagging and final cure in an
oven or autoclave. Postcure operations include removal from the tool.,
nondestructive testing, and trim using dia mr ond saws and high-speed routers.
The wing box will be assembled in a. similar manner to its metallic counter-
part, utilizing a vertical assembly jig and typical plant air and electricity
for handheld tools.

The approximate overall size of a development wing is estimated to be 10, 400
square meters  (l 12, Qoo square f pet) including area allocated to metallic part
surface preparation, tool fabrication, and staging and receiving.

The nondestructive testing of the full-size development wing will require
inspection capability to handle at lea,st a 3. 5- by 18-meter (lZ- by 60-foot.)
w . M-g panel. Autom- ated head control will be used for inspection of cured
panels using the C-scan technique. The layup area for graphite /epoxy
lam. inate s will require temperature and humidity controls to maintain 100

0	 0	 .-oto 24'C (65 to 75 F) at 50 to 70 percent relative hurn-idity. Dust will be
controlled by layup room- positive: air pressure. Sealed floors which are
waxed frequently will -reduce the accumulation of dirt and dust. Shop areas
used for trimming cured composite  parts will be lower than atmospheric
pressure to prevent dust from infiltrating into the layup- area. Both vacuum
pickups and electrostatic collection syste m s can be used.

The plant- layout, design, shown in Figure 8-1, indicates the facilities required
for production of the full -sized development composite  w ing. The basic
philosophy is to provide an efficient work flowratinincorpo	 g process flow
techniques applied. to produc-tion t but minunizin; expenditures for capital,
equipment.

The basic ele=ments -re,. layup, cure,. an tri, m will  of compositeposite rnanufactu	 (I	 be
controlled in accordance with production specifications. The shop layout
allows for prepreg m- . aterial storage in freezers kept at -180C (0, '0F) and

metallic parts storage in a stockroom adjacent to the i'ncorrmingincoming receiving
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FIGURE 8-1. COMPOSITE WING DEVELOPMENT FACIL ITY

area. From the raw material storage area, the broad goods and tape are

diverted to the layup area in quantities to be used in one application. Auto-

matic dispensing and trim equipment will need to be used to dispense broad

goods in quantity, not only for reasons of physical size but also because of

the repetition; required to handle the number 'of plie s in each wing panel. A

program mable water jet could be used on a Gerber table for this task. The

smaller subassemblies could be handled in a similar manner with shipsets

of ribs ,and spars layed up in advance of wing panels and stored until needed.

Each subassembly will be bagged in a silicone rubber blanket and tested for

leaks before it is cured.

The wing panels will then be moved into the oven for densification as are the

spars, ribs;, and mandrels utilized for the intercostal buildup. Upon removal,

the wing panels will either be returned to the layup room for final layup prior

to final cure or stored in the holding room until needed. The holding room

will be chilled to 4°C (400F) to rrma retain or prevent premature curing.

Freezer storage will be required for subassemblies to be stored for longer

periods of tim , e:, including intercostal block mandrels and blade stringers.

Metallic parts to b.e bonded and cocured at the time of final' assem- biy in the

autoclave will undergo cleaning in the surface preparation area. Processing

requirements will include Pasa Jell., vapor honing., and Vapor d'egrea.s:ing for

parts up to L.by 2 nietexs (4 by 7 feet) in size.
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Nondestructive testing of all subassemblies will occur immediately after- final
cure and removal of the part from the tool. Ultrasonic testing C-scan will
be done using squirters and catch-pans. In-motion x-rays will also be
necessary.

Final trim of all cured composites after nondestructive testing will. be .done
in A controlled area with a ventilation system utilizing lower than atmospheric
pressure and electrostatic filtration to collect dust particles. Typical trim-
ming equipment in this area will include a diamond saw, track-mounted
router, or tracer router tooling.

The final assembly area for. the development program will allow for a.vertical
assembly jig-and sufficient area for laydown of panels and spars before and

during assembly. Storage space for subassemblies and personnel equipment
will be allocated. High-speed drills to be used in fastening all subassemblies
N"rill requite a vacuum collection system for dust particles.

The building design will also provide the full crane coverage to handle trove-
ment  of completed wing halves into shipping bucks and panels and spars from
work station to work station.

The basic philosophy of the development program would require a minimum-m
risk approach to setting up a Wing Development Composite Facility. The
probable real.- world situation in the 1984-1990 time period would: warrant the
inclusion of the development wing program, into a composite manufacturing
facility which would be in operation at that tune rather than the establishment
of such. a facility with relduiidant expenditure and duplication of the same equ.ip-
m-ent by Douglas.

The. development plan facility requirements and an approximation of their cost
are summarized in Table 8-1.

FACILITYACILITY REQUIREMENTS FOR A PAODUCTION WING

A facilities forecast for a production wing program should start with the pre-
mise that the utilization of composite primary wing structure will be preceded
by the utilization of secondary and medium  pr im ar y structure throughout the
ai.rfr.ame.
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Table 8.2 shows a road map for McDonnell Douglas future plans for the utili-

zation of composite structures throuh 1990. This road map is the basis for

the facilities forecast shown in Figure 8-2. A normal production rate of one

aircraft per week was assumed.

TABLE 8-1

DEVELOPMENT FACILITIES COMPOSITE WINO

APPROXIMATE COST
7978 DOLLARS (1006 1

BUILDING STRUCTURES 9,290 m ? (100,000 FT2 ) 6,000

AUTOCLAVES 3,220

OVENS 195

FREEZERS 195

NONDESTRUCTIVE TESTING EQUIPMENT 620

IN-MOTION X-RAY

ULTRASONIC C-SCAN

WATERJET CUTTER ON GERBER X -Y TABLE 780

METAL PREP EQUIPMENT 175

VAPOR DEGREASER

HONING EQUIPMENT

METAL CLEANING LINE

PASA-JELL

TRIM EQUIPMENT 1'29

MACHINE SHOP 60

TOTAL 11,383

TABLE 8-2
COMPOSITE APPLICATIONS ROAD MAP

ADVANCED
DC-10 TECHNOLOGY

STRETCH AIRCRAFT SHORT HAUL

PROGRAM ATP 1979 1984 1988

1ST DELIVERY 1982 1987 1991

AFT RUDDERS CONTROL SURFACES NLG DOOR

COMPOSITE TRAILING.EDGE PANELS

SECONDARY FAIRINGS
STRUCTURE

LONG DLIG7 NACELLE

FLAPS GEAR DOORS
AFT FUSEL-AGE SECTION

FLOOR BEAMS AND STRUTS

VERTICAL STAB I UZERCOMPOSITE.
PRIMARY

HORIZONTAL
STRUCTURE

STABILIZER
WING
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COMPOSITE
FACILITY
AREA

(xid -1 FT2)

h	

.

i

In addition to the overall forecast, an analysis was made which considers only

the production of the primary wing box. Basic requirements for this facility

are shown in Table 8-3.

Duplicate machine s and equipment would be required where the capacity of

equipment used for development would not permit the. attainment of the

assurned 1. 0 per week rate and there automation can be used in place of hand

layup. Also, peculiar processing equipment of the type and size necessary to

cure a full-size DC-9 wing would be procured to accommodate the larger pro-

duction wings; e.g. ,. short-haul wings, 4. 5 by 21 meters (15 by 70 feet),

would require at least a 6- by Z3-meter (20, by 75-foot) clear working area

in an autoclave and oven.

700

1995

1(LN^i9i:

1980	 1985 
YEAR 

1990

FIGURE 8 .2. FACILITY FORECAST

TABLE 8.3

FACILITIES/EQUIPMENT REQUIREMENTS

DEVELOPMENT PRODUCTION
FACILITY FACILITY

TOOLS 1 SET 4 SETS
CUTTING'

WATERJET SYSTEM 2 WATERJET SYSTEMS
: E.QVIPMENT
ND,I C-SCAN ADDITIONAL C-SCAN

X-RAY X•RAY_
AREA,. q.I 2g6 mz 1100,000 FT 1 1.3,936M 2	 (1:50,666 FTz)

MATERIAL
2 FREEZERS 4 FRiEEZERS

STO RAGE
CURING 2 AUTOCLAVES MULTI SHIFT
EQUIPMENT 2 OVENS WORK CYCLE

8-GEN-2 I 96 5

8-GEN-2196 6
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Rdicdivizig and shipping of ail composite ffidteildis will be handled and 'stared

Jzj.acCO'iddn- WL- with a0piitable bougid6 Oioi lce8 g 8-OtitihbAidhs-.

Metallic parts will be stored in a stockrboni adjacent to the receiving air-e-a.

Two ----^rs (12 b ' 30 b i 10 feed high.,'18*C. (O'P') freezers, 3. 5 by by	 V

will lie utilized for stokiftg incoming prepr6g rhcitdriAl. One 6-- by 21- by
J.. 01	 -0

3-rnietek (20- by M. 
by 

16-fdot) high —18 C (0 F) fid6z6r will bb located

between the layup and final ass'etnbiyhu: te- ALro;is for `storage of ihi.-prodess

stibas-sLer'nblileii',.,

Overhead cr- drie.coverage will be p'irbVidied thtoughout the asbernbiy areas to

handle m. bvern6ht of wing pahels and c6M:'pb§tdd wing box assemblies.

Fdbricaii6n of wing 
bOX SubSkins 

i strin&rsi - intern-batals i and ribi will be

accomplished iri the production f&cility similar io i4e- development fatiiityp

sho*h in Figure 8-1.

Thb "s.ir'-ne nondestructive testing dquiprbeiit	 used fbr'4:udl'ity assurance

as used 
in 

the deveiept-ndni phase,

Among cons ide r a- fioni s fbz' 
the 

production facility should tie the installation of

auxiliary power systeins to miinhnize the p6te- ritidl loss of power to all pros-

essi.hg, storage; and curing equipment, r6j§. U.liihg in loss of all Ordoreg

material.

All layup and trim areas will have environmentally controlled atmospheres

as required by Douglas process standards and industrial standards for the

control of toxic particles. Specifically, all layup areas Will have dust-free

work areas with positive pressure ventilation sysfern^ s Htir-hidity and te

e ra-tu-re controls are necessary in all layup areas with speCifitd-tibn-S 
of 

180

to 27 
0 
C +3 0C (65 0 to 80 

0 
F +5 

0 
F) temperature and relative hurbid-Ity controls

between 50 and 70 percent.

Trim areas• require a slight negative pressure and electrostatic dust-co4ldetion

s ystem.

Finally, housekeeping require m-ents should be of such a nature as. to provide

a clean 
room 

environment conducive to a good working layup and cure area,
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SECTION 9

APPLICATION AND BENEFITS

The road map . presented in Table 8-2 reveals McDonnell Douglas Corporation

plans for extensive applications of advanced cnn posite materials in future

corn -me rcial trans port aircraft.

The short-haul transport scheduled for introduction in the late 1980s has been

selected as the most timely vehicle for composite primary wing structure.

As indicated by the road ma p, extensive applications of secondary and medium

primary composite structures will precede the introduction of primary wing

structure.

The short-haul transport configuration data include two or four wing-mounted

engines depending on, the type of engine, an operator's empty weight of

58, 060 'k-g (128, 00.0 pounds), a payload of 16, 459 kg (36, 285 pounds), 117

single.-class passengers, and a range of 6241 kilometers (3370 nautical -miles).

Figure 9-1 depicts the best-estimate s, xiadule relationship between the com-

posite wing technology program and the introduction of the short-haul trans-

port aircraft. In early 1980 to 1984, a management decision must be made in

order to market the short-haul transport with a composite wing structure and

to develop the advanced design to th.e level necessary to complete the detail

design fabrication and assembly within approximately 19 months following a

production go-ahead decision. This decision will have tobe made on the basis

of Phase I technology and data acquisitions, supported by a firm-comrnitment

that the other- five phases will be carried out.

An analysis was made to determine fuel savings of the short-haul transport

with advanced composite structure over conventional aluminum structure in

accordance with the road map, The analysis does not include any resizing of

the aircraft or engine changes to account for the reduced structural. weight.

The results of the analysis are shown in Table 9- 1. The total weight saving

estimate. of 4445 kg (9800 pounds) was derived from in-house experience with

secondary structure, proven results from the NASA ACEE DC-10 composite

rudder 'prograrn, preliminary findings from the NASA ACNE .D C.- 10 composite

vertical stabilizer program, and the 28=percent-weight saving reported herein .

for composite wing structure.
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FIGURE 9 . 1. TIMELINES OF COMPOSITE APPLICATIONS TO SHORT-HAUL TRANSPORT

TABLE '9-1

COMPOSITE BENEFITS TO SHORT-HAUL TRANSPORT

WEIGHT SAVINGS - 4,445 kg (9,800 LB)

FUEL SAVINGS -7,690;000 LITERS (2,000,000 GALLONS)

COST SAVINGS (BASED ON 20-YEAR LIFE)

• 1977 FUEL COST - $769,000

• PROJECTED AVERAGE COST -S2,$w;uu0

OR

PAYLOAD INCREASE OF 4,445 kg (9,$00 LB)
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SECTION 10

STUDY CONCLUSIONS

The study supports the conclusion that a composite Wing technology program

Must be undertaken by the commercial. trans port m anufacture k. to accomplish

the transition from materials and practices utilized in current construction

to extensive use of composites in wings of aircraft that will enter service

around 1990. Data have been developed to . define. such a program.

The list of acceptance factors compiled for the manufacturer, FAA, and air-

lines provides a rational basis for an assessment of compositeposite wing technology.

The assessment indicates the need for a composite wing technology program

which contains the following provisions:

1 -.. Development of technology and data to resolve the eight key issues

defined herein.

2. Design, manufacture, and test of fl ghtwotth certifiable,i	 y' 	 full-scale

hardware encompassing a range of wing design features representative

of commercial transport aircraft.

3. Dern ons t ration of composite wing technology to the extent that technical,

economic, operational, and programmatic risks are reduced to an

acceptable level.

4. In.. Se 	 flight evaluation to provide realism. to other pb:ases of the

program, and to dem- onstrate the operational performance of primary

co m posite wing structure.

The conceptual design indicates that the goal of a 25- to 30-percent weight

sa ,;I;ing is attainable for primary co .m. -posite wing structure compared to con-

ventional alum lnutty structure,  subje ct to furthe z limitations  which. m Ay be

imposed as the eight key issues described herein are resolved..

A facilities and equip m ent plan should be prepared with. the re-a-lization that

the production utilization of composite: primary wing structure- will. be  preceded

by extensive utilization of composite secondary and Medium  primary structure.,

f.
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SECTION 11

STUDY RECOMMENDATIONS

1. A NASA-funded composite wing technology program is recommended to

exploit the potential of using advanced composite materials for aircraft

wings .to .provide a 25-percent weight saving with a promise of reduced

costs throughout the life of the aircraft. These advantages can be real-

ized as experience and technology accrue and mass production reduces

material and . m anufacturing costs.

Z. Critical path technology programs should be funded as soon as possible

if the 19$5-1990 goal for the introduction of primary composite wing

structure on new aircraft is to be realized. The key issues which should

be addressed first to supply data and technology in a timely fa -'_ion are:

A. Repair of major damage

B. Impact d:arnage (:included in durability issue)

.C. Damage tolerance design studies and teats

D. Innovative molding methods

E. Tooling methods for large cotnposite structures

F. Lightning protection.

3. The remainder of the durability key issues and the two other key issues

of crashworthiness and NDI method can be started later in Phase I since

suffienient basic data for these technologies. 	available to support early

preliminary design tasks.

4. The NASA Fiscal 1919 budget should include funding to initiate contracted

technology development programs with more than one airframe manufac:-

tuner for application to composite wing structure.
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