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Abstract

A full scale engine wing shielding LnvestLga-
tLou was conducted at the Lewis Research Center
using a 97,900-N (22,000 lb) thrust turbofan engine
and a simulated wing section sized around a

m	 conventional-take-off type four-engine narrow body

m	 airplane. Sound data were obtained for Lite wing
placed at savou positions In a plane parallel to
the engine axis, and were compared to data obtained
Without the wing at both take off and approach
power. In addition the engine was operated with
and Without extensive acoustic treatment including
a sonic inlet in order to evaluate wing shielding
effectiveness with n highly suppressed engine. The
wing shielding effectiveness wan also calibrated
using an 3.6 cm dine air nozzle asa sound source.
Results indicated that even though about LO d0
broad band shielding was achieved, the equivalent
flyover noise reduction was less than 3.0 F.PNdB for
most configurations.

Introduction

Some current CTOL aircraft have the engines
located un the fuselage in a plane above the wing.
Future aircraft may have their engines vaunted on
and above the wing proper. Tile wing in either case
can act as a sound reflector and redirect the en-
gine sound skyward thus shielding Lite engine noise
from Lite ground during takeoff and approach. Wing
shielding can thus offer a reduction in flyover
noise without the attendant expense and performance
loss involved in conventional acoustic suppression

methods.

Experimental work to evaluate tine effective-
ness of wing shielding has been done, but mostly
with small scale Jet nozzles 

fit
	 lift Loves-

tigations. The results, l with nozzles of 5 and 33
cm in diameter, indicated that up to 10 Perceived
Noise decibels (PNdB) of Shielding eff0CLLvene55
may be realized. However, a series of flyover

tests2 conducted or. two different models of the
same tri-jet airplane (8727) indicated that a

LO PNdB wing shielding benefit may result in prac-
tically no change in effective perceived noise
level (EPNL). This occurs for this particular air-
plane due to the narrow shielded angle that the
wing produces In relation to the engine inlets with
the result that the time duration of the flyover
signal is not reduced. Another full scale wing
shielding investigation was reported 3 which pre-
sented design charts for nozzle shielding where the
nozzle was within one diameter of Cite wing's sur-
face. It should be noted that in most airplane in-
s Lallatiuns it Ls impossible to shield both the in-
let and exihaust of the engine with the wing.

A full scale single engine wing shielding In-
vestigation was conducted at the Lewis Research
Center using a 97,900-N (22,000 lb) thrust turbofnn
engine and a cimulated wing section sized around a
conventional-take-off type four-engine narrow body
airplane. Sound data were obtained for the wing

pleced at seven positions In a plane parallel to
the engine axis. Comparisons of noise measurements
made on the engine aloe with those of each wing
position at both takeoff and approach power act-
rings are presented haroin. The results, though
static tests, should be credible and indicate
directly tine effect of wing shielding on Lite air-
plane flyover noise. Results from Ref. 3 indicated
that as long as no flow surface interaction occurs
that effects of forward velocity on noise shielding
are minimal. In addition tine engine was operated
with and without extensive acoustic treatment In-
eluding o sonic inlet as described in Ref. 4 in
order to evaluate this affect on wing shielding.

The wing shielding effectiveness was also cal-
ibrated using a 3.8 cm diam air nozzle as a sound
source. Tine purpose was to compare the shielding
using a single, concentrated, high intensity noise
source with the results from a large distributed
source, such as the turbofan engine used in this
investigation,

Engine, Wine, and Test Facility

Wing

Since tine full scale high bypass engine (quiet
Engine "C") used for the experiment existed, the
wing size lied to be scaled to the engine. A four-
engine narrow body transport of the DC-8 or 8707
class was selected as it 	 because a study 5 con-
ducted by 

Lite 
McDonnell-Douglas Aircraft Company

Indicated that retrofitting the DC8-61 with this
engine was mechanically and aerodynamically viable.
So a wing section from a DC-8 airplane could pro-
vide a reasonable full scale model. Wing dimen-
sions of both Lite DC-8 and Boeing 707 (military
KC-135) were taken from Ref. 6. The two wings were
so similar In size that one mockup would simulate
both. When the area wan divided by Lite span a mean
aerodynamic chord of 6.4 m (21 ft) was calculated.
An average thickness of 12 percent or 0.76 m (30 in.)
was somewhat arbitrarily chosen. For experimental
simplicity a constant chord was also chosen. It
was believed that 7.3 m (24 ft) of span would be
adequate for the experiment.

The wing was mounted on a movable dolly such
that its fore and aft position could be readily
changed. The closest practical spacing between the
engine and wing centers was 3.2 m (10,5 ft). The
actual arrangement of the engine and wing as tested
is shown Y  Fig. 1. ilia engine is shown with bell-
mouth inlcc.

Simulating the acoustical transmission pro-
perties of a real udng was impossible and a real
wing for Lite test was also not available. There-
fore, Lite only property used for the mockup was the
weight per unit of projected area. From Ref. 7 a
target of 80 kg/m2 was chosen.

A cross section of the wing showing Lite type
of construction is given in FLg. 2. The wing was

i
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simply constructed of triangles and rectangles
since no air was to flow over it. It was by Llt
with steel platen and plywood and fastened Lo a
structural steel framework. Thu finished average
weight of the wing was 80.5 kg/m 2 (16.6 lb/ft2),

Engine and Facilitv

ilia engine used in the investigation was des-
ignored Quiet Engine-C, It was a high bypass (5:L)
turbofan engine which developed 97,900 N (22,000 lb)
Of thrust at takeoff power. It used a single stage
fan with no inlet guide vanes or damping shrouds.
The fan tons considered to be of Mgt, tip speed de-
sign, 477 m/sec (1565fps). As shown in Fig 1 the
inlet was fitted with a bellmouth and contained no
acoustic treatment. The fan exhaust duct was of
medium length and it contained no acoustic treat-
ment. For part of the investigation, the engine
was equipped with Sonic inlets and massive aft fan
suppression treatment as described in Ref. 4. A
photograph of this configuration is shown without

tiro wing in Fig. 3. The contour of thetakeoff
sonic Inlet is shown in Fig. 4 and both the frame
treatment configuration and the fully suppressed
configuration are detailed in Fig. 5. Tito frame
treatment configuration consisted of acoustic treat-
ment in the fan frame and core compressor inlet
passages with an untreated cylindrical inlet and
untreated straight fan exhaust duct.

The engine was mounted on a Static thrust
stand which held the engine 4.l m (13.5 ft) above
the ground. Tilt, engine stand was located in the
center of a circular microphone arena. A plot plan
of the arena is shown In Fig. 6. The microphone
circle was 45.7 m (150 ft) radius with its origin
approximately at the engine center.

All 17 of the microphone signals were trans-
mitted over low impedance lines to individual ampli-
fiers. The amplifier outputs then fed Into two 14
channel frequency modulated tape recorders. ilia
Lapas were then replayed off-line into 0 1/3-octove
band analyzer which digitized the signals over a
4 second average time. The digital signals were
recorded on tape and fed into a comprehensive com-
puting program using standardized proceduro8 8 which
produced the results presented in this report.

Tae microphone and amplifiers were pre-run and
post-run calibrated with piston phones. Tile accu-
racy of the measured sound pressure levels was
f0.5 dB.

Calibration Nozzle

A single jet nozzle 3.8 cm dials was located an
the center of the microphone circle in place of the
engine. The nozzle (Fig. 7) was pointed upward Lo
provide a circular noise directivity pattern to the
microphones. T1m nozzle discharge was located at
the microphone horizontal. plane.

Air at 524,000 n/m2 (76 psi) gauge pressure at
ambient temperature was discharged through the noz-
zle. Thus tlm flow was "choked" Lo yield a noise
source containing nearly white noise with a pure
tone.

A 1/3-octave hand spectrum of the noise sound
prusoura Level is shown in Fig. 8. 'Ilia overall
sound pressure level (OASPL) measured at the 45.7 at
radius was about 103 d0.

Procedure

To obtain the shtaiding effectiveness over a
wide range of wing positions the wing was mni ,cd to
seven Locations in a plane parallel to the ^tnglnc
axis. The locations are defined by the placement
of the 0.4 chord point of the wing, The positions
are illustrated or, Fig. 9, There are three basic
positions and the wing was simply moved 13.05 in
(10 ft) from the basic forward and aft positions to
define the seven positions. Tito basic forward posi-
tion was defined by a line drawn from the center of
the ballmouth inlet through the 0.4 chord point of
the wing to the 60 0 microphone. The basic Side
position was established by placing the 0.4 chord
point on the 900 microphone radius. The basic aft
position was act by aligning the wing leading edge
with the fan discharge plane,

Noise measurements were made at each wing
position while the engine was operated at both
takeoff and approach powers. Engine parameters at
both power setttngs are given in Table I. Thalia
data were taken from previous aerodynamic measure-
ments made on the engine in this facility.

Results and Discussion

The wing shielding effectivaness calibration
with the small jet nozzle will first be presented
in terms of 1/3-octove band sound pressure level
difference (.^SPL), and then In terms of .^UASPL for
verious angles. The wing shielding effectiveness
Is defined as the difference between the SPL's
(OASPL's or PNL's) measured with and without the
wing.

'rhe baseline engine characteristics without
the wing are then discussed in terms of 1/3-octave
band SPL and perceived noise level (PNL) directiv-
try at both approach and takeoff power.

The wing shielding effectiveness with the en-
gine is then presented; first with the engine with
frame treatment only, then with frame treatment and
aft suppressor and finally with the fully sup-
pressed engine (sonic inlet and aft suppressor).
These results are presented in terms of 1/3-octave

band ^SPL and ^PNL. ',SPL shielding effectiveness
on tones is also shown for the engine with frame
'.reatment. Flyover time histories for both take-
off and approach conditions are discussed and final-
ly the jet shielding configurations are compared to
a jet shielding correlation.

Wing Shielding Effectiveness Calibration
With a Small Jet Nozzle

The 1/3-octave band shielding effectiveness is
presented in Fig. 10 for the wing in a basic side
position and for angles from 80 0 to 1100 (mcasur"d
from where the engine inlet would normally be if
the engine were installed) whiln are In the wing's

shadow. An average of 8 dB of shielding was real-
ized for frequencies from 315 to 2000 liz. At fre-
quencies above 2500 liz the shielding, was greater,
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reaching values above 20 d8 at frequencies above
12,500 Iiz. Inspection of the narrow bands showed
that a tone did exist at 2500 Iiz which was not
shielded as wall as the broad band noise. At fre-
quencies below 315 Iiz, there in no evidence of
shielding. In fact titers are some positive values
possibly caused by reflections of the low frequoncy
waves from instrumentation boxes and the truck cab.
(sea Fig. 7).

Inspection of Fig. Il allows the angular extent
of the IOASPL wing shielding for the wing In threo
basic positions. As might be expected the angular
extent of the shielding is much greater far the
wing in a basic side position than for the wing in
the other two positions. The angular region where
the wing gecmatrlcally shields the nozzle from the
microphrnon, the "shadow," subtends about twice as
groat nil 	 (-1000) for the wing in a'tu aide
position as for the wing in the other two positions

The average wing shielding effectiveness is
also greater for the wing in Lite side position
(-12 d8) compared to the other two positions
(-9.5 d8). The single compact noise source shield-
ing discussed in this section is much simpler than
the shielding of the engine which has three major
noise source Locations which span the length of the
engine. Tile poise characteris ties of the basic an-
glue configurations arc discussed next,

Baseline Engine Configuration Noise
Characteristics, Without Wing

Presented in Fig, 12 are comparisons of front
and aft baseline spectra at takeoff power for the
three basic engine configurations without the wing.
At 60 0 from the inlet (Fig, 12(a)) the spectra for
the frame treatment and for the aft suppressor at
takeoff power are dominated by the forward radiated
fan machinery noise. The sonic inlet configuration
reduces these noise sources and forward radiated
Jet noise becomes dominant.

At 1200 from Lite inlet (Fig. 12(h)) the aft
suppressor partially reduces tite aft radiated fan
machinery noise front 	 fan nozzle but Lha fan
machinery noise coming from the inlet holds up the
noise floor at the frequencies above 300 Iiz. 'file
sonic inlet configuration eliminates this noise
source. and tite core Jet noise becomes dominant.

At approach power the dominant noises are some-
what different from takeoff. At Lila front angle of
60 0 (Fig. 13(4)) 

Lite 
blade passing frequency (BPF)

peak is dominant. No multiple pure cones (MPT's)
exist at this lower fan speed because the tip role-
Live Mach number is vabsonic. Tile sonic inlet
operated at approach power absorbs some front end
noise. At the aft. angle of 1200 (Fig. 13(b)) broad-
band fan machinery noise and turbine noise are the
main noise sources. The sonic Inlet at approach
power did not reduce the aft noise below the aft
suppressor configuration noise.

Ilse PNL directivities on a 305 in
	 for

the baseline configurntions (without tite wing) are
presented in Fig. 14. At takeoff power (Fig. 14(a))
the configurations with frame treatment and aft
suppressor have PNI, peaks of 104 and 105 PNdBat
600 , The .ft suppressor reduces the aft peak noise
(1200) of the frame treatment configuration from
102 to 97 MS. Adding the sonic inlet reduces the

ORIGINAL PAGD, IS
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front quadrantquadrant noise at 60 0 to 89.5 dB leaving the
aft peak noise at 120 0 which is about 96 MD. At
approach power (Fig. 14(b)) the frame treatment
configuration has a front peak noise of 99 PNdB and
a rear punk of about 101 MD. The aft suppressor
configuration cuts Lite roar peak no i se down to
about 97 PNdB while Lila front peak noise is about
the same as for the frame treatment. The sonic in-
let at approach power reduces the front peak noise
about 3 1'M while :.Ae eft peak noise remainn about
Lila same an for the apt suppressor, as expected.

Winn Shielding Ices, u_lt's

Engine with frame treatment, The wing shield-
1ng effectiveness on an SPL basis is presented In
Fig. 15 for four wing positions; front forward,
basic forward, basic side and basic aft. Only chr
microphones which are In the "shadow"of the wing
are presented. Since Lite engine with frame treat-
ment is front noise dominated as shown earlier the
results for the forward wing locations allow good
shielding values. The average decrease in SPL due
to shielding (Fig. 15(a)) is about LO dB for fre-
goencLes between 2000 and 16,000 liz for angles of
300 , 400 , and 50 0 from Lite engine inlet.

For Lila basic forward wing position (Fig. 15(b))
the decrease in SPL due to shielding at 50 0 from
the engine Inlet is also about LO d8 (which is max-
imum) at frequencies above 1000 Iiz. For the wing
in the basic side position (Fig. 15(c)) neither the
front nor the aft noise sources are shielded by Lite
wing and therefore, little noise reduction results.
For the wing in the aft position (Fig. 15(d)) the
core Jet and the fan exhaust are well shielded by
the wing and the .^SPL for three angles from the
engine inlet (100 0 , 1100 , and 1200) average about
10 dB for frequencies above 3150 112.

At approach power (Fig. L6) the results are
about Lite same as for takeoff power. The basic
side position offers little or no noise reduction
and Lila front forward and aft positions yield noise
reductions over 10 d8 at frequencies over 2000 Iiz.

Shielding effectiveness on a perceived noise
basis is presented in Fig, 17. Generally tite wing
shielding is more impruasive at takeoff power titan
at approach power for front shielding, recall from
Figs. 13 and 14 that the engine at Lakeo.f power is
front noise dominated while at approach power aft
noise is more dominant. Shielding of front noise
then should be more effective at takeoff power
since relatively lower aft noise would not encroach
oil 	 front quadrant. This is evident from
Fign. .17(a) to (c).

Thu maximum .."PNL of 10 dB occurs at the 500
forward angle for the wing in front forward posi-
tion at takeoff power. The angular extent of the
shielding (about 60 0) with the wing in the front
forward position is greater than for any other wing
position tested. The shielding with the wing in
the basic side position (Fig. 17(d)) is negligible
as would be expected since neither the front or aft
sources are well shielded. For the aft shielding
positions (Figs. 17(e) to (g)), basic aft In Lite
must effective. About 5 PNdB of shielding at take-
off power is shown for angles from 100 through
120 0 (Fig. 17(f)). Approach power shielding is
even more effective for the reason mentioned previ-
ously. Approximately 9 PNdB of shielding is accom-
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pllshod at angles of 1100 and 1200 from the engine

inlet. Outside i'+n wing I s Shadow Lila %.PNL's arc
positive for the approach power condition. Reflec-
tions off the wing back to the engine and thrust

stand and thence to the far-field could cause Chia

behavior.

Tile effect of wing shielding on tones is pre-
sented in FLg. 18. The blade passing frequency
(1250 IIz, 1/3-octave bandwidth) at approach power
and the largest amplitude multiple pure tone
(500 Nz, 1/3-octavo bandwidth) at takeoff power
were selected for the wing In the basic and front
forward positions. At takeoff power the UPT was
reduced by about 15 de at Cho punk forward angle of

500 from the engine inlet. At approach power, the
peak forward BPF was reduced by about 11 dB at 500

from the engine inlet.

Engine with aft suppressor. These results are
presented for the wing In Lila basic and front for-
ward positions since the engine noise for the aft
suppressor configuration is front notes dominated.
Shown in Fig. 19 are the wing shielding results at

50 0 from the engine inlet for takeoff and approach

power conditions on 
all
	 basis. The results, an

expected are elmost exactly tile some as for the
frame treatment configuration (Figs. 15(a) and (b)
and 16(n) and (b)). An average of about LO dB re-
duction is achieved at takeoff power for frequen-
cies above 500 liz and about 11 dB above 1000 IIz for

approach power.

Likowise, the wing shielding results oil 	 PNL
basis for takeoff and approach power presented In
Fig. 20 are almost the same as those presented In
Figs. 17(a) and (b) for the frame treatment config-

uration. A maximum forward peak angle .'PNL equal
to about 10 PNdD was achieved at takeoff power. At
approach power, the PNL at the forward angle of 500
Is about 8 PNdB. 'file extent of the wing shielding

"shadow" is about 60 0 for both wing positions at
both power settings.

Engine with sonic inlet and at suppressor.
Since this configuration won aft noise dominated
(Fig. 14(n)) at takeoff power by core jet noise,
wing shielding results are presented for the wing
in the three aft positions. On in SPL bas Is
(Fig. 21), the wing shielding offecLiveneab was

greatest at an angle of 80 0 for Lila wing in Cho

front aft position and 110 0 for the wLng In the

basic and back aft positions. Shieldingvaried
from a nominal 2 dB at 200 lie. Co as much as 17 dB
at 10,000 HZ for the wing in a basic and front aft

position	 These losses translated into about 5 dB
on a PNL basis (Fig. 22) for Cite basic and franc
aft wing positions and into only about 3.5 d6 for
the wing in the back aft position. 'Cable I1 summn-
rizas the maximum wing sh Lelding in terms of PNdB
for engine configurations and wing positions re-
ported herein. The takeoff sonic Inlet and aft
suppressor configuration was not run at approach
power with wing shielding and therefore, does not
appear in the table.

Effect of Wing Shielding on Flyover Noise

These data were calculated from tile 	 fLeld

measured noise data assuming a four engine B707/DC8
type of takeoff and approach. The flyover parame-
ters used in the calculations are summarized in

Table III.

'file tone corrected perceived noise level (PNLT)

results are plotted as a function of time in reln-
tion to an observer standing at either the takeoff
or approach FAR 36 specified points. Shown in
Fig. 23 to a comparison of the tnkeoff time Marc-
rles for the baseline (no wing) and the basic and
front forward wing positions for the frame truntad
Ongino, Tile offset of the wing shielding was to
lower the offective perceived noise level (EIWL)
from 104.2 to 102.7 FPNdB for the basic forward and
to 101.9 EPNdB for the front forward positiona at
takeoff. At approach (Fig. 24), for the front for-
ward wLng position, the EPNL was reduced fro,n
101.3 EPNdB for the bnsoline engine without wing to
99.8 EMS. Nlth the wing in the basic forward
position, the calculated RPNL nctually increased
from 101.3 to 101..5 EPNdB. The wing shielding was
effective until Lila 0 second Lime where the peak
PNLT actually increased and resulted in a slight
increase in the calculated EPNL.

presented in Fig. 25 are time histories for
Lila engine equipped with aft suppressors at takeoff.
Without the wing the EPNL was 102.5 EPNdB. With
the wLng in either the basic or front forward posi-
tion tlo EPNL wan lowered by about 4 EPNdB.

Shown In Fig. 26 are time histories for the
ongAo with aft suppressor and sonic inlet. The
baseline EPNL without wLng shielding is 94.5 EPNdB.
With the wing in the aft positions shielding the

jet noise of this very low noise confLgurntion, the

reductions in EPNL were substantial, about 2.5 EPNdD.
For Lila front aft location of the wing, the reduc-

tion in EPNL was about 2 EPNdB.

A tabular presentation of all the calculated
time histories in presented in Table 1V. For the
engine with frame treatment and the winglocated In
its most favorable location for approach conditions,
the maximum reduction in EPNL from the baseline was
1.5 EPNdB. For takeoff condLtions, the maximum re-
duction ranged from 2.3 EPNdB for the frame trent-
ment configuration to 4.3 EPNdB for the aft sup-
pressor configuration. The total EPNL reduction
for the combined effect of shielding and engine
suppression at takeoff power can be obtained by
subtracting the EPNL for the quietest configuration
(Sonic inlet and aft suppressor for the wing in the
basic aft position (91.8 EPNdB) from tile baseline
frame treatment configuration with no wing shield-

ing (104.2 EPNdB) which equals 12.4 EPNdB.

.let Shiolding dorrelation

For the sonic inlet configuration at takeoff
the dominant engine noise remaining was attributed
to Lila core jet. With the wing shielding this
source, the data were compared to Lila jet noise
correlation developed In Re(, 9. The correlation
parameter Z Lakes into account direCLLvity, size
of source (nozzle diameter), length of shield, and

frequency.

Presented in pig. 27 are data from directivity
angles shielded by the wing In tile 	 aft posi-

tion compared to the correlation represented by the
solid line. As can be seen, the data agree with
Lila correlation within t3 dB. The agreement is
better at low values of Z, which correspond to
low frequency, than at high values of Z.

^
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1. Calibration of the wing shielding using ton	 1. Rashocko, M„ Coodykoontz, J. I1., and Dorsch,
small air nozzle as a sound source allowed that 	 R. 0 „ "Engine-aver-the-Wing Noise Research,"
about 10 dB of broad band wing shielding effective- 	 NASA TM X-68246, 1973,
ness could be achieved in the shadow region. On an
OASPL basis the maximum suppressiot amounted to	 2. (lodge, C. G,, Winslow, L. J., and Wood, S. K.,

about 14 dB at 90 1 from the engine inlet with the	 "The Effect of Inlet Noise Suppression on

wing In a side position.	 Propulsion System D/sign," AIAA Paper 73-1294,

Nov, 1973.
2. Shielding of the engtna with frame treat-

'	 meet at approach power (BPF dominated) yielded a
maximum broad bond suppression of about 10 dD with
the wing In a basic or front forward position. The

BP p tone (1200 Ilz) was suppressed about 11 dB. 'file

-	 maximum suppression of 9 PNd6 occurred at an angle
of 40 1 on a 114 to (375 ft) sideline.

3. Shielding of the engine with frame treat-
niont at takeoff power (multiple pure tone and jet
noise dominated) alsoyielded about 10 dB broad
band suppression with Lila wing in the basic or
front forward position. The peak RPT noise was
allppresaed 16 d6 at 50 1 . The maximum shielding on
o parce Lved noise basis amounted to 10 PNdB at an
angle of 501 on a 305 m (1000 ft) sideline. Tile

engine aft noise sources were not shielded in this
position. Putting the wing in the aft position
provided 5.0 PNd6 suppression.

4. Forward shielding of the engine equipped
with an aft suppressor yielded reductions in front

noise approximately equal tb , the results with the
frame treated engine at both approach and takeoff

power. At approach the APNL at a 50 1 angle from
the Inlet was about 8 L'Nd B. At takeoff power,

about 10 PNd6 shielding was achlt"O.

5. Aft shielding of the engine equipped with
sonte inlet and aft suppressor (jet noise dominated)
a  takeoff power produced about 5 PNdB of suppres-
sion. The data generally agreed with the jet noise
shielding correlation of Ref. 9.

3, Can LLce11L, V. M., Di Blasi, A„ and O'Keefe,
J. V., "Noise Shielding Effects for Englne-
Over-Wing Installations," AIM Paper 75-474,

Mar. 1975.

4. Bloomer, II. E, and Schaefer, J. W., "Aerodynamic
and Acoustic Performance of a Contracting Cowl
high Throat Mach Number inlet Installed on
NASA Quiet Engine 'C'," ACM Paper 76-540,
July 1976.

5. "The Integration of Quiet Engines with Subsonic
Transport Aircraft," Douglas Aircraft Co.,
Inc., Long Beach, Calif., DAC-68510A, Aug,
1969. (NASA CR-72548).

6. Taylor, J. W. R., ad., Jane's ALL the World's
Aircraft, 1972-73, McGraw-Hill, New York, 1972.

7, Barris, C. M„ ad,, Handbook of Noise Control,

McCraw-11111, New York, 1957.

B. Montagani, F. J., "Some Propulsion System Noise
Data handling Conventions and Computer Pro-
grams Used at the Lewin Research Center,"
NASA TM X-3013, 1974.

9. vouGlahn, U., Groesbeck. D,, and Reshotko, M.,
"Geometry Considerations for Jet Noise Shield-
ing wLth CTOL Engine-over-the-Wing Concept,"

NASA TM X-71562, 1974.

6. Flyover noise results showed a maximum
1.5 EPNdB reduction was achieved by shielding the
frame treated engine at approach. For takeoff, the
maximum reduction was 2.7 to 4.3 rPNdB, depending
on the englnl configuration.	

TABLE I. - QUIET ENGINE "C" OPERATING PARAMETERS

AND ENGINE DIMENSIONS

r^

Concluding Remarks

The implications for CTOL wing shielding are
that, since the wing chord is not sufficiently
large in most cases to shield both ends of a turbo-

fan engine, it would he a good compromise to acous-
tically treat one end of the engine and to shield
the other end. The effect of this has been shown
with the quietest configuration tested at takeoff
power. The total reduction in flyover noise at
takeoff power with the sonic Inlet and aft suppres-
nor configuration and the wing in the basic aft
location was 12,4 EPNdB. Of this total noise re-
duction wing shielding of the aft radiated jet
noise contributed 2.7 EPNdB.

(Fan limn, m, 1,737; core discharge diam,
m, 0,747; fan discharge o.d., m, 1,838;
number of fan rotor blades, 26; number
of fan exhaust guide vanes, 60.)

Engine parameter T	 T Takeoff Approach

Corrected Can speed, rpm 4620 3080

Corrected core speed,° rpm 8290 7655

Corrected total airflow, 	 kg/sc-c 358 220

Bypass ratio 4.63 5.24

Corrected core jet velocity, m/sec 362.7 192.0

Corrected fan jet velocity, m/sec 268.2 167.6

Fan bypass pressure ratio 1.48 1.18

Corrected net thrust, N 97,900 37,380

Engine pressure ratio 3.96 2.04

°Corrected to fan core discharge

5
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TABLE II.	 - 10XIMUM WINO SHIELDING EFFECTIVENESS IN TERM OF	 -'PNdB

Wing PCs itlan Pwr, µEngine configuYa tion 	 -^

Frame treatment
06CC,_

Aft suppressor Sonic inlet and
aft suppressor

PNdn ` 4° 'PNdB50 INdB X 00

50 -10 60 -10Front forward T.O.
Basic forward { 50 and 60 -915 60 .1015
Back forward 70 .6

(

Basic aide
I

100 .3
Front aft 100 .4 80 .5
Basic aft
Back aft y

100
Ito

.5
-1.5

Ito
110

.5

-7,5

-9 50 -8.5Front forward App. 40
Basic farWard 40 and 50 .8 50 .8
Back forward 70 -3.5
Basic side

1

80 and 90 .3

Front of 90 and 100 .5

Basic of.
Back aft r

110 and 120

140

.9

-3.5

TABLE III. - FLYOVER CONDITIONS FOR 8707/DC-6 TYPE AIRPLANE

WITH 4 . 105 NEWTON° ENGINES

5

^r

Attitude, Airplane	 Thrust	 AvcragcAirplane

m velocity,	 angle	 Jet	 gross
m/soc	 velocity,	 weigh t,^

m/sec	 kg

TokcafC
Landing

451
104

72	 6° up	 770	 147,500

71	 7° down	 183	 102,000

°Naminal sun level static threat

TABLE IV. - COMPARISON OF EPNL FOR VARIOUS ENGINE

AND WING CONFIGURATIONS

[Four-ongine BC-8 type airplane.:

Engine with frame treatment

Wind positions _.._.T._._

No

in

Slde Bonic
fwd

Front°
fwd

Back
Lwd

Baelc
aft

Frant
etc

Oack
afe

T.O.
App.

104.2
101.7

107.8
102.2

102.1
101.5

101.9
99.8

104. 7
101.6

107,4
100,7

107.1
102.0

104.5
101.0

AEC suppressor ^

Wing positions

No Fronts Basic
wing fwd fwd

T.O. 102.5
1	

98.2 1	 98.4

Sonic inlet and aft suppressor

Wing positions

No
wing

Front
aft

Beate n
aft	 I

Back
aft

T.O. 94.5 92.7 1	 91.8 92.1
i

°Wing positions having greatest wing shielding effectiveness.
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Figure 1. - Quiet engine and wing as tested with bellmouth and engine
frame treatment.
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