
3 1176001340182 . NASA Technical Memorandum 78810

NASA-TM-78810 19790012168

! METASTABLESOUNDSPEEDIN GAS-LIQUID MIXTURES
:i

Joseph W. Bursik, Rensselaer Polytechnic Institute

and

Robert M. Hall NASALangley Research Center _,,,_II;'T,,,2__,,_._4

€

March 1979

, _. _'!,r.R

!,_f\!',:_!]_!t '/ i:: " :-" I'; ; .....

NationalAeronautics and
SpaceAdmioistration

LangleyResearchCenter
Hampton, Virginia 23665





METASTABLE SOUND SPEED IN GAS-LIQUID MIXTURES

Joseph W. Bursik* and Robert M. Hall

Langley Research Center

SUMMARY

Acoustic measurements in air-water mixtures at a fixed temperature

and pressure in which void fraction is varied yield a

sound speed curve as a function of void fraction exhibiting

a minimum in the vicinity of a void fraction of one half. A metastable

theory in which the entropies of the mixture, gas phase, and liquid phase

are individually held constant yields a corresponding curve whose mini-

mum sound speed is about 20% higher than the measured value. When an

ad hoc modification is made which replaces isentropic by isothermal

propagation the new theoretical minimum region is brought into agree-

ment with experiment ; however, the boundary values of the sound speed

at void fractions of zero and unity are no longer the usual isentropic

sound speeds for pure water and pure air. In this paper a new metastable

theory is developed. By imposing only constant mixture entropy and phase compo-

sition during propagation, the new theory successfully predicts both the minimum

region and the end points. The theory produces a heat capacity ratio for the

mixture which self-adjusts to both normal values for the pure phases and

to values near unity for a broad range of void fraction values about the

minimum in the curve. The new theory is extended to single-component pure

substances including para-hydrogen and nitrogen with emphasis on the latter.

*Associate Professor of Mechanical Engineering, Aeronautical Engineering,

and Mechanics, Rensselaer Polytechnic Institute, Troy, New York.



INTRODUCTION

A large transonic wind tunnel is under construction at the Langley

Research Center. This new National Transonic Facility (NTF) will use a

relatively novel concept to achieve high Reynolds numbers - liquid nitrogen

is injected directly into the nitrogen test gas and the resulting evaporation

of the liquid cools the test gas to cryogenic temperatures approaching

liquid-vapor saturation temperatures (see references 1-3). In support of

this new wind tunnel, studies have been undertaken at Langley to insure

that the low temperature behavior of the nitrogen test gas is sufficiently

understood to guarantee its usefulness for transonic aerodynamic testing

(see references 4 and 5).

The present study involves ,thecalculation of sound speed for a gas-liquid

mixture. In cryogenic tunnels such as the NTF, two-phase flow is always

present at the liquid nitrogen injection station, and at times may be desired

in the test section in the form of fog droplets for the purpose of flow

visualization or for seeding for laser velocimetry. While the gas-liquid

mixtures in cryogenic nitrogen tunnels are expected to involve mostly

gas - vapor mass fraction generally greater than 0.98 at the injection

station and close to 1.00 in areas of seeding - the general sound speed

literature used in this paper deals with mixtures of air-water and steam-

water that are mostly liquid. Nevertheless, the literature can be used

to develop the theory that will apply to cryogenic nitrogen tunnels. The

present paper will consider these water mixtures before addressing

gas-liquid nitrogen. All nitrogen calculations will use thermodynamic

properties from reference 6.
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SYMBOLS

a equilibrium, zero-frequency, two-phase, sound speed, m/seco

aI metastable, two-phase sound speed, defined by equation (32), m/sec

a2 metastable, ad-hoc, two-phase sound speed, defined by

equation (7), m/sec

a3 metastable, triply isentropic, two-phase sound speed,

defined by equation (4), m/sec

CV constant volume specific heat capacity, J/(kg-K)

Cp constant pressure specific heat capacity, J/(kS-K)

P pressure, N/m 2

s specific entropy, J/(kg-K)

r non-dimensional correlation parameter defined in equation (39)

R specific gas constant, J/(kg-K)

T temperature, K

v specific volume, m3/kg

x vapor mass fraction (quality)

x° value of quality for which (Ss/_T) x is zero

void fraction fraction of vapor volume to the total volume

y specific heat ratio (Cp/C V)

p density, kg/m 3

Subscripts

c pertaining to the critical point

G denoting gas (vapor) phase
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L denoting liquid phase

T denoting isothermal value



BACKGROUND

Propagation of sound in two-phase, gas_liquid systems has under_

gone extensive theoretical and experimental study. One of the earliest

expressions for this acoustic velocity comes from the so_called isen-

tropic, homogeneous equilibrium model (IHE) in which average equilibrium

properties are used in conjunction with the assumption of total phase

equilibrium to describe sound propagation when the two-phases are finely

interspersed in one another. In this paper, this velocity of sound is

denoted by a and it is computed only for nitrogen. Details of theo

a computation are omitted because, first, it is such a widely knowno

model and, second, the subsequent main thrust of the paper will deal

with metastable models. As usual, the square of a is taken as (SP/SP)sO

and this quantity is evaluated herein at equilibrium two-phase states

for nitrogen using a computer program generatedat the Langley Research

Center from reference 6.

One of the chief characteristics of a is associated with the
O

manner in which an isentrope crosses the phase boundary as it passes

from the one-phase region (liquidor vapor) into the two-phase region of

a P_ P property diagram where the saturated liquid and vapor curves

are distinct and separate (in contrast to a P, T plane of pro-

perties where the saturated liquid and vapor curves coalesce into a single

curve). In the P, p plane the isentrope crosses a phase boundary with

discontinuous slope; that is (SP/3p) has two values at a point on the
S

phase boundary. If this partial derivative is interpreted as the sound

speed, then, from a total equilibrium point of view, there are two values of the

sound speed at a point of the phase boundary. (As will be seen



later, it is possible to avoid having two sound speeds at a single point

of the phase boundaryby introducing metastable effects into the two-

phase propagation of sound. The two-phase, equilibrium (_P/SP)s is

then simply a thermodynamic partial derivative to which no further physi- o

cal attribute is assigned.) Furthermore, the formula for a will notO

yield the usual single-phase velocity of sound at either the liquid or

• are denoted by ao, Lthe vapor boundary. If the boundary values of a°

on the liquid side and ao,G on the vapor side and if the usual single-

phase sound speeds are denoted by aL and aG _ all in meters per

second - then this discontinuous boundary behavior for the IHE model

can be illustrated for nitrogen in the table that follows:

T SATURATED LIQUID LIMIT SATURATED VAPOR LIMIT

(K) 0NE-PHASE TWO-PHASE 0NE-PHASE TW0-PHASE

aL a aG ao,L o,G

80 894 3.75 177 163

100 613 16.8 183 167

120 338 49 176 139

The discontinuity is consistently weaker on the vapor side, with the

strongest discontinuity occurring on the saturated liquid side at a

temperature of 80 K where ao, L is an incredibly small 3.75 meters per

second. Normally, the boundarysound speed associated with the single-

phase side is the one recognized as the actual boundary acoustic velocity.
i
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For example, when using the saturation tables in reference 6, it is tacitly

understood that these boundary values are to be taken as thenormal single-

phase values. In the case of water, this discontinuity is discussed in

reference 7, and a° is plotted isothermally as a function of void fraction

in figure i of reference i8 and again sho_s liquid phase values close to

zero.

In addition to the (IHE) model, various non_equilibriummodelshave

also been developed. One of these introduces a non-equilibrium feature

by neglecting changes in phase composition during passage of the sound

wave. As with a , the basic sound speed expression used is
O

1/2
a =E-v2/(3v/ P)s] (i)

where

v = (l_x) vL + x vG (2)

)

with x being the vapor mass fraction (quality) and vL and vG the

liquid and vapor specific volumes. While both the (IHE) and non-equilibrium models

assume constant mixture entropy for the wave propagation, the latter model also

assumes constant liquid phase entropy as well as constant gas phase entropy; that
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is, s, sL, and sG are all individually constant during the passage of the

sound wave as is the quality. With these assumptions equation (2) is differ-

entiated into

s = (1 -. x) "_ s,L s,G

The partial derivatives on the right hand side of this equation are

respectively replaced by (-_VL2/aL2) and (- VG2/aG2), and the resulting

expression is substituted into equation (1) to give the metastable,

triply isentropic, (M, 3s) sound speed as

1/2
= v/{(l - x)(vL/aL )2 + X(VG/aG )2} (4)a3

Here, aL and aG are the isentropic, single-phase boundary values. This

equation is used by Karplus (reference 7), Wood (reference 8), and Dvornichenko

(reference 9) in a form that substitutes vapor void fraction for quality.

In reference i0, Wallis generalizes the isentropic phase constraints used _

in defining aL and aG to permit other acoustical vibrational constraints

such as isothermal phase propagation to be introduced into the theory of sound



propagation. When these Constraints are the same as in this section,

hisequation (2.46) is identical with equation (4) above, and his

equation (2.50), with the void fraction replacing the quality, is

identical with the equations derived in references 7-9.

The important features of this (M,3s) model are summarized below:

(1) In contrast to the (IHE) model, the acoustic velocity of the

(M,3s) model reduces to the usually measured single-phase velocities

for x = 0 and x = i. With a used to denote the sound speed
O _

associated with the (IHE) model, and with a3 used to denote (M,3s)

sound speed, the boundary value comparison in meters per second for the

two models using nitrogen at 100K gives

ao,L = 16.8 a3, L = 613

a = 167 = 183
0,G a3,G

(2) When sound speed is plotted against quality at constant

temperature and pressure using the (M,3s) model, the resulting curve

exhibits a minimum with the minimum sound speed being smaller than either

boundary value. For nitrogen at i00 K the minimum velocity of sound is

about 77 meters per second and occurs very close to the saturated liquid

_ boundary at a quality of about 0.049. (As will be shown later, the (IHE)

model predicts a monotonic curve,) Measured data for the two-component

air-water mixture also shows a similar minimum (reference 7 and reference

10,p. 266) and a similar pattern holds for measurements on a single_

component steam-water system as shown in reference ii.
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While qualitatively correct, the (M,3s) model overpredicts the mini-

mum sound speed in the air-water system of Wallis (.reference lO, figure 9.12)

by approximately 20%. In order to account for this discrepancy, Karplus

(reference 7) first transforms equation (4) to replace quality by void

fraction and then makes an ad hoc modification in the (M,3s) model by

replacing isentropic propagation in the phases by isothermal propagation;

that is, he permits heat transfer between the phases. Actually Karplus

did not concern himself with the liquid phase isothermal modification

2

because two further approximations, PL >> PG and DL a2 >> PGaG , enable him to

transform equation (4) into

where _ is the void fraction. In this form the question of

isentropic versus isothermal propagation for the individual

phases is not yet addressed; however, since all reference to

the liquid phase velocity of sound has been eliminated, no

isothermal substitution for isentropic propagation need be made for

the liquid. For atmospheric air at room temperature an ideal gas

substitution can be made for the gas phase speed of sound according to

2

aG = yRT if isentropic, or simply RT, if isothermal, Choice of the latter

then yields the following equation after using P = pRT,
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for an isothermally modified model (M,s,2T) for which a2 now represents

isothermal sound propagation in both phases even though the approximate

equation (6) only involves the gas phase sound speed. The single s

is retained in the classification notation on the assumption that

Karplus models the mixture as isentropic. Without using the above two

Karplus approximations concerning the magnitudes of sound speeds and

densities, the (M,s,2 T) sound speed may also be formed from equation

(4) by the appropriate isothermal substitutions of aL, T for aL

and aG,T for aG. Then, with these new symbols representing (-v2(_Pi_V)T)

respectively evaluated at the saturated liquid and vapor boundaries,

a2 = v/((l- 2 + X(VG/aG, )2} (T)

The significant results of this modified, ad hoc, (M,s,2T) theory

are;

(i) It correctly predicts the magnitude of the sound speed in the minimum

point region in the Karplus experiments (reference 7),which are also shown in

Wallis (reference i0, p. 266).

(2) Equation (7) for the isothermal, two-phase, sound speed does

not yield the usual single-phase, isentropic sound speeds at the boundary

ii



points x = 0 and x = l, or _ _ 0 and _ = 1. (.Theapproximate equation (6)

gives boundar_ velocities that are both infinite_ but Karplus indicates

negligible error in the use of equation (6) for 0.002 < _ < 0.94.)

The difference between isentropic and isothermal propagation is

negligible for pure-phase water at room temperature because the ratio

of heat capacities is close to unity. However, pure_phase air, treated

as an ideal gas with a heat capacity ratio of y = 1.4, will have a ratio

of isentropic to isothermal sound speed of _ = 1.183 and, coincidentally, this

is about the same order of magnitude difference as the original overprediction of

the minimum sound speed inherent in the (M,3s) model. The features of the

air-water system are shown in figure 1 where the sound speeds a3 and

a2, corresponding respectively to the (M,3s) and (M,s,2T)models of

equations (4) and (7) are plotted. Discussion of the third curve, al,

will come later. In the computation, air was treated as an ideal gas and the

water data were taken from reference 12. Wallis in reference 10, page 266,

shows experimental data for the air-water system at a similar temperature along

with the corresponding theoretical lines. A reproduction of his figure 9.12 is

shown herein as figure 2. The line labeled by Wallis as "isothermal" corresponds

to the (M,s,2T) model, a2, and his line labeled "adiabatic" corresponds to the

(M,3s) model, a3.

Because of the steeply rising curves on the gas side of figure i

where the void fraction is close to one, the difference in the gas

boundary values of the sound speeds for isothermal and isentropic propa-

gation is obscured. In order to illustrate these differences better and

also to emphasize the mass dominance of the liquid phase in the vicinity
12



of the minimum point, the void fraction_ _ is transformed to the quality, x,

by use of

x = e vL)} (8)

Then the same sound speeds, a2 and a3, are replotted in figure 3.

Now the x = 1 values of a2 and a3 are clearly evident, as is the

mass dominance of the liquid phase. The minima in figure 1 show a rough

balance between liquid and vapor_volumes_ that is, the value of the void

fraction that minimizes any one of the curves is about 1/2. Indeed,

the approximate form of a2 from equation (6) has its minimum exactly

at a void fraction of 1/2. In figure 3, the previous, apparent balance

between the phases is completely eliminated as the minima are crowded

against the pure liquid axis. This reflects the enormous density

difference between water and air. Again, discussion of the aI curve

is deferred.

Further complications in matching theory and data are introduced

by Semenov and Kosterin in reference ll. In contrast to the data shown

by Wallis, their measurements on single-component steam-water systems
i

give results in apparent quantitative agreement with the basic, unmodified

(M,3s) theory. At first, their results may suggest a fundamental dis-

tinction between single- and two-component two-phase systems. On the
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other hand, the uncertainty in their acoustic velocity measurements was

reported to be +__9%,and this may be sufficiently large to obscure the possible

differences between the data and the (M,3s) theory.

In view of these conflicting experimental results and theoretical models,

a new metastable theory of sound propagation in two-phase systems was sought

which would predict the correct minimum in the acoustic velocity-void fraction

curve as does the (M,s,2T) model and would achieve isentropic single-phase

velocities at x = 0 and x = i as does the (M,3s) theory. The new approach

retains two key concepts of the (M,3s) theory, - that a local acoustic

disturbance is again assumed to propagate in a homogeneous two-phase mixture.

(i) without phase change,

(2) at constant mixture entropy.

These postulates make the metastability similar to isentropic expansion of a

super-heated vapor in a nozzle to a pressure less than saturation without

condensation occuring immediately. In this well known case, only the gas

phase is present at the onset of the metastability; whereas, metastable

propagation of sound in a homogeneous two-phase mixture has the added

complexity of requiring a similar non-equilibrium effect for each phase at the

onset of metastability. At this point the new theory drops the (M,3s)

additional requirements of constant sL and sG for a different concept of

metastability described in the next section.

METASTABILITY

In order to develop a new description of two-phase metastability

from the stated postulates, the total differential of the

entropy function for a single phase is taken from
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thermodynamics and written for each phase as

dsL Cp,L 8v dP (9)

and

Cp,G _v dP (i0)
dsG =y---de- (W)p,o

For a saturated two-phase system of one component, these two

differentials are expanded about two different states, each at the same

temperature and pressure. One of these states corresponds to the satu-

rated liquid, and the other, to saturated vapor. Let these states be

the ones shown as points L and G in the sketch of figure 4(a) which

shows a pair of isobars at P and P+dP passing from the liquid region

into the two-phase region and finally into the vapor region. L' and G'

are respectively saturated liquid and vapor states at the lower isobar.

Starting from the point L and assuming an isentropic expansion occurs

which drops the pressure (dP < 0), total phase equilibrium - including

phase change - requires the expansion to terminate at the two-phase point
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marked as A. Similarly, an isentropic acoustic expansion from G would

terminate as the two-phase state B.

In order to impose the condition dx = 0 during the wave passage,

penetration into the two-phase region must be avoided. To make this

possible, a second sheet of metastable-unstable properties is assumed

to underlay the normal two-phase equilibrium property sheet, For pur-

poses of discussion it is sketched in figure 4(b) in a manner similar

to a van der Waals metastable-unstable region. Here the usual equilibrium

isobars are shown as solid lines P and P+dP with L, L', G, G' being the

same former saturation states. The dashed curves represent one-phase,

metastable-unstable continuations of these isobars. Now the passage of

a disturbance (dP _ O) from the isothermal and isobaric points L and G

without phase change shifts these points to the new isobar P + dP such

that the final phase points have the same (and new) final temperature.

For the way figure 4(b)_is sketched it is impossible for the individual

phase points to shift about local isentropes passing through L and G and

satisfy the final isothermal condition. If this sketch were a true

representation of thermodynamic properties, the (M,3s) theory of sound

propagation could not possibly be valid. On the other hand, it is possible

of course to alter the sketching of the isobarP + dP such that the pair of

local isentropic expansions emanating from Land G end on the P + dP isobar

with the same temperature in conformity with at least this portion of the

(M,3s) theoretical requirements. Obviously, the thermodynamiC pattern_of

properties is rigidly set, and any theory of two-phase sound propagation

must conform to this pattern. Later, such a conformance test will be

derived for the (M,3s) model which, when tested for several substances
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including nitrogen, indicatesthat this model is •invalidwith respect to

_he thermodynamic data used. For the present, it suffices that the two

sketches indicate the potential metastable thermodynamic states which can be

associated withtwo-phase sound propagation.

DERIVATION OF THE NEW EQUATION !

In the derivation of the new equation for metastable sound propaga-

tion the basic starting point is again equation (1), and this means finding

a way of evaluating (Bv/BP)s. Likewise, the mixture specific volume continues

to be described by equation (2), and it is perturbed by the passage of the

wave to give

dv = (1 - x) dvL + x dvG (ll)

since propagation is again assumed to occur without phase change. The

single-phase specific volumes are ordinarily functions of temperature

and pressure whose total differentials are

By _v dP (12)
dvL= (_y_,dT+ (_V)L

17



sad

_v _V

aT+ (_--_.) dP (,:_).dva-- (_):s,a .'_,a

where dT and dP are the same in both equations and are the perturba-

tions associated with the sound wave. Substitution of the last two equations

into the preceding one gives

8v 8v
dv= (_) aT+ (_) dP (14)P T

where the mixture quantities (BV/3T)p and. (_v/8P)T are given by

_v (i x) 3v 3v
(3-T)P P,L . P,G

and

8v 3v
_ = (l-x) (_-_)+x(_) (16)
(_V)T T,L _,a

18



For later use, the third partial derivative of the equation of state is

formed in the usual way to give

(_)v _v 8v (17)

Since the problem is to form (Sv/SP)s, the mixture entropy is now

introduced as

s = (1 - x) sL + x sG (18)

and differentiated without phase change to give

ds = (1 - x) dsL + x dsG (19)

The quantities dsL and dsG are eliminated by use of equations (9) and (i0)

to give

Cp _v
ds = --_ dT - (_-'_) dP (20)P
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where Cp is defined for the mixture as

= + x (2z)
Cp (1 - x) Cp,L Cp, G

and (av/ST)p has been previously defined in equation (15). It is noted

that the heat capacity is the usual T(as/ aT)p and is not infinite in

the metastable theory. This is contrary to its infinite behavior in

stable two-phase theory for pure substances.

Now all that is required to form (av/aP) is to change thes

independent variables in equation (20) from dT and dP to dv and dP. This

is accomplished by rewriting the equation of state by substituting

equation (17) into equation (14). This gives

aT aT
dT = (_-'_') dP + (_'7) dv (22)

v P

and this is used to eliminate dT in equation (20) with the result that

Cp aT dv + (_) - dP (23)ds= -y ( j)p v

2O



From this, the partial derivative (SP/Sv)s is read as

_T
Cp(-fj)p

\ov
v P

Multiplying numerator and denominator by (_P!ST) v and then usingequation

(17) in the numerator gives

,_)P)cp tW
= (25)

_P _v
,s Cp-_(_) (_.1

V P.

In stable one-phase thermodynamics the denominator would be the heat

capacity at constant volume. To test this, the equation of state is

rewritten as

8P _P
dP = ('_'-) dT + (--_-') dv (26)

v T

and this is used to eliminate dP in equation (20). The result is
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From its basic definition,

C = T (dS)
v dT

v

Therefore, it follows from the last two equations that

( dV) (dP)C = C - T
v P dT P dT v

and, from equations (25) and (29)

where

22
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When equation (30) is substituted into equation (i), the final form of the

acoustic velocity, now designated as al, becomes

1/2
aI=[-yv2/(av/aP)T] (32)

In summary, the expression for aI in equation (32) represents the new

metastable equation. It has assumed no phase transition during an acoustic

disturbance and has assumed that the total entropy of the system (not of the

individual phases) remains constant. As will be shown, the values of aI

reduce to the respective single-phase values of sound speeds in the limits

of all liquid or all gas.

For computational purposes one must know the ordinary single-phase values

of Cp,L, Cp,G, CV, L, CV, G, (Sv/ST)p, L, (By/ST)p, G, (Sv/SP)T, L, (Sv/SP)T, G,

VL, and vG in order to obtain a sound speed versus either quality or void

fraction curve at a given temperature and pressure. In conjunction with

this, it is noted that the right side of equation (21) reduces to the

ordinary single-phase heat capacities at x = 0 and x = 1. A similar

reduction occurs at these qualities for (Sv/ST)p and (Sv/SP) T as is

evident in equations (15) and (16). Substitution of equation (17.) in

equation (29) gives an alternate form of the constant volume heat capacity

as

cv=cp+T(_vl_)_l(_vl_P)_ (33)
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At x = 0 this reduces to the usual single-phase form

CV,L--Cp;¢ L

A similar reduction occurs at x = i. Finally, equation (8) or the

alternate form

= x valv (35)

can be used to convert quality into void fraction or vice versa.

RESULTS AND DISCUSSION

Two-Component System

Referring back to figures 1 and 3 for the air-water mixture, the

remaining curve to be discussed is the one labeled aI and is, of

course, from the new theory embodied in equation (32). The first figure

shows that it is practically coincident with the ad hoc (M,s,2T) curve, a2,

which, according to the results in Wallis (ref. i0) correlates the

available experimental data about the minimum point. In figure 3 the

aI curve subsequently deviates from the a2 curve well past the minimum
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point and intersects the a3 curve at the pure gas side as both the aI and

a3 curves satisfy the gas boundary condition of isentropic propagation.

An insight into the mechanism explaining similar behavior for aI and a2

at the minimum point and liquid boundary and different behavior at the gas

boundary is obtained from figure 5, which plots tke two-phase heat capacity

ratio versus the void fraction. Bearing in mind that the minimum in the

1
previous plots is located approximately at _ = _, this figure shows how

the two-phase heat capacity ratio adjusts itself to an approximate value of

unity in the minimum region from a void fraction of zero to about 0.95

before rising steeply to the pure gas value of y = 1.4 at _ = 1. The approxi-

mate value of unity is needed for correspondence with isothermal sound

propagation postulated in the (M,s,2T) model to fit the experimental points,

and the 1.4 value is necessary to satisfy isentropic propagation in the pure

gas phase.

One-Component Systems

With the new equation accomplishing the dual objective of correlating

the minimum and boundary points for the air-water system, a comparative

study was made for parahydrogen and nitrogen for which similar experi-

mental data were unavailable. Both substances are in the cryogenic domain

with nitrogen of primary interest because of its future role in the NTF

program, and both are single-component two-phase systems. While steam

and water also form a one-component system, this two-phase mixture will not

be included in the comparativestudy. Instead, it is used to develop a

thermodynamic criterion for determining ifthe (M,3s) theory can be correct
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as implied by Semenov and Kosterin in reference ii for steam and water.

Nitrogen

In the nitrogen study three plots similar to those shown for the air-

water system were constructed for 80K, 100K, and 120K. These temperatures

were arbitrarily selected to represent nitrogen's entiretwo-phase

temperature range, 63.148 K _ T _ 126.2K. In addition, the (IN_E)model

was used to show a fourth velocity of sound designated as ao. Cryogenic

tunnels such as NTF will normally have _---1 and x _ 0.95.

At the nitrogen temperature of 80K, which isfurthest from the

critical point, figures 6, 7, and 8 most closely resemble the three

corresponding figures for the air-water system. The chief difference between

one- and two-component systems as far as these figures are concerned is

the YL value For the air-water system it is close to unity while for

nitrogen it is slightly greater than 2.1. This is shown in figures 5

and 8. The latter figure also shows the very rapid adjustment that the

two-phase y makes to values very close to unity for a large range of

(although not as large a range as that for the air-water system).

Because of the rapid adjustment in y, the minimum region of figure 6

shows aI and a2 as being essentially one curve.

In figure 6 the (IHE) velocity of sound previously defined as aO

is shown to be smaller than the minimum value of aI for a very large

range of _ before intersecting a2 in the vicinity of _ = 1. This

region is difficult to visualize because of the convergence of four
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steeply rising curves_ therefore, these curves are transformed by using

the quality as the independent variable in figure 7. Here it is seen

the a° curve intersects a2 at an approximate quality of 0.3, and

subsequently makes an apparently tangential contact with the aI curve at

a quality of approximately 0.55. This tangential contact raises an

interesting question about the meaning of points which appear to be

simultaneously stable and metastable.

When the temperature of the nitrogen is changed to 100 K, the pattern

associated with the previous three figures begins to shift a little

although the basic features remain the same as seen in figures 9, 10, and

ll. The aI and a2 curves merge in a narrower minimum region of figure 9

with the minimum sound speed still being less thanthat predicted by the

(M,Bs) model. The narrowing of the merged region is accompanied by a more

visible shift in the y pattern as indicated by comparing figures 8 and ll.

No longer is y equal to one over a large fraction of the void fraction

axis as in figure 8, even though it is still very close to one in its flat

minimum region. Finally, the prior interaction and tangency characteristics

of the equilibrium sound speed, a0, persist.

The variation in the triple pattern of plots becomes stronger when the

temperature is shifted closer to the critical value for the final value

of 120 K as seen in figures 12, 13, and 14. Now there is no region in figure

12 where the aI and a2 curves merge. This strong change is accompanied

by an equally strong shift in the y pattern of figure l_ where no region

exists for which y can be approximated by unity. Therefore the (M,s,2T)

model should not accurately predict the minimum region in this case

because the necessary assumption of isothermal propagation is no longer valid.
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Finally, the intersection and tangency characteristics in the a curveo

persist, as is evident both in figures 12 and 13.

Parah_drogen

Parahydrogen has triple and critical temperatures of 13.803 K and

32.976 K (reference 13). From this range only the single temperature of

25 K was selected for the same kind of plots as before. This gives a

T =
reduced temperature of Tc 0.758, which is very close to thereduced

temperature of 0.792 for nitrogen at i00 K. From a principle of

corresponding states view, it would be anticipated that figures 15, 16,

and 17 for parahydrogen would be very similar to those for nitrogen as

shown in figures 9, i0, and ii. This turns out to be only partially

true. Figure 15 shows that while the aI and a2 curves are very close together

there is no region of overlap as is evident in the corresponding nitrogen

figure 9. Subsequent comparison of figures 17 and ii shows that y for

the parahydrogen has a narrower flat region aboutits minimum point which

leads to a poorer approximation to the y = i condition needed to merge the

aI and a2 curves in the vicinity of their minimum points.

Steam-Water

As a concluding part of this investigation, attention is now turned

to the steam-water experiments of reference ii which apparently support

the triply isentropic model (M,Bs) within the context of an uncertainty

in sound speed measurement of +9%. The triple plots used in the compara-

tive study of nitrogen and parahydrogen will be replaced by an analytical

treatment involving the use of equations (9) and (i0).
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Since pressure and temperature equilibrium _is assumed in the

metastable models, the perturbation differentials dP and dT are the same

for the liquid phase, the vapor phase, and the two-phase element. In the

(M,3s) model ds = dSLi= dsG = 0. Applying these assumptions to equation

(9) and (10) gives the perturbation pressure-temperature ratio dP/dT

as _,':
_i!'i,

dP Cp,L ST
-@- (36)

P,L

and

_---= cP'G(_-Z_ (37)dT T Sv"
P,G

Equating the two expressions for dP/dT gives

ST = ST

Cp ,L(_'_'V)p,L Cp,G(_V)p, G (38)

which will be used in a nondimensional ratio form, r, by defining
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cP..___,L,_T) _v (39)
r = %,o t_-Vp,r, (_)P,a

where, of course,

r = 1 (40)

This result is important in that the postulates of the (M,3s)

model predict aproperty lawwhich can becheckedby using suitable

tables of thermodynamic properties. For the steam-water system it was

checked by using the properties found in table i of reference iI, and by

transforming r to accommodate them, This is accomplished by rearranging

the thermodynamic single_phaseequation for the difference in specific

heat capacities to

(_)p _ - v v (41)

Applying this successively to the liquidphase and to the gas phase and

then substituting both into equation (39) gives
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"(Cp _ Cv) I" 1 8v VG
r = Cp,G CV)L {- vl (_)TSV}L VL

Introduction of the tabulated data from reference ll gives the following

results for steam_ater at four saturation temperatures:

• (K) r

452.2 746

470.5 461

484.5 B18

522.3 112

Since r fails to satisfy equation (40) the conclusion, based on

the equations developed in this paper, is that the (M,Bs) theory is

invalid and that the +_9%uncertainty in the steam-water sound speed mea-

surements of reference ll is sufficient to conceal this.

In the case of the air-water system it is known that the (M,3s)

model does not fit the experimental data. From the above analysis it

would be expected that r # 1 and indeed the computation gives r = 84300.

For parahydrogen experimental data is lacking forthe required sound

speed curve. Falling back on the rcomputation gives r = B9.3 which

invalidates the (M,Bs) model in the context of the theory of this paper.
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A similar conclusion is drawn for nitrogen where, again, experimental

data for the sound speed curve are lacking; for, at the three temperatures

80K, 100K, and 120K, the respective Values of r were calculated as 580,

64.4, and 7.80.

SUMMARY OF RESULTS

A new method of calculating speed of sound for two-phase flow has

been presented. The new equation assumes no phase change during the

propagation of an acoustic disturbance and assumes that only the total entropy

of the mixture remains constant during the process. It is shown that the

new equation predicts single-phase values for the speed of sound in the

limit of all gas or all liquid and agrees with available two-phase, air-

water sound speed data. Other expressions used in the two-

phase flow literature for calculating two-phase, metastable

sound speed are reviewed and discussed. Comparisons are

made between the new expression and several of the previous

expressions -- most notably a triply isentropic equation as used, among

others, by Karplus and by Wallis. Appropriate differences are pointed out

and a thermodynamic criterion is derived which must be satisfied in order

for the triply isentropic expression to be thermodynamically consistent.

This criterion is not satisfied for the cases examined, which included two-

phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Con-

sequently, the new equation derived is found to be superior to the other

equations reviewed.
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The importance of this work to cryogenic wind tunnels is that is

properly defines the two-phase speed of sound to use as the mixture approaches

the limit of all gas. In particular, the correct speed of sound approaches

the single-phase gas velocity of sound and not a value substantially

less as predicted by an isothermal formulation. In other words, in regions

of small amounts of liquid mixed with gas (vapor mass fraction greater than

0.98), the speed of sound will be •veryclose to that value expected for

single-phase flow.
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