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REGRESSIONS BY LEAPS AND BOUNDS AND BIASED ESTIMATION
 

TECHNIQUES IN YIELD MODELING
 

1. INTRODUCTION
 

The prediction of yield estimates based on meteorological variables is
 

discussed in this technical memorandum. The primary statistical tool for
 

the analysis is linear parameter regression. Multiple linear regression
 

analysis isa procedure for the analysis of the relationships between two
 

sets of variables, independent or regressor variables and dependent or
 

response variables, whose values are believed to be related to the set.
 

Estimation of the coefficients of the regression model is usually performed
 

using least squares.
 

The least-squares estimator of the regression coefficients has the desirable
 

property of being unbiased and having minimum variance among the class of
 

unbiased linear estimators. However, when near-linear relationships exist
 

among the regressor variables (asituation known as multicollinearity) this
 

minimum variance can be quite large. Thus, estimation procedures other than
 

least squares appear to be desirable when multicollinearity exists among
 

the regressor variables.
 

The meteorological variables currently used inyield modeling are highly
 

correlated among themselves. A consequence of the multicollinearity present
 

in the meteorological variables is the large variance of the regression
 

coefficients. Many of the applications of regression analysis in yield
 

modeling either explicitly or implicitly place reliance on individual
 

parameter estimates. Inferences about cause-effect relationships between
 

the response and regressor variables based on individual coefficient estimates
 

can be misleading, even erroneous, when multicollinearity is present in
 

.the data. In the presence of multicollinearities, the estimated coefficients
 

are highly unstable; the addition of one or more new observations can change
 

the size and even the sign of some of the parameters (ref. 1).
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In this memorandum it will be shown that techniques other than ordinary
 

least squares (OLS) exist to deal with the problem of estimation with
 

correlated predictor variables. In particular, latent root regression,
 

principal components regression, ridge, and generalized ridge will be
 

examined. Texas and Oklahoma weatherdata are used for the illustrations.
 

The programs that implement these techniques were developed by the author
 

while attending the University of Houston; the Industrial Engineering
 

Department of the University of Houston provided the computer time for the
 

sample runs.
 

In section 2, ordinary least squares are reviewed and the multicollinearity
 

problem is defined. Section 3 deals with the problem of finding the best
 

subset of variables to enter the regression analysis. Section 4 discusses
 

three of the most important biased estimation techniques. In section 5,
 

these ideas are applied to the'weather and trend data for the Texas-


Oklahoma Panhandle and Oklahoma, which were provided by National Aeronautics
 

and Space Administration, Lyndon B. Johnson Space Center (NASA/JSC) personnel.
 

Conclusions and reconmendations are presented in section 6. -References are
 

listed in section 7.
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2. ORDINARY LEAST SQUARES
 

2.1 LEAST-SQUARES ESTIMATION
 

The multiple linear regression model can be written as
 

+ + 	 +Yi = * Ii* O"xi +- Oxt + i ; i =l, 2, --- ,n ()
1 11~it 	 p ip 8 2i12 


where
 

Y. 	 = the yield for the ith year
 

- *. = unknown parameters referred to as the regression
 
coefficients
 

x*. 	 = the value of the jth weather variable for the ith year
 

= random error term for the i-th year
 

For the purposes of increased computational accuracy, the relationship
 

(eq. (1)) can be transformed (ref. 2) by letting
 

x.. 
 7[ * X)2] 1/2(xij ­

where
 

Xt -I L 
n 

xt. 

The predictor variables are now standardized so that
 

x ij 0
 

and
 

E x2. = ; 	 j= 1 2,--, p 
i=l
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Eq. (1)now becomes 

Yi BO + xil + + {pxip + ai ; i = 1,2,--, n (2) 

where
 

P 

j=l - J J 

and
 

1/2
 n 2 

In vector notation, eq. (2)is written as
 

y= + XfB +E 	 (3) 

where 

y = an n x 1 vector of yield measurements 

1 = an n x 1 vector of l's 

X= [X1, X2 , "", Xp = an n x p matrix of constants 

= 01 2 " S) = a 1 x p vector of unknown parameters
 

= an n x l vector of random error terms
 

The 	following assumptions are used in this memorandum:
 

= 
a. 	The elements of X [Xl, X2, **, Xp I are nonstochastic. 

b. 	X has rank p < n. 

c. 	The elements of y are observable random variables.
 

d. The elements of E are unobservable random variables with E[C] = 0 and 
E[sa'] = o2 1n 

e. 	In addition, the assumption a - N(O, 2I ) will be included when hypothesis 
testing is required. ­
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It should be noted that assumption (b)states that the number of observations
 

exceeds thenumber of parameters to be estimated and that no exact linear
 

relations exist among the columns of X.
 

The least-squares estimate b of 0 is found by minimizing E's with respect 

to , i.e., 

minimize s's = (y - XS)'(y - XO) 

= y'y - 2BX'y + S'X'XS 

The problem is reduced to sol.ving 

X'XB = X'y (4) 

which is obtained by using the fact that 1'X'y = y'Xo, differentiating s's 

with respect to B, and solving 

WE 0
 

or -2X'y + 2X'X5 = 0
 

These are the so-called normal equations. The solution to eq. (4)is given by
 

b = (X'X)-Ix'y (5)
 

The least-squares estimator is unbiased and has minimum variance in the class
 

of unbiased estimators of the regression coefficients. If the normality
 

assumption (e) is valid, eq. (5) is al'so maximum likelihood (ref. 3).
 

The variance of the OLS estimator is given by
 

-1
Var(b) = o2 (X'X) (6) 

The variance of the estimator of a particular coefficient, b., is 

Var(bj) = C.jG 2 (7) 

while Cov(bi,bj) = CiO2 
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C = [C i] = (X'X) I
 where 


Eqs. (6)and (7)play a central role in the discussion of multicollinearity.
 

A complete discussion of the derivation of the least-squares estimator and
 

its various numerical and statistical properties can be found inmany
 
standard texts on statistical analysis; special mention should be made of
 

reference 2.
 

2.2 MULTICOLLINEARITY
 

It is very well established that the regressor weather variables inthe Center
 

for Climatogical and Environmental Assessment (CCEA) yield model are highly
 

correlated (refs. 4 and 5).
 

Let us analyze the effects of multicollinearity on the OLS estimator.
 

Multicollinearity is.a form of ill-conditioning within the matrix, X, of
 
regressor variables inwhich for some set of constants a ,, a2, -.. , ap not
 

all zero, we have
 

P
 

ajji ;_ 0(8) 
j=l
 

Ifthe relationship isexact, there issaid to be an exact multicollinearity
 

among the regressor variables. Inthis case, (X'X)-I does not exist
 

because the rank of X will be less than p. This implies that there isnot
 
one solution to the normal equations, but infinitely many solutions. To
 

obtain a unique solution for eq. (4)when the rank of X is less than p,the
 

Moore-Penrose pseudoinverse of X'X, (X'X)+ , should be used (ref. 6)to obtain
 

the solution
 

b+ = (XX)+X'y -

Of primary concern inthis paper are the cases where eq. (8)only approximates
 

zero. When this occurs, we say that multicollinearities exist among the
 

regressor variables. Multicollinearity isexplained ingreater detail in
 

references 7, 8, and 9.
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Strong multicollinearities among the regressor variables produce the following
 

problem with OLS estimation of the regression coefficients:
 

a. 	The estimates tend to be large in magnitude.
 

b. The signs of the estimates are greatly influenced by the-multicollinearity,
 

which can result in estimates having signs which disagree with known
 

theoretical (agricultural) properties of the model.
 

c. 	Variances and covariances of the estimators tend to be extremely large,
 

often-causing the experimenter to delete variables incorrectly.
 

d. 	The coefficient estimates are very sensi-tive to the particular set
 

of sample data, therefore the addition of a few more observations
 

can cause large changes in the estimates.
 

These problems are due entirely to the presence of muiticollinearities and
 

occur regardless of the true values of the regression coefficients. The
 

difficulty centers around the fact that multicollinearities among the
 

regressor variables cause X'X to be nearly singular. This, in turn, creates
 
-
large values among the elements of (X'X) l.
 

To illustrate these properties, suppose a linear relationship of the form 

shown in eq. (8)holds for the first k < p regressor variables with a. 

nonzero. The diagonal elements of 

C (X'X) 1
 

can 	be expressed as
 

C - R) j = 1, 2, ..- , p 

where R is the coefficient of determination of the least-squares regression
 3 
of x. on the remaining p - 1 regressor variables. If j < p, xj. is involved 

in the multicollinearity and hence could be well estimated by the remaining 

regressor variables. This results in an R2 which is very close to 1 and 
consequently a Cjj which is very large. Since 

Var(bj.) = C.j 2
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the variance of the estimator of the regression coefficient of x. is very
 

large. The off-diagonal elements of (X'X)-I can be represented as
 

C..j -Si.(p I Rflh[1 R 
IL J*.P(-2I
 

where Sij.(p_2) is the partial covariance of xi and x. adjusted for the 

remaining p - 2 variables, and j(p2) is the coefficient of determination 

for the regression of x. on the remaining p - 2 variables, excluding x.. Thus, 

if xi and x. are both involved in the multicollinearity, R will be close 
to1w i S
to I while Sij.(p-2) generally will not be close to zero. Therefore,
 

Cov(b i, b.) = C. 2 

1 3 13
 

typically will be large in magnitude.
 

The least-squares estimator of the individual regression coefficient can
 

be written as
 

p 
b = C.i.(Xy) i = 1, 2, ... , p 

1-Jyj=l
 

Hence, if xi is one of the variables involved in the multicolljnearity,
 

several of the C.. will tend to be large.in magnitude, in turn yielding a

13
 

i which is large inmagnitude. This is due primarily to the multicollinearity
 

and does not necessarily reflect the true values of the regression param­

eters
 

If we let <I 2< ... < £P be the latent roots or eigenvalues of XX as
 

defined by the equation
 

IX'X - p I =' 0 

and let Vl' Y2' ""' Ip be ,corresponding latent vectors or eigenvectors
 

of X'X as defined by'the equation
 

(X'X)V Y.2V.
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subject to the constraints
 

W.V.

3-l

=1
 

and
 

jV!V= 0 ;f
 

then we can write
 

p.
 
C = (XX) - I  I QIv.vj (9) 

j=l
 

Equation (9)provides another way of illustrating the problems with least­

squares estimation. The presence of multicollinearities means that X'X
 

will be near singular and hence one or more of the eigenvalues, will be
t., 


-
near zero. This creates the large elements in (X'X) mentioned above.
 

The problems associated with least-squares estimation motivate the need for
 

alternative methods of estimation and analysis when confronted with multi­

collinear data. Several recently proposed alternatives are outlined in
 

the next sections. Of necessity, all are biased estimators, but each will
 

be seen to have several desirable as well as undesirable properties.
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3. CHOOSING THE BEST REGRESSION
 

A major problem in regression analysis is-that of deciding which regressor
 

or predictor variables should be in the model. There are two conflicting
 

criteria for selecting a subset of regressors. First, the model chosen
 

should include as many of the X's as possible if reliable predictions are
 

to be obtained from the fitted equation. Second, as discussed in section 2,
 

the variance of the predictor increases with the number of regressors. A
 

suitable compromise between these two extremes is usually called 'selecting
 

the best subset" or "selecting the best regression equation."
 

The CCEA model contains 23 predictor or regressor weather-related variables.
 

This author was requested not to consider square or cross-product terms; such
 

analysis should be done as part of the follow-on'to this study.
 

It is recognized that individually the weather variables in the CCEA model
 
provide little information but collectively they do reasonably well. Under
 

these circumstances, it has been shown (ref. 10) that the all-subsets
 

approach is much better than backward, forward, or stepwise regression when
 

selecting a suitable'subset of regressor variables.
 

3.1 ALL POSSIBLE REGRESSIONS
 

Algorithms have been described (refs. 11 and 12) for computing all possible
 

regressions which are much superior to the naive approach involving the
 

direct inversion of the moments matrix associated with each subset of
 

independent variables. The number of operations per regression decreases
 

from kp3 to kp2. If less output for each regression is satisfactory,
 
further savings are possible. By computing the regression coefficients,
 

their variances, and the residual sum of squares with a number of operations
 
per regression, which is of order p, and if we are satisfied with only the
 

residual sum-of squares (RSS), the number-of operations per regression can be
 

reduced to slightly less than six (ref. 13). As there are two possibilities
 

for each regressor, "in"or "out" of the equation, there are 2P such
 

regressions.
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A systematic procedure for generating all possible regressions is given in
 

references 11, 12, and 14. Garside (refs. 11 and 14) represents each 
regression by a K-digit binary number; for example, if K = 4, the binary 

code 1010 would represent the model E[Y] = 0 + IX1 + %3X3. For K = 3, we 

have 000, 100, 110, 010, 011, 111, 101, 001. These are the coordinates of 

the vertices of a K-dimensional hypercube; finding an efficient procedure 

is equivalent to finding a path along the edges of the hypercube which will 

pass through each vertex only once (a Hamiltonian walk). 

3.1.1 FURNIVAL'S METHOD OF GENERATION
 

A Gaussian elimination method given by Furnival (refs. 13 and 15) is best
 
described in terms of a "regression tree," as shown in figure 1. The
 

Gaussian elimination operator is.applied to each-pivotal element just once
 

in the order given by the binary tree. The full matrix is at the root of
 

the tree, ,and at each interior.node a submatrix is derived from.the parent
 

matrix by a series of pivots (solid lines) and deletions (dashed lines).
 

The regression tree can be traversed in any ."biologicallyfeasible" order;
 

the only restraint is that a father be "born" before his son. By using
 

horizontal, vertical, or hybrid searching techniques, Furnival obtains a
 

number of regression sequences which he describes as natural, lexicographic,
 

binary, and familial.
 

3.1.2 BASIC ASSUMPTION
 

A number of authors have described procedures for finding the best subset
 
regressions without computing all possible regressions (refs. 16, 17, and 18).
 

All of these methods are based on the fundamental inequality
 

RSS(A) < RSS(B) 

where A is any set of independent variables; B is a subset of A; and RSS is
 

root sum square. (See ref. 15 for more details..)
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Figure I.- The regression tree.
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3.2 	 ADJUSTED R
2
 

One measure of goodness of fit of a regression model widely used in the past
 

is the coefficient of determination
 

Y 
2 _ (Yi -
R (Yi 2
 

2;(y 
 2
 

Since introducing an extra regressor increases R2, the problem is not finding
 

the subset with maximum R2 (which in any case is the set of all p regressors)
 
2
but rather that of finding a suitable subset with a high R
 

The adjusted or corrected R2 statistic is given by
 

where m is the number of parameters in the model.
 

To see the effect on f2 of adding extra regressors to the equation, consider
 

the F-statistic for testing the significance of q new additions (ref. 2):
 
2 2
 

x n -m q
F +-


l-R	 2 q
 
m+q
 

It follows that
 

-2 > R2 
m+q - M. 

"ifand only if F > 1.
 

One criterion, therefore, for 'selecting the best regression is to choose the
 
2
regression subset which maximizes Rm*
 

3.3 	 MALLOW'S Cy STATISTIC
 

Consider a q-parameter model, q <*p: If Nq = E[Yq], then Nq will generally
 

differ from Xq'q because of possible bias in the q-parameter model.
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Let 0 = E[Y]. Then, for a given future data point X,
 

2 
E[CYq - 0)2] = Var[Yq] + (N-q 

= c2N(?s' Y_ x + (N - 6)2-i q
 

As pointed out in reference 19, it is perhaps more appropriate to use the
 

sum or the average, in some sense, over the future observations of interest.
 

'Mallows (refs. 20-22) and others (ref. 23) suggested to minimize
 

Aq 2-B (Yqi - i)2j
A._L E[YYL q
 
+ SSqB
 

where SSB is the-bias sum of squares, given by
 

n 
2 (Nqi- i)2
 SSBq 

il
 

It can be shown (ref. 20) that
 

Cq. ^2 + 2q- n 
a
 

is a suitable estimate of Aq (fig. 2).
 

Notice that adding S = q2 - q, regressors to a model may reduce the bias
2 
term SSB, but at the expense of increasing the variance term from qlc to
 

q2c2. If the equation-is needed-for prediction, it may be better to drop a
 

few regressors and accept some bias in exchange for a smaller A and a
q 
simpler equation.
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Figure 2.- Cp plot.
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It can be shown (ref. 24) that
 

RSSq(n - p - 1) 
Cq RSSp+-n+2q 

and
 

Cq - q =
I_ Rq
 

n-q 1 -2-Rp 1 
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4. ALTERNATIVES TO ORDINARY LEAST-SQUARES.ESTIMATION
 

Some attention has recently been given to two aspects of regression analysis.
 

The first aspect is the attempted improvement of point estimators where
 

the criterion of goodness is the mean-square error (refs. 25-27). Sclove
 

(ref. 27) discusses an estimation technique which guarantees that the sum
 

of component-wise mean-square errors of the biased estimator is smaller
 

than that of the ordinary unbiased least-squares estimator. He presents
 

some further results under the restrictive condition that the independent
 

variable of the model can be ordered in importance prior to analysis. These
 

procedures can be somewhat difficult to implement, and very little is known
 

about the distributional properties of the resulting estimators.
 

The second aspect of regression considered recently is the problem of point
 

estimation where there is a high degree of multicollinearity among the
 

predictor variables (refs. 28-33). Hoerl and Kennard (ref. 28) propose a
 

class of biased estimators called ridge estimators; their criterion of
 

goodness is mean-square error. The technique is relatively easy to use,
 

and itmay be shown that the class contains estimators which have smaller
 

mean-square error than the least-squares estimator. However, they are
 

not able to provide a well-defined and unique choice of estimators from
 

this class, nor have they been able to prove that their suggested procedure
 

actually chooses a member of the class which achieves smaller mean-square
 

error. In fact, Newhouse and Oman (ref. 34) have reported some Monte Carlo
 

simulation results which indicate that ridge estimators do not in general
 

perform better than least-squares estimators.
 

LaMotte (ref. 35) presents some of the properties of best and Bayes linear
 

estimators. The best estimator follows.
 

Let L0 be an n x p matrix, then the linear estimator Loy of 6 is best at (o0 , BO)
 

if there exists a (a O, ) such that for any L,
 

TMSELa O, %) < TMSEL(O O,  ) 
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where
 

TMSEL(c, 3)= E[(L'y - 1)'(L'y - i)] 

= trace[a2L'L + (X'L -. I)'SI'(X'L - I)]
 

The Bayes linear estimator is a linear estimator with minimum average total 

mean-square error (TMSE), averaged over values of (a,0). Basically, one 

substitutes y = E[r2 and @ = E[BB'] in the above equation for the TMSE 

obtaining 

E[TMSEL (a,oil y, ] = ETMSEL(Y, 4) 

= trace[yL'L + (X'L - I)'p(X'L - I)]
 

Marquardt (ref.- 36) introduces a class of biased estimators called generalized
 
inverse estimators. Mayer and Willke (ref. 30) discuss a number of cl.asses
 
of biased estimators called shrunken estimators. These classes contain
 

members with smaller mean-square error than the least-squares estimator.
 

It is not known how to choose such members, however; and there isvery
 

little known about the distributional properties of these estimators.
 
Kendall (ref. 31) and Massy (ref. 32).discuss principal components regression,
 

which was not introduced as a method of biased estimation-but will be shown
 

to provide biased estimators. The method is very closely related to
 
Marquardt's and was introduced for-use when there ismulticollinearity.
 

Inthis chapter a method of unifying the treatment of these biased estimation
 
methods and of unbiased least-squares estimation is considered. The
 

presentation centers on a duality of the X'X matrix of the normal equations
 

for unbiased'least-squares estimation.. The duality is in the sense that
 

the spectral decomposition of X'X into its eigenspace representation has
 
the property of describing how well the data points are spread out inthe
 
data space. A similar decomposition of (X'X)-I (or a generalized inverse
 

of X'X if it issing tlar) has the property of describing how the distribution
 

of the estimator b isspread out in.the parameter space. We lean heavily on
 
these decompositions to discuss the interrelationships of all these estimation
 

methods and to describe the consequences of using them.
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The near-singular case of X'X will be dealt with in this section. A measure
 

of ill-conditioning of the X-matrix is its condition number C[X] which is
 

defined as the ratio of the largest to the smallest nonzero singular value
 

of X. The singular values of X are the positive square roots of the
 

eigenvalues of X'X.
 

A more precise definition of ill-conditioning follows. A set of linear
 

equations BX - c is said to be ill-conditioned if small errors or variations
 

in the elements of Band c can have large effects on the exact solution
 

X. For example, the difference dX between the solution of BX = c and that of
 

(B+ dB)(X + dX) c + dq
 

can be expressed as. 

dX = (B+ dB)- (dc - dBX) 

and its value depends critically on the inverse matrix. If B is near
 

singular, that is,small changes in its elements can cause singularity, then
 

dX could be very large. In the case of the normal least-squares equation,
 

B = X'X and c = X'Y will contain roundoff errors because they must be
 

computed from X and Y.: Even if B could be computed exactly, it would not
 

necessarily be stored exactly in the computer; all numbers are stored in
 

binary mode, and a decimal number such as 0.1 is a nonterminating binary
 

fraction. If X is ill-conditioned, small changes in the elements of X can
 
=
cause large changes in (X'X)-I; and if b (X'X)-IX'Y, then any errors in
 

the formation of X'X could have a serious effect on the stability and
 

accuracy of the solution. As an illustration,.Searle (ref. 37) discusses a
 

model for the weights of six rubber plants, three of which are normal, two
 

of which are off-type, and one of whi'ch is an aberrant. The data are
 

presented in the following matrices. The model considered is
 

Yij = p + blXl + b2X2 + b3X3 + a
 

=
where Xi = 1 if the plant is of the ith -type.; otherwise, Xi 0.
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Let
 

Yll -101­

105 	1
Y12 

Y I 94 b b 1 -= 


Y21 84 b84 b2 
22 88 lb3

LY 3 -33 1 j 

-1 1 0 o­

1 1 0 0
 
1 0
X = 1 0 


1 0 1 0
 

1 0 1 0
 

1 0 0 1
 

In this example, we have
 

x 6=3 210 0
I 	 3 3 


2 0 2 0
 

1 0 0 1
 

and it is seen that X'X is singular and of rank 3. A generalized inverse
 

of X'X is
 

0 0 0 0
 

/3 0 0
[0
G = 	(X'X)-

-0 -0 1/2 0 

0O 0 0 1 

and 	for this choice of G we have
 

H = GX'X = 1 0 0 
1 0 1 0 

1 0 0 1
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Hence, all estimable functions are of the form ­

w'Hb = (wI + w2 + w3)' + WIb 1 + w2b2 + w3b3 

and there are, at most, three linearly independent choices of w. The 

unbiased estimates of w'Hb are given by 

w'GX'Y = Wlyl. + w2Y2. + w3y3. 

Three reasonable choices for independent estimable functions are: 

-b2 3
 

and V + 1/3(b I + b2 4-b3)
 

Their correspondingestimators are
 

1. - Y2 . = 14 

54 . - Y3. = 
Y2

and 1/3(I. + Y2. +Y3. 72 2/3 

To consider what problems arise as the gap is slowly bridged from X'X
 

nonsingular to singular, modify the previous example, barely removing it from
 

singular setting, and perform a regression analysis. Performing an
 

experiment to study the abrasion resistance of rubber as .function of the
 

amount of three particular additives, let x. denote the amount of pounds
 

of the ith additive which is loaded with an approximately 1000-pound
 

charge to the chemical reactor which produces the rubber. The proposed
 

model is
 

y = X + 
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where
 

1 0.99 0 0
 

1 1.00 0 0
 

1 1.01 0 0
 

1 0 0.99 0
 

1 0 1.01 0
 

1 0 0 1
 

y' = [101, 105, 94, 84, 88, 32J
 

' = [ o'i' 02' 031 

and e is the random error. In this example,
 

X= 3 3.6)002 00
 
0
2 0 2.0002 

10 0
 

and it is evident that X'X is not singular, yet it is nearly so. Let Zi
 

denote the eigenvalues of X'X. For the matrix X'X above
 

tI = 8.41888 

2 = 2.38695 

P3 = 1.19444 

z4 = 0.00010 

Since Y4 0.0, X'X is nearly singular. The parameter estimates
 

= 168.002 

b1 = 268.0212 

b2 = -81.9742 

b3 = -136.002 

4-6
 



were obtained with a covariance matrix of CX'X)-Ia 2,where
 

2500.38 -2500.21 -2500.13 -2500.381 

"X'X)- -2500.21
-2500.13 

2500.38 2499.96 
2500.38 

2500.21 

2500.13 

-2500.38 2501.38 

It is evident that X'X is formally of rank four although it is essentially
 

of rank three and that the resulting (X'X)-I matrix indicates a large variance
 

in the parameter estimates. However, recall the estimable functions discussed
 

in section 3.3, and compute
 

b - b2 = 13.9530 

b - b3 = 54.0278 (10) 

+ I/3(b I + b2 + b3 ) = 72.6695 

Allowing for the fact that X was slightly changed to provide nonsingularity,
 

the agreement is admirable. Although the variances of the raw estimates are
 

quite large, consider the variances of the linear combinations of parameters
 

in eq. (10). The linear combinations are defined by K'b where
 

1 0 1/3K 
 1/3j-11 

The covariance matrix of K'b is given by K'(X'X)-Ko2. But
 
0.051-0.33[0.82 
0.171
1.50
-0.33


K'(X'X)-K 
0.05 -0.17 0.53
 

It is thus evident that, even though the full parameter vector is quite ill­

determined, the linear combinations of the parameters corresponding to the
 

estimable functions of the previous example are well determined.
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The normal equations matrix X'X plays the central role in linear model
 

estimation and hypothesis testing. Note that XIX has a spectral decomposition
 

(ref. 2) or representation as
 

p
 

X'X = > iVi V! (11) 
i=l
 

where Z > k > 0 are the eigenvalues of X'X and S. are corresponding
 

normalized eigenvectors of X'X. If r is the rank of X'X, then a similar
 

decomposition (ref. 2) of (X'X)+ is
 

r 

(xlx)-1 = iV! (12)
i=l 1 

If r = p, then 

-(X.X); x -I p I Viv' 
i1=l
 

It is extremely important to note that the spectral-representations of
 

eqs. (11) and (12) are not invariant under linear transformations of X.
 

Invariance may be attained by assuming the linear model is always considered
 

in its correlation form. In the remainder of this report, it will be assumed
 

that all diagonal elements of X'X equal unity. The spectral decomposition of
 

X'X by eq. (11) indicates how and how well the variables' space is spanned
 

by the experiment. If Xi 1.0 for all i, then in a sense the variables'
 
>> 
space is perfectly spanned. If ZI Zp" then the variables' space is not 

well spanned. In fact, XoV1 represents the linear subspace (or linear 

combination) of predictor variables which is best spanned, and XoV p represents 

the linear combination of variables most poorly spanned. In fact, if p = 0, 

then X0Vp isnot spanned at all. These considerations are discussed by 

Kendall and Stuart (ref. 38). To illustrate the preceding paragraphs, 

consider the following two-dimensional example. Suppose the data points 

observed are as plotted on figure 3.
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L 
1 

+1 

L 
2 

x 2 O, 

-1 0 +1 

X1 

Figure 3.- Two-dimensional example.
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Assume that the line L is the line X1 - X2 = 0 in the variables' space and 

that L2 is the line X1 + X2 = 0. Assume also that the two extreme points 

along L2 are equally distant from X - X2 00. It is immediately seen that
 
the observations are much more spread out along L1 than along L2. For such 

a situation, YI > £2' and X0V1 is well spanned, while XoV 2 is poorly spanned. 

Considering the parameter space, it is well known that the least-squares
 

estimator b (under normal distribution theory) follows the normal distribution
 
N[(X'X)+(X'X)b, a2(X'X)]. For a linear combination of the estimates w'S 

(ref. 37): 

Var(w'b) = w'(X'X) wc2 

r 

It can be shown (*ref. 39) that the choice of w which minimizes the variance
 

of w'b is w = S1 and that this variance is 

V1(X'X)+VI 2 a2
Var(Vlb) = 1 

The choice of w which maximizes the variance of w'b is w Vp and
 

2
 
.Var(V~b) 2-- (assuming p = r)
 

p
 

Thus, V~b describes the most determined linear combination of the parameters,
 

while V b describes the least determined. .In fact, if £P 0, then V'b is
 

nonestimable and hence not determined at all; an interpretation is that
 

V'b has infinite variance.
P
 

4.1 RIDGE AND GENERALIZED.RIDGE
 

One recently proposed alternative to least-squares estimation of the regression
 

parameters which has received considerable attention in the statistical
 

literature is ridge regression (refs. 28 and 29). When multicollinearities
 

exist among the regressor variables, the least-squares estimates b. tend to
 
be large in magnitude.. This can result in b being,far removed from , in
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terms of Euclidean distance, even though b is an unbiased estimator of 3.
 

If L1 denotes the distance from b to 0 (ref. 28)
 

P
 
E[L ] 2 1
 

where 1 t < Zp are the eigenvalues of X'X as before. As pointed
 

out in the previous section, the existence of multicollinearities means that
 

X'X will have one or more small eigenvalues, thus the distance from b to
 

will generally be large.
 

Reviewing some of the most important properties of the ridge estimator, recall
 

that the best linear unbiased estimator of 1 is
 

b (X'X)-XIY
 

Then X'X may be represented as X'X = PLP', where P is the orthogonal matrix
 

whose columns are the normalized eigenvectors of X'X and L is the diagonal
 

matrix of eigenvalues. If one considers the transformation to new predictor
 

variables defined by
 

W= XP 

and the model
 

y = Wa + e (13)
 

then
 

a = P'b
 

W'W = L
 

a'a =- b'b 

The generalized ridge estimation procedure, defined by the family of 

estimators indexed by the parameters ki > 0, is 

a* = (WkW + K)-Iw'y .(14) 
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where the matrix K is defined by
 

K = diag{k i ; i = 1, 2, ---, p
 

When all k. = 0, a* is the OLS estimator and is unbiased. When any 

ki > 0, the resulting estimator for a is biased, defining the mean­

square error of a* as 

M(K) = E[(a* - a)'(a* - a)]
22 

Itmay be shown (ref. 28) that the choice of k. = 2 /ai will minimize M(K) 

among the class of estimators defined by eq. (14). Unfortunately, in order 
ito utilize this optimal choice of ki, one must know-both a2 and a. To
 

circumvent this seemingly hopeless situation, one must resort to the following
 

iterative procedure (ref. 40).
 

1. Using OLS procedures on the canonical model, eq. (13), estimate the a.'s
a
 
by 	computing
 

a= (X,X)-Xy 

2 2and estimate a by s
 

2. Use the value of s2 and the a.'s from step 1 to compute
 

s7
k 	 S2 1 , 2, -- ,p 

a ,
 

3. Use the k.'s to solve the expression
 

a* = (W'W + K)-IW'y
 

and thus obtain initial estimates of the at's. Next compute
 

p
 
2
a
a*a*= 


j=l•
 

4. Repeat steps 2 and 3 using the at's from step 3 and again compute
3
 
a*la*.
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5. Continue .this iterative procedure and terminate when stability is achieved
 

in a*'a*.
 

6. The generalized ridge regression coefficients are now given by
 

b = P'a* 

The above procedure has some intuitive appeal, but since the distributional
 

properties of the resultant estimator are unknown, its validity as a statis­

tical tool is subject to questioning.'
 

Simulations (refs. 41, 42, and 43) have shown that ridge estimators of the
 

form of eq. (14) do provide smaller mean-square errors than the OLS. In fact,
 

reference 28 shows that if k* > 0 and if k. = k* (i = 1, 2, ... , p) and 

hence
 

a* = (W'W + k*IpIx'y (15)
 

.then there exists a k > 0 such that the mean-square error (M(k)) of a* is
 

less than the mean-square error M(O) of the least-squares estimator b, where
 

M(O) = E[( - b)'( - b)] 

In practice, one must estimate k from the data. The properties of the
 

estimator a*, When k is estimated from the data, are unknown. An optimal
 

method for selecting a suitable value of k has been the center of much
 

recent discussion in the statistical literature. Various methods have been
 

proposed (refs. 28, 29, 36, 41, 44, 45, and others). An excellent discussion
 

of ridge regression and the various methods for choosing k is contained in
 

reference 46.
 

Expressing' the ridge estimator eq. (15) as
 

b(k-) = (X'X + kpIx'y (16) 

where k > 0 is nonstochastic.1
 

lln the literature, eq. (16) is referred to as the ordinary ridge estimator.
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Obviously, if k = 0, eq. (16) is the OLS estimator; i.e., 

b(O) = (X'X)-IX'y 

Ithas been shown (ref. 28) that
 

p 2 2 
M(k) = 2 + k2b'(X'X + kl)-2b 

i-l (i+2k) 

and.that M'(O) < 0. Observe the effect of k on the quantities V!b(k).
 

The equality
 

V b(k) = V!(X'X + kI)-IX'y 

1 1 +: V( j j k j X' 

+ k X'y
 

is immediately obtained; also
 

E[V b(k)] i 1 k V]XE [y ] 

.i+ k b
 

and Var b(k)= 1 V.X,(c 2 I)XVi 

IVr + k)2
 

G2 
2
(ki + k)


Thus for any nonzero k, Vlb(k) is the least biased linear combination of the
 

Also, Vjb(k) has the least reduced
estimator and V'b(k) is the most biased. 


variance, and V'b(k) has the most reduced variance. Thus, the best determined
 

linear combinations of the parameter estimates are the least modified, while
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the least determined are the most modified. In effect, as k increases,
 

those Vb(k) corresponding to small Ai are rapidly driven to zero.
 

Recall that the predicted regression function at X0 is 

YO = X0 (k) 

and the mean-square error of this predicted regression is denoted by 

Mp[YoIb(k)] = E{[y0 - Xob(k)]'[y0 - Xob(k)l}
 

= E{[X0 (X-'X + kl)IX' + Xo(Z -'I)b]'[Xo(X'X + kIf1Xe
 

+ Xo(Z - I)b]} 

= E[E'X(X'X + k)-IX 0'X0 (X'X + kI 1 x'I] + b'(Z - I)X6X0(Z - I) 

= yi[b(k)] + y2[b(k)] 

where y1[b(k)] corresponds to the variance and Y2[b(k)] corresponds to the
 

bias squared.
 

THEOREM 1:
 

The variance function yl[b(k)] is a monotonically decreasing function of k
 

and y'[b(O)] < Q (ref. 47).
 

PROOF:
 

Note that if we assume E - N(O, a2) then y, is the expectation of a quadratic
 

form in assumption e, thus (ref. 37)
 

yl[b(k)] = o2tr[X(X'X + kl)- X6Xo(X'X + kIf1 X,]
 

Note that
 

-
(X'X + kI) - i+ k Vvj 
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and hence
 

X(X'X + kI= 1X0 i + k VVX 0 

i 

which is n x 1. Thus, 

r - 1 \'/V-' vy,b(k)v 
2 = trj+.+ k 2. + k 0 

- 1 +kh.I k trL(XV VX6(O !X)] 

Z ( ++ (Y + k) 1 0)k) T(xvv! )(XVViX

x0 vviv z mVmVi:V.VX2.+ k +. 


i j
 

ii(2.i+Z 2 0 .V1Xk) 2 XoiiXO
 

Note that
 

yI[b(O)] =oG2Xo(X'X )-IX6
 

yl[b(O)] = 0
 

and
 

2
yi[b(k)] = - 222+ k)33 0 1 ] 6 <S(P.i 


Thus, y,' is a monotonically decreasing function of k, as was to be shown.
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THEOREM 2:
 

The bias function y2[b(k)] satisfies y2[b(O)] = 0 and y [b(O)] = 0. 

PROOF:
 

Recall Y2[b(k)] = b'(Z - I)X6Xo(Z - I)b. Since
 

Z - I = (X'X + k)-IX'X - I 

-k vVV 

=i i+-k . i 

we obtain
 

b+'k) O'j jU
Y2[b(k) ] = -(zi + k)(k 'V 
+ k) jjX.OV 

Let
 

f (k) -T + k)(Z. - k)
 

then
 

k2(zi= + k.) + 2ktz3>0 

13 (i + k)2(9 + k) 

Thus, it is easily seen that y[b(O)] = 0 and y5[b(O)] = 0. 

One of the molt important results of the ordinary ridge regression is the
 

following theorem.
 

THEOREM 3:
 

Mp[Yolb(k)J is initially decreasing in k.
 

PROOF:
 

Since Mp YolIb(k)] = yl[b(k)] + Y2[b(k)] the result follows directly from
 

theorems 1 and 2.
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Hoerl and Kennard (ref. 28).discuss a general Bayesian interpretation for the
 

ridge estimator. Marquardt (ref. 36) gives a more specific relationship to
 

Bayesian estimation, as follows.
 

THEOREM 4:
 

The ridge estimator is equivalent to a least-squares estimator when the
 

actual data are supplemented by a fictitious set of data points taken according
 

to an orthogonal experiment Hk; the response y is set to zero for each of
 

these supplementary data points.
 

PROOF:
 

Augmenting the X-matrix by Hk, the least-squares normal equations become
 

Vx Hfl[XKIb X, H 

or
 

(X'X + HkHk)b = X'y (17) 

Since Hk is orthogonal, HkHk is a scalar multiple of Ip; for any value k, the 

matrix may always be scaled such that H(Hk =kU 5 and eq. (17) is identical 

to eq. (16). 

To illustrate, possible choices for H k are (a)Hk = k11 21, or (b)Hk = 2P
 

factorial experiment-with the variables at levels -a and +a , where
 

= (k2-P)I 2 . This theorem illustrates from another viewpoint the
 

mechanism by which the regression coefficients are -damped by the ridge
 

estimator. The estimator is seen to be a type of weighted average between
 

the actual data and other data (inBayesian terms, the prior information) for
 

which the response values are arbitrarily set to zero. (For nonstandardized
 

variables, the response values for the fictitious data would be set equal to
 

the mean response to the actual data if the model y = X + e contains a
 

constant term.)
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An excellent paper by Obenchain (ref. 48) develops the theoretical foundations
 

to hypothesis testing and confidence regions for ordinary and generalized
 

ridge regression estimators. He shows that any ridge estimator with strictly
 

positive and nonstochastic "shrinkage factors" k k2, -, kp yields the
I , 


same exact F (or t) statistic for the test of any linear hypothesis as does
 

least squares. It follows that the unbiased confidence region based upon
 

the F (or t) distribution corresponding to any such ridge estimator is 

identical to the least-squares region of the same confidence. 

4.2 MARQUARDT'S GENERALIZED INVERSE ESTIMATOR
 

Marquardt (ref. 36) discusses a method of applying generalized inverses to
 

biased estimation. He also considers some relations among these estimators,
 

ridge estimators, and nonlinear estimation. He considers the model
 

y = XB +.e (18)
 

where the X-matrix has been scaled so that XIX is in the correlation form. 

His family of estimators is indexed by a parameter h where 0 < h < p. The 

family is defined by
 

bm(h)'= (X'X)X'Y
 

The matrix (X'X)j is defined as follows: let h* = [h] denote the greatest 

integer inh and dh = h - h*. Then (X'X)+ is defined as 
h* 

(x'x+ 1 j + h*+lV *_+i Vh*+IV"h*+' dh (19)
 

= Gh 

As the notation ismeant to indicate, (X'X)j is closely related to a gener­

alized inverse of X'X. In fact, if r = rank (X'X}, the (X'X)+ is the Moore­
r
 

Penrose pseudoinverse of X'X and is unique (ref. 49). An.important point
 

to note is that the Moore-Penrose pseudoinverse yields the minimum-norm
 

solution to the normal equations (ref. 50).
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Marquardt's estimators thus provide a sort of minimum norm solution to. the
 

normal equations. He also shows that there always exists a 0 < h < p such
 

that
 

M(h) = E f[b(h) - b]'[bm(h) - bl}
 

is minimized. It is also shown that M'(p) > 0 so that the mean-square error
 

of b (h) is initially decreasing as h decreases from p. As with the ridge
 

estimators, no way is yet developed for determining the "best" h.
 

With X scaled so that XX is in correlation form, Marquardt labels the
 

diagonal elements of (X'X)+ as variance inflation factors. His suggested
h
 
analytical procedure is to consider several estimates bm(h) for h between
 
p and 0. He suggests the rule of thumb that an acceptable value of h.is one
 

such that the maximum variance inflation factor should usually be larger
 

than 1.0 but certainly not as large as 10.0. Marquardt has not been able
 

to show that this procedure results in a reduction in M(h).
 

For these estimators,
 

0 h< i-l1 

Vb (h)--V4(X'X4+X'y - dh V.Xy i I < h < i (20) 

V y i < h 

0 h<i -1 

E[V bm(h)] dhV b i - 1 < h < i (21) 

Vbi < l 
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and
 

0 h<i-I
 

=Var V!b,(h)] (dh_ i - 1 < h < i (22) 

VarVim~)] (hr i -< h <i(2
2 
1 

From eqs. (21) and (22), the following behavior isseen as h decreases from
 
h = p: the V!b (h)are successively set to zero inorder of increasing Zi
 

The best determined linear combinations of the parameter estimates are the
 

last to be set to zero, while the least determined are the first to be set
 

to zero.
 

THEOREM 5:
 

The estimate bm(h) is a linear transform of b, and the transform depends only
 

on X and h.
 

PROOF:
 

Let A = X'X, then
 

S'AS = L
 

and
 

A+ 
 SL1S
 

Suppose A is of rank r, so that the last (p- r) ordered elements of L are 
zero (or nearly so, if A is only "nearly singular"). Partition S as follows: 

S= (S: Sp-r)
r 


where Sr is [P x r]; Sp-r is [p x (p - r)]. Partition L similarly

0-
L
 
p--2
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where Lr is [r x r]; Lp- r is [(p - r) x (p - r)]. 

-!1 
Now, by supposition, L is zero, so that Lp = 0 by definition. Thus,p-r p-r
the psuedoinverse becomes
 

A = SrLIs5' 

r r r r. 

Therefore 

bm(h) = SrL Isx'y 

but
 

X'y (X'X)b
 

and thus
 

bm(h) = SrLrS(X'X)b 

SZb
 r 

It follows immediately that bm(h) is a biased estimator of B, if Lp- r is a
 
nonnull matrix. If Lpr is precisely a null matrix, bm (h)is conditionally
 

unbiased relative to the constraints E[bm(h)] = Zrb implied by the columns
 

of Sp r
.
 

THEOREM 6:
 

The variance of b (h) is
 

Var[bm(h)] = O2 [SLrS]-(X'X)[SrLrlS] 

PROOF:
 

Var(b) = 2(X X)-I 

thus,
 

Var(zrb) = 02Z (XX)-IZ' 
-r r 
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Substituting Zr the result is immediate. It can also be shown that
 , 


Var[bm(h)] = o2SrrI r
 

THEOREM 7:
 

The mean-square error of b(h) is
 

E[L = tr[Var(bm(h))] + 'CZr- l)±(Zr- I) 

This may be proved in the same manner as in ridge regression (section 4.1).
 
2


The second term on the right side of E[L1] is the square of the bias; it will
 

be zero when r = p.
 

COROLLARY 1:
 

The variance term in E[L,] is an increasing function of r.
 

PROOF:
 

Employing eq. (19), we have
 

r
 

S L15r. v V3
rr jJ
j=l-


Hence,
 

tr[srL(Isr] = j2 +tr[VjVJ]
 

But tr[V.V'] = IjVjj = 1.0, since S is an orthonormal rotation. Thus,
JJ
 

r
 

tr[SrLISrI =r
 
j=l
 

)and trvar(bm(h))] = a2 (23) 

Since k > 0 for all j, eq. (23) increases monotonically with r. In the special
 

case where the data are orthogonal, i.e., all ZX = 1.0, and where r = p, this 
2

result becomes pa , as expected.
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COROLLARY 2:
 

The bias term in E[Ll] is a monotonic decreasing function of r.
 

PROOF:
 

The bias term is
 

(Bias)2 = 3'(Z r - 1)'(Zr - I)1 

= '[S L 1 Sr(X'X)- I]'[SrLr (X'X) -

Partitioning the several matrices in (Zr - I),and simplifying, results in
 

(Zr - I) = SrS - Ip
 

=-Sp rp'

-S 
p-r r 

and therefore, (Bias)2 [p-r p-r]' [ rS-rJ 

=13'S S' S S' 1 
p-r p-r p-r p-r 

But S' S r
 .p-r p-r p-r
 

: p-r p-rE
 and therefore, (Bias) 2 W' S' (3
 

Now Tp-r = Sp'r is the (p - r)-element vector of projections of 0 onto the 

subspace spanned by S p r . In this notation 

(Bias)2 - TT' 
p-rp-r
 

P 

= t (24) 
i=r+l 

Since t. does not depend on r, we have the result that (Bias) 2 is a monotonic
 
i 2

decreasing function of r. Furthermore, (Bias) has the limiting value 0.0 

for r = p and the value '3for r = 0, since T'Tp = 1'(. 
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THEOREM 8:
 

A sufficient condition for the mean-square error E[LI] to be less than the
 

least-squares variance is
 

p 
(25)
291. 

j=r+l ,J  u 

PROOF:
 

Using eqs. (23) and (24), E[L2] isgiven by
 

E[L 2] G (+ 

_i) j=r+l 

while the least-squares variance is 

Var(b ) 2 1
 

Thus, a.neccesary and sufficient condition for 

E[L2] < Var(b) 

is that 

I­

=r~lj~r+l,
 

or
 

P_ _ tj>0 

Thus, a sufficient condition is 	that 

> t2 j > r (26) 
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Since eq. (26) would be difficult to apply in practice, a less stringent
 

but more useful sufficient condition can be obtained by noting that
 

p p
 
z> Zt~ 

j=l j=r+l
 

for any r < p. Thus, the inequality can be written as in eq. (25). This
 

result corresponds to the following theorem.
 

THEOREM 9:
 

If 'Bis bounded, then there exists a k > 0 such that the mean-square error
 

of the ordinary ridge regression b(k.) is less than the mean-square error of
 

the least-squares estimator (ref. 28). An important theorem due to Marquardt
 

(ref. 36) with some interesting interpretation fqllows.
 

THEOREM 10:
 

Let yr be the angle between bm (r)and g = X'y. Then yr Yr-l (r an
 

integer) whenever Zr and Zr- satisfy the inequalities (0 < kr), (r/Pr-l << 1),
 
and (zr-l /r_2 << 1). Since g is independent of bm(r), it follows thatbm(r)
 

rotates toward g as r is decreased under these conditions.
 

4.3 SHRUNKEN ESTIMATORS
 

Mayer and Willke (ref..30) discuss several families of biased estimators which
 

may be labeled shrunken estimators. They consider the model y= XS + e, but
 

do not require that X'X be in correlation form. Each family of estimators is
 

indexed by a parameter c, 0 <c < 1 and defined by
 

bsCc) = c(X'X)-IX'y = cb
 

where b is the ordinary unbiased least-squares estimator. If the constant c
 
is a scalar fixed in advance-of the analysis, then bs (c)is called a
 

deterministically shrunken estimator. If c is a scalar function of the
 

least-squares estimator, then bsCc) is called a stochastically shrunken
 

estimator.
 

4-26
 

4V 



Hoerl and Kennard (ref. 28) justify the use of the ridge estimator in non­

orthogonal problems in two ways: (1)They show that, for a fixed k, b(k)
 

corresponds to the point on a fixed ellipse of concentration of b which has
 

minimum Euclidean length and (2)they show that in any given problem the
 

class of ridge estimators satisfy the following admissibility condition: A
 

class of estimators E will be called (mean square) admissible-if for every
 

problem there is an e in E such that M(e) < M(b) = Var(b).
 

Although the shrunken estimator bsCc), with shrinkage factor c, may seem a
 

rather simplistic alteration of b, the following proposition proved in
 

reference 30 shows that these satisfy the admissibility condition presented
 

above.
 

PROPOSITION 1: For every B there exists a fixed c in [0, 1] such that
 

M[bs (c)] < M(b) and thus the subclass of deterministically shrunken estimators
 

is admissible.
 

Consider the stochastically shrunken estimator b Cc)., where

5
 

-
I]
c = [I - qS2 (b'b 

$2 = y'y - b'(X'X)-b ; p > 3 

and
 

0 < q < 2(p - 2)(n - p + 2)-I 

This estimator is one discussed by Sclove (ref. 27). Defining
 

W[bs (c)] = E{[bs(c) - b]'[bs (Cc) - b]}
 

itwas shown by Sclove that
 

q = qO = n - p + 2 

minimizes W[b sCc)]. This is the only biased estimator known to this author
 

for which a choice of biased estimator can be explicitly given which guarantees
 

a reduction in mean-square error.
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Let C denote the class of linear transforms of b, and let t = Ab for some
 

p x p matrix A. Note that if we let t(A) = Ab for fixed A, then
 

E[t(A)] = AB 

Var[t(A)] = 2A'S-IA
 

M[t(A)] = a2trA'S-IA + '(A - I)'(A - I) 

and the sum-of-squares loss associated with t(A) is 

L(A) = [y - Xt(A)]'[y - Xt(A)] 

= (y - Xb)'(y - Xb) + b'(A - I)'S(A - I)b 

= L(b) + L*(A) 

Since L*(I),= 0, L(A) is minimized by letting A = I,which yields the least­

squares estimator. However, if L*(A) > 0, then the mapping from the space
 

of p x p matrices to the real line defined by y(A) = L*(A) maps an entire
 

class of matrices to the same value. The preimage of any fixed constant
 

r0 consists of all p x p matrices. satisfying
 

b'(A - I)'S(A - T)b = r0
 

Let C(r0') denote the subclass of C such that t(A0) is in C(r0) if and only
 

if L*(A0) = r0. C(r0) is actually an equivalence class, the equivalence
 

being defined with respect to the 'sun-of-squares loss function. Itcan be
 

shown that both ridge estimators and the deterministically 'shrunken estimators
 

can be characterized as minimum normal estimators in the class C (ref. 30)..
 

Suppose the criterion for selecting an estimator from an equivalence
 

class is to choose the estimator which" has minimum-Euclidean length (normal).
 

Let
 

m(A) = t'(A)t(A) = b'A"Ab 

denote the squared Euclidean length of t(A). Mayer and Willke (ref. 30) 

have proved two propositions that link the ordinary ridge estimators and the 

shrunken estimators. 
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=
PROPOSITION 2: If A0 (kS + 1).1 for some k and t(AO ) is in C(ro), then 

m(Ao) = min m(A)
C(r


0)
 

This proposition states that within its equivalence class the ridge estimator
 

is the shortest estimator, provided m(A) is the norm used to measure length.
 

Now consider the design dependent norm
 

Ind(A) = t'(A)St(A) = b'A'SAb
 

and suppose the optimal estimator in an equivalence class is defined to be
 

the estimator with minimum length as measured by md(A).
 

PROPOSITION 3: If A1 = cl for some c in [0, 1] and bsCc) belongs to C(r0),
 

then
 

md(cl) = min md(A)
 
C(ro)
 

Since t(Al) = cb = bs(c) we have shown that both ridge estimators and the
 

shrunken'estimators are minimum length estimators with respect to the
 

appropriate norms;
 

For the choice of deterministically shrunken estimator bs(c) = cb we have 

V!b (c) = cV!b = X'Y 

E[V~bs(c)] = cV~b (27) 

and
 

2 2
 
Var[VbsC)] c a (28)


1 
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From eqs. (27) and (28) we observe that, unlike the ridge and generalized
 

inverse estimators, all linear combinations of the parameter estimates are
 
driven toward zero proportionately and that the variances are also propor­

tionately reduced.
 

The mean-square error of the estimated regression function is given (ref. 47)
 

by
 

Mp[Yob s(C)] = E[(y0 = Xob)'(y 0 - Xob)]
 

= E[c - I)Xob + cXo(X'X)-1X'E]' [(c - )Xob 

+ cXo(X'X)- X'J} 

" 2E( c - 1)cb'X Xo( XIX)lx ] 

+ E[Ic - l)2b'xX ob] 

For stochastically shrunken estimators, these expectations may be somewhat
 

difficult. For a deterministically shrunken estimator, c is a constant and
 

Mp[bsCc)] is easily found to be
 

Mp[Yolbs(c)] = c2E[E'X(X'X)-'X6XO(X'X)-Ix'e]
 

+ (c - l) 2 b'XX~b 

= yl[bs(c)] + y2[bs(c)] 

The following three theorems are due to Sidik (ref. 47).
 

THEOREM 11:
 

The variance function yl[bs(c)] is a monotonically increasing function of 

c > 0 and y1[bs(l,)] > 0. 

4-30
 



THEOREM 12:
 

The bias function Y2[bs(C)] is a monotonically decreasing function of c for
 

0 < C<1. 

THEOREM 13:
 

Mp [yo lbs Cc)] is initially decreasing .as c decreases from c = 1, and there is
 

a unique minimum for somd 0 < c < 1.
 

Theorem 13 states that an optimal choiceof c exists. However, this optimal
 

value of c will be a function of ar
2 and b.
 

Several authors (refs. 51 and 52) have considered different ways of unifying
 

the study of biased estimators in an effort to determine their relative
 

merits. Obenchain (ref. 52) has considered the problem of testing whether
 

ridge analysis may be useful. He defines the shrunken statistic that is used
 

to decide if ridge analysis should be used or not.
 

4.4 PRINCIPAL COMPONENTS REGRESSION
 

A particular type of Marquardt's generalized inverse estimator is the
 

principal components estimator, which involves an orthogonal reparameterization
 

of the values of the regressor variables through the following procedure.
 

Let S be the orthogonal matrix whose columns are the eigenvectors of XX
 

and let L be a diagonal matrix whose diagonal elements are the eigenvalues
 

of X'X. If we also let Z = XS, then the jth column of Z, zj, is called the
 

jth principal component of X for j 1 , p.
I, 2, ...


The response variable is now regressed on the principal components z5 ,
 

rather than on the original variables xj. In place of the usual regression
 

model
 

y =.XS + e
 

4-31
 



now we have
 

y = Zy + e 

where
 

y = S'B 

Using least squares, we obtain
 

= g = (Z'Z)-Iz'y L-ZI'y (29) 

If all components are retained in the model, the estimates of the regression
 

coefficients when transformed from g back to b through b = Sg will be identical
 

to the least-squares estimates.
 

Use of the procedures discussed above would hardly be necessary when the
 

beta vector could be estimated directly by classical methods. At least two
 

situations arise, however, in which ordinary least-squares is not appropriate
 

(ref.'32): (1)when the independent variables are collinear with one another,
 

making inversion of the correlation matrix impossible and the elements of
 

beta indeterminate; and (2)when, because of high (but not complete)
 

collinearity or for some other reason, it is desirable to collapse the
 

independent variable space by deleting one or more principal components from
 

the regression relationship. We are mostly concerned with the second case.
 

To overcome the effects of multicollinearity on the least-squares estimates,
 

the procedure in principal components regression is to delete from the
 

analysis those components corresponding to small eigenvalues of X'X. The
 

regression analysis is then performed using least squares on the remaining
 

components. If s (1 s p) components are deleted, we can partition'
 

,S = [St Ss ' = [ I 

and
 

L = [Lt Ls]
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where t = p - s. From eq. (29) we have
 

=ttL Is'X'y (30)
 

or, in terms of estiiates of the original coefficients,
 

b = SL S1 Y
 
PC t t
 

By inserting (X'X)(X'X)-I into eq. (30) we have
 

b VIX'Xb
Pc =S t tIx
 

Marquardt (ref. 36) has shown that mean-square error (MSE)(bP) < MSE()
 

if and only if
 

Y I > s S'sSI
 
j=t+l
 

so that, as with b(k) and bs(c), there is potential for improvement in MSE
 

when compared with the least-squares estimator.
 

A major problem with the use of principal components regression is deciding
 

which components to delete. Two criteria are usually considered:
 

a. Delete components associated with, small eigenvalues
 

b. Delete components which. are relatively unimportant as predictors of 

the response variable y.
 

Mansfield (ref. 53) has shown that the F-statistic used for measuring the
 

predictiveness of a component associated with a small eigenvalue is
 

unreliable and can lead to poor results. Mansfield recommends deleting all
 

components associated with small eigenvalues, and he also provides a method
 

of variable selection following principal components regression.
 

Marquardt(ref. 36) points out the assumption of an integral number of
 

zero eigenvalues of X.'X. may be overly restrictive (see section 4.2). He
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notes that in the case where X'X is actually of rank t, eq. (30) is the
 

Moore-Penrose generalized inverse solution to the normal equations. In the
 

case where X'X has full rank p but has several small eigenvalues, Marquardt
 

suggested the concept of fractional rank of X, that is,we assume X to have
 

rank f where t < f < t + 1 and use the generalized inverse
 

(XX)+ = tt U]t+It+l
StLIs' +t P -t St 5 

The principal components estimators depend upon the particular method used
 

for determining the significance of the coefficients. The MSE of the
 

predicted regression function is not considered in this paper. Two different
 

procedures for subset regression in the principal components case were
 

considered in references 54 and 55.
 

The method of principal compohents regression is further discussed in
 

references 31, 32, 56, and'57.
 

4.5 LATENT ROOT REGRESSION
 

One of the most important issues (ref. 32) in principal components regression
 

is the criteria to be used in choosing a subset. There are at least two
 

alternative criteria for deleting components-:
 

a. 	Delete the compionents that are relatively unimportant as predictors
 

of the original independent variables in the problem; ie., the
 

components having the smallest eigenvalues shoul'd be dropped.
 

b. 	Delete the components that are relatively unimportant as predictors of
 

the dependent variable y in the problem. In this case, the components
 
-	 having the smallest values of'the correlation between the components and 

y should be dropped. 

Hotelling (ref. 58) has noted that in general there is no reason why
 

components that are important as far as the independent variables of a
 

problem are concerned will be highly correlated with the dependent
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variable in a regression, so criteria a and b above are likely to lead to
 

different results. Furthermore, it is easily shown that y need not be
 

highly correlated with components having large eigenvalues in order for the
 

explanatory power of the complete principal component regression to be high.
 

The choice of criteria must rest with the purpose of the analysis, as well
 

as the degree to which the principal components results can be interpreted
 

in terms of the structure of the process underlying the data for the
 

independent variables. If the first few principal components can be related
 

to something "real," as is hopefully the case in factor analysis, for example,
 

then it may make sense to retain them as explanatory variables in a prihcipal
 

components-regression analysis, regardless of their correlation with the
 

dependent variable. Massy (ref. 32) cl-aims that components with large
 

eigenvalues are usually the ones most likely to yield natural interpretations.
 

Conversely, if the emphasis is on finding the correlates of y rather than
 

testing its relation to any particular structural concepts, itwould seem
 

to make more sense to adopt criterion b and retain those components with
 

the highest values of the correlation coefficients between the components
 

and the vector y. This is often the case in purely exploratory studies.
 

Latent root regression is a procedure for implementing principal components
 

regression by using criterion b above; this analysis was first suggested by
 

Massy (ref. 32) and developed independently by Hawkins (ref. 59) and
 

Webster, Gurst, and Mason (ref. 60). It is a modified least-squares
 

procedure which uses the eigenvalues (latent roots) and eigenvector (latent
 

vector) of the correlation matrix of response and regressor variables.
 

Analysis of these eigenval.ues and vectors will enable the experimenter to
 

a. Identify multicollinearities among the regressor variables
 

b. Determine whether the multicollinearities have value in predicting the
 

response variable
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c. 	Obtain modified least-squares estimates of the regression coefficients
 

through a procedure which adjusts for nonpredictive multicollinearities.
 

A stepwise backward elimination of variables was developed (ref. 60), using 

ordinary least squares or the modified procedure. Using the model y = XB + e 

where the vector y and the matrix X have been standardized, let
 

n 
2 (Y - 7)2t


i=l
 

and define the matrix A = [y X]; i.e., the (n x p + 1) matrix of standardized
 

dependent and independent variables. A'A is the extended correlation of
 

dependent and independent variables and has eigenvalues and eigenvectors
 

defined by IA'A - X .I =0 and-(A'A- k.I)V! = 0; = 0, 1, ., p. Denote 

the 	elements of the jth eigenvector by
 

VJ. (SO5 , S 1 *-,Sp)
 

and 	let
 

v3l (S Pd 
J lj' S2j' -- , Sp 

Also let
 

- = (Vo lV1 , ---, Vp) 

and
 

L = diag(Z.) ; j = 0, 1, 2, -.., p 

where Z0 < p Hence 

S'(A'A)S = L 

and
 

A'A 	= SLS' 
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Now note that the jth column of AS can be expressed as
 

p
 

YlSoj + E- XlkSkj
 

k=l
 

p 
Y2 S0+ E X2kSkj 

k=lAV. 


p
 

YnSoj +ZxnkSkj 

k=l
 

We also note that the jth eigenvalue of A'A can be expressed as
 
.i= .V!(A'A)V. = (AV )'(AV
 

n p
 

- (Yioj + E xikSkj)2 (31)
 

i=l kzl
 

Thus 9. is the sum of squares of the jth set of linear combinations of
3
 
response and regressor variables which is provided by the jth column of AS.
 

If Y. = 0 for any j = 0, 1, "--, p then each term in eq. (31) is equal to
3
 
zero and an exact linear relationship exists among some or all of the
 

columns of A. If the corresponding SOj # 0, a perfect predictor exists of
 

the form
 
F, 

p
 

= y -ts 	 E xik kj

k=l
 

If Pj = 0 and SOj =0, we see from eq. (31) that an exact linear dependence
 

(exact multicollinearity) exists among the columns of X, the relationship
 

being
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P 

Ei XikSkj = 0 ; = 1, 2, .. , n 

k=l
 

In general, none of the eigenvalues will be zero, but some may be quite
 

small. Small but nonzero eigenvalues indicate near singularities. Notice
 

from eq. (31) that ifwe have j 0 then each term in the sum must be near
 

zero and we will have
 

p 
SoPY+ > SkXik 0 ; i = 1, 2, ---, n (32) 

k=l
 

If in addition SOj 0, we have a multicollinearity involving only the
 

regressor variables and not the response variable, the relationship being
 

p 

0 ; i = 1, 2,---, nE Skixik 

k=l
 

Since this relationship does. not involve the response variable-, it would
 

be of little value for prediction.
 

Let us see a geometrical interpretation of a nonpredtctive multicollinearity.
 

Consider then data points (Yi xil' xi2' **-, xip) i = 1, 2, --., n as n 

points in the p +-l dimensional Euclidean space defined by the mutually
 

orthogonal axes Y, X1, -- , X . The eigenvectors of A'A define a second 

set of mutually-orthogonal axes ZO, Z15 "''' Zp, where Zi is the axis defined 

by Vi, i = 0, 1, '", p. The direction of axis Z relative to the original
 

axes is given by the vector sum
 

P
 

S kjek ; jP= 0, l,
 
k=0
 

where e0, eI, -*, e p are unit length vectors from the origin in the direction 
axes Y, X1, X2, -.-, X . The first element of V. represents the cosine of 

the angle between axes Y and Zj, while Ski (k= 1, 2, ..-, p) represents the
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cosines of the angle between axes X. and Z. Assuming the eigenvectors are
 

normalized and the eigenvalues are distinct, V. is uniquely determined apart
 
from a multiple of -1. 

The eigenvalue corresponding to a particular eigenvector measures the
 

spread of the n data points in the direction definedby the eigenvector.
 

In other words, Y. is the sum of squares of the projections of the n data
 

points on the Z. axis. A small val'ue of Z. indicates that there is'little
 

variability in the Z. direction, i.e.,
 

p 
+
z i SIN L XikSkj
 

k=l
 

is near zero for i = .,2; -.-, n. If SOj is near zero, the axis Z is
 

nearly orthogonal to the Y-axis.- Henceif both P. and SOj are small, the
 

eigenvector Vj reveals a nonpredictive near singularity; a strong linear
 
dependence only among the independent variables which produces little or
 

no change in'the dependent variable. The situation where 2j is small but
 

SOj is not small, so that the response variable is involved in the
 

relationship, is termed predictive multicollinearity. The ability to detect
 

the presence of predictive and nonpredictive multicollinearity and' to
 

determine the nature of the relationships through eq. (32) is one of the
 

key features of the latent root regression procedure. This feature is not
 

shared by any of the other procedures outlined in the previous sections.
 

The least-squares estimator is a linear combination of all p + 1 eigenvectors,
 

including eigenvectors-corresponding to nonpredictive near singulari.ties.
 

The modified least squares (ref. 60) utilize only linear .combinations
 

of the eigenvectors not having both Yj and SOj small. In this fashion,
 

the estimates of the regression coefficients are adjusted for the effect
 

of nonpredictive near singularities.
 

Figures 4 and 5 illustrate, for three dimensions and four data points, the
 

cases of predictive and nonpredictive multicollinearity. Nonpredictive
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Figure 4,.- Nonpredictive multicollinearity. 
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Figure 5.- Predictive multicollinearity.
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multicollinearity characterized by a small P0 and small Is 01 is shown in
 

figure 4. The case inwhich P0 is small but Is001 is large is illustrated
 

by figure 5.
 

Hawkins (ref. 59) arrives at similar conclusions but from a different point
 

of view. Let (yi , xi1 "' xip) be the ith data point on the p + 1 

pXp 


y 	- b1xI- b2x2 . ... . bpxp = 0 (33)
 
dimensional space spanned by y, xI, -, and let
 

be a fitted hyperplane. Hawkins considers measuring deviations of the n
 

data points from the hyperplane (eq. (33)) in the direction of the normal
 

to the hyperplane rather than in the Y-direction.
 

Ifwe let
 

= 	 mean-squared deviation between fitted and observed responses in
 

the direction of the normal line
 

1_

n"


where Ai is the deviation of the ith data point in the direction normal to
 

the fitted plane, and
 

d 	 mean-squared deviation between fitted and observed responses in
 
the direction of the Y-axis
 

n n. 

d2 - Y2. I ' (d - )'
nL.s ' nZ~ 

i=l i=l 

we then have
 

= 	 (cos2)d2 (34) 

where 0 is the angle between the normal to the hyperplane and the Y-axis.
 

Hawkins calls X the vertical norm and d2 the Y-norm (see fig. 6). He proposes
 

A as an alternate measure of the fit of the hyperplane (eq. (33)).
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= ith deviation in direction normal to hyperplane
 

di = ith deviation in direction of Y-axis
 

Figure 6.- Vertical norm.
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From eq. (34) we see that
 

a. If d2 is small, indicating the hyperplane provides a good fit to the 

given points, then the vertical norm A is also small. 

b. If A is small, d2 is not necessarily small as cos e may be small. This 

would correspond to a multicollinearity among the regressor variables. 

Hawkins also notes that, for a hyperplane chosen to minimize d2 , the vertical
 

norm will be equal to 20' the smallest eigenvalue of A'A, and will be in
 

the direction defined by the corresponding eigenvector, VO. Thus we see
 

that the Z. axis (ref. 60) will be in the direction normal to the fitted
 

hyperplane and that cos a = S00, where SO0 is the first element of V0 *
 

Thus the nonpredictive multicollinearity characterized by a small Y0 and a
 

small S00 is the same as characterized (ref. 59) by a small vertical norm
 

by a large Y-norm. This is illustrated in figure 6; If a second vector is
 

chosen so as to be orthogonal to V0 and to minimize the vertical norm, that
 

vector will be V1 and the vertical norm is now tI, the second smallest
 

eigenvalue of A'A.
 

Now consider the problem of estimation. If all SOj 0, then eq. (31) will
 

provide p + 1 prediction equations of the form
 

yJ = Y- tSoTXVO ; j = 1, .. , p (35)
 

where 1 is an m x 1 vector of l's.
 

Normally, none of the individual equations in eq. (35) will by itself be a
 

good predictor. Linear combinations of these predictors, therefore, will be
 

used to obtain estimates of the parameters of the model. Consider the
 

following arbitrary linear combination of the predictors (eq. 35)):
 

p
 

y= ajS 0oYJ
 
j=0
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Imposing the restriction
 

ajoj:1
L
p

a.S=1
j=0 

yields
 

= - tXt ajV) (36) 

The residual sum of squares using this predictor is
 

p
 
t 2(y - Y)'Y Y) t2a'L : aj2k 

j=0 

where a' = (a0, a1, -. , ap
 

If a is now chosen to minimize the residual sum of squares subject to the
 

above restriction, eq. (32) will yield the least-squares estimator. Thus
 

we wish to minimize
 

p
 
p(a) = t2 N a2 ajSoj (37)
 

j=0
 

where -2p is a Lagrangian multiplier. The solution is (ref. 60)
 

(a = Sjk i) ; j = 0, 1, .--, p (38) 
k=O 

where tt = 2 

From eqs. (36) and (38) the least-squares estimator of the regression
 

coefficients is then given by
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Y*-'
 
(k=Op j=O (39) 

:-2ajV0
 
j=0
 

with residual sum of squares error (SSE)
 

SSE = t2( k
 
k=O
 

Suppose now that eigenvectors VO, V1, ..-, Vk_ 1 correspond to nonpredictive
 

near singularities. An obvious modification of the above procedure is to
 

take a linear combination of the predictors in eq. (35) except for those
 

which correspond to nonpredictive multicollinearities. W6 should then
 

expect to obtain improved estimates of the regression coefficients without
 

losing very much of the ability to predict the response variable y.
 

The above least-squares estimator can be adjusted by setting a0 = I . 

= ak l = 0. Then minimizing eq. (37) yields
 

a. = C I ; j= k, k +], "",p 

(r=k
 

so that the modified least-squares coefficients are
 

bLR r l (40)
 
(r=k j=k 

with residual sum of squares
 

SSE4LR = t-( 
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Note that if X is not of full column rank, i.e., X'X is singular, this same
 

procedure can be applied and minimization of eq. (37) will yield results
 
identical with eq. (40). This follows from the fact that a singular matrix
 

X'X implies some of the 2. and corresponding SOj of A'A will be zero­

equivalent to setting the appropriate a. in eq. (37) to zero. Hence
 
solutions to the normal equations can be obtained from this procedure
 

regardless of whether X is of full column rank.
 

The estimates obtained from eqs. (39) and (40) are often strikingly different
 

when X is near singular. One reason for this is that the a. corresponding
 

to eigenvectors revealing nonpredictive near singularities are often large
 
relative to the remaining a. When this occurs, the terms aV., j = 0, 1, 

.. , k - 1 can dominate b. Removing these dominating terms will then yield 
more accurate estimates of the true parameters . The latent root estimator 

is then a linear combination of vectors essentially orthogonal to the subspace 

defined by the nonpredictive multicollinearities and hence may yield more
 

accurate estimates, depending on the orientation of S relative to that
 

subspace. (See refs. 33 and 60 for examples.)
 

=
In this example, with n = 12 and p = 6, Y0 = 0.001 and ZI 0.0287 while
 

the remaining eigenvalues are larger than 0.3. The corresponding SOj are
 
0.0339 and 0.6987 so that V0 indicates a nonpredictive multicollinearity
 

while V1 does not. Since Z1 is small and S0l is the largest SOj, V1
 
provides more information about the underlying model than any of the other
 

eigenvectors. In this example, the latent root estimator is formed by
 

removing V0 from the analysis. The a. for least squares (LS) and for
 

latent root (LR) are then:
 

a1 a4
a0 a2 a3 ' a5 a6
 

LS 1.760 1.317 0.012 0.002 0.017 0.015 0.004
 

LR 0 1.404 0.013 0.002 0.018 0.017 0.004
 

4-47
 



Notice that the least-squares procedure gives 56 percent of the total weight
 

to V0 and only 42 percent is given to V, the vector providing the most
 

information about the model.
 

The latent root procedure gives zero weight to V0 and 96 percent of the
 

total weight to V1. The least squares estjmates of the parameters of model
 

y = X$ + e are given in the first row of table I with the true values of the
 
parameters in the third row. The matrix A'A, the extended correlation matrix,
 

is given in table II. The eigenvectors of A'A-are given in table III. Note
 

that the four estimates of parameters involved in the near singularity are
 

moderately large negative values. The fact that these estimates are similar
 

despite the differences-in their true values of the parameters is indicative
 

of the effect of the near singularity. Using the modified least-squares
 
procedure by computing a linear combination of all the eigenvectors except
 

V0 yields the estimates in the second row of table I. The absolute values
 

of the first elements of the eigenvectors and the eigenvalues are given in
 

table IV.
 

TABLE I..- LEAST SQUARES AND MODIFIED LEAST SQUARES
 

b1 b2 b3 b4 b5 b6 a2 

LS -6.0378 -8.472 -10.1435 -11.7271 4.0967 9.4506 1.2762
 

LR 2.5447 -0.3982 0.2416 -0.7348 4.2125 9.4914 1.3575
 

True values 2.000 1.000 0.2000 -2.000 3.000 0.G0 1.000
 

TABLE II.-A'A, THE'EXTENDED CORRELATION MATRIX­

. xl x2 x3 (4 x_5 x6 

1.000 0.252 -0.099 0.217 -0.339 0.364 0.811 
1.000 -0.052 -0.343 -0.498 0.417 -0.192
 

1.000 -0.432 -0.371 0.485 -0.317
 

1.000 -0.355 -0.505 0.494
 

1.000 -0.215 -0.087
 

1.000 -0.123
 

1.000 
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TABLE III.- EIGENVECTORS OF A'A
 

S_ S2 S3: S S S5 S6
 

6 0.1653 -0.3300 -0.4471 0.5165 0.1009 -0.4370 0.4427
 

5 .6006 .3444 .0925 .1436 -.4785 .3294 .3925
 

4 .3406 -.1134 -.1886 -.4556 .6518 .3303 .3068
 

3 .0388 -.6944 .6712 .0937 -.0417 .1427 .1869
 

2 .0713 .2344 .3550 -.4505 -.0128 -.7033 .3410
 

1 .6987 -.1694 .0242 -.0091 .0453 -.2766 -.6355
 

0 .0339 .4402 .4229 .5416 .5763 -.0071 -.0276
 

TABLE IV.- INDEXES FOR STANDARDIZED PREDICTION EQUATIONS
 

j: 0 1 2 3 4 5 6
 

.: 0.0010 0.0287 0.3115 0.9178 1.1150 2.1816 2.444
 

ISojI: .0399 .6987 .0713 .0388 .3406 .6006 .1653
 

A t: 19.1496 14.3352 .1347 .0249 .1798 .1620 .0398
 

White (ref. 61) studies the problem of deciding whether an eigenvector of
 

A'A should be removed from the analysis. Upon first consideration, it
 

appears that the problem centers on deciding when ISojI and kj are small
 

enough to indicate the presence of nonpredictive multicollinearities. White
 

proposes that a more crucial consideration is the orientation of the true
 

coefficient vector, , in the p-dimensional subspace spanned by the
 

eigenvectors of X'X, the correlation matrix. His proposal is plausible if
 

we are willing to accept that
 

Vj'-Vj+1 0; , - k - I
.. 


where
 

V.; j = 1, 2, .-, p = the eigenvectors of X'X
 

k - 1 = the number of onpredictive multicollinearities 
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5. APPLICATIONS
 

The author used the procedure of combining some of the good features of the
 

several biased techniques (section 4) and the unbiasness property of the
 

ordinary least-squares estimator, using weather data for Oklahoma and Texas.
 

In addition, trend data were available for Oklahoma. The weather variables
 

are the following:
 

Variable Name
 

X1 January
 

X2 February
 

X3 March
 Precipitation for current year
 
X4 April
 

5May
 

X6 June
 

X7 August
 

X8 September
 

X9 October Precipitation for previous year
 

X10 November
 

X11 December
 

X12 January
 

XI13 February
 

X4March (
/ Mean temperature
 

XI5 April
 

X 6 May
 

Xl17 June
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Variable Name Type 

XI18 January 

XI19 February 

X20 March Percent evapotranspiration 

X21 April 

X22 May 

X23 June 

X24 Trend Trend 

y Yield Yield 

The model postulated is 

Z 
24 

= 0 = ii + e 

and if the-matrix is standardized, then 

y = XO + e 

The 45 data points consist of weather information from 1932 to 1976, inclusive. 

The first task is to reduce the number of variables in a meaningful way.
 

The all-possible regressions procedure (see section 3.1) was used to analyze
 

all possible subsets of variables. The optimum number of variables that
 

should be kept in the model was determined by the adjusted R2 (upper bound)
 

and the Mallows' Cp (lower bound). (See sections 3.2 and 3.3.)
 

The following results were obtained from the all-possible regressions
 

approach.
 

OKLAHOMA
 

Ten variables were selected by using the adjusted R2 as a criterion of
 

goodness of fit, XI, X3, X5, X6, X9, XiI, X14, X17, X20, and X24.
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The Mallows' Cp criterion selected-seven variables: X3, X5, X6, X14, X17,
 

X20' and X24. The highest R2 possible (using all 24 variables) is 91.65.
 

Ten Variable Results
 

Two small eigenvalues of the extended correlation matrix, £I = 0.004389 and 

2 = 0.073157, were obtained, indicating two multicollinearities. Their
 
respective values of 1Sol and is021 are 0.091927 and 0.71778, indicating
 

that the first eigenvectors correspond to a nonpredictive near singularity.
 

In fact, the second eigenvector provides the most information about yield.
 

This situation is very similar to the example given in section 4. The
 

second eigenvector is
 

=
V' [-0.04957, -0.16844, 0.29297, 0.21722, -0.07449, 0.06980,
 

0.05778, 0.17312, 0.2233, -0.47684, 0.71778]
 

so the following equation holds.
 

-b.04957Xl - 0.16844X2 + 0.29297X3 + 0.21722X4 - 0.07449X 5
 

" 0.06980X6 + 0.05778X7 + 0.17312X8 + 0.2233X9 - 0.47684X

67 8 910
 

+ 0.71778Y = 0.073157 

Notice that yield, y, is heavily involved in the multicollinearity.
 

The computed value of R2 is 89.22 and the value of the determinant of the
 

correlation matrix, JRI, is 0.003211. I/IRI is called the generalized
 

variance (ref. 56). The size'of IRI indicates possible instabil'ity in the
 

estimates of the parameters.
 

Thus far, latent root regression techniques have been used to determine the
 

source and type of the multicollinearities present in the data; now the
 
problem is to remove the multicollinearity by deleting one or more variables.
 

Looking at the first eigenvector (which corresponds to the nonpredictive
 

near singularity), observe that two components are larger than the other; i.e.,
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vi = [0.019389, 0.004192, -0.01999, -0.025515, 0.018872, 

-0.004851, -0.716423, -0.009117, 0.687389, 0.062269, -0.0919271
 

Again, the interpretation is similar as the equation above, but here the
 

variable yield is not involved in the multicollinearity; only variables
 

X14 and X20 are involved in the nonpredictive near singularity. The
 

weights given to X14 and X20 are -0.716423 and 0.687389, which are much
 

larger than the other components in V1 .
 

We delete X rather than X because X is more correlated with yield 

than X14 . Alternatively, the variable that least decreases R could be 

deleted. 

Nine Variable-Results
 

With variable X20deleted, we have only one small eigenvalue of A'A,
 

PI = 0.066375. Since ISOil = 0.70785, the eigenvector V1 corresponds to a
 

predictive near singularity.. This eigenvector is
 

Vj = [0.05068, 0.161875, -0.28525, -0.21834, 0.073801, -0.069854, 

-0.291657, -0.169026, -0.466021, -0.707851]
 

The interpretation of this eigenvector is as before. The computed value of
 

R2 is 87.33, so the net loss in goodness of fit is 1.89. The value of
 

IRI is 0.2967, which is much higher than the previous value of 0.003211.
 

This new value of IRI is an indication of stability of the parameters
 

estimated; i.e., the variances of the estimates are not too large.
 

Let us see if the current results can be improved by introducing some bias
 

to the estimator (generalized ridge procedure). The determinant of R went
 

up to 0.3518 and the estimated R2 is now 87.02, so a loss of 0.308 in R2
 

gives an improvement of 0.011. This result seems to be adequate as an
 

initial start in the modeling of wheat yield. The next step should be to
 

consider interaction and square terms. The resulting values of the
 

parameters are:
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bI = 0.01005 

b2 = 0.02819 
b5 = -0.02465 

b6 = -0.02182 

b9 = 0.01048 

bl = -0.01537 

b14 = -0.60445 

b17 = -0.51368 

b24 = 0.26523 

The value of bO, the intercept, needs to be calculated by using the sample
 

means of the X's and Y.
 

TEXAS
 

Ten variables were selected by using the adjusted R2 as a criterion of good­

ness of fit. They are: X5, X10 , XII, X12, X13, X14, X16, X18, X19, and
 
X22. Trend, X24 , is not available. Mallows' Cp criterion selected five
 

variables: X3, X5, X7, X14, and XI8. If all 23 variables are used, the
 

computed value of R is 53.458.
 

Ten Variable Results 

The A'A matrix has three small eigenvalues: £I = 0.000332, Z2 = 0.005177, 

and Y3 = 0.060468, so we have three near singularities. The respective 

values of ISoi are: SOil = 0.004814, IS0 2 1 = 0.025483, and Is031 = 0.082601, 
indicating that we have three nonpredictive near singularities. The 

determinant of R, IRI, is 0.00000054 and the computed value of R2 is 49.45. 

The vector V1 is 

V= [0.005817, -0.008772, 0.002736, -0.012504, 0.014695, 

-0.00475, -0.706582, 0.015953, -0.020851, 

0.706764, 0.004814] 

By observing the eigenvector VI , we see that the weights for XI6 and X22' 

-0.706582 are 0.706764, are clearly larger than the other weights. Therefore, 
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XI6 and X20 are candidates for deletion. We delete XI6 because the correlation
 

of XI6 and yield is lower than the correlation of X20 and yield.
 

Nine Variable Results
 

Delete X16, the A'A has two small eigenvalues: £I = 0.005177 and £2 = 0.060408. 

Their respective values of IsOil are: 1S011 = 0.005177 and IS021 = 0.060408. 

the value of JRI is 0.00079055 and the value of R2 is 47.714. The candidates 

for deletion were XI3 and X19; X19 was deleted by the same reasons as before. 

Eight Variable Results
 

Delete X19 , and A'A has only one small eigenvalue, P1 0.06354, which
 

corresponds to one nonpredictive near singularity. FRI is 0.0714075 and R
 
is 43.88. The candidates for deletion are X12 and X18. Variable XI2 was
 

deleted.
 

Seven Variable Results
 

Delete X12' and A'A has no small eigenvalues, JRI is 0.5797, and R2 is 42.72.
 

This value of FRI is excellent and the loss in R2 has not been too great.
 

Inthis case, there is no need to enter the biased estimation procedure;
 

therefore, the unbiased least-squares estimator is used to estimate the
 

parameters of the yield model as
 

b5 = -0.05516 

bl0 0.07096 

b1 = -0.06655 

b13z -0.57036 

b = -0.70483 

b18= -0.43672 

b22= -0.1944 
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6. -CONCLUSIONS AND RECOMMENDATIONS
 

Itwas observed that OLS is not adequate as an estimation procedure when the
 

independent or regressor variables are involved in multicollinearities.
 

This was shown to cause the presence of small eigenvalues of the extended
 

correlation matrixA'A. It has been demonstrated that the biased estimation
 

techniques and the all-possible subset regression can help in finding a
 
suitable model for predicting yield.
 

Latent root regression is an excellent tool that allows us to find how many
 

predictive an nonpredictive multicollinearities we have, and it also tells-us
 

exactly what variables are involved in the multicollinearities. Thus,,we can
 
decide what variables to drop from the model to remove the multicollinearities
 

and hence obtain estimates with small variances.
 

It is recommended that the procedures discussed in this memorandum be made
 

available in the Earth'Observations DivisionLaboratory for Applications of
 
Remote Sensing classification system. The author has made available to
 

NASA/JSC personnel- the necessary programs .to implement these techniques.
 

The results presented in this memorandum are the initial attempts to find a
 

yield model for wheat. Additional research should be conducted to estimate
 

interaction terms and other ways-of measuring trend.
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