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and
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Mass flux measurements associated with choked flows
through four Rordi type inlet geometries: circular, square,
triangular and rectangular (two-dimensional) and two sharp
edged geometries taken over a very wide range of inlet
stagnation, condition. indicate:

(1) The mass flux is independent of the inlet
cross-section geometry

(2) The mass flux is dependent only on the inlet
stagnation conditions.
Also by using choked flow results found in the literature,
the reduced mass flux is independent of working fluid.

Two implications are drawn which remain to be
verified: (1) since seal leak rates are weakly dependent on
geometry but pressure distribution is strongl y dependent on
geometry, seal design efforts should be directed more toward

w

	

	 controlling the dynamics, (2) higl,-L/D ducts of arbitrary
cross section and Dorda type inlets can possess free jets.

IJTRODUCTION

In the design of heat exchangers, seals, shaft dampers
and hearings one is often required to minimize losses which
requires optional geometric configurations. As such inlet
geometry both parallel and' normal to the flow field often
becomes a critical factor.

It has been shown that the mass flux through
two-dimensional and axisymmetric nozzles is independent of
geometry for two phase choked flow references 1 and 2. In
reference 3 the orifice geometry was studied over a wide
range in fluid conditions and related to the nozzle. The
problem of predicting mass flux for other fluids based on
theory and data for a given fluid was resolved in references
4, 5, and 6. Since one dimensional theory was used to
correlate data of references 1 to 6, it is reasonable to
assume that the critical mass flux is independent of
geometry and the above results apply without modification.

# Current address: University School, Chagrin Falls, Ohio.
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Recently Hendricks and Simoneau, reference 7, assessed
J.

some effects of a configuration parallel to the flow on mass
flux and pressu r:, distribution using a 53 L/D 	 tube with a
Dorda	 type inlet.	 It was found	 that the axial	 pressure
distribution	 is	 very sensitive to inlet stagnation

- conditions.	 The major phenomena occurring in the tube are
illustrated on	 figure 1.	 A conventional gas choked flow
pressure profile serves ds reference.	 The remaining

5 profiles are	 for fluid nitrogen holding stagnation
, conditions nearly constant while increasing the back
t pressure.	 For a low back pressure at the exit,	 the pressure

drops abruptly at the entrance to a	 level near the fluid
saturation pressure and some fluid vaporizes.	 Subsequently,
the fluid recompresses slightly and then traverses the
entire length of the tube at nearly constant pressure,

+,• actually showing a small pressure rise. 	 Increases in back
pressure to nearly 0.4 P O have little effect on these

.J profiles or the flow rate. 	 Theflow is choked.	 As the back
pressure is increased a zone of secondary recompression
forms within	 the	 tube.	 This is most clear for	 the	 profile
with the triangular symbols. 	 This is most clear for the
profile with	 the triangular symbols. 	 This is analogous to a

P moving shock up in a diffuser in single phase choked flow;
c however,	 here the flow cross-section is a constant area

tube.	 At back	 pressures near 0 . 5 PO	the secondary
recompression zone	 moves to	 the inlet and finally unchokes
the flow.	 The	 flow chokes at the tuba entrance rather than
the exit.	 Variation of stagnation conditions offer a more
complex picture and 	 it aprears that fluid jetting cannot be
sustained for stagnation conditions much beyond the
thermodynamic critical point.	 While the authors of
reference 7 presented no theoretical solution, 	 an empirical

z expression was given to predict conditions under which 	 the
zone of secondary recompression will occur within the tube
(or where jetting can	 take place)

PR - c(L/D,E) T 7	(1)

Although the axial pressure profiles are changed
significantly near this locus, there appears to be little,
if any, effect on mass flow rate.

This contrast in pressure profiles can present serious
design problems especially for parallel surfaces as found in
seals, bearings, and heat exchanger tubes of rectangular
cross-section with Oorda type inlet configurations. As will
be shown such configurations can be subjected to very large
forces. However such profiles can be beneficial in other
designs such as ejectors, jet pumps, cutters and
refrigerators where jetting is desirable.

In this paper we will examine how the critical mass
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flnx depends on inlet =ross section geometry by comparing
the results obtained wiLh four different inle. cross
sections: circular, square, rectangular, triangular. And
by combining data and theories of the literature, extend
these results to other geometries and fluids.

t

A	 FLOW MODEL

While all inlet geometries are susceptible to
separation under some =onditions, some geometries such as
sharp edged and Borda are most susceptible to separation.

The type of separation phenomena encountered at the
inlet to the Borda configuration results from a
discontinuity in the slope of the bounding surface see fig.
2. As the streamline cannot conform to the bounding
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	 surface, it separates and subsenuent growth or decay of the
disturbance depends on the degree of discontinuity (see fig.
2). Theoretically the Borda inlet causes a full reversal of
the streamline and as such represents the strongest
discontinuity for simple geomtries.

The geometry of the free streamline in potential flow
is found by integrating the real and imaginary components of
dz reference 9 (see fig. 2).

i

i	 z=x+iy=^ J VOA dw	
(2)

0

The free streamline can	 be defined in terms of 	 the

u	 parameter	 8	 where	 8	 ranges from	 0 to	 it
r,

',^;_ 	 x0 = Bx - n (sin 2
(

2) + log
`

Icos l2)J}LLLLLL
(3)

)
_ 4Z = 1 (27 - 8 sine)	 (4)Y
	 B	 IT

while the above applies to	 the	 two-dimensional case
x	 (fig.	 2(a)),	 it	 can	 be shown	 that similar streamlines exist

for the axisymmetric case reference 9,	 however	 the problem
for a general cross section 	 was not solved.	 Suggested

l	 streamlines for other geometric configurations are shown in
figure 3,	 where soap films and associated sketches represent
potential interfa=es and 	 by	 analogy separated interfaces.

From momentum considerations one can establish
A /A	 reference B and 9.	 The control surface consists of

^Itlh	 Borda walls,	 the	 free	 jet surface,	 a	 normal
cross-section through the jet at 	 "infinity" and an	 j

J

4	 r
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t	 "infinite" spherical surface over the inlet (see fig. 2).
h	 The flow in the choked free jet was found to equalize a

'S	 short distance from the inlet (ref. 9).
The available momentum of the jet per unit time is

PO A 1. Thz available potential energy is P Vj where Vj
is the jet volume. The momentum of t^io jet is 	 pVjUj;

its kinetic energy is 1/2 pVj Up . Here Vj = U j A2 and it
follows that

PDA1 o pA2UJ
	

(5)

P0A2Uj 2 pA2U1	 (6)

Eliminating P O gives

A2 /A1 0 1/2	 (7)

It is important to note here that for both the axisymmetric
and two dimensional cases A 2 /Al = 1/2.

Thus while the argument is quite simple, where combined
with the above cases, it mikes an important point: the
contraction area ratio could be independent of cross-section
geometries such as circular, square, rectangular and
triangular. Thus it should follow that mass flux through
Borda inlets is independent of cross section geometry, or to
a first order,

Aflow	 = Constant	 (8)
Ainlet Borda

Inlet

Further, using references 4 to 6, critical mass flux
should be completely characterized by inlet stagnation
conditions. These concepts will be established in the
subsequent sections.

APPARATUS AND INSTRUMENTATION

The general scheme of the apparatus follows that
described in reference 7. The basic flow facility (see fig.
4) was of the blow-down type where flow rates were metered
using a venturi flowmeter in the bottom of the storage tank.
Gas flow rates were metereJ using the orifice flovmeter in
the exhaust stack. Inlet stagnation conditions were

I I1, i

1-0
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measured in a mixing chamber immediately upstream of the
test section. The installed test section with approach and
downstream pressure taps is shown as figure 5, with the
characteristic dimensions of each test geometry illustrated
as figure 6.

The four oasic Gorda type inlet geometries: circular,
square, rectangular (2D) and triangular are pictured in
figure 7. Two associated geometries the thick and thin
orifices are shown in figure 8.

The flow areas of each geometry are given in table I;
they are approximately equal. It was found that the
internal surface of the rectangular inlet was slightly
concave-convex, i.e., venturi like, by approximately 0.007
mm; as such it may give slightly larger flow rates than. flat
parallel surfaces.

RESULTS

As a reference for discussion, the isentropic reduced
mass flux for nozzles is given as figure 9, from reference
10:

GR	 GI/G*
I

	 (9)

For each of the four Borda Inlets data were taken along
four stagnation temperature isotherms, nominally TRO =0_60,
0.90, 1.01, 1.31. Gas data were also taken. These results
are presented as figures 10 to 13. For the thick and thin
orifices, one isotherm TR0 =0.68 and gas data were taken.

Circular Inlet

The reduced mass flux data for the circular inlet
configuration as a function of reduced stagnation pressure
for the four selected isotherms and gas are shown on figure
10. The data are presented in table II. Points on the 0.90
isotherm appear to have more scatter than those on adjacent
isotherms which can be related to operational difficulties;
in setting these conditions. The two points at 0.5 reduced
pressure appear as saturation data, and may have saturated
conditions at the inlet.

Square Inlet

The reduced mass flux. data for the square inlet Borda
configuration are given as figure 11. The data are given in
table _TT_I. Due to an overload on the flow differential
pressure transducers for two points, readings from static
transducers had to be used. The data lie on the curve, but
must be considered questionable.

 ..., .	 .	 .. .	 IT	 ..._...,.. , I -	 .
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Triangular Inlet	 .r`

The reduced mass flux data for the triangular inlet
Borda geometry are given as figure 12. The data are given
as table IV. In general we did not seek saturated data
points, but the point on the TRO = 0.9 locus at PRO ti 0.6 is
quite close to saturation.

Rectangular Inlet

The reduced mass flux data for the rectangular inlet
Borda geometry are given as figure 13 and the data presented
as table V. This geometry has an aspect ratio of 4 and can
be classified as nearly two dimensional. Again we have two
saturated points along the TRO = 0.9 isotherm. As noted in
the apparatus section, this geometry is shaped slightly like
a Venturi.

Comparison of Data

A direct comparison of data for the four Borda
geometries is difficult. However, using nominal isotherms,
figures 10 to 13 ware overlayed to construct figure 14. A
comparison of these curves reveals little difference in
reduced mass flux over a very large range of inlet
stagnation conditions. Figure 14 demonstrates that even for
the complex triangular inlet, the reduced mass flux is
independent of cross section geometry. But it should be
noted that the rectangular inlet shows a possible 2 percent
increase in mass flux, see the TRO = 0.68 isotherm, figure
14.

Thick Orifice

The geometry of the thick orifice may be_ considered a
short tube, with L/D = 2, similar to the circular Borda
geometry except that the entrance is sharp edged, i.e., does
not protrude into the flow.

The data for the TR O = 0.68 isotherm and gas for this
geometry is given as table VI and shown on figure 15. When
compared to the isentropic nozzle, the flow coefficient
would be 0.66. Those results are about 5 percent above
those of the Borda inlets about 5 to 7 percent above those
of reference 3 and about 18 percent above the 53 L/D-Borda
inlet of reference 7.

Thin Orifice

shortening the orifice length to L/D = 2/3 reduced the
mass flux by about 5 percent or nearly equivalent to that of
the Borda inlets, see figure 15, and table VII. The results
are also in good agreement with those of reference 3. The
gaseous data for, thin or thick orifice or Borda inlets are

0

k



e
I

1

U

I

PAGE 7

nearly all the same on this figure.
These data, of course, indicate a separation problem at

the inlet of the sharp edged configuration of proportions
nearly equal to that of the Bocda configurations. This
implication remains to be resolved.

Comparison to Theory

In reference 3 orifice data were comparel to analytical
preductions using i flow coefficient (no further comparison
of orifice data need be made). Herein we use the same
approach and define a coefficient which is the ratio of the
experimental to calculated mass flux:

_GR
CD

 (P Rol TRG	 GRI	 (10)

In reference 7, using an extensive data set for a 53
L/D Gorda tube, a Co locus was established. The data of
this paper are comparel to that locus established in figure
16. It should follow that all Borda inlets circular,
square, triangular, cectan7ular, etc., will approximate the
dashed locus iu a manner similar to the solid locus of
reference 7; however conditions where the stagnation
temperatures are close to the thermodynamic critical point
remain unclear.

Discussion

These Borda inlet data for critical mass flux indicate
that (see fig. 1 (a) ):

(1) A 2/A = constant, independent of inlet cross
section geometry for a given inlet stagnation condition

(2) G R is also independent of cross section geometries
of equal areas and cou:pletely characterized by inlet
stagnation conditions.
Also when combined with previous investigations references 4
to 6 these results can be nxtended to any corresponding
states fluid.

The data also suggest that parallel surfaces as found
in seals, dampers, bearings, and heat exchanger tubes of
rectangular cross section with Borda type inlet
configurations are subject to very large forces*

(1) tubes of insufficient strength can be readily
collapsed fully or partially when separation occurs; in such
cases severe flow blockage occurs and metal to metal contact

*This is true for ill geometries; however due to the high
aspect ratio of the rectangle,deformations can be readily
detected.

.I

i

f

A

.__.:..... 1. 	... a.



r
I P

d^

I

PAGE B

is imminent.
(2) separate] flows are not steady, they oscillate;

such perturbations can be destructive over a period of time
and certainly can make the inlet "sing."
As an illustration of the magnitude of such forces one only
has to consult the data tables, compare the upstream and
downstream pressures and ;recall the model of figure 7. In
reference 7 it was shown that the ratio of P D/PB > 125.

Implications for Larger L/D Channels

The results of this experiment can be extended to yield
insight on two items of importance in larger channels.
Since flow rates are unaffected by cross section geometry,
circular, square, triangular, rectangular and the data of
reference 7 are for a 53 L/D circular Borda tube, it is
implied that the data of reference 7 can be extended to
large L/D ducts of arbitrary cross section with Borda type
inlets. First they can prossess free jet effects as
reported in reference 7. second, recompression of the free
jet also has little effect on mass flux on the other hand,
the p ressure profiles in larger L/D ducts are of major
significance and are greatly dependent on the location of
the recompression zone. Thus the work in seals and bearings
and heat exchangers should be directed more toward control
of the dynamics as the pressure profile is strongly
dependent on geometry, and the leak rates are weakly
dependent on geometry.

The assistance of J. A. Hendricks and J. R. Hendricks in preparing
this document is greatly appreciated.

1A
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SUMMARY

A comparison of data and/or the figures herein
demonstrates the original thesis that for these Uorda inlet
geometries: circular, square, triangular, and rectangular
(2-dimensional),

(1) The mass flux is independent of inlet cross section
(2) The choked mass flux is dependent only on the inlet

stagnation conditions
Also by using the reduced mass flux and the principal of
corresponding states given in references 4 to 6, the reduced
mass flux is independent of the working fluid.

The importance of these items make it quite clear that
mass flux values obtained for circular inlets apply to any
other type of simple cross sections and implications are
that these results are quite universal for a variety of
fluids over a very large range in inlet conditions.
Furthermore there is some evidence that these same
constraints will apply to the sharp edged geometries.

Combining the results herein with those of reference 7,
the implication in seals and heat exchanger designs are
clear; with mass flux (Leak rates) weakly dependent and
pressure profiles highly dependent on inlet geometry, it
would appear that seal design efforts should concentrate on
those geometries most amenable to dynamic stability.

'o
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dr

SYMBOLS

A	 area, cm
p	 slot or channel width, cm
CO	flow roefficient, eq. (10)
D	 tube diameter, cm
G	 flow rate, g/cm2-s
GR-G/G* reduced flow rate
G x	 flow normalizing parameter, 	 Pcpc/Zc, 6010 B/=2-6,

'for nitrogen

L	 tube length, cm
P	 pressure MPa
PR	 reduced pressure, P/pc
R	 gas constant, MPa-cm3/g-K
T	 temperature, K
T R	reduced temperature, T/Tc
U	 velocity, cm/sec
V	 specific volume, cm3/g
V	 velocity parameter
w	 complex potential
X	 distance, cm

x	 dimensionless distance
Y	 distance,cm
y	 dimensionless distance
Z	 compressibility, PV/RT
z	 complex coordinate, cm
P	 density, g/cm3
Subscripts;
c	 critical
2	 isentropic
0	 stagnation
j	 jet
1,2	 reference conditions
R	 hydraulic

.4
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TABLE I. - SUMMARY OF KEY GEOMETRIC

FEATURES OF TEST SECTIONS

Inlet Typo Flow L/D GaA
cross section area

H
(g,/sec)

geometry (Cm2)

Circular Borda 0.1810 2 1088
Square Borda . 1789 2.25 1075
Rectangular Borda .1858 2.75 111
Triangular Borda .1966 2.45
Circular Sharp edge .1791 2 1076
Circular Sharp edge .14?UO 2/3 1082

4



TABLE II. - FLOW DATA FOR CIRCULAR BORDA INLET

..; a, a i F ^'AU.•v

k	

t

r	 ^.

}

TEMP
K

286.7
286.5
286.4
84.4
64.6
84.7
84.9
84.4
112.5
112.7
112.7
114.1
112.9
128.9
127.8
127.5
126.0
132.3
127.1
145.0
144.8
144.6
145. 1
187.E
0.0

PIN
MPA
7.33
7.33
7.33
6.53
5.29
3.94
2.99
1.76
6.56
5.45
4.12
2.94
1.72
6.70
5.54
4.50
3.39
1.69
6.99
7.38
5.90
4.10
2.34
2.91
0.10

BUN FLOW
	

TEMP
	

PIN
	

POUT PBACK	 RUN PLOW
	

TEMP
	

PIN	 LOUT PBACN

	

0/5 EC
	

K
	

MPA
	

MPA	 MPA
	

G/5 EC
	

K
	

MPA	 NPA	 MPA
1953	 73.0 254.8
	

1.69 0.19 0.22	 1971 206.0 144.0 3.21 0.35 0.35
1954	 128.0 261.5 3.05 0.32 0.33	 1972 116.0 143.8

	
1.90 6.23 0.25

	

1955 187.0 266.8 4.47 0.42 0.44 	 1973
	

104.0 144.9 1.75 0.21 0.24

	

1956 243.0 272.5 5.90 0.54 0.57	 1974 971.0 113.4 6.59 0.54 0.76

	

1957 242.0 276.4 7.14 0.64 0.67	 1975 853.0 113.6 5.35 0.54 0.66

	

1958 1098.0
	

84.9 6.46 0.09 0.40	 1976 707.0 113.5 3.93 0.54 0.57

	

1959 968.0
	

84.9 5.12 0.09 0.32	 1977 554.0 114.1 2.79 0.52 0.49

	

1960 849.0
	

0.5.2 3.95 0.13 0.29	 1978 384.0
	

113.2 1.74 0.44 0.37

	

1961 687.0
	

85.4 2.71 0.15 0.26 	 1979 285.0
	

126. 1 3.20 0.43 0.39

	

1962 522.0
	

84.6
	

1.62 0.16 0.24	 1980 281.0
	

126.7 3.39 C.43 0.40

	

1963 966.0 112,8 6.49 0.53 0.76	 1981
	

122.0 127.4 1.86 0.23 0.25
1964	 915.0 117.2 6.33 0.60 0.75	 1982 807.0

	
127. 1 6.67 0.84 0.85

	

1965 805.0 116.5 5.15 0.60 0.67	 1983 672.0 126.6 5.52 0.74 0.68

	

1966 685.0 115.7 3.95 0.57 0.58	 1984 514.0 126.4 4.42 0.61 0.55

	

1967 563.0 114.8 2.90 0.53 0.50	 1985 302.0 126.3 3.35 0.44 0.40

	

1968 308.0 113.4 1.74 0.37 0.32 	 1986 150.0 126.6 2.26 0.27 0.27

	

1969 470.0 144.4 6.07 0.66 0.63	 1987
	

68.0 127.4 1.11	 0.15 0.19
1970 334.0 143.8 4.83 0.52 0.51

TABLE III. - FLAW DATA FOR SQUARE BORDA INLET

PIN
MPA
7.31
4 .75
2.95
1.84
1.28
7.48
5.55
3.26
1.96
5.69
4.13
2.09
1.90
5.73
5.74
3.58
2.07
1.50
1.63
2.88
4.58
5.94
7.32
7.33
7.33

BUN FLOW	 TEMP
0/SEC	 K

	1851 800.6	 85.6

	

1652 935.7	 65.2

	

1853 696.8	 85.2

	

1854	 530.1	 84.6

	

1855 415.7	 84.6

	

1856	 717.2	 117.1
1857 688.5 116.5

	

1858	 568.5	 115.0

	

1859 376.7	 113.7

	

18EO 531.5	 140.5

	

1861	 292.3	 133.2

	

1862	 183.3	 123.6

	

1863	 105.7	 117.8

	

1664	 373.0	 177.6

	

1865 375.1	 179.1

	

1866	 179.2 166.3

	

1867	 97.1	 157.1

	

1866	 66.6	 150.1

	

1869	 63.8

	

1670	 114.7	 V,	 1

	

1871	 178.7 286.2
1872 231.4 287.5
1673 2.5.6 289.6
1874 287.0 277.6
1875 286.5 287.1

POUT PBACK

	

MPA	 MPA
0.06 0.45
C.09 0.33
0.12 0.29
0.13 0.25
0.15 0.23
0.62 0.81
0.61 0.70
0.54 0.52
0.44 0.40
0.55 0.61
0.39 0.44
0.33 0.34
0.23 0.25
0.58 0.54
0.59 0.55
0.39 0.38
0.26 C.26
0.21 0.22
0.22 0.21

	

0.31	 0.30
0.46 0.43
0.58 A.B5
0.72 0.66
2.78 3.04
3.22 3.47

RUN FLOW
G/SEC

1876 286.7
1877 2BB.2
1878 287.8
1879 1124.0
1880 989.8
1801 844.2
1882 718.2
18P3 548.5
1884 480.4
1885 B56.1
1886 713.3
1887 554.7
1868 326.4
1809 803.2
1890 647.0
1891 453.2
1892 259.0

	

1693	 98.5
1894 840.6
1895 719.4
1696 447.4
1897 261.8

	

1898	 134.1

	

1899	 54.8

	

0	 0.0

POUT POACH

	

MPA	 MPA
	1.89 	 2.21

	

1.07	 1.24
0.72 0.66
C.Ob 0.37
0.07 0.29
0.09 0.26

	

0.09	 0.2:
0.09 0.23
0.55 0.74
0.54 0.64
0.54 0.56
0.52 0.47
0.38 C.32
0.75 0.76
0.67 0.65
0.56 0.53

	

0.41	 0.37
0.22 0.21
0.79 0.84
0.69 0.77
0.53 0.60
0.42 0.42
0.28 0.26

	

0.31	 0.29

	

0.10	 0.10
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TEMP
K

262.4
269.0
274.0
278.2
283.0
84.6
04.6
84.6
84.B
84.1

114.6
114.7

PIN
MPA
1.84
3,00
4.40
5.70
7.04
5.98
4.96
3.79
2.60
1.53
7.22
6.14

TEMP
K

114.0
113.6
115. 1
127.4
127.2
127.5
126.0
142.7
141.9
142.6
129.0
144.2

PIN
MPA
4.31
3.02
1.99
6.78
4.70
4.33
3.42
7.16
5.63
4.14
1.88
1.37

TEMP
K

256.0
263.1
268.6
275.3
280.3
85.1
85.3
85.6
85.7
86.0
85.2
114.6
113.8
113.5
113.8

Pill
MPA
2.04
3.13
4.61
5.82
7.16
6.99
5.12
4.93
3.80
2.68
1.64
6.40
5.00
3.95
1.76

TEMP
K

114.3
128.6
120.0
127.8
126.8
114.1
113.6
114.3
113.7
114. 2
142.9
143. 1
143.4
143.2

PIN
MPA
2.95
6.72
5.66
3.73
2.63
6.42
5.13
2.04
1.75
1.82
7.01
5.99
4.53
2.09

TABLE IV. - FLOW DATA FOR TRIANGULAR DORDA INLET

PUN FLOW
0/SEC

1900	 62.0
1901	 134.0
1902 197.0
1903 249.0
1904 304.0
1905 1162.0
1906 1053.0
1907 916.0
1908 748.4
1909	 564.0
1910 1092.0
1911	 987.0

POUT PDACK
MPA	 MPA
0.25 0.21
0.37 0.31
0.53 0.44
0.66 0.55
0.61 0.68
0.07 0.42
0.07 0.29
0.09 0.25
0.13 0.23
0.15 0.20
0.57 0.80
0.58 0.74

RUN FLOW
G/SEC

1912 798.0
1913 623.0
1914	 391.0
1915 885.0
1916 594.0
1917 514.0
1918 327.0
1919 667.0
1920 499.0
1921 301.0
1922	 131.0
1923	 87.0

POUT POACH

	

MPA	 KPA
0.56 0.61
0.55 0.49
0.47 0.36
1.09 0.93
0.77 0.62
0.69 0.55
0.49 0.40
0.96 0.80
0.79 0.64
0.53 0.44
0.27 0.22

	

0.21	 0.17

r-

I

TABLE V. - FLOW DATA FOR RECTANGULAR DORDA INLET

RUN FLOW
G/SEC

1924	 90.7
1925 135.3
1926	 194.7
1927	 242.1
1926	 296.6
1929 1197.8
1930 1114.0
1931	 954.0
1932 871.0
1933 725.0
1934 557.0
1935 976.0
1936	 844.0
1937 726.0
1938 250.0

POUT PDACK

	

MPA	 MPA
0.20 0.25
0.27 0.34
0.37 0.46
0.46 0.57
0.55 0.68

	

0.14	 0.43
0.13 0.35

	

0.14	 0.29

	

0.14	 0.28

	

0.16	 0.26
0.16 0.23
C.64 0.78

	

0.61	 0.66
0.59 C.58
0.30 0.28

RUN FLOW
G/SEC

1939 575.0
1940 803.0
1941 668.0
1942 355.0
1943 187.0
1944 983.0
1945 862.0
1946 414.0
1947 256.0
1948 276.0
1949 610.0
1950 480.0
1951 316.0
1952 128.0

POUT PDACK
MPA	 MPA
0.62 0.56
0.84 0.82
0.73 0.71
0.45 0.44
0.25 0.32
0.63 0.77
0.62 0.67
0.47 0.39
0.30 0.29
0.33 0.31
0.71 0.76
0.58 0.64
0.39 0.47
0.22 0.26

4	 '
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TABLE VI. - THICK ORIFICE

CHOKED FLOW DATA

Liquid data

Run w
TIN pIN

1258 1185. 85.4

184.3

7.13

1259 985. 85.3) 5.03

1260 740. 85.3 2.92
1261 575. 1.80

1262 1116. 84.7 6.28

1263 874. 84.4 3.91

1264 655. 83.7 2.28

1255 511. 83.5 1.46

1
Thick orifice

Gas data

1323 82. 273.2 2.05

1329 124. 274.9 3.07

1330 181. 274.8 4.45

1331 234. 275.1 5.72

1332 292. 275.7 7.10

Thick orifice

TABLE VII. - THIN ORIFICE

CHOKED FLOW DATA

Liquid data

Run
TIN YIN

1283	 1148. 84.9 7.37
1284	 957. 84.6 5.21
1286	 536. 83.7 1.75
1287	 1049. 84,3 6.19
1288	 835. 84.0 3.98
1289	 521. 83.4 2.28
1290	 462. 83.3 1.34

Gas data

Thin orifice

1313 82. 245.7 2.04
1314 124. 256.0 3.10
1315 179. 260.8 4.51 Thin orifice
1316 235. 263.6 5.92
1317 290. 265.9 7.34 J
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Figure 1. - Typical pressure profiles - axial position 53 LID straight
tube with Borda Inlet. From reference 7.
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Figure 1. - Schematic for theoretical streamlines
for a Borda inlet
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Figure 11. - Reduced mass fluff vs reduced pressure for Selected
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isotherms - square inlet Borda.
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Figure 17. - Reduced mass flux vs reduced pressure for selected
isotherms - triangular inlet Borda.
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14. - A composite plot cf reduced mass flux vs reduced pres-
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Figure 13. - Reduced mass flux vs reduced pressure for selected
isotherms - rectangular Inlet Borda.
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