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INTRODUCTION

This paper examines the relationships between several semiempirical
1 .

j fracture analyses and the R-curve concept of fracture mechanics. 	 These

relationships may explain why a semiempirical fracture analysis will yield

good results with one set of data and poor results with another. They may
v

also indicate which analyses deserve further consideration.

Over the past decade a number of semiempirical fracture analyses have

been presented (refs. 1-5). These analyses all attempt to correlate failure

stresses for precracked tension specimens with initial crack length over a

range of crack lengths. The correlations involve the determination of one

(refs. 1-3) or two (refs. Ii,5) empirical parameters from test data. The

parameters are treated as material properties :;hick are independent of the

specimen and crack ccn.i_;uration but which are functions of specimen thick-

ness and such variables as heat treatment and test temoerature. The anal-;-

ses do not always provide good correlations using data sets other than those

chosen by the original authors. To date these analyses have only been

formulated for and applied to test specimen configurations. 'Thus their

ap plicability to the design of complex structural configurations is uncertain

The progressive development of the R-curve concept has been reviewed

in ref. 6. The concept postulates that, for a given material and thick-

ness, there is a unique relationship between the amount of stable crack

growth under rising load and the crack-tip stress intensity factor. This

relationship is called the crack-extension resistance curve, or R-curve, and

represents the response of the material in the vicinity of the crack tip to
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externally imposed loading. If the R-curve is known, both failure load and

critical crack length can be predicted (as functions of initial crack length)

for any specimen or structural configuration for which an appropriate stress

intensity analysis is available. Thus the R-curve concept appears to be a

more useful method than any of the semiempirical analyses.

If the R-curve for a given material and thickness is available, one can

calculate fracture stress as a function of original crack length for any

test specimen configuration. The converse should also be true. That is, if

a relationship between fracture stress and original crack length is avail-

able, one should be able to calculate the corresponding R-curve. This

observation was the impetus for the present study, which was undertaken to

test the following hypotheses:

1) For each semiempirical fracture analysis (SEFA) there is an equiva-

lent R-curve (ERC) whose magnitude and shape are determined by the SEFA

formulation and its empirical parameters. The ERC is equivalent in that it

predicts exactly the same relationship between fracture stress and original

crack length as the SEFA.

2) A SEFA will correlate residual strength data (fracture stress against

original crack length) closely if its SRC closely matches the actual 2-curve

of the material in question, and will correlate poorly if the match is poor.

This paper first reviews some characteristics of the R-curve concept

when applied to finite-width specimens. Next the conditions for equivalence

between a semiempirical analysis and an R-curve are derived. A hypothetical

material is emoloyed to study the relationship between R-curves and semiem-

pirical analyses. Finally, equivalent R-curves are developed for real

materials using data from the literature.
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SDIBOLS

a	 Length of single-tip crack or half-length of double-tip crack,
equals ao + p

E'	 Effective modulus, equals E for plane stress or E/(1- y2 ) for
Mane strain, i•rhere E is Young's modulus and 0 is Poiason's ratio

G	 Strain energy release rate.i

G Crack extension resistance

Gc Strain e nergy release rate or crack extension resistance at instabilit-,

Ki Opening-mode stress intensity factor

r. -umber of crack tips (one or tin)

T. Specimen i•ridth

Y Stress intensity calibration factor,	 KI/O*fa , a dimensionless
'unction of

U 9e:sitivity factor, ea.	 (1)

A ?affective crack extension (sum of ohysi.cal crack extension plus
a clastic zone correction)

T lclati,ve crack length, 	 na/h.'

u Stress normal to crack

Uu Ulti^ate tensile strength

'is Yield strength

Subscripts:

C at critical or instability condition

0 original value prior to loading

R-MIRVE CONCEPT

The B-curve concept and its historical development are reviewed in ref.

E. A general representation of the concept is shows: in fisure la. The

at	 strain energy release rate is riven b• • the expression

GA = Y2U 2a/E'
t

and represents the driving force (per unit thickness) tending to cause crack

propagation. The ^aterial l s resistance to crack pro pagation, G1 , is a

T ! ( function of crack extension, A . At the critical stress G the driving

force curve and the 3-curve are tangent. Beyond the point of tangency the

driving force increases faster with crack length than does the material's

resistance. This instability condition re presents the failure of the body.

i
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The point of tangency defines the fracture toughness, G o , and the critical

crack length, 2ac	For an infinite body, Y is a constant and the driving
i(

force curve is a straight line Thus both the fracture toughness, G c , and

the amount of crack extension at instability, A c , increase with increasing

original crack length.
9	 a

M1 

ii
For cracks in simple finite bodies and test soecimens, the trends are

somewhat di°ferent. If we define a dimensionless sensitivity factor as

dY

«	 Y d^	 (1)

then, the crack driving force curve and its slope (for constant stress) are

r	
EIGA = Y2 o' 2a	

z

d'A =
El
	 Y2J2(1 + 20(dB 

	 )

For convenience, the crack extension resistance curve and its slope are

smitten here as

F f

9( A) e EIGR

g I ( A)	 E I dGp/dA

At the instability point, GA =GR and dGA/da=dGR/d A (see figure la). If

g( A ) and g I ( b,) are mathematically describable, the instability ?oint

is determined by the simultaneous solution of two equations,

F 1 r;c = Yc O_.c ( ap +.Ac) = g ( A C )	 (2)

dGA

' I da a	 Y^
c	

(7c (1 + 2L(c )	 gt(Ap)	 (3)

The coefficients Y and 0( are usually ex pressed as trigonometric or

polynomial functions of the relative crack length T . As a result, a

closed-form simultaneous solution is seldom possible, and numerical

methods must be used to solve for A c . Then G. = g( A c )/E I and the

fracture stress c is determined from eq. (2).
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As the initial crack length is increased from zero, both G c and Ac

increase. Eowever, due to the fact that dY/dA continually increases with

r

;\ , both Gc and A C reach maximum values which depend on the specimen

.width, cr , and the forme of both the driving force curve and the R-curve.

As ao is increased still further, both Gc and Ac begin to decrease.

This behavior is shown schematically in figure lb where instability curves

are shown; for a wide range of initial crack lengths. The locus of all

instability points is shown by the dotted line. From figure lb it is also

apparent that there are pairs of original crack lengths, say (ao)l = 0.2 W

and (ao )2 z 0.7 W , which will have the same critical crack extension,

( A c)1,2 , and fracture toughness, (G,)1,2 . From equation (2), the

fracture stresses for these original crack lengths are related by

(^r)2	 (Yc)1	 (ao ) 1 + (Ac)1,2

( Orc)1	 (Yc)2 V ( ao)2 + (Ac)1,2

Thus there is a relationship between fracture stresses for short cracks and

long cracks which is implicit in the R-curve concept, and this relationship

is a function of the specimen type and the shape of the R-curve.

It should be noted that, in this paper, A is the effective crack

extension. It is the sum of the physical crack extension plus an adjustment

to account for the effect of crack-tip plasticity.

EQUriALENCY ANALYSIS
w

In the preceding section it was shown that, if a mathematical formu-

lation of the R-curve is available, fracture stress can be determined as a
	

'a

function of original crack length. In this section it will be shown that,

M
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if an equation for fracture stress as a function of original crack length

is available, the equivalent 3-curve can be determined, In this paper,

only the case where specimen width ?1 is constant is considered. Parallel

derivations for the cases where a o is constant and where a cA .,? is

constant are given in ref. 7, which contains a more complete treatment o:

this same subject.

Differentiating
i

both sides of eq, (2) vith respect to	 Ac

EOc ye	
C c2 20(q [^ + 1] +Me Yc2(ao+[^)az-( G'a	 +c

and substituting ea. (3), results in

0	 0, 2 [(1+2o(c)
+	 (ao+A^ (Lc 2)	 (l^)ddd4 c J e

Assume that there is a function	 f such that we can define

f (ap)	 r 6,02	 1
f' (ao)	 E d( 0-c2 )/dao 	1

} for	 W - constant

Then eq. (4) becomes

dao

0 a dli [(1 + 2N c ) f(ao) + (ao + Ac) fI(ao)]c

and since dao/d A c )1 0 we have

0 - (1 + 2o(c) f(ao) + ( ac + Ac) f`(ao)	 (5)
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For cracks in infinite bodies, 0(° 0 and eq. (5) becomes

Ac	
f(ao) _ ao	

(6)
-fI(so)

which, after substituting the infinite-body formulations for f(ao) and

f l (ao) from the APPENDIX, gives A c for any ao in terms of the empirical

parameters. Then terms can be rearranged to give ao as a function of Ac

s3Y

ao - F( Ad

Substituting this function into eq. (2) yields

E'Gc = Yc2 [F(A C ) + 
Ac] • f [F(Ac)]

	
(7)

Since eq. (6) gives Ac for any value of ao , eq. (7) must give E'G c for

any and all values of A c , which is a definition of the R-curve. Thus,

after writing the function F in terms of the empirical parameters, it is

appropriate to write eq. (7) in the general terms of WGR and A , rather

than E'Gc and A c . The end result is an explicit ERC formulation in

terms of the empirical parameters.

To determine the ERC for cracks in finite bodies, an indirect method is

required. First, the finite-body formulations for f(ao) and f l (ao) from

the AP'FNMIX are substituted into eq. (5). Because of the more comilicated

nature of the finite-body formulations, it is unlikely that an explicit

function F(A c) will be obtainable. But for any given value of A c , ao

is a root of eq. (5) which may be found by standard numerical methods and

which represents a single value of F( Ac) . Substituting this value into

eq. (7) yields a discrete point on the ERG. By incrementing A c and repeat-

ing the calculation, the ERC can be determined point by point.

r.
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ANALYTICAL COhL°ARTSONS

Dimensionless Equivalent R-Curves

It is helpful and more efficient to first compare semiempirical fracture

analyses ( c3F TA) and equivalent R-curves (EEC) on an analytical basis. This

is most easil;,, done using the problem of a crack in an infinite plate as a

baseline.

The infinite-body ERC for Kuhn's analysis (ref. 1) is obtained using the

method described in the paragraph containing egns. (6) and (7). Substituting

eons. (Al) and (r"•2) from the A'PEV7IX into eons. (6) and (7) with yc2= ,r

Melds

A c = Y ao / Cm	 (3a)

F'GR = 1 
+ CM 2A

(9a

n

	

	 where Cm is an empirical parameter having units (L -1^5 ). Equation (9a) is

plotted in dimensionless form in figure 2a. This curve obviously resembles

an R-curve and might be expected to closely match some (but not all

experimental R-curves.

c	 The infinite-body ERG for Orange's analysis (ref. 2) is obtained in the

k	 same manner. Using eons. (A3) and (AL) results in

0c	 ( /^u)2/^ 	 (8b)

E'GR	 Kul	 (9b)t

i'	 where Ku is an empirical parameter having units (FL-3/2 ). These equations

define a single point. In order to relate this single point to the R-carve

concept, the point may be thought of as the corner of a step-function, and

that ste p-function might in turn be considered as a very sim ple approximation

of an actual R-curve.

.a
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The infinite-body MC for Feddersen's analysis (ref. 3) is ob&aired by

^;

substituting eqns. (A5) and (A6) into eqns. (6) and (7) as before, yielding
f

E' Kc
pc	 o	 ao	 (so)(

W7.) 
2

w
8R 

	 2

f	 ((ll	 (jr l	 (
+	 +	 ^2C,3!\Kys) 3[9	 /2G]2 7[9 ' `1

(9c)S iF	 _	 K^	 1 +
L 9 1

K,

	 cC	 J

for	 a o s (9/4 7)(Kc/ ys ) 2 where	 K c	 is an em pirical parameter having units

(FL-3/2 ).	 equation (8c) requires that critical crack ertens_on decrease as

original crack length increases from zero. 	 This is in direct opposition to

the R-curve concept and is not supported by any data known to this author.

Equation (9c), which is plotted in figure 2b, does not look at all like an

1-curve but does satisfy the requirements of coincidence and tangency. 	 For

r ao= 0 , the point of tangency is the right-hand terminus of the curve.	 As
s

so	 increases; the point of tangency moves downward and leftward along the

S

curve.	 Finally, at	 ao=( 9/4+rr)(Kp/6s )2, the point of tangency is the
a

left-hand terminus.

The infinite-body ER IC for Newman's analysis (ref. 4) is obtained by

substituting eqns. (All) and (Al2) into eqns. 	 (6) and (7) as before, yielding
A

m Kf
Ac

	 -

^u 7T
(8d)

4 p-u2 p
EI R	 =	

m2
// + 

(Gu

/Kf)2Q
(9d)

Y where	 Kf	 is an empirical parameter having units (FL-3/2 ) and	 m	 is a

dimensionless empirical coefficient which is not greater than unity.	 Equa-

tion (9d) is plotted in dimensionless form in figure 2a.	 This ERC is

asymptotic to	 E I CR - K 2 , and the coefficient	 m determines the rapidity of the
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approach. As m decreases from unity to near-zero, the ERG develops a

progressively sharper knee. The flexibility of this two-parameter ERG

should allow it to match R-curves for a wide range of real materials.

The infinite-body ERG for Bockrath's analysis (ref. 5) is obtained by	 i
i

substituting eons. (A13) and (A14) into eqns. (6) and (7) as before,

resulting in

where w is a dimensionless empirical coefficient and KTc is an empirical

parameter having irrational units (FI `). Equation (9c) is plotted in figure

2d. This :cO has no asymptote, and its slope is infinite at 0=0 . Except

for notation, it is identical to the F.-curve model proposed by Broek as

equation (10) of ref. (F). Broek's model was derived using R-curve concepts

and the experimental observation that, for small cracks in wide specimens, the

critical crack length is often proportional to the initial crack length.

At this point we can state the following. For each SEFA, in its

infinite-body form at lerst, there is indeed an ERG. For four of the

analyses considered, the ERG resembles or approximates an actual R-curve.

The ERG for Feddersen's analysis does not resemble an R-curve and will not

be considered further.

Comparisons Using Synthetic Data

Hypothesis (2) of the INTRODUCTION postulates that a SEFA will

correlate residual strength data closely if its MC closely matches the
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actual R-curve and will correlate poorly if the match is poor. 	 To test this
• s,

hypothesis we would need, as a minimum, both residual strength data (for

several specimen sizes having a wide range of crack lengths) and R-curve

data for two materials having significantly different R-curve shapes.	 Since

no such body of data is known to this author, it was necessary to synthesize
i

one.	 This was done by formulating two R-curve equations using the following

guidelines,	 First, to avoid exact fits, neither equation should be mathema-

tically equivalent to one of the ERC formulations previously derived.	 Second,

one R-curve should have a definite knee, the other should be gently curving.

Using these equations, synthetic test data can be generated b., instability

analysis for any specimen size and type.	 An advantage of this approach is

the total absence of data scatter.

Unobtainium is assumed to be a heat-treatable material.	 Since the

material is imaginary, the units will be left to the reader's imagination.

In the annealed condition, its ultimate tensile strength is 150 and its

-curve is given by

E'GR	x,000	 lOp - A2	 (10a)

In the aged condition, its ultimate tensile strength is 200 and its R-curve

is given by

50ir 00E'er	=	
arctan (10A)	 (10b)

These are shown in figure 3.	 The coefficients in eqns. (10) were selacted

so that the significant features of both curves would lie within the ranges

0<- E' CR S 25,600	 and	 05A= 1

The pseudotest data points are calculated using conventional instability

analysis as follows.	 Dividing eq. (2) by eq. (3) and rearranging terms gives
'a

g(Ac)	 ao +Ac



Y The functions	 g(Ac )	 and	 g i (A.)	 are given by one of eqns. (10) and its

derivative.	 The factor	 o( c	 is determined using ea. (1) and the secant

stress intensity calibration factor for uniformly-loaded center-crack speci-

e,s; wens (ref. 9).	 Then, for prescribed values of 	 ao	 and	 ;^7 , Ac	 is the least

positive root of eq. (11). 	 This root can be found by any of several numeri-

cal methods.	 "ext,	 Ac	 is substituted back into eq. (10) to calculate	 E I O c .

Finally, the fracture stress 	 C	 is obtained from ea. (2).

The "specimens" that are studied here were sized as fellows.	 For the

infinite-width pseudotests, the initial crack half-lengths 	 ao	 were chosen

4 (by trial and error) to give 	 A c	values well distributed over the entire

s% ii-curve.	 For the finite-width pseudotests, the specimen widths were fixed

at G times (first series) and 4 times (second series) the largest initial

crack half-length in the infinite-width series. 	 The calculated values of

stress and crack extension at instability are given in Table i.	 The values

of stress and initial crack length were then used as inputs to the various

-12- f
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seni.empirical analyses.

The empirical parameters were determined as follows. Kuhn t s parameter

Cm was calculated for each specimen in the infinite-width series using eq.

(Al). The simple average of seven values, Cm , is given in Table I. The

bar is used here to denote the average value for one data set. Orange's

parameter, Ku, , was also calculated for each specimen in the infinite-width

series using ea. (A3)• The average value Ku given in Table I is a weighted
x

t	 average determined in the same manner as eq. (6) of ref. 2. Nowman's para-

smeters Kf and m were determined using the least-squares procedure given

a	 in Appendix C of ref. h. Bockratb I s parameters KTc and w were deter-

mined by a least-squares fit of ea. (A13). Since 3ockrath's method is

e

-A
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restricted to cases where the crack area is less than 10 percent of the

gross area, specimens having a 0 71-1/20 were excluded from the least-

squares fit.

The equivalent R-curves were calculated as follmrs. ?or the infinite-

width series, the empirical parameters from Table I were simply substituted

into the appropriate one of eqns. (9)• For the finite -width series, the

indirect method ( described in the paragraph containing ea. (;)) was used.

; ca;!'ically, eqns. ( A9) and (a10) or eqns. (A13) and (Alts) were used along

,•rith cons. (5) and (7) and the appropriate empirical parameters.

The residual strength of the infinite -width Unobtainium is shown in

figure L. For the annealed condition, Bockrath's semiempirical fracture

analysis (SUA) provides a nearly perfect fit to the pseudodata. When

ranked according to the sum of the squares of deviations, Newman's SEFA,

Kuhn's, and Orange's follow in that order. For the aged condition, the

rankinf, is quite different. 'Jere "'ewman 's SEFA provides a nearly perfect

fit, vith Orange ' s, Kuhn s, and Bockrath ' s following in that order. The

equivalent R-curves (rR;) are shorn in figure 5. For the annealed condition,

The Bockrath ERG matches the actual R-curve almost perfectly. men ranked

according to the integral of the seuare of the deviation, the Newman ERC,

the Kuhn ERG, and the Orange ERC follow in that order. Oor the aged condi-

tion, the JTewman LC is the best match to the actual R-curve. The Bockrath

MG, the Kuhn ERG, and the Orange E 'ZC follow in that order. The Orange ERC,

although crude, is a better approximation for the aged material than for

the annralcd.

Since the Orange FRC is rather crude and since Kuhn ' s SEFA is equivalent

to a special case of NTewman ' s (see A?7F1d0IX, following eq. (Al2)), these two

I

I'.

r
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were not considered further. The Newman and Bockrath)9fl0W)GW MAjMte-

width center-crack series are shown in figures 6 and 7. Here the same

trends are seen as in the infinite-width series. The Bockratb ERC is

the better match for the annealed condition, while the Newman ERC is the

better match for the aged condition. Note in Table I that the empirical

parameters KTc , to , Kf , and m all vary slightly with specimen width.

The E?Cs shown in figures 5-7 are also distinctly different for different

specimen widths, but the differences are slight.

The results of this exercise using synthetic data can be summarized as

follows. Hypothesis (2) of the INTRODUCTION postulates that an SE.'A will

correlate residual strength, data closely if its ERC closely matches the

actual R-curve and will correlate poorly it the match is poor. Strictly

speaking, this hypothesis cannot be proven, since the ERC magnitude and

shape depend on empirical parameters which must be obtained from residual

strength data. However, the converse appears to be true. That is, if a

SEFA correlates residual strength data closely, its ERC will closely match

the actual R-curve. Furthermore it is apparent that if, for a given

material and thickness, the R-curve is unique the various empirical para-

meters are not, and vice versa.

COMPARISONS USING ACTUAL TEST DATA

As mentioned earlier, experimental studies containing both residual

strength and actual R-curve data are relatively few in number. Nevertheless,

enough were found in the literature to allow some comparisons to be made

using actual data obtained from real materials.
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NASA Data for 2014-T6 Aluminum Alloy

In referenco 10 this author presented test data for 2014-T6 aluminum

alloy sneciniens 1.5 mm (0.06 in) thick, tested at 77 K (-3 200F ). i'igure 71;

of that reference presented typical curves of crack growth against applied

stress for notches of six initial lengths in 30-cm (12-in) wide specimens.

T:ose curves were developed by Plotting individual crack growth data points

for replicate specimens, then draiiing a smooth curve to give a good visual

average. For the present re port, those data were re-analyzed. The crack

extension resistance and effective crack length were computed for each data

point as

E 1• Ga	 627aeff secant (/TaeffPVO

aeCf = a + (EIGR/2r6rys)

respectively. Since these equations are transcendental, an Iterative soltt-

t•ion was required. A total of 176 data points were obtained from 17 speci-

mens with initial crack lengths (2ao) ranging from 3 mm to 100 mm (1/8 to

4 in). The empirical parameters for the Newman and Bockrath SEFAs were

determined in the manner described earlier. As before, only specimens with

ao<17/20 were included in the Bockrath analysis. The fitted empirical

parameters are listed in Table II.

Residual strength is shown in figure 8a. Newman's SETA gives a good

fit over the entire rane. Bockrath's SETA fits the short-crack data fairly

well, but the fit would be poor if extra polated to longer cracks. The

R-curve data points and the equivalent R-curves are shown in figure Ob.

Both ERCs fit the data rather well, with Bockrath's somewhat better at small

r

s

i
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crack extensions and Newman's somewhat better for larger extensions. These 	 i

results suggest that the ERC concept applies to real data as well as to

synthesized data.

Hoeing Data for 2219-T87 Aluminum Alloy

Earlier it was shown using synthetic data that, if the actual R-curve

is unicue, one obtains slightly different values of the empirical parameters

from data sets for specimens having different widths. Data from the Boeing

Co. for 2219-T87 aluminum alloy specimens have the same characteristics.

Thr:se data origi.nall- appeared in an internal report (EichonberL-er, T. :•I.:

7racture '? ,dsistanec Data Summary, Report D2-2091:7, Boeing Airplane Co.,

June 1962), but are also tabulated in reference 1. Center-crack specimens

9.5 mr (0.10 in) thick were tested. The data for sonci.mens 60 and 120 cm

(24 .ann V in) wilt ar p: used ';ere 1, ecause they cover a !$de range of

initial crack lengths.

Bockrath's analysis was not applied since only one of the wider speci-

mens had ao!!1W/20 . Newman!s parameters were determined separately ror

each specimen width, and somewhat different values were obtained as can be

seen in Table ;T. The residual strength curves fit the data quite well, as

can be seen in figure 9a, with the average error being less than 3 1g percent.

Using a method that is outside the scope of this paper, it was found that

the actual 11-curve for this material could be estimated by

E : GR = 8.07x1015 e-55!'

where E I G R is in N2/m3 and p is in cm , or by	 ;

E f GR = 11.2x109 00.554

.. ,,	 ...	 „w..	 _...
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where E I GR is in lb2/in3 and A is in inches. Residual strengths calculated

from this equation using conventional instability analysis are also shown in

figure 9a. The agreement is very slightly better than for Newman's SEFA, the
p

average error being leas than 3 percent. The estimated R-curve and the

Newman ERCs are shown in figure 9b, and as expected the differences are small.

Although these data tend to support the concept of a unique R-curve, the

differences are so small as to be within the bounds of probable data scatter.

CONCLUDING RRMMS

The results of this study lead to the following conclusions:

x

4

1. - For each semiempirical fracture analysis (SEFA) there is an equi-

valent R-curve (ERC) whose magnitude and shape are determined by the SEFA

formulation and its empirical parameters. The ERC is equivalent in that it

predicts exactly the same relationship between fracture stress and initial

crack length (residual strength) as the SEFA.

2. - If, for a given set of data, a SEFA correlates residual strength

closely, its ERC will closely approximate the effective R-curve of the

test material.

3. - Of the five SEFAs examined, Newman's (ref. h) appears to be the

most generally useful. Bockrath t s S7.FA (ref. 5), which is only formulated

for quasi-infinite bodies, is too restrictive for wides pread use. Three

(refs. 1-3) do not appear to warrant further consideration.

4. - If the effective R-curve is indeed unique, then the various

empirical parameters cannot be constant, and vice versa.n i

c

3

l

i
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The analytical comparisons made herein indicate that the variations in

Newman's parameters are small enough that the differences may well be within

the range of normal data scatter for real materials. Thus a very carefully

planned and conducted experiment would be required to determine which concept

(R-curve or SEFA) is more appropriate.

5
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P. Kuhn (1968). - Equations (3) and (4) of ref. 1 give the fracture

stress for a finite-width center-crack plate. For an infinite plate, those

may he riwrittcn and differentiated as

f ( a°)	 Gu2 1
1 + Cm 1 o] -2	 (Al)

ft (ao) 	 -f(ao) - (1 + Om ao )-1	 C. 	 ao	 (A2)

where Cm is an empirical parameter having units (L ^ .
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T. Orange (1969). - Equation (8) of ref. 2 gives the fracture stress

'or a finite-width center-crack olato. For an infinite slate, this reduces to

f( ao ) - KU  [!a° + (Ku/ Gu ), ^ -1	 (A3)

fl(ao) = -f(ao) [ so + Ku2/ffGu 2 ^ -1	 (A4)

where Ku is an empirical fracture toughness parameter having units (FL"3/2).

C. Feddersen (1970). - For an infinite plate, eons. (6) and (10) of

ref. 3 reduce to

f (a° ) = G s2 [	
^7

1 - 1i11 ( 

K

Gysl2 

a J2
9 L
	 \r./	 °

f l (ao) = -f(a) [27 ( He 
)2	 a°	 1

for ac <_(9/411 ( Kc/Gys) 2 and •q. (7) to

f ( ao)	 Kc2/'Tao

(A5)

(A6)

(A7)

(A3)
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° L:uhn (19/',(2). - Fquations (3) and (!,) of ref. 1 give the fracture

str%s^ ° ,,)r a finite-width center-crack date. -or an infinite alate, these

•	 sra:,• be ri`-rrittin and differentia*ed as

f(a,,) _ a-u, (1 + Cm ^]

^'(ao}	 f(ac,) ' (1 + mVac ) -1	
C.,'/ ao	 (1,2)

i^
Where C.j is an empirical ►?arameter ha y ing units (L )

T. ')rar:,cr,e (1960). - Ekluation (3) of ref. 2 gives the frac ture stre =

^r a finite-Widt}, center-crack '_nto. ;or an infinite plate, this reduces tc

f ' ao)	 Ku' [7fa.  ; (Fu/ emu) 2 -1

	

 J	 (A3 )

f , (ao ) - -f(ao) [a0 + KL 2
/nOL 2 ,

-1	
(A_.)

whrre Ku is an emnir.ral f*acture toughness parameter havini, units M-3 /2 ).

C. F p!dd orsen (1970). - For an infinite olate, ecne. (6) and (1C) of

ref. 3 r^duce+ to

	

2 1 - lift (^ys )? a,	 1
27 r„

f' (^o)	 -f(ao^ 2' (
',: c 2 _ a,	 -1	

(Ah)
OTT 1 6 Y	 2

for a,) <, 9/L11 ( Kc/Oys) 2 and sq. (7) to

f( a:,) = K c 2/i ao 	 (A7)

f'(ao )	 -f(a0)/a,,	 (A°)

i



for ac,? (9/1,'77( Kc /c7-ys ) 	where O^vs is the material's yield atrenFth

and K,, is an em pirical fracture toughness -parameter.	 I

J. T.'rman (1472). - Equation ( 12) of ref. 14 for a finite-width center-

crack nlate can be rewritten and diffo-rentiated as

2'
-2f{ a )	 K f 	nap sec(^eo /1nt) '	 ^ ^-	 (A9)

1- c u

2 ^.	 r

r ao	 'ao	 -ao	 2 a-
f(a,)
 I1	 -Tr,-tAn' Tr- j i,a^ sec(-hr) +

f'(ao) - -	 ao	 1	 r:Y^	
(;,lo

a	 173 - seek ^^ )	 i -^-
V U

o	 `
^ 

ch., for in infinite )late, reduce to

ft' a ) - K f2 [v rl7A 0 + irK f/v`u 1-1
J '' 11)

f'(ao) - -V a.) b7/ao C ^7/ao + muf/dru ] -1 	(Al2)

wore Kf is an emp irical fracture toughness parameter an(i m is A aiTen-

sionles4 emnirical coefficient ,ohich is not greator than unity. tote that

:f we let m=1 and Kr= 6UF7r-/C m , eq. (All) reduces to ea. (Al).

G. Aockrath (1972). - 7quatior, (13) of ref. 5 for a center-crack nlatF

L3 14nited to 11 0 ' ^.1 , wHch an,proximates an infinite :late. Thus

f(ao) - YTc2 (ao )- 7+a;	 (.413:

 
2
=—+w 

f(a., )/a o 	 ( A ^1,)

.1

where w is a dimrns onless emnirical coefficient and KTc is an empirical

narameter having irrational units of (,?L` ").	 4
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ac

Crack Length, a

a) Genrral re presentation of R-curve instability ccne,pt.

.14	 .6	 .P	 1.0

Relative Crack Length. X

	b) R-curve instability for a ul de range of initial cncck lengths 	 I

Figure 1. - R-curve instability concepts.
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