General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NASA Technical Memorandum 79127

(HlSA-T!—?QlZ?) ON THE EQUIVALENCE BRETWEEN N79-201338
SEMIFMPIRICAI FRACTIURE ANALYSFS AND R-CURVFS
(NASH) 38 p HC AO3/NF AD1 CSCL 20D

Unclas

G31/34 170€9

ON THE EQUIVALENCE BETWEEN
SEMIEMPIRICAL FRACTURE
ANALYSES AND R-CURVES

Thomas W. Orange
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER to be presented at the

Twelfth National Symposium on Fracture Mechanics

¢ sored by the American Society for Testing and Materials
St. 1 uis, Missouri, May 21-23, 1979



R PR AL

Co TR AT T e o S F T ser .

INTRODUCTION

This paper examines the relationships between several semiempirical
fracture analyses and the R-curve concept of fracture mechanics. These
relationships may explain why a semiempirical fracture analysis will yield
good results with one set of data and poor results with another. They may

also indicate which analyses deserve further consideration.

Over the past decade a number of semiempirical fracture analyses have

teen presented (refs. 1-5). These analyses all attempt to correlate failure

: stresses fpr precracked tension specimens with initial crack length over a

rahge of crack lengths. The correlations involve the determination of one
(refs. 1-2) or two (refs. ll,5) empirical parameters from test data. The
parameters are treated as material properties ubich are independent of the
specimen and crack configuration but which are functions of specimen thick-
ness antd such variables as heat treatment and test temoeraturg. The anal;-
ses do not always provide geod correlations using data sets other than those
chosen by the original authors. To date these analyses have only been
formulated for and applied to test specimen configurations. Thus their

apolicability to the design of complex structural confijvrations is uncertain.

The progressive development of the R-curve concept has been reviewed

in ref. 6. The concept postulates that, for a given material and thick-

ness, there is z unique relationship between the amount of stable crack

growth under rising load and the crack-tip stress intensity factor. ‘This

relationship is czlled the crack-extension resistance curve, or R-curve, anc

represents the response of the material in the vicinity of the crack tip to
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externally imposed loading. If the R-curve is known, both failure load and
eritical crack length can be predicted (as functions of initial crack length)
for any specimen or structural configuration for which an appropriate stresss '
intensity analysis is available. Thus the R-curve concept appears to be a

more useful mathod than any of the semiempirical analyses.

If the R-curve for a given material and thickness is available, one can
calculate fracture.stress as a function of original crack length for any
test épecimen configuration. The converse should also be true. That is, if
a relationship between fracture stress and original crack length is avail-
able, one should be able to calculate the corresponding R~curve. This
obserVation_was the impetus for the present study, which was undertaken to
test the following hypotheses:

1) For each semiempirical f:acture analysis (SEFA) there is an equiva-
lent R-curve (FERC) whose magnitude and shape are determined by the SEFA
formulation and its empirieal parameters. The ERC is equivalent in that it
predicts exactly the same relationship between fracture stress and criginal
crack length as the SEFA.

2) A SEFA will correlate residual strength data (fracture stress against
original crack length) closely if its IRC closely matches the actual R-curve

of the material in question, and will correlate poorly if the match is poor.

This paper first reviews some characteristics of the R-curve concept
vwhen applied to finite-wldth specimens. Next the conditions for equivalen;e
between a semiempirical analysis and an R-curve.are derived, A hyﬁotbetical
'material is employed to study the relationship between Rncﬁrves and semiem-
pirical analyses., Finally, eguivalent R—curves are developed for real

materials using data from the literature.
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SYMBOLS
a length of single-tip crack or half-length of double=-tip crack,
equals a,+ A
ol Effective modulus, equals E for nlane stress or E/(1-V°%) Zor

plane strain, where Lk is Young's modulus and ¥V is Peisson's ratic

ty Strain energy release rate

2o Track extensicn resistance

G, Strain erergy release rate or crack extension resistance at instabililyr

Ky Opening-mode stress intensity factor

n lumber of crack iics (one or two)

o Specimen width

Y Stress intensity calibration factor, Kp/0ya , & dimensionless
Zunchicn of A . -

N’ fensitivity factor, eg. (1)

A Tffective crack extension (sum of ohysical crack extension plus
a »lastic zone cerrection)

lelative crack length, na/W

a Stress ncrmal to crack

Uy Ultimate btensile strength

Tys vield strength

Subscripis:

¢ at critical or instability condition

0 original value prior to loading

A~CIRVE CONCEPT

The R~curve cﬁncept and its bistqrical develoorent are reviewed in ref,
&. A general representation o the concept is shown in fizure la. Thre
strain erergy release rate is given b ﬁhe expression

G, = Y20 2a/E!

and reoresents the driving force (per unit_thickness) tending to cause crack
propagation. The material's resistance to crack progagation, GR s is a
function of crack extension, A . At the critical stress G, the driving
force curve and the R-curve are tangent, Beyond the point of tangency the
drivirg force increéses faster with crack length than does the material's

resistance. This instability condition represents the failure of the body.
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The point of tangency defines the fracture toughness, G, , and the critical

crack length, 2a, . For an infinite body, ¥ is a constant and the driving.

force curve is a straight line Thus both the fracture toughness, G, , and
the amount of crack extension at instability, Ag s increase with increasing

original crack length.

Por cracks in simple finite bodies and test s»ecimens, the trends are
somewhat different. I we define a dimensionless sensitivity facteor as

AdY
U | )

thern the crack driving force curve and its slope (for constant stress) are

216, = Y20%%

n

A 2,2
Elm= = Y202(1 + 2x)

For convenience, the erack extension resistance curve and its slope are
wriiﬁen here as

g(A) ® E'CGp ,

g'(A) = E' dGp/dA
At the instability point, G4=Cp and dG,/da=dGp/dA (see figure la). If

m

g{A) and g'(A) are mathematically describable, the instability ooint

is determined by the simultaneous solution of two equations,

216, = Y2 TZ(ag +Ag) = a(Ag) | o (2)
any i _ :

] 2 2 '

A |ac = Y T5(1+208) = g(ag) (3)

The éoefficients Y and & are usually expressed as trigonometric or
polynomial functions of the relative crack length A . As a result, a
clogeé-form simultaneous solution is seldom possible, and numerical

methods must te used to solve for .Ac . Then G, = g( A )/E' and the

fracture stress 7, is determined from eq. (2},

F PO
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As the initial crack length is increased from zero, both G and Ag
increase. However, due to the fact that dY/dA continually increases with
N , both G and A, reach maximum values which depend on the specimen
width, ¥ , and the forms of both the driving force curve and the R-curve,
As agy 1s increased still further, both Gp and A, begin to decrease.
This behavior is shown schematically in figure 1b where instability curves
are showm for a wide range of initial crack lengths. The locus of 211
“instability points is shown by the dotted line. From Zigure 1b it is alse
apparent that there are pairs of original crack lengths, say (ao)l = 0,2 W
and (ag)y = 0.7 W, which will have the same critical crack extension,
(AglL,2 and fracture toughness, (Gc)1,2 . From equation (2), the

fracture stresses for these original crack lengths are related by

(o) _ (edi [(aoh + (Bo)yo
(Tl (Yc)2 ¥ (ag)y + (Ac)1,2

Thus there is a relationship between fracture stresses for short cracks and
long cracks which is implicit in the R-curve concept, and this relationship

is a function of the specimen type and the shape of the R-curve.

Tt should be noted that, in this paper, A is the effective crack
extension. It is the sum of the physical crack extension plus an adjustment

to account for the effect of crack-tip plasticity.

EQUIVALENCY ANALYSIS

In the preceding section it was shown that, if a mathematical formu-
1ation of the R-curve is available, fracture stress can be determined as a

function of original crack length. In this section it will be shown that,




if an equation for fracture siress as a functlon of original crack length
is available, the equivalent T~curve can be determined, In this paper,
only the case where specimen width W is constant is considered. Parallel
derivations for the cases where &z, 1is constant aﬁd where ao/l-:' is
constant are glven in ref. 7, which contains a more complete treatment of

this same subject,

Differeatiating both sides of eq, (2) with respect to A4, ,

d da
aag B = T, dﬂcz'e‘xc [Ei'f ¥ 1] * Yce(aom‘c)a%;( )° +

* 20' 2[—-—— + 1] g ( A)
and substituting ea. (3), results in

| d | |
0 = T,° [(1+2e<c)£.9é] * (agrhd - (02) W)

Assume that there is a funetion £ guch that we can define
£(ay) = 002

2 for W = constant
£'(a,) B A 0,°)/da, |

Then eq. (L) becomes
g _
" Ta L1 2%0) fag) + (ag + Ag) £1(ao) ]

and since dag/dA., F O we have

0 = (1 +2°(-c)__ £{ag) + (ag + Ag) £(a,) - (5)
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For cracks in infinite bodies, o = O and eg., (5) becomes WUALITY

£(ao) _ |
-f'(ao) %o (6)

A
which, after substituting the infinité-body formulations for f(ao) and
f'(a,) from the APPENDIX, gives A, for any a, in terms of the empirical
parameters. Then terms can be rearranged to give a, as a function of A, ,
say |

2o * F( Ag)

Substituting this function into eq. (2) yields
Bl = Yof [F(Ac) + 8o] £ [F(ac)) (7)

Since eq. (6) gives A, for any value of a, , eq. (7) must give E'G, for
any and all values of Ay , which is a definition of the R-curve. Thus,
after writing the function F in terms of the empirical parameters, it is
aporopriate to write eq. (7) in the general terms of E'Gp and A , rather
than E'Gg and A, . The end result is an explicit ERC formulation in

terms of the empirical parameters.

To determine the ERC for cracks in finite bodies, an indirect method is
required. First, the finite-body formulations for .i‘(ao) and f'(agy) from
the APPENDIX are substituted into eq. (5). Because of the more comlicated
nature of the finite-body formulations, it is unlikely that an explicit
function F(A,) will be obtainable. But for any given value of A, , a,
is 2 root of eq. (5) which may be found by standard numerical methods and
which represents a single value of F( Ac) . Substituting this value into
eq. (7) yields a discrete point on the ERC. By incrementing A, and repeat-

ing the calculation', the ERC can be determined point by point.
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Dimensionless Equivalent R-Curves

It is helpful and more efficient to first compare semiempirical fracture
analyses {ST7A) and equivalent R-curves (ERG) on an analytical basis, This
is most easily dore using the oroblem of a crack in an infinite plate as a
baseline.

The infinite=body ¥RC for Xuhn's analysis (ref. 1) is obtained using the
method described in the parapgraph containing egns. (6) and (7). Substituting

egns. (A1) and (42) from the A®P=NTIY into eans. (6) and (7) with Yc2=7T

yields
Ae = yao / Cp (8a)
T G2 A
FlGy = 5 (%2)
1+ Cp A
1
where C_ is an empirical parameter having units (L™%2). Equation (Sa) is

m

plotted in dimensionless form in figure 2a. This curve obviously resembles
an R-curve and might bte expected to closely match some (but not all)

experimental R-curves.

The infinite-body ERC for Orange's analysis (ref. 2) is obtained in the

same manner. Using egns. (A3) and (AlL) results in

Ay = (& /T (8b)
ElG, = K2 (5b)

where K, is an empifical parameter having units (FL’3/2). These eguations
define a single point. In order to relate this single point to the R-ecurve
concept, the point may be thought of as the corner“of a step-function, and
that step=function might in turn be consideré& as a very simple apprbximation

of an actual R-curve.

B I v i NI

e At

[P sy



-0

'?‘u T —d s ,. f
P (JCrc
The in?inlte-bodv FRC for Feddersen's analysis (ref. 3) 15 obﬁaiﬁed by

run

substituting eqns. (AS) and (A6) into eqns. (6) and (7) as before, yielding

; 2
27 (K 3
A, = Eﬁ;(ﬁ) - an (Se)
’ 2 2 q2 - 2 13
o = w2 [10(8)7s) L lEe,] 2l E
B! G Ke 1+[9 (KC)A}+3[9 X, fat +27 9(KC)AJJ (9¢)

for aos.(9/hﬂj(Kc/J;s)2 where K, is an empirical parameter having units
(FL'3/2}. Touation (8c) requires that critical crack extension decrease as
original crack length increases from zero. This is in direct opposition to
the R-curve concept and is not supported by any data known to this author.

n

m

Fauation (9¢), which is plotted in [igure 2b, does not look at all like
F-curve but does satisfy the requirements of coincidence and tangeney. Tor
a,=0, the point of tangency is the right-hand terminus of the curve. As

3y increases, the point of tangency moves downward and leftward along the

curve. Finally, at  ao=(9/LmY(K, /0, ys) , the point of tangency is the

left-hand terminus.

The infinite~body ERC for Newman's analysis (ref. lj) is obtained by
substituting eqns. (A1ll) and (A12) into egns, (6) and (7) as before, yielding

A, = nE [ (Sd)
c g‘u IT7

T2 A
Elop = = (94)

me /7 + (O'u/Kf)QA

where Ky 1s an empirical parameter having units (FL'3/2) and m 1is a
dimensionless empirical coefficient which is not greater than unity. Equa-
tion (9d) is plotted in dimensionless form in figure 2c. This ERC is

asymptotic to ETGR=}%3 , and the coefficient m determines the rapidity of the
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approach. As m decreases from unity to near-zero, the ERC develops a
progressively sharper lkmees, The flexibility of this two-parameter FRC

should allow it to match R-curves for a wide range of real materials.

The infinite-body ERC for Boclkrath's analysis (ref. §) is obtained by
substituting eans. (A13) and (All) into eqns. (6) and (7) as before,

'resulting in

Dy = (w/2)a, | (8e)

(73]
Bigp = B2 + w)KTcz(c%A)ﬁ*“ (9e)

where u: is a dimensionlegs empirical coefficient and Kpe is an empirical
parameter having irrational wnits (FL°). Equation (9c) is plotted in figure
2d. This ZRC bas no asymptote, and its slope is infinite =t A=0 . Except
for notation, it is identical to the R-curve model proposed by Broek as
equation (10) of ref, (€). Broek's model was derived using R-curve concepts
and the experimental observation that, for small cracks in wide specimens, ﬁhe

critical crack lenpgth is often proportional to the initial crack length.

At this point we can state the following. For each SEFA, in its
infinite-ﬁody form at lerst, there is indeed an ERC, For fpur of the
analyses considered, the ERC resembles or approximates an actual R-curve,
The ERC for Feddersen's analysis does not resemble an R-curve and will not

be considered further.

Comparisons Using Synthetic Data

Hypothesis (2) of the INTRODUCTTON postulates that a SEFA will

correlate residual strength data clo;ely if itg ERC closely matches the
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actual R-curve and will correlate poorly if the mateh is poor. To test this
hypothesis we would need, as a minimum, toth residuval strength data (for
several specimen sizes having a wide range of crack lengths) and R-curve
data for two materials having slgnificantly different Recurve shapes: Since
no such body of data is known to this author, it was necessary to symbhesize
one., This was done by formulating two R-curve equations using the following
puidelines. Cfirst, to avoid exact fits, neither eguation shounld bé mathems-
tically cquivalent to one of the ERC formulations previously derived. Second,
one R-curve should bave a definite knee, the other should be gently curving.
Using thase equations, synthebic test data can he generabed by instability
analysis for any speciwmen size and typmo. An advéntaga of this approach is

the total aﬁsence of data scatter,

Unobtainium is assumed to be a heat-treatable material. BSince the
material is imaginary, the units will be left to the reader's imagination.
In the annealed condition, its ultimate tensile strensth is 150 and its
R-curve is given by _ _

ElGyp = 8,000V104 - A2 (102)
In the azed condition, its ultimate tensile strength is 200 and its R~curve

is given Wy

50,000
EtGgq = —,'é,-—— aretan (10A) (10b)
These are shown in figure 3. The coelficients in eqns. (10) were sclected
so that the significant feastures of both curves wbuld lie within the ranges

0¢EB'Gy% 25,000 and 0%A21 .

The pseudotest data points are calculated using conventional instability
analysis as follows, Dividing eg. (2) by eq. (3) and rearranging terms gives

_ g(Ac) g +Ac .
Tl (Ag) T 1+ 26

(12)

S e A

e
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The functions g(Ag) and g!'(A,) are given by one of egns. (10) and its
derivative. The factor o(c is determined using eq. (1) and the secant

stress intensity calibraticn factor for urniformiy-loaded center-crack speci-
mens (ref. 9). Then, for prescribed values of ap, and W, A; is the least
nosgitive root of eg. (1l), This root can be found by any of several numeri-
cal rethods. Mexb, Ag is substituted back into eg. (10) to calculate E'G, .

Finally, the fracture stress 7, is obtained from eq. (2).

The "specimens® that are studied here were sized as follows. For the
infinite-width pseudotests, the initial crack half-lengths a, were chosen
(by trial and error) to give A, values well distributed over the entire
fi-curve. For the finite—width_pseudotests, the specimen widths were fixed
at § times {first series) and L} times (second series) the largest initial
crack half-length in the infinite-width series. The calculated values of
stress and crack extension at instability are given in Table I. The values
of stress snd initial crack length were then used as inputs to the various

seniempirical analyses.

The empirical parameters were determined as follows. Kuhn's parameter
Cp, was calculated for each specimen in the infinite-width series tsing eq.
(A1). The simole average of séven values, Cp, , is given in Table I. The
bar is used here to denobe the average value for one data set. Orange's
parameter, X, , was also caleculated for cach specimen in.the infinite-width
series using eq. (A3). The average value Eu given in Table I is a weighted
" average determined in the same manner as eq. (6) of ref. 2. Newman's para-
meters Rf ‘and m were determined using the 1eést-squares procedure given
in Apoendix C of ref, L. Bockrath's parameters Kp, and & were deter—

mined by a least-squares [it of eaq. (Al3)., Since Bockrath's method is
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restricted to cases vwhere the crack area is less than 10 percent of the
gross area, specimens having ag>W/20 were excluded from the least-

squares fit.

The equivalent R-curves were_calcﬁlated as follows. Tor the infinite-
width series, the onmpirieal parametsrs from Tablé I were simply substituted
into the avpropriate one of eqns. (9). For the finite-width series, the |
indiréct method (described in the naragraph containing ea. (7)) was used.
Swesilfieally, egqns. (A%) and (A15) or egna. (Al13) and (AllL) were used along

with eans. (S) and (7) and the appropriate empirical parameters.

The residual strength of the infinite-widih Unobtainium is shown in
figure b, For the annealed condition, Boekrath's semiempirical fracture
analysis (SEFA) provides a nearly psrfect £it to the pseudodata. When
ranked acccrding to the sum of the squares of deviations, Newman's SZFA,
Kuhn's, and Orange's follow in that order. For the aged condition, the
ranking is quite different. Here Yewman's 3EFA provides a nearly perfect
{it, with Orange's, Xuln's, and Bockrath's following in that order. The
equivalent R-curves (FR%2) are shown in fizure 5. Tor the arnealed condition,
The Bockrath ERC matches the actual R-curve almost peffectl;. When ranked
according to the integral of the souvare of the deviation, the Newman ERC,
the Kuhn ERC, and the Orange ERC follow in that order. #or the aged condi-
tion, the Mewman ZRC is the best mateh to the actual R-curve. The Bockrath
%C, the Kuhn ERC, and the Crange ERC follow in that order. The Crange ERC,

although crude, is a better approximation for the aged material than for

the annnalcd.

Since the Orange ERC is rather crude and since Kuhn's SEFA is equivalent

to a special case of Newman's (see APPENDIX, following eq. {(A12)), these two
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were not considered further. The Newman and BockrathJERG)FBEr QUAIfrte-

width center-crack series are shoﬁn in figures 6 and 7. Here the same
trends are seen as in the infinite-width series, The Bockrath ERC is

the Eetter match for the annealed condition, while the Newman ERC is the
better match fof the aged condition. Note in Table I that the empirical
parameters Kp. , &, Ef , and m all vary slightly with specimen width.
The ERCs shown in figures 5-7 are also distinctly different for different

gspecimen widihs, but the differences are slight.

The results of this exercise using synthetic data can.be sunmarized as
follows. Ilypothesis (2) of the INTRODUCTION postulates that an SEFA will
cérrelate residual strength data élosely if its ERC closely matches the
actual R-curve and will correlate poorly if the match is poor, Strictly
speaking, this hypothesis cannot be proven, since the ERC magnitude and
shape depend on empirical parameters which must be obtained from residual
strength data, However, the converse appears to be true. That is, if a
SEFA correlates residual strength cata closely, its ERC will clogely match
the actual R-curve. Furthermore it is apparent that if, for a given
material ahd thickness, the R-curve is unique the various empirical para-

meters are not, and vice versa,

COMPARISONS USING ACTUAL TEST DATA

As mentioned earlier, experimentdl studies containing boihk residual
strength and actual R-curve data are relatively few in number. Nevertheless,
enough were found in the literature to allow some comparisons to be made

using actual data obtained from real materials,
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NASA Data for 201L-T6 Aluminum Alloy

In reference 10 this author presented test data for 20L~TE aluminum
.alloy anecimens 1.5 mnm (C.06 in) thick, tested at 77 K (-320°F), Tigure 1
of that reference presented typical curves of crack growth against applied
stress for notches of six initial lengths in 30-cm (12-in) wide specimens.
T:ose curves were developed by plotting Individual crack growth data points

for replicate specimens, then drawing a smootbh curve to give a good visual

average. TFor the present report, those data were re-analyzed. The crack
extension resistance and effective crack length were computed for each data

neint as

e, = o‘sz‘aeff secant(7aq rp/W)

L 14

gecy = &+ (B'0p/277 %)

respectively. Since these equations are transcendental, an iterative solu-
tion was required, A total of 176 date poihts were obtained from 17 speci-
mens with initial ecrack lengths (2a,) rahging from 3 mm to 100 mm {1/8 to

b in)} The empirical parameters for the Newman énd Bockrath SEFAS vere
determined in the manner deseribed earlier, As belore, only séecimens with
ap< W/20 were included in the Boekrath analjsis. The fitted empirical

parameters are listed in Table II,

Residnal strenpth is shown in figure 8a. Newman's SEFA.gives a good
fit over the entire range. Bockrath's SEFA fits the short-crack data fairly
well, but the fit would be poor if extrapolated to longer cracks. The
Recurve data points and the equivalent R-curves are shown in figure Bb.

Both ERCs fit the data rather well, with Bockrath's somewhat tetter at small
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crack extensions and Newman's somewhat better for larger extensions, These
results suggest that the ERC concept applies to real data as well as to

synthesized data,

Boeing Data for 2219~T87 Aluminum Alloy

Earlier it was shown using synthetic data that, if the actual R-gurve
is unique, one obtains slightly different values of the empirical parameters
from data sets for specimens having different widths., Data from the Boeling
Co., for 2219-T87 aluminum alloy specimens have the same characteristics.
These data originally appeared in an intcrnal renort (Eichenberper, T. W.:
Jracture ?esistanéc Data Svmmary, Report D2-209.7, Boeing Airplane Jo.,

June 1962}, tut are also tabulated in reference 1. Cfenter-crack specimens
7.5 mm (0,10 in) thick were tested. The data for snaseimens 60 and 12C cm
{24 and LY in) wide are used “ere because they cover a ttide range of

initial crack lenzsths.

Bockrath's analysis was not applied since only one of the wider speci-
meng had agy<¥W/20 . Yewman's parameters were determined semarately fop
each specimen width, and somewhat different valves were obtained as can be
seen in Table IT, The residual strangth curves fit the data quite well, as
can be aeecn in figure 9a, with the average error being less than 3% percent,
Using a method that is outside the scope of this paper, it was found that

the actual R-curve for this material could be estimated by
B, = 8.07x10%% A2:55
where E'Gp is in Nz/m3 and ‘A is in ecm , or by

B0y = 1l.2xlo” A2.55b
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where ElGR is in 1b2/in3 and A 1is in inches, Residual strengths calculated

from this eguation using conventional instability analysis are also shown in
figure %a, The agreement is very slightly better than for Newman's SEFA, the
average error being less than 3 percent, The estimated R-curve and ﬁhe
Newman FRCs are shown in figure Sb, and as expected the differences are small.
Although these data tend to support the concept of & unigue R-curve, the

differences ars so small as to be within the bounds of probable data scatter.

CONCIUDING RFMARKS

The reszults of this study lead to the following conclusions:

1. ~ For each semiempirical fracture analysis (SEFA) there is an equi-
valent R-curve (ERC) whose magnitude and shape are determined by the SEFA
formilation and its empirical parameters., The ERC is equivalent in that it
nredicts exactly the same relationship between fracture stress and initial
crack length (residual strength) as the SEFA.

2. - If, for a given set of data, a SEFA correlates residual strength
closely, its ERC will closely approximate the effective R-curve of fhe
test material.

3. « Of the five SEFAs examined, Newman's (ref. lj) appears to be the
most generally usefui. Bockrath's SFFA (ref. 5), which is only formulated
for quasi—infinite bodies, is too rastrictive for widespread use; Three
{refs. 1-3) do not appear to wérrant further consiceration.

i, - If the effective R-curve is indeed unique, then the various

empirical parameters cannot be constant, and vice versa.
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The analytical comparisons made herein indicate that the varlations in

Newman's parameters are small enough that the differences may well be within

the range of normal data scatter for real materials. Thus a very carefully

planned and conducted experiment would be required to dstermine which concept

(R-curva or SFFA) is more appropriate.

7.

REFERFNCES

Kuhn, Paul: Strength Calculations for Sheet-Netal Parts with Cracks.
Materials Res, & Standards, vol, 8, no. 9, Sept. 1968, pp. 21-26,

Orange, Thomas W.: A Semiempirical Fracture Analysis for Small Surface
Cracks, Engng. Fracture Mech., vol. 3, no. 1, July 1971, pp. 53-67.

Foddersen, C. E.,: Evaluation and Prediction of the Residual Strength of
Conter Cracked Tension Panels, DNamage Tolerance in Aircraft Structures,
smouLf6, AT, 1971, op. 50-78.

Mewman, J. C., Jr.: Fracture Analysis of Surface- and Through-GCracked
Sheets and Plates., Engng. Fracture Mech,, vol. 5, no. 3, Sept. 1973;
pp. 667-689.

Bockrath, 3. F,, and Glassco, J. P.: A Theory of Ductile Fracture.
Renort MOC-02995, McDonnell Douglas Astronautics Co., April 197k,

Ueysr, ®. H.: Crack Growth Resistance Curves (R-Ourves) - Literature
Review. Fracture Toughness Zvaluation by R-Curve Methods, $TP-527,
ASTE, 1973, pp. 3-16,

Orange, Themas W.: A %Relationshio Between Semiempirical Fracture
Analyses and R-Curves, NASA TP~ (in preparation), 1979.

Broek, D.: The ZIffect of Finite Spscimen Width on the Residual Strength
of Lizht Alloy Sheet. Report NIR-TR M.2152, Mational Aerospace Labor-
atory (Netherlands}, Seot. 1965.

Feddersen, C, E.: (discussion in) Plane Strain Crack Toughness Testing
of High Strength Metallic Materials, STP-L10, ASTM, 1966, pp. 77-79.

10. Orange, Thomas W.: JFracture Toughness of %Wide 201L-T6 Aluminum Sheet at

-32007 . NASA TN D-L017, 1967.



~19- AGE IS
ORIGINAL [
OF POOR QUALITY

APPENDIX
SEMIEMPTRICAL FRACTURE ANALYSES

®, Kuhn (1968). - Equations {3) and () of ref. 1 give the fracture

swress for a finlte-width center-crack plate. For an infinite plate, those

may be rewritten and differentiated as

flag) = O [1 + Cn Ja_o]’z (1)
f1ag) = ~f(ag) * (1 +Cyyag )t o/ /oy (r2)

where Cp is an empirical parametar having units (L;%) .

T. Orange (1969). - Equation (8) of ref, 2 gives the fracture stress

Zor a finite-width center-crack nlate. For an infinite nlate, this reduces to

£lag) = Ky [ﬁao , (Ku/U'u)Q] -1 (43)

P(a0) = ~lao) [a + #2702 ] an

where K, is an empiriecal fracture toughness parameter having units (FL'3/2).

C. Feddersen (1970)., - For an infinite plate, egns. (6) and (10) of

ref. 3 reduce to

flag) = cry52|: -%‘1:(%) ao} | (A5)
: . . ,?l &2- 2 -1 |
£1(2) f(a")[afr (0;,3) 7 ] (46)

for ag(9/WM( Ko/ Tyg)® and eg. (7) to

flag) = K2/7ag | (A7)

f'(ao) = "f(a-o)/ao ) (AS
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APFENDIX
SEMTEMPTRICAL FRACTURE ANALYSES

®, Kuhn (1948), = Fquations (3) &nd (L) of ref. 1 give the fracture

stress for a finite-width center-crack plate, For an infinite olate, these

may be rawritten and differentiated as

f(a,) = 02 [1+cy J-_o}"" (a1)
-
£(ag) = of(ag) * (1 +Cufug )™ * o/ a0 (42)
vhere C, 1is an empirical narameter having units (L’B) .

T. Orange (1%69). - Equation (2) of ref. 2 gives the fracture stre:s

Jor a finite-width center-crack »late. Tor an infinite nlate, this reduces to

£lay) = K,° [ﬂac + (l’.u/a'u)z]-l (43)
f1(ag) = =f(ap) [30 + Kuz/ﬂﬂu?] -1 (AL)

where X, is an emnirical fracture toughness parameter having units (FL'3/?).

C. Feddersen (1970). = For an infinite nlate, ecns. () and (10) of

rel. 3 reduce to

Jval\? 2
fag) = (ryse [ - _lz_;_;’f'f(?‘rn_a) ‘o] (AS)
R 1@ -1
o e -f(ag)| 2L [Ee )| 20
(ag) (aq [eﬂ((l},) 2:' (A6)

for ag<(9/LMM)( Kc/U"y,)E and eq. (7) to

flag) = Ko2/Tag (A7)

f'(ag) = -f(ay)/a, (A2)
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for a2 {5/Lm !(c/d},\z, whers ys is the material's yield strength

and ¥, is an emoirical fracture toughness sarameter,

J. Yevman (1972). = Equation (12) of ref. L for a finite-width center-

crack nlate can be rewritten and dilferentiated as

2 m Ke | =2
f - K, | Y7 Ta, /M) - (A9)
(a')) f[J a, sec/ n,/ﬂ ‘I———EF‘;]
27‘: !
a rag 1/ ~a =
a) [1 0 2 (R 7ag seel G« 1A &
f'(ag) = = W T T Er (A10
a, Taq SUC(T) » m 7:
which, for an infinite plate, reduce to
fla,) = Kfz Jﬂnc + mKr/Uu:l',‘ (A11)
£1(ag) = =f(ao) {7/a, [J;._o . m'(r/d'u]'l (A12)

vtere K¢ is an emoirical fracture toughness parameter and m is a “imen-
sionlecs emnirical coefficient which is not greater than unity. !ote that

if we let m*l and Ke= O'Uf'f?/cm » @a. (A1ll) reduces to eca. (Al).

G. Bockrath (1972). - Fquation (13) of ref. 5 for a center-crack olate

i3 limited to Ay<€ 0.1, which anproximates an irfinite plate. Thus

2
flag) = ¥pe’ (ag)” Tow (413
£r(ay) ® = 2= f(an)/a (AL:)
° 24w © =

where w 1is a dimensionless empirical coelficient and Kp, is an empirical

parameter having irrational units of (?Lw).
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TASL™ I, = PSZUDOTEST DATA FOR EYPOTHETICAL MATFRIAL TMOBTATILM
AND FTTTED RMPIRICAL PARAMETERS

Annealed Conditicn; 7, = 150

r_ B e e .
; M= 00 | Ve f,B r Welhd !
SRR —. D : : {

8 ! Ac - 0 i A, | T | A e ,

2,10  0,0000 112,56 |0,0071 112,12 | 0.06k5 112,00 |
21 L2008 | 93.25 1 1939 92.75 . JAT97 | 91.%
32, .3008 @ £3,70 ' .2773| B2.71 ' .2313 680,08 |
Ll Lokl 77.0? | 03529 . 75..3 | .2692 71,29 |
o5 .5036 .36 | L1371 65,98 ' 2901  6L.26 |
20 °97 ' f: P2 | .h°96' 61.79 . .2984 « 52,8L

(e L.3 55 Tw :

% T ] "OF coxPUTED

IS o Al T TR R T iR n,32

o= Rt N TR Been R S v

i Ty 165.7 172.8 155.6

o - 0.8550 | 0,EL97 0.7900 |

SERUSS B ——— R e . 4 . 4

Aged Condition; 7, = 200

1] = = Gh W= L€
a0 Ae ¥ Ve Ae |+ o & ¢
- —-‘-M-&—‘--ﬂ..._..x ‘ T o .r.‘ s ree——
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& .201, 100.cF | .20 100 07 | .2013 !1C0.0S
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2.0

_12. + ..‘.9.3!‘6 | 23, g5 ) .{:56@ | 22.87 | .57€0 | 19.60

- En ! . g 1 on_.‘-_.__ "\ e T m

& o) RS | N.h T CC T.P v f f D S
Ko | 63,80 66.57 | 6,36

& | ok | 1R : 1.310
PO T s T W R
B 0.7266 | 0.7378 } 0.7169 |
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Strain Energy Release Rate, G,
Crack Extension Resistance, G

G- = fen(A)

" A
—=4

[ a,
Crack Length, a

a) GOeneral representation of R-curve instability conerpt.

Locus of
instability

points —\

-

Strain Energy Release Rate, G,
Crack Extension Resistance, G-

28 A b .8 1.0
Relative Crack Length, A

b) R-curve instability for a wide range of initial crack lengths.

Figure 1. - R-curve instability concepts.
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AGED; @, = 200
E'Gy = 27& arctan (10A)

ANNEALED; ), = 150

E'Gy = 8,000 J10A - A?

1 L J

.2 L 6 .8 1.0

Crack Extension, A

Figure 3. - R-curves for hypothetical material Unobtainium.



Fracture Stress,
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£ Rl Kuhn SEFA, eq. (A1)
110} /_.ﬂ/ — — - Orange SEFA, eq. (A3)
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/ \ -———- Bockrath SEFA, eq. (A13)
100+ ' / 0 Pseudodata

8ot //u

70} ~..
/:
fﬂ- %
%, i
. /fn//
&0 i !....I.I.
o=,
o~
50 e —
0 .2 b o6 .8 1.0

Initial Crack Half-Length, ag

a) Annealed condition, gy, = 150 .
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Figure L. - Residual strength of hypotheticsl material Unobtainium, infinite-width series; various semiempirical

fracture analyses (SEFA) fit to pseudotest data.
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