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RIGIDITY OF LATTICE DOMES

V. A. '8avelyev'.

We will examine a lattice dome with a triangular
	

Z22_^*

lattice (fig. 1). The dome has a spherical shape, in the

sense that it is a polyhedron inscribed in a sphere of

radius R.

We will assume that all of the rods are rectilinear

and hinged in multiple joints. A load P is applied to each

of the multiple joints.

With a ratiod > 5 , the dome belongs to the cate

gory of gently sloping domes; therefore, the change in the

lengths of the rods and the angles between the rods car, be

disregarded.

We will examine the simplest and most likely form of

the loss of rigidity, which consists of the simultaneous

staving in towards the center of curvature of certain

multiple joints of the domed lattice surface. These

multiple joints are designated with the letter A in figure

2.

We will assume that the dome has initial irregularities

of shape, which consist of a radial deviation P. of the
multiple joints A from the spherical surface.

We will compose the equations of equilibrium of multiple

Joints A and C (fig. 3), and determine N 1 and Na,:

*Numbers in the margin indicate pagination in the foreign text.
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Here, ^ c = ^-° and C_ ^ are dimensionless parameters

of the initial and supplementary sags.

The length of rod 1 prior to loading is equal to

h_""'

	

lo^ Yc'-I- (1+ —Fn)j '= ;c '^1 -I- ( c ^ :': cVl •!•(F°(P—Wo)f	 (a)	 f

i

and under a load

1 "^/(^'' tQx'I•(!t_-^u-.F)a'.c•t/ ( 	
2u _I (b— Fu—F) 	,.

2t1	 9 ••	 '

i

As a result of the smallness of 'the angle 3 t one can

t	 approximately assume that

/o='cL 1 ( - : (A _' Wu), I	 c ^(	
2'(I - 

^o )¢l F	 (6)	 j

4 .> c l l -E ? (^ — tCo — W)° J —Ju : c f I + -L O - Cu C)^ ] — u. (6)

J
The displacement of multiple joint C, evoked by defor-

mation of rod 2, is designated by u:
t

u

2	 cis

n4^G441J4 Q^ ^'4	 ^



Fig. 2. ',implest form
of loss of rigidity of
lattice surface
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FiV. 1. Diagram of
gently-sloping lattice

1 dome

P,

P

C

A^[^ 	 c
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Fig. 3. Deformation of multiple ,joints
A and C of a la +tice dome
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^j The relative shortening of rod 1 is
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This shortening corresponds to the load P, which is

equal to If

P — 20 (1 — Cn — b) EFe t ;

Expression (9) determines the total nonlinear depen-

dence of the magnitude of the force, applied to multiple

joint A, on the parameter of sag of this multiple joint

with regard for the initial deviation 0.

We will examine first the ideal system { r 0)1
'b

t

P— 2EFP, ! (2-3b-hb').	 (10)
r

Assuming that the sags are small, as compared with h,

ie., << 1, we obtain the critical surface load

P, 2EPA3.
P

We will introduce the designation P= 
P	

From expression
a

,, t	 (10)
i

P	
2 (2-

3b) b')	 (12)

,

The diagram of the equilibrium states of an ideal system

f
lS

M

lei'	 _	 _ 	 __....... _.	 a	 ._.. ...	 .. .....



.-
f

f
Q	 Y ^

n

•	
41tJ

E	 4'•

5

28

^A

h	 '

	

^E	 •
i,

is shown in figure 4 by the bold-face. line. With an in-

crease in the sags, the load falls to the lower critical

	

i ! 	point, and then begins to increase again.

We will investigate the effect of the initial deviations

on the magnitude of the critical load. Shown in figure 4

are the curves which correspond to different values of

From the very beginning of loading, the system behaves as

a nonlinear system. If the initial sag is directed toward

the center of curvature, then, with an increase in the

initial deviations, the parameter of the upper critical

load decrease quickly. With 400 1, the lower point disappears,

i.e.,. the danger of sudden cracking through drops; however, the

deformability of such a system is extraordinarily great. In

multiple joints which are structurally impossible to imple-

ment in the form of ideal joints, considerable overstresses

may occur. With yo = 2, the initial situation corresponds to

a supposed cracked-through state of the ideal dome. The

diagram of equilibrium corresponds precisely to the branch

of rigid supercritical equilibrium shapes of an ideal dome

( 0 = 0) .

The geometric parameter

	

P= 
2-	

(13)

is contained in the formula of the upper critical load (11).

In domes with a small radius of curvature, the angle A

has large values, and the critical loads are sufficiently

great. Therefore, for small domes, the greatest danger is

not the total loss, but the local loss of rigidity—the

bulging of individual rods. With an increase in the span of

the dome, the angle A decreases, and the magnitude of 'the

P

f	
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critical load drops sharply

comes moro likely.

A total loss of rigidity be-

We will pose the problem of determining at what values

of /3 and, roughly, at which dimensions of the dome the total

loss of rigidity becomes decisive.

We will first assume that the dome has an ideal spherical

shape. Then, the force in rod 1, with a load P., will be

equal to

N P" ^, tP 
A'	 (IA)3

i

By setting expression (14) equal to the Eulerian critical

force, we obtain

fit

I

and for a maximal a=150

0 10363.	 (I(i)

If 6<13, , then the total loss of rigidity occurs; if "g	 then

an individual rod loses its rigidity first.

The actual structures always have initial imperfect

shapes. The radial deviation of multiple joint A from the

designed position can occur as a result of the inaccuracy of

manufacture of the rods 1. The normal accuracy of manufacture

of the metallic structures for the .rods from 2 to 6 m in

length is

t

xvm	 annn ^,
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Fig. 4. Diagrams of equilibrium states of a spherical
dome with different initial spans

By utilizing expressions (5) and (6) , it is not diffi-

cult to obtain the dependence which associates the parameters
and 'o with 61ra

/++	 t^^y (17)

7
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Here, 4k is the resilient sag, which corresponds to P^ ,

^	 ^ I
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By equating the critical forces in rod 1, with a local and

total loss of rigidity, we will obtain the following, similar

to expression (15):

By solving equations (17) and (18j together, utilizing

the graphs in figure 4, we obtain, for 1=150,

A, -0,08 09 R < 101o. 	 (19)

For example, with a rod length 2 0=3 m, the radius of

4 -curvature of a single-layer lattice spherical dome should

not exceed R,=30 m, in order to avoid a total loss of rigidity.

How can one increase the rigidity of large-span domes?

An increase in the rod length Z. in order to ensure

condition (19) is economically unsuitable, since it leads

to an increase in the flexibility of individual rods, and
4

weighting of the structure of the roofing.
r

z Apparently, a more successful structural approach, which

increases the total rigidity, is the creation of large initial

} deviations of individual multiple joints of the dome in the

! direction opposite to the expected bulging, which makes it

possible to utilize the branches of rigid equilibrium con-

ditions with negative values of t^p 	 (dotted lines in the graphs

in figure 4).

C
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One can also give the dome a sort of cracked-throui-h

shape in advance. In this case, the load—sag dependences

also have the form of rigid ascending curves (^0 = 21 Z0= 4).

The steel dome in Baton Rouge (USH), designed by R. B.

Fuller, which is 118 m in diameter, can serve as an example

of the practical utilization of such methods. It is made up

of hexagonal sheet panels, each of which is specially given

a convex shape.

ZXLO

Of course, thes(! methods can not serve as a total solution

of the problem of rigidity of domes with such satisfactorily

large spans. With an increase in /^, the danger of cracking through

increases according to more complex (than those examined)

forms of bulging, which encompass a considerably greater

section of the lattice surface. In addition, it is necessary

to note that an artificial break in the outline of the
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Fig. 5. Comparison of stressed state of a
section of as

a — lattice surface; b— solid casing
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ii
bearing surface of the dome structure introduces an irregu-

larity into the distribution of forces among the rodop which

considerably reduces its economical. effectiveness.

A more all-purpose method for increasing the rigidity of

large-span domes is the creation of three-layer lattloe struc-

tunes, which consist of two lattice surfaces, interconnected

by a lattice. With radii of curvature which considerably

exceed the lengths of the rods, it is advisable to view such

structures as solid shells, rather than rod systems.

ti

A three-layer lattice dome, according to the nature of

its operation, is equivalent to some three-layer shell with

a light filler. The role of the ?xternal bearing layers is

played by the lattice surfaceso while the role of the filler

is fulfilled by the connective lattice, which operates only

under shear stress.

`

	

	 In order .o bring a uniform triangular lattice to a solid

shell, we shall examine the stressed state of a section of the

lattice surface, which has the shape of a rectangle with sides

Z and	 3Z	 (fig. 5,a).	 This section is 'the minimum section

which reflects the discrete nature of the lattice structure.

We will assume that, within the limits of this section, the
g

forces in the rods in one direction are equal. 	 By comparing

the resultants of the normal and tangential components of the

forces applied to this section with the corresponding resul-
t

tents for a solid rectangle of the very same dimensions, with
f^ a thickness t	 fig. 5,b), we obtain

3 ax°	
2	

(N,-1	 5 (N.+IQ
V711 JY3	 L	 J

f

A +NO;	 (20)

211 (No —.' NJ.	
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We will investigate the deformation of an elementary

ro,.i triangle.

^	 e

Fig. 6. Magram of deformation of an ele-
mentary rod triangle

a— in the direction of the x axis b—in
the direction of the ,y axis

We will first assume that the deformation occuro only

in the direction of the x axis, while in the direction of the

y axis, the rods do not change their length, i.e., rx-4,/1,

and Cy- 0, with ^A-,a +A". The axis 1-1 will be considered
fixed (f iv. b, a) .

The length of rod 2, prior to deformation, is equal to

and after deformation

or, with accuracy up to terms on the order of 4,

s
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similarly

1,_((1+ 2r
/, l

We will determine the relative lengthenings of the rods:

2r	 2r	 2

In the general case

A, Ffa A; ; ct — e^ v^^ o,

i.e., shift of the lattice take:7, place towards
.

We will designate the shift angle through}'; then
Y	 2h	 A; ^ A,

3 (	 y Vi
hence

(23)

We will now examine the deformation of a rod triangle

in the direction of the y axis (fig. 6,b).

The lengths and relative lengthenings of the rods after

deformation are respectively equal to

12	 +
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1

Thus, for two specific cases of deformation of a lattice

system

0,+0;	 e„ - 0;
y'

ex	
0;	 eu	 0

i

the dependences of the magnitudes of E„ E., and	 on e,:, £y,

i
and'	 are determined.

y

We will obtain the expressions for the general case of

£^,a0 atd £yx`0, utilizing the principle of superpositions e, -ex

Ey T e9 'A 2 (e , + 3ey);	
e

Y^a
(25)

ea — ea	
2	 Y•

Generally speaking, rods 1, 2, and 	 can be made from

different materials and have different cross-sectional areas.

In this case, the equivalent solid shell will be anisotropic.

We will limit our investigation to the simplest cases

Es ,- Ea =• @a.. F,;	 'F1 :. F2 . Fa .: F

In this case, one can write

r^.i N, .:= e iEF; . Na _: e,E!',	 Na::. e.1-IF.	
7

We will substitute these values into formula (20),

^3
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Utilizing formula (25), we will write the relation- 	 Z3

ships (26) in the form
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The corresponding expressions for the stresses with a

planar stressed state of an isotropic shell have theform

TT

i

r.

	

^(Ner l eu)	
(28)

z	 I - IL

Fig. 7. Designed cross-
sections of shells:
a—single-layer; b—three-

F
layer

i By equating expression (27) and (28), we obtain

E	
2EF 

..,G. _ I/ 
3 E	

(29).µ ._ 3	
.: 

1/ 3 it	 41t
f
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s E' can be assumed to be equal to E; then
A

r

l ^:	
2p	 d' - 

6 E.	 (30)

w
i

The three-layer spherical shells can easily be brought

to a single-layer, if one disregards the deformations of

shift of the filler—connective lattice.

s
The work of a connective lattice between two lattice

a surfaces of a spherical dome is evidently similar to the work

of a lattice in flexible rods; based on known formulas of

applied flexibility, one can draw the conclusion that the

error introduced by such an assumption will be insignificant,

if the ratio of the area of the working rod to the area of

the rod of the lattice is small.

For a shell of solid cross-section (fig. 7, 	 a), 'the

k
bending and tensile rigidities are respectively equal to

D=	 Ell

Similar expressions for a three-layer shell,.with dis-

regard for the inherent bending rigidity of the layers, have

the form ( fig - 7,b)

E,Ur	 —	
2E,!

1 t)

where h, is the distance between layers.r
With the conditions of equality of the Poisson coeffici-

ents, equating expressions (31) and (32) and utilizing formula

15
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(30), we obtain

t

x

4

Thus, the formulas (33) make it possible to reduce the 	 /^

calculation of the rigidity" A a three-layer lattice dome

to calculation of the rigidity of some solid isotropic

shell with a given thickness and modulus of elasticity.

A feature of the problem of rigidity of thin-wall

spherical shells consists of • the fact that shape iinperfections

have a very great effect on the magnitude of the critical

loads. The most unfavorable are local concavities on the

surface of the shells, which corresponds in dimensions and

profile to the bulging in the process of loss of rigidity.

Numerous experimental investigations have established that

the loss of rigidity of spherical shells takes place in a

large range of specific loads p,,= 0.6-0.2 1pu =PK L , with

the relative magnitude of the maximum sag /,/h being one

of the basic parameters which determine the magnitude of the

critical loads in this Case; the critical pressures are
F	

lower the deeper the initial hollows on the shell.

The majority of theoretical investigations on rigidity

of spherical shells has been devoted to-the determination of

that minimal load at which the shells do not lose rigidity. .

with anydeviations from the ideal shape. The problem was

solved by the construction of a curve which determines the de-

t	 't	 t	 1pendence of he magna ude of he maximum sag on the oad on

the shells. The minimum value of the load, the so-called lower

critical pressure, was set equal to the desired magnitude of

the load. -

16
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Such an approach to the solution of the problem was

justified by the satisfactory coincidence of the results of

the experimental and theoretical investigations, insofar as

the least value of the lower critical pressure, obtained by

Kh. M. Mushtari [1], was equal to po— 0.22. However, in 1961,
A. G. Gabril'yants and V. M. Fedos'ev published a numerical

solution of nonlinear equations of a spherical shell, ob-

tained on an electronic digital computer [2], where the lower

critical load proved to be equal to 0.13 86, and corresponded

to the sag, which exceeded the thickness of the shell by

22.5 times. With such large sags, it is impossible to con-

sider the shape of the resilient hollow axisymmetric.

Numerous tests with spherical shells [3,4] show that,
with sags f >10h, a switch from a circular shape of bulging
to a triangular shape is characteristic. The theoretical

substantiation of the regularity of occurrence of a non-

symmetric shape of the hollows in the supercritical stage is

given in study [51

Finally, the hypothesis of declivity of the area of

bulging with large sags can also introduce substantial

errors. Based on more general regularities, detached from

this hypothesis, A. V. Pogorelov showed [b] that, for a re-

silient spherical shell, the lower critical-icad'does-not

exist at all, since all of the resilient states are unstable

with bulging. The experimentally determined lower critical

load is a result of the occurrence of plastic deformations,

Thus, one can draw the conclusion that it is most correct

to carry out engineering calculation of the rigidity of
spherical shells according to the upper critical loads, ob-

tained with regard for the initial sags. Such an approach,

in addition to the apparent logic of posing of the problem,

F

17
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more precisely corresponds to the initial hypotheses on the

declivity and axisymmetry of the zone • of bulging, as well as

the assumption of the retention of the resilient properties

of the material, insofar as the investigations are carried

out in the range of small relative sags.

However, such a method of solution, with respect to

thin-walled sheet structures, can not yet be recommended,

insofar as the designer does not have available sufficiently

reliable data on the magnitude of the potential deviations

from the correct shape. These deviations depend on many

random factors, the differentiated calculation of which is

presently impossible. For example, for a structure of a

spherical gas tank, these factors may be: deviations in the

thickness of the sheet during rolling and drop forging,

inaccuracies of manufacture of the punches, errors during

cutting, slight curvatures which form during transportation

and. assembly, welding deformations, and others. Even if one

managed to determine the calculated magnitude of the initial

cambers for each individual type of structure, on the basis

of gathering of statistical data, one could hardly expect a

th	 t' 1 1 d	 d th

z2l^

i

substantial increase in	 e on ica	 oa s, as compare	 wi

the practical magnitudes obtained by experimental means.

Conversely, for large-span lattice shells and covers,
r	 i

the calculation of the rigidity, with regard for the initial

deviations in shape, is uniquely correct, insofar as 'the

relative magnitudes of these deviations, as compared with

a sheet structures which are small in size, should be consider-

ably smaller.	 This assumption is based on one of the main

P corollaries of the theory of measurements, according to which

the relative accuracy of measurement, and therefore also the

accuracy of manufacture, increase in proportion to the in-

crease in the dimensions.	 For example, with class 6 accuracy,

K
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the allowance for the manufacture of the elements of metallic

structures up to 1-5 m in length is 1.4 mm (relative accuracy

of 1:1000), for those up to 33 m in length-8 mm (relative

accuracy of 112400). In this case, it is necessary to take

into account the fact that the relative thicknesses of two-

layer lattice shells, calculated according to formula (33),

may exceed by 10-20 times the relative thicknesses of thin-

walled solid shells. Therefore,

if the initial cambers in sheet

structures at once reach on the

order of one-two thickn esses of

the shells, then, for large-span^^

structures, the magnitude of the

deviation should be considerably

lesser.

On the other hand, f-)r such

relatively thin-walled shells,

the concept of a lower critical

pressure loses its practical sense,

insofar as the area of plastic

deformations corresponds uncon-

ditionally to cambers on the

order of 20 thicknesses.
Fig. 8. Geometric dia-
gram of two-branch rod
of a dome framework

Utilizing statistical methods,

we will evaluate the magnitude of the potential irregulari-

ties in the shape of three-layer lattice domes.

We will assume that the three-layer lattice dome is

made up of one type of two-branch rods. The projected curva-

ture of each product dome, consisting of individual rod

branches of a single direction, is provided by the difference

in the lengths of the upper and lower branches (fib;. 8)s

19
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1	 a1. r

where c^ ale-zH.

As a result of errors in manufacture, the potential

deviation in the magnitude of 0..is

Aa =v A/ 2y,

Here,, AZ is the random error in the manufacture of

a rod with a length Z. As is common knowledge, the distri-

bution of errors in the dimensions of linear elements corres-

ponds quite accurately to Gauss' normal law of distribution.

We will assume that G 1 corres-
ponds to a certain number of

f	
c	 L	 -c	 standards = dZ , with the proba-

bility of the occurrence of such

an error being equal to Ji. The
Fig. 9• Potential shape of
initial curvature of pro-

additional difference in the

duct dome	 lengths of the upper and lower

branches in the section of the

generattrix L=m Z', which is equal to

.;	 I/ m

will correspond to this very same probability.

Consequently, as a result of the errors in manufacture of
4 `	 individual rods, the generatrix in section L may produce an`

additional curvature of the axis, with an average value of

i
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We are interested in that curvature of the generatrix

with which the surface of the dome takes on 'the shape of an

axisymmetric hollow with a r,ldius 1 1 (fig. 9).

The simplest shape of a curved line should have one

section of positive curvature, and two sections of negative

f	 curvature. We will assume that all three sections have an
i;

equal length/_= 2/3 h/ p and an equal average curvature x . By
approximately assuming a uniform distribution of the curvature

in the sections L, according to figure 9, we obtain

6	 6 V 21 kaLJ^L	 6	 r,^r,
ka

8	 8	 kt{/%	 6 V i	 k,I/

We will also determine the probability <I of the occurrence

of a given shape of the curvature of the generatrix.

.a

Insofar as the probability of the occurrence on the

generatrix of one section of curvature L equal tool, then,

according to the theory of multiplication of probabilities

[71 the probability of the coincidence of three sections of

the curvature, located next to one another, is

f
01 Qty

n

k.

Errors in d.imensions'of ±3d are considered maximum. The

probability of the occurrence of errors of more than 3d is

quite small-0.135, and such errors are usually disregarded
_s

k
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during the establishment of tolerances. By assuming, there-

fore, that tpr = 0.00136 1 we obtain ji=0.111. _.^ 1.22 corresponds

to this probability. Consequently:

f„	 t1,l9fil^ Ir^i 8,	 ($7)

where 6=3d is the permissible deviation in the rod length.

The curvature of one generatrix still does not mean

the occurrence of a spatial hollow on the surface of the dome.

A spatial hollow may occur only in that case when several

adjacent generatrices, all in the same direction, have simi-

lar shapes of curvature.	 The probability of such an occur-

rence is on the order of

`t

where n. f-o	 is the number of generatrices in the section

` of the surface being examined.
i

However, such an approach may evidently lead to under-

stated results.

We will think that the set of amplitudes of the devi-

ations of all of the generatrices in an area of radius ! 	 ,

` equal to A-flt 	 will be equivalent to the formation of a

spatial concavity of the middle surface with a depth 7oH
equal to

'
fan_ Iuy n	 I^	 (38)'

a
t
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fo	 0,13	 8,	 '(39)

The initial sags of the shell have the greatest in-

fluence on the reduction of the upper critical load in that

case when their dimensions coincide with the dimensions of

the areal, of elastic bulging in the initial stage of the loss

of rigidity. Therefore [8]s

r2,	 9 f 3 R/t^,

Finally, we obtain

Ca	 I' - 0, 3 -H. (
rIR

)	 (10)

Formula (40) shows that, with a constant ratio -Â —, the

relative initial sags decrease with an increase in the radius

of curvature of the dome.

As is common knowledge, the upper critical load for a

spherical shell, with the absence of initial deviations, is

l 9. (41
 )

T£ the spherical shell, has initial irregularities in

shape, then the expression for the critical load has the form

	

P, =	 2	
PKE (h \^
	

(42)
i - W)	 \ R !	 -
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Here,PK =.	 - is the coefficient of reduction of the

upper critical load, as a function of the depth of the

Initial sags.

V

s

0

Fig. 10. Graph of the function
of the distribution of the
parameter of the critical load

P„ with 3 dc, % 0.1

By substituting the

expressions for h and E,

according to formula (33)o

into formula 01. 2) , we obtain

4 ti/"a - r,h,F
P. n .± -	 P. ' ,R	

43)
►/ 2

The effect of the

initial sags on the magni-

tude of the upper critical

load was investigated in

study L8]. For small values

of 4',,< 0.3, the function of
the coefficient of reduction

of the upper critical load

can be approximately written in the form

p. . - l — 0,925;°.40 .	 (44)

Utilizing expression (44), one can construct the func-

tion of the distribution of the critical load in a manner

similar to that in study C71 for a cylindrical panel. De-

picted in figure 10 is the function of distribution l)(!'„) for
	 4

36&,=:' 0.1. The mathematical expectancy proved to be equal to

0.825. As a result of conversion, the density increased con-

siderably in the area of lesser magnitudes of ^,,, and the

probability of a critical load Pk > 0.668, which corresponds

to^v = 0.1, proved to be considerably higher than the proba-
4
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bility of initial sags C— 0.1. It is evidently necessary to

adopt &= 0.658, corresponding to a probability of 0.0013,

in the capacity of a calculation magnitude in the given case.

During the solution of concrete problems, knowing the

conditions of manufacture of the structure being designed,

one can obtain the magnitude of the initial sag from relation-

ship (40), and then, utilizing the transformation of proba-

bilities, determine the coefficient of reduction of the

upper critical load and its probability characteristics.

The critical load is determined according to formula (43).

For normal conditions of manufacture of metal lic struc-

tures, adopting permissible deviation in rod length according

to the Construction Norms and Specifications, it is not ditfi

cult to obtain that maximum ratio RA i which guarantees total

;:igldity of three-layer lattice domes.

By setting formula (43) equal to the expression for the

maximum load on a dome, from the condition of a supporting

capability of the individual rods of

9 4 Y-3 Q̂F	 (45)
R!	 '

we obtain

R	 PA	
(4G)

h^	 ^/' 2 aT

Here, G is the calculated resistance of the material of the

rods of ' the lattice dome;

P is the coefficient of longitudinal rigidity.
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The calculations according to formulas (40) and (46)
#	 show that, for metallic two-lattice domes with R >30 m, the
,I maximum ratio of RA, can be assumed to be equal to

r2 ^, 300.	 (47)
h,

Conclusions

1. Lattice domes with R> 30 m should be designed as

three-layer, in order to ensure their total rigidity.

2. Design of such domes can be;carried out as single-

layer solid shells, with given thicknesses and moduli of

elasticity.

3- Insofar as the initial irregularities of shape of

the lattice domes are small, calculation of the rigidity

should be carried out according to the upper critical loads,

with regard for accuracy of manufacture of individual rods of

the elements.

4. For normal accuracy of manu_acture, total rigidity
is ensured with R/h, < 300-

h

F
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