7.9-10"k7yy,

CE 60/ FF

LOCkheed A SUBSIDIARY OF JSC-12700

Eiectmnia ;23‘;;?5:310;3 1, Houston, Texas 77058 T
Company; Inc.

Ref: 642-6932
Contract NAS 9-15800
Jdob Order 73-7156-12

TECHNICAL MEMORANDUM

REGRESSIONS BY LEAPS AND BOUNDS AND BIASED ESTIMATION
TECHNIQUES IN YIELD MODELING

By

N. Marquina

Approved By: 3}71<:%t y»«,a,:::é;£:1,

T. C. Minter, Supervisor
Techniques Development Section

i {E79-10177) REGRESSIONS BY LEAPS AND BOUNDS W96=5nais—
N79-
i AND BIASED ESTINMATION TECHNIQUES IN YIELD 20448
f HODELING {Lockheed Electronics Co. } 81 p HC ’
! AOS/MF A01 CSCL 122 Unclas

) _ o G343 00177

February 1979 LEC-12379



CONTENTS

Section

1. INTRODUCTION. . . . . v v v v v it e vt e e e e e e v e e e e s

2. ORDINARY LEAST-SQUARES ESTIMATION . . . . . . . . . . .« . . ..
2.1 LEAST-SQUARES ESTIMATION . . . . . . . « . « v . o v o« ..

2,2 MULTICOLLINEARITY. . . . . . + o v v v v v v v v v v v o

3.1 ALL POSSIBLE REGRESSIONS . . . . . . . . .+« o v v o v ..

3.1.17 FURNIVAL'S METHOD OF GENERATION. . . & » « o o v v o .
3.1.2 BASIC ASSUMPTION . - » o v oo oo e
3.2 ADJUSTED RZ. + o v oo oo oo

3.3 MALLOWS' Cp STATISTIC. + « v v v v v v e v e e e e e e

4. ALTERNATIVES TO ORDINARY LEAST-SQUARES ESTIMATION . . . . . . . .

4.1 RIDGE AND GENERALIZED RIDGE. . . . . . . . . .. .. . . ..
4.2 MARCUARDT'S GENERALTZED INVERSE ESTIMATOR . . . . . . . . .

4.3 SHRUNKEN ESTIMATORS. . . . . . . ¢ v v v v v v v v v v v o

4.4 PRINCIPAL COMPONENTS REGRESSION. . . . . . . . . . . . . ..

4.5 LATENT ROOT REGRESSION . . . « v & v v v v v v v v v v v v s

5. APPLICATIONS. . . & & & v v i et e et ettt e e e e s e
6. CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . .o .+ . o . ..
7. TREFERENCES. . . v & v ¢ v o o e i et e s e e e e e e e e

> ey T AT RIS ENRg ASmTy
FIECEDING PRGESELATE] NOE FRAED

iv



Table

II

I11
IV

Figure

(=2 T & o

TABLES

Page
LEAST SQUARES AND MODIFIED LEAST SQUARES . . . . . . . . . .. 4-48
A'A, THE EXTENDED CORRELATION MATRIX . . . . . . . . « .« . .. 4-48
ETGENVECTORS OF A'A. + & v v v v o e e oo e e e e e e 4-49
INDEXES FOR STANDARDIZED PREDICTION EQUATIONS. . . . . . . . . 4-49

FIGURES

Page
The regression tree. . . . . .« « . ¢ v 0t e e e e e 3-3
Cpplot. . . . . . . . oo v v e e e e e e 3-6
Two—dimensiona] exampﬁe ............ e e e e e s 4-9
Nonpredictive multicollinearity. . . . . . . . . . . . . . .. 4-40
Predictive multicollinearity . . . e 4-41
Vertical norm. . . . . . . .+ o o Lo L oo 4-43



=<}

o o -

SYMBOLS
Total number of regressor variables
Humber of observations

Independent or regressor variables

The n-dimensicnal vector of observed values of the j#h regressor

variable
The n x p matrix whose columns are the vectors gj
Moore-Penrose pseudoinverse of the matrix X'X

The n-dimensional vector of observed values of the dependent
variable -

The ith observation of the dependent variable
Average of the components of y |

Estimated value of‘Yi

True parameters or regression coefficients
Estimate af B ‘

The error term

Variance of the components of error

The jth‘eigenva1ue of X'X in order of increasing magnitude
A normalized eigenvector of X'X associated with Rj
The matrix whose colums are the eigenvectors Vj
The diagonal matrix of eijgenvalues ﬁj

Submatrix of S consisting of r columns

vi



REGRESSIONS BY LEAPS AND BOUNDS AND BIASED ESTIMATION
TECHNIQUES IN YIELD MODELING

1. INTRODUCTION

The prediction of yield estimates based on meteorological variables is
discussed in this technical memorandum. The primary statistical tool for
the analysis is linear parameter regression. Multiple linear regression
analysis is a procedure for the analysis of the relationships between two
sets of variables, independent or regressor variables and dependent or
response variables, whose values are believed to be related to the set.
Estimation of the coefficients of the regression model is usually performed
using least squares.

The least-squares estimator of the regression coefficients has the desirable
property of being unbiased and having minimum variance among the class of
unbijased linear estimators. However, when near-linear relationships exist
among the regressor variables (a situation known as multicollinearity) this
minimum variance can be quite large. Thus, estimation procedures other than
Teast squares appear to be desirable when multicollinearity exists among

the regressor variables. .

The meteorological variables currently used in yield modeling are highly _
correlated among themsé]ves.' A consequence of the multicollinearity present
in the meteorological variables is the large variance of the regression
coefficients. Many of the applications of regression analysis in yield
modé1ing gither explicitly or implicitly place reliance on individual
parameter estimates. Inferences about cause-effect relationships between

the response and regressor variables based on individual coefficient estimates
can be misleading, even erroneous, when‘mu1t1c01linearity is présent in

.the data. In the presenﬁe of multicollinearities, the estimated coefficients
are highly unstable; the addition of one or more new observations can change
the size and even the sign of some of the parameters (ref. 1).
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In this membrandum it will be shown that techniques other than ordinary
least squares {OLS) exist to deal with the problem of estimation with
correlated predictor variables. In particular, latent root regression,
principal components regression, ridge, and generalized ridge will be
examined. Texas and Oklahoma weather -data are used for the illustrations.
The programs that implement these techniques were developed by the author
while attending the University of Houston; the Industrial Engineering
Department of the University of Houston provided the computer time for the

sample runs.

In section 2, ordinary least squares are reviewed and the multicollinearity
problem is defined. Section 3 deals with the problem of finding the best
subset of variables to entef the regression analysis. Section 4 discusses
three of the most important biased estimation techniques. In section 5,
these ideas are applied to the weather and trend data for the Texas-
Oklahoma Panhandle and Okiahoma, which were provided by National Aeronautics
and Space Administrat%on, Lyndon B. Johnson Space Center (NASA/JSC) personnel.
Conclusions and recommendations are presented in section 6. . References are
listed in section 7. '



2. ORDINARY LEAST SQUARES

2.1 LEAST-SQUARES ESTIMATION

The multiple Tinear regression model can be written as

Vi T 85T BTy T epy By ey s T= 2 e (1)
where '
Yi = the yield for the ith year .
86, B?, see, B; = unknow? parameters referred to as the regression
coefficients
X¥. = the value of the jth weather variable for the ith year

= random error term for the Tth year

For the purposes of increased computational accuracy, the relationship
{eq. (1)) can be transformed (ref. 2) by letting
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Eq. (1) now becomes

Y'i = 80 + B'!x.i'! toees + Bpx.ip + E.i 3 1= 1: 2: ***, N (2)
where
P
B = Bp ¥ Z 833
=1
and

n _ 2
= R* % o yR
B3 BJ[Z (%5 - %) ]

i=1
In vector notation, eq. (2) is written as
y = 301_+ B+ e (3)
where

an n x 1 vector of yield measurements

‘<
1]

an n x 1 vector of 1's

|._.|
H

an n x p mtrix of constants

amand
-

[p]
w
R’ 3

_é,x
| —
]

B! = (81, Bys *v=5 B ) = a1 x p vector of unknown parameters

an n x 1 vector of random error terms

u

The following assumptions are used in this memorandum:

a. The elements of X = [X], Koo *o2, Xp] are nonstochastic.
b. X has rank p <n.

c. The elements of y are observable random variables.

d. The elements of £ are unobservable random variables with E[e] = 0 and
Efee'] = ozln.

e. In addition, the assumption e ~ N(Q, GZIn) will be included when hypothesis
testing is required.
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It should be noted that assumption (b) states that the number of observations
exceeds the number of parameters to be estimated and that no exact Tinear
relations exist among the columns of X.

The least-squares estimate b of 8 is found by minimizing £'e with respect
to B, i.e., ’

(y - XB)'(y - XB)
y'y - 28X'y + B'X'XB

minimize ¢'s

The probiem is reduced to solving
X'Xg = X'y (4)

which is obtained by using the fact that 8'X'y = y'X8, differentiating e'e
with respect to 8, and solving

oe'e _
33"0

or - . 2Ky + 2X'Xg =0

These are the so-called normal equatiéns. The solution to eq. (4) is given by
b= (X'X) X'y (5)
The Teast-squares estimator is unbiased and has minimum variance in the class

of unbiased estimators of the regression coefficients. If the normality
assumption (e} is valid, eq. {5) is also maximum Tikelihood (ref. 3).

The variance of the OLS estimator is given by

Var(b) = o2(X'X)! (6)

The variance of the estimator of a particular coefficient, bj, is

. 2
Var(bj) = ijo (7)
: ~ 2
while Cov(bi,bj) = G440
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where c = [c;.1= (07

Eas. {6) and {7) play a central role in the discussion of multicollinearity.
A complete discussion of the derivation of the leaét—squares estimator and
its various numerical and statistical properties can be found in many
standard texts on statistical analysis; speciallmention should be made of
reference 2.

2.2 MULTICOLLINEARITY

It is very well established that the regressor weather variables in the Center
for Climatogical and Environmental Assessment (CCEA) yield model are highly
correlated {refs. 4 and 5). )

Let us analyze the effects of multicollinearity on the OLS estimator.
Multicollinearity is.a form of ill-conditioning within the matrix, X, of
regressor variables in which for some set of constants 85 8y, vev, @ not

p
all zero, we have

X.= 0 8
3%~ 0 (8)

M-

j=1
If the relationship is exact, there is said to be an exact multicoliinearity
among the regressor variables. In this case, (X'X)"] does not exist
because the rank of X will be less than p. This implies that there is not
one solution to the normal equations, but infinitely many solutions. To
obtain a unique solution for eq. (4) when the rank of X is less than p, the
Moore-Penrose pseudoinverse of X'X, (X'X)+, should be used (ref. 6) to obtain
the solution

b = (X'X)"X'Y
Of primary concern in this paper are the cases where eq. (8) only approximates
zero. When this occurs, we say that multicollinearities exist among the
regressor variables. Multicoliinearity is explained in greater detail in
references 7, 8, and 9. ‘



Strong multicollinearities among the regressor variables produce the following
problem with OLS estimation of the regression coefficients:

d.

b.

The estimates tend to be large in magnitude.

The signs of the estimates are greatly influenced by the multicollinearity,
which can result in estimates having signs which disagree with known
theoretical (agricultural). properties of the model.

Variances and covariances of the estimators tend to be extremely large,
often-causing the experimenter to delete variables incorrectly.

The coefficient estimates are very sensitive to the particular set
of sample datg, therefore the addition of a Tew more observations
can cause large changes in the estimates.

These problems are due entirely to the presence of muiticﬁ]]inearities and
occur regardless of the true values'o% the regression coefficients. The
difficulty centers around the fact that multicollinearities among the
regressor variables cause X'X to be nearly singular. This, in turn, creates
targe values among the elements of (X'X)_].

To illustrate these properties, suppose a linear relationship of the form
shown in eq. (8) holds for the first k < p regressor variables with ay
nonzero. The diagonal eléments of

C= (X))

can be expressed as

(- ) '
.=1{1 - R? C =1, 2, tes,
5 =\ 7 R J P

where R§ is the coefficient of determination of the least-squares regression
of xj on the remaining p - 1 regressor variables. If j < p, X. is involved

in the multicollinearity and hence could be well estimated by the remaining
regressor variables. This results in an R§ which is very close to 1 and

consequently a C..

ij which is very large. Since

_ 2
Var(by3) = C4j0
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the variance of the estimator of the regression coefficient of xj is very
large. The off-diagonal elements of (X‘X)'] can be represented as

Ciy = ‘Sij.(p-z)/{ [1 - Rﬂ [] - Rag.(p-Z)“

where S}J (p-2) is the partial covar1ance of X and X3 adjusted for the
remaining p - 2 variables, and R (p- 2) is the coefficient of determination
for the regression of X5 on the rema1n1ng p - 2 variables, excluding X Thus,
if x. and xj are both involved in the multicollinearity, Rg will be close

3
to 1 while S j. (p-2) generally will not be close to zero. Therefore,

Cov(bi, b.) = C..o

typically will be Targe in magnitude.

The Teast-squares estimator of the individual regression coefficient can
be written as

:E: C45(X5,) i=1,2, -, p

Hence, if X is one of the variables involved in the multicollinearity,

several of the Cij will tend to be large.in magnitude, in turn yielding a

Si which is large in magnitude. This is due primarily to the multicollinearity
and does not necessarily reflect the true values of the regression param-

eters Bi‘ .

If we let &, <8, < --- < gé be the latent roots or eigenvalues of X'X as
defined by the equation

X - 9. =
[X aJIp]

and let V1,
of X'X as defined by the equation

V2, cee, !p be ‘corresponding latent vectors or eigenvectors

XXV, = 2.V,
( )—ﬂ J=J


http:large.in

subject to the constraints
and

then we can write
L
C = (X'X) =;ij vy (9)
J:

Equation (9) provides another way of illustrating the problems with Teast-
squares estimation. The presence of multicoliinearities means that X'X
will be near singular and hence one or more of the eigenvalues, ij, will be
near zero. This creates the large elements in (X’X)'] mentioned above.

The problems associated with least-squares estimation motivate the need for
alternative methods of estimation and analysis when confronted with multi-
collinear data. Several recently proposed alternatives are outlined in

the next sections. Of necessity, all are biased estimators, but each will
be seen to have several desirable as well as undesirable properties.

2-7



3. CHOOSING THE BEST REGRESSION

A major problem in regression analysis is. that of deciding which regressor
or predictor variables should be 1n the model. There are two conflicting
criteria for selecting a subset of regressors. First, the model chosen
should include as many of the X's as possible if reliable predictions are
to be obtained from the fitted equation. Second, as discussed in section 2,
the variance of the predictor increases yith the number of regressors. A
suitable compromise between these twé extreﬁes is usually called "selecting
the best subset" or "selecting the best regression equation.”

The CCEA model contains 23 predictor or regressor weather-related variables.
This author was requested not to consider square or cross-product terms; such
analysis should be done as part of the follow-on t¢ this study.

It is'recognized that iﬁdividua]]y the weather variables in the CCEA model
provide 1ittle information but co]]ectiveT& they do reasonably well. Under
these circumstances, it has been shown (ref. 10) that the all-subsets
approach is much better than backward, forward, or stepwise regression when
selecting a suitable subset of regressor variables.

3.1 ALL POSSIBLE REGRESSIONS

Algorithms have been described (refs. 11 and 12} for computing ail possible
regressions which are much superior to the naive approach involving the
direct inversion of the moments matrix associated with each subset of
independent variables. The number of operations per regression decreases
from kp3 to kpz. If less output for each regression is satisfactory,
further savings are possible. By computing the regression coefficients,
their variances, and the residual sum of squares with a number of operations
per regression, which is of order p, and if we are satisfied with only the
residual sum.of squares (RSS), the number -of operations per regression can be
reduced to slightly less than six (ref. 13). As there are two possibilities
for each regressor, "in® or "out" of the equation, there are 2P such

regressions.
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A systematic procedure for generating all possible regressions is given in
~references 11, 12, and 14. Garside (refs. 11 and 14} represents each
regression by a K-digit binary number; for example, if K = 4, the binary
code 1010 would represent the model E[Y] = By T By + 63X3. For K = 3, we
have 000, 100, 110, 010, 011, 111, 101, 001. These are the coordinates of
the vertices of a K-dimensional hypercube; finding an efficient procedure
is equivalent to finding a path along the edges of the hypercube which will
pass through each vertex only once (a Hamiltonian walk).

3.1.1 FURNIVAL'S METHOD OF GENERATION

A Gaussian elimination method given by Furnival (refs. 13 and 15) is best
described in terms of a "regression tree," as shown in figure 1. The
Gaussian elimination operator is.applied to each pivotal element just once
in the order given by the binary tree. The full matrix is at the root of
the tree, and at each interior node a submatrix is derived from.the parent
matrix by a series of pivots (solid lines) and deletions (dashed lines).

The regression tree can be traversed in any "biologically feasible" order; .
the only restraint is that a father be "born" before his son. By using
horizontal, vertical, or hybrid searching techniques, Furnival obtains a
number of regression éequences which he describes as natural, lexicographic,
binary, and familial.

3.1.2 BASIC ASSUMPTION

A number of authors have described procedures for finding the best subset

regressions without computing all possible Fegre;sions (refs. 16, 17, and 18).

A11 of these methods are based on the fundamental inequality
RSS(A) < RSS(B)

where A is any set of independent vériables; B 1s a subset of A; and RSS s
root sum square. (See ref. 15 for more details..)
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Figure 1.— The regression tree.
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3.2 ADJUSTED R2

One measure of goodness of fit of a regression model widely used in the past
is the coefficient of determination

5 e

Y. - Y)
o S0

(Yi - Y)

Since introducing an extra regressor increases Rz, the probiem is not finding
the subset with maximum R2 {which in any case is the set of all p regressors)
but rather that of finding a suitable subset with a high R2.

The adjusted or corrected R2 statistic is given by

=2 _ 2 n
o[ (o]

where m 1s the number of parameters in the model.

To see the effect on ﬁz of adding extra regressors to the equation, consider
the F-statistic for testing the significance of q new additions (ref. 2):

. 2 2
F = Rieq = Rn Jh-m-g

- R? q
! Rt .
It follows that
R >R
mhq - m

“if and only if F > 1.

One criterion, therefore, for selecting the best regressibn is to choose the
. s . - =2 -
regression subset which maximizes Rm.

3.3 MALLOW'S Cp STATISTIC

Consider a g-parameter model, q <.p. If Nq = E[?q], then Nq will generally
differ from Xésq because of possible bias in the g-parameter model.
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Let ¢ = E[Y]. Then, for a given future data point X,

o 2 o 2
E[(Yq - 8) ] Var[Yq] + (NCl - 8)

2.
o X
_ —q
As pointed out in referenﬁe 19, it is perhaps more appropriate to use the

. -1 2
X + -8
(éq_,q) E (Nq ‘ )

sum or the average, in some sensé, over the future observations of interest.

‘Mailows (refs. 20-22) and others (ref. 23) suggested to minimize

>
i

n
1 - 2
q —'TE E(Yqi - 81')
T |i=

SSB
q+—5

)

]

where SSB is the ‘bias sum of squares, given by

n
5B, = > (g~ 0,17
i=1
1t can be shown {ref. 20) that '
RSS
Cq'= 82 +29-n
is a suitable estimate of Aq (fig. 2).

Notice that adding S = Gy - Qp regressors to a model may reduce the b;as
term SSB, but at the expense of increasing the variance term from 940 to
qzdz. If the equation- is needed for prediction, it may be better to drop a
few regressors and accept some bias in exchange for a smaller A_ and a

simpler equation.

3-5
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1t can be shown (ref. 24) thaf

R -p -
_RSSg(n - p - 1)

Cq RES -n+2q

p+l

and
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4. ALTERNATIVES TO ORDINARY LEAST-SQUARES.ESTIMATION

Some attention has recently been given to two aspects of redression analysis.
The first aspect is the attempted improvement of point estimators where

the criterion of goodness is the mean-square error {refs. 25-27). Sclove
(ref. 27) discusses an estimation technique which guarantees that the sum

of component-wise mean-square errors of the biased estimator is smaller

than that of the ordinary unbiased least-squares estimator. He presents
some further results under the vestrictive condition that the independent
variable of the model can be ordered in importance prior to analysis. These
procedures can be somewhat difficult to implement, and very little is known
about the distributional properties of the resulting estimators.

The second aspect of regression considered recently is the problem of point
estimation where there is a high degree of multicellinearity among the
predictor variables {(refs. 28-33). Hoerl and Kennard (ref. 28) propose a
class of biased estimators called ridge estimators; their criterion of
goodness is mean-square error. The technique is relatively easy to use,
and it may be shown that the class contains estimators which have smaller
mean-square error than the least-squares estimator. However, they are

not able to provide a well-defined and unique choice of estimators from
this class., nor have they been able to prove that their suggested procedure
éctua11y chooses a member of the class which achieves smaller mean-square
error. In fact, Newhouse and Omaq (ref. 34) have réported some Monte Carlo
simulation resuits which indicate that ridge estimators do not in general
perform better than least-squares estimators.

LaMotte (ref. 35) presents some of the properties of best and Bayes linear
estimators. The best estimator follows.

Let L, be an n x p matrix, then the linear estimator Ly of B8 is best at (o» BO)

if there exists a (00,“80) such that for any L,

TMSELO(UO, By) < TMSE, (oy, Bp)

4-1
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where

TMSE, (0, B) = E[{L'y - B)'(L'y - B)]

'trace[ozL'L + (X'L - IY'gR (X'L - 1)]

The Bayes linear estimator is a linear estimator with minimum average total
mean~square error (TMSE), averaged over values of (o, B). Basically, one
substitutes v = E[Uzjiand ¢ = E[BR'] in the above equation for the TMSE
obtaining

ELTMSE, (0. 8 B)l v, ¢] = ETMSE, (v, ¢)

= trace[yL'L + (X'L - I)'¢(X'L - I)]

Marquardt (ref.- 36) introduces a class of biased estimators called generalized
inverse estimators.” Mayer and Willke (ref. 30) discuss a number of classes
of biased estimators called shrunken estimators. These classes contain
members with smaller mean-square error than the 1east-5§uares estimator.

It is not known how to choose such members, however, and there is very

1ittle known about the d1str1but10na1 propert1es of these estimators.

Kendall {ref. 31) and Massy (ref 32) discuss principal components regression,
which was ﬁof introduced as a method of biased estimation-but will be shown

to provide biased estimators. The method is very closely related to
Marquardt's and was introduced for -use when there is multicollinearity.

In this chap?er a method of unifying the treatment of these biased estimation
methods and of unbiased least-squares estimation is considered. The
presentation centers on a duality of the X'X matrix of the normal equations
for unbiased least-squares estimatjon.,’The duality is in the sense that

the spectral decomposition of X'X into its eigenspace representatioh has

the property of describing how well the data points are sbread out in the
data space. A similar decomposition of (X'X)'] (or a generalized inverse

of X'X if it is singular) has the property of describing how the distribution
of the estimator b 15 spread out in the parameter space. We lean heavily on
these decompositions to discuss the 1nterre?ationship§ of all these estimation
methods and to describé the consequences of using them.

4-2
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The near-singuiar case of X'X will be dealt with‘in this section. A measure
of i1T1-conditioning of the X-matrix is its condition number C[X] which is
defined as the ratio of the largest to the smallest nonzero singular value
of X. The singular values of X are the positive square roots of the
eigenvalues of X'X.

A more precise definition of iil-conditioning follows. A set of linear
equations BX - ¢ is said to be ill-conditioned if smail errors or variations
in the elements of B and ¢ can have large effects on the exact solution

X. For example, the difference dX between the solution of BX = ¢ and that of

(B + dB)(X + dX) = ¢ + dg

can he expressed as.

dX = (B + dB)”(dc - dBX)

and its value depends critically on the inverse matrix. If B is near
singular, that is, small changes in its elements can cause singularity, then
dX could be very large. In the case of the normal least-squares equation,

B =XXand ¢ = X'Y will contain roundoff errors because they must be
computed from X and Y. Even if B could be computed exactly, it would not
necessafi1y be stored exact]y in the computer; all numbers are stored in
binary mode, and a decimal number such as 0.7 is a nonferminating binary
fraction. IF X is ill-conditioned, small changes in the elements of X can
]; and if b = (X'X)"]X’Y, then any errors in
the formation of X'X could have a serious effect on the stability and

cause large changes in (X'X)~

accuracy of the solution. As an illustration, -Searle {ref. 37) discusses a
model for the weights of six rubber plants, three of which aré normal, two
of which are off-type, and one of which is an aberrant. The data are
presented in the following matrices. The model considered is

Y.

jj T W DXy boky ¥ bk v e

where X, = 1 if the plant is of the ith ‘type; otherwise, X; = 0.

4-3
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Let

(7] [T
Y19 105 [
N 94 b
y=[ Bd=| al so o],
Y21 2
Yoo 88 b3
.
REIP
(1 1 0 0]
1T 1 0 0
X = 11 00
1T 0 1 0
T 01T 0
1 0 0 1
In this example, we have -
6 3 2 1]
XY = 3 3 00
2 0 2 0
1 0 0 1
and it is seen that X'X is singular and of

rank 3. A generalized inverse
of X'X is ’

0 0 0 d-
0 1/3 0 0
0 -0 1/2 0
l_0 0 0 1

—

G=(X'X)" =

and for this choice of G we have

H=GX'X =

—_ e
o o —= O
e R = w
-0 O o




Hence, all estimable functions are of the form
wiHb = (WI +w, * w3)u + w1bT + w2b2 + Wsbsg

and there are, at most, three linearly independent choices of w. The
unbiased estimates of w'Hb are given by

1 vy _ — — —
WBKTY = Wyyy T Wy, ot Wgys

Three reasonable choices for independent estimable functions are:

by = by
by - b3
and U+ 'I/3(b1 t by + b3)
Their corresponding estimators are
N, " ¥y =M
Yo, - Y3, = %4
and 1/3(§H' + &é‘ + yé_) =72 2/3

To consider what problems arise as the gap is slowly bridged from X'X
nonsingular to singular, modify the previous exampie, barely removing it from
singular setting, and perform a regression analysis. Performing an
experiment to study the abrasion rasistance of rubber as . function of the
amount of three particular addifives, let X; denote the amount of pounds

of the itk additive which is loaded with an approximately 1000-pound

charge to the chemical reactor which produces the rubber. The proposed

model s

y=X8 +¢
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where

0.99 0 0]

1.00 0 0

1.01 0 0
0
0
1_

e e s It | _l!

1 0 0
y' = [101, 105, 94, 84, 88, 32]

B' = [us Bys By» B

and e is the random error. In this example,

6 3 2 1
x'x =|3 3.0002 0 0
2 0 2.0002 0
10 0 1

and it is evident that X'X is not singular, yet it is nearly so.
dencte the eigenvalues of X'X. For the matrix X'X above

I

8.41888
2.38695
1.19444
0.00010

I R
] [§]

1
2
3
4

Since 24 = 0.0, X'X is nearly singular. The parameter estimates

1 = 168.002
by = -68.0212
b, = -81.9742
by = -136.002

4-6
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were obtained with a covariance matrix of (X'X)-]oz, where

2500.38 -2500.21 -2500.13 -2500.38
-2500.21 2500.38 2499.96 2500.21
-2500.13 2500. 38 2500.13
-2500.38 2501.38

()7 =

It is evident that X'X is formally of rank four although it is essentially

of rank three and that the resuiting ()(')()"1 matrix indicates a large variance
in the parameter estimates. However, recall the estimable functions discussed
in section 3.3, and compute

b1 - b2 = 13.9530
' b2 --‘b3 = 54,0278 (10)
u+ 1/3(b] + b2 + b3) = 72.6695

Allowing for the fact that X was slightly changed to provide nonsingularity,
the agreement is admirabie. Although the variances of the raw estimates are
quite large, consider the variances of the linear combinations of parameters
in eq. (10). The Tinear combinations are defined by K'b where

0 0 1 :
«- |1 0 1/3

1113

0 -1 1/3

The covariance matrix of K'b is given by K'(X'X)_]Koz. But

0.82 -0.33 0.05
K (e K = 1-0.33° 1.50 0.17
0.05 -0.17 0.53

It is thus evident that, even though the full parameter vector is quite ill-
determined, the linear combinations of the parameters corresponding to the
estimable functions of the previous example are well determined.
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The normal equations matrix X'X plays the central role in linear model
estimation and hypothesis testing. Note that X'X has a spectral decomposition
(ref. 2) or representation as

S DR AAT (11)

where 2, > ... > ﬁp > 0 are the eigenvalues of X'X and S, are corresponding
normalized eigenvectors of X'X. If r is the rank of X'X, then a similar
decomposition (ref. 2) of (X'X)+ is

(ex)n = v (12)

r
'] 1

"l:

If r = p, then

) p
(xg - 07 = 37 vy
) i=1

It is extremely'important to nofe that the spectral -representations of
eqs. (11) and (12) are not invariant uqder 1inear transformations of X.
Invariance may be attained by assuming the linear model is always considered
in its gorre]atioh form. In the remainder of this report, it will be assumed
that all diagonal elements of X'X equal unity. The spectral decomposition of
X'X by eq. (11) indicates how and how well the variables' space is spanned
by the experiment If 2 = 1.0 for all i, then in a sense the variables'
space is perfect1y spanned If 21 > Ep, then the variabiles' space is not
well spanned. In fact, XOV] represents the linear subspace (or linear
combination) of predictor variables which is best spanned, and XOVp represents
the Tinear combination of variables most poorly spanned. In fact, if Ep =0,
then XDVp is not spanned at all. These considerations are discussed by
Kendall .and Stuart (ref. 38). To illustrate the preceding paragraphs,
consider the following two-dimensional example. Suppose the data points
observed are as plotted on figure 3. )

2



+1

-1

(=1

o+

Figure 3.— Two-dimensional example.
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Assume that the line L] is the line 31 - X2 = 0 in the variables' space and
that L2 is the Tine X1 + X2 = 0. Assume also that the two extreme points
along L2 are equally distant from X] - X2 = 0. It is immediately seen that
the observations are much more spread out alpng L.l than along L2. For such
a situation, L > L and XOV] is well spanned, while XOV2 is poorly spanned.

Considering the parameter space, it is well known that the least-squares
estimator b (under normal distribution theory) follows the normal distribution
NL(x' )T (X X)b, UZ(XlX)i]- For a 1inear combination of the estimates w'b
(ref. 37): '

Var{w'b) = w'(X'X)::wc2

It can be shown (ref. 39) that the. choice of w which minimizes the variance
of w'b is w = S] and that this variance is
Var(V.b) _ oot - &
: 1 1 19 T

The choice of w which maximizes the variance of w'b is w = Vp and

-Var(Vﬁb) = %E-(assuming p=r)
P )
Thus, V{b describes the most determined Tinear combination of the parameters,
while VﬁB describes the least determined. . In fact, if Rp = 0, then Vﬁb is
nonestimable and hence not determined at ail; an interpretation js that
Véb has infinite variance.

4.1 RIDGE AND GENERALIZED -RIDGE

One recently proposed alternative to least-squares estimation of the regression
parameters which has received considerable attention in the statistical
literature is ridge fegression (refs. 28 and 29). When multicollinearities
exist among the regressor variables, the least-squares estimates bj tend to

be Targe in magnitude. ~This can result in b being far removed from g, in



terms of Euclidean distance, even though b is an unbiased estimator of 8.
If L, denotes the distance from b to g (ref. 28) '

p
2 1
E[L1 c :E:‘E‘

i=]

where 2, < £, < ---< zp are the eigenvalues of X'X as before. As pointed
out in the previous section, the existence of multicollinearities means that
X*X will have one or more small eigenvalues, thus the distance from b to B8

will generally be large.

Reviewing some of the most important properties of the ridge estimator, recall
that the best Tinear unbiased estimator of 8 is

b= (XX) XY -
Then X'X may be represented as X'X = PLP*, where P is the orthogonal matrix
whose columns are the normalized eigenvectors of X'X and L is the diagonal

matrix of efgenvalues. If one considers the transformation to new predictor
.variables defined by

W=XpP
and the model
y=Wa+e (13)
then
a=Pp
W'W=L
a'a=b'b

The generalized ridge estimation procedure, defined by the family of
estimators indexed by the parameters ki >0, is

»

-1

a¥ = (WW + K) W'y | (14)

yl



where the matrix K is defined by

K = diag{ki} - i=1,2, ==, p

>

When all k_i = 0, a* is the QLS estimator and is unbiased. When any
ki > 0, the resulting estimator for a is biased, defining the mean-
square error of a* as

M(K) = E[(a* - a)'(a* - a}]

It may be shown (ref. 28) that the choice of ki = 02/a§ will minimize M(K)

among the class of estimators defined by eq. (14)}. Unfortunately, in order

to utilize this optimal choice of ki’ one must know-both 02 and a?. To

circumvent this seemingly hopeless situation, one must resort to the following
jterative procedure (ref. 40). '

1. Using OLS procedurés on the canonical model, eq. (13), estimate the aj's
by computing
A vy
a = (X'X) "Xy
. 2 2
and estimate o~ by s,
2. Use the value of sZ and the Qj‘s from step 1 to compute

|5
k757
J a

i; j=15 2: "'_sP
J. .

3. Use the kj's to solve the expression

a* = (MW + K) Ty

and thus obtain initial estimates of the a?’s. Next compute

p
: 2
k ak = *
ar a Z aj
§=T

4. Repeat steps 2 and 3 using the ag's from step 3 and again compute

ak'a*,



5. Continue this iterative procedure and terminate when stability is achievéd
in a*'a*.
6. The generalized ridge regression coefficiénts are now given by
b =P'a*
The above procedure has some intuitive appeal, but since the distributional

properties of the resultant estimator are unknown, its validity as a statis-

tical tool is subject to questioning. -

Simulations (refs. 41, 42, and 43) have $hown that ridge estimators of the ‘
form of eq. (14) do provide smaller mean—squ;re errors than the 0LS. In fact,
reference 28 shows that if k* > 0 and if k,i =k*¥* (i=1,2, ..., p) and

hence

a* = (W'W + k*Ip)_]X'y (15)

. then there exists a k > 0 such that the mean-sﬁuare error (M(k)) of a* is
less than the mean-square error M{0) of the least-squares estimator b, where

M(0) = EL(8 - b)'(8 - b)]

In practice, one must estimate k from the data. The properties of the
estimator a*, when k is estimated from the data, are unknown. An optimal
method for selecting a suitable value of k has been the center of much .
recent discussion in the statistical literature. Various methods have been
proposed (refs. 28, 29, 36, 41, 44, 45, and others). An excellent discussion
of ridge regression and the various methods for choosing k is contained in
reference 46.

Expressing the ridge estimator eq. (15) as

b{k) = (X'X + kIp)_]X'y (16)

where k > 0 1is nonstochastic. !

n the Titerature, eq. {16) is referred to as the ordinary ridge estimator. °
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Obviously, if k = 0, eq. (16) is the OLS estimator; i.e.,

b(0) = (X'%)™!
It has been shown (ref. 28) that
p
MK) = of D ——— + kP (XX + K1) D
_ 9. + k X

: i=1

and.that M'(0) < 0. Observe the effect of k on the quantities V%b(k).
The equality

Vib(k) -

V%(X'X + kI) X'y

- 1 1} oy
= V1! (Z:Ej T ‘u’J.VJ.) X'y

J
1

[T
ViKY
is immediately obtained; also

E[V%b(k)]

] t
m V%X Ely]

I
-

=

o

——]—Q"VlX’(GzI)XV_i
(2 + K)° T

and Var[\f%b(k)]

2
2,1.0

2
(21 + k)

Thus for any nonzero Kk, V]'b(k) is the least biased linear combination of the
estimator and VF')b(k) is the most biased. Also, V.;b(k) has the least reduced
variance, and V!b{k) has the most reduced variance. Thus, the best determined

linear combinations of the parameter estimates are the least modified, while

4-14
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the least determined are the most modified. 1In effect, as k increases,
those V%b(k) corresponding to small 21 are rapidly driven to zero.

Recall that the predicted regression function at XO is
Yo = Xob(k)

and the mean-square error of this predicted regression is denoted by

M LygIb()1 = Edlyg - ¥gp(K)1'[yg - ¥gp(K)1)

Il

ELLX, (X'X + kI) 'K'e + Xo(Z = TIbT'[X,(X'X + kD)X 'e

+ Xo(z - I)b]}

E[E'X(CX + KI) ™Ky A (X'X + KI)TTX'e] + b (Z - DXK,(Z - 1)

v, b(K)] + 1,001

where yl[b(k)] corresponds to the variance and yz[b(k)] corresponds to the
bias squared. '

THEOREM 1:
The variance function y1[b(k)] is a monotonically decreasing function of k
3

and v'[b{0)] < 0 (ref. 47).

PROOF:

Note that if we assume € ~ N(O, 021) then 18 is the expectation of a quadratic
form in assumption e, thus (ref. 37)

Y][b(k)] = UZtP[X(X'X + kI)‘]XéXO(XIX + kI)-1X']

Note that

R D e
i 1

4-15
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and hence
) -1, _ 1 ,
X(X'X + KI)™ Xy = Z P XV;ViXy
which is n x 1. Thus,

]
Y][b k)]
t"[( T TFE xvavuxo)(_z T T XOVJVJX)]
3

O'

1

Z E o k)]Mj Tt [(xv VIXE) (X VX! )]
i

11

Z E [ k)(z TRy (%o ViX) (0v5v3%o)

1

- 1 i
Z E (R_i + kﬂlj +. k) [ (E R,meVm)VJVJ] 0
L J

2.
"—“““————'X V VixXd

Note that
v Ib(0)] = o% (x'x) " Tx!
1 ) 0 0
v,[b(0)] =
and
2
v+ Ib(k)] XV V. XN <0

Thus, yf is a monotcnically decreasing function of k, as was to be shown.
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THEOREM 2:

The bias function Yé[b(k)] satisfies Yé[b(o)] = 0 and yé[b(o)] = 0.

PROOF:

Recall Yz[b(k)] =b'(Z - I)XOXO(Z - I)b. Since

7T = (XX + KDTIXX - 1
— -k ¢ '
- 2Tk vV
i
we obtain
2
Yz[bk)] ZZR +k)2 +k)bVVX Xo¥;V3D
j
let
£ (k) = 3
R (ARO[ e
then

kz(gi t8) + 2kELR
f1(k) = 5 > 0
J (25 + k)85 + k)

Thus, it is easily seen that y[b(0)] = 0 and Yé[b(O)] = O:

One of the most important results of the ordinary ridge regression is the
following theorenm.

THEOREM 3:

Mp[yolb(k)] is initially decreasing in k.

PROOF:

Since Mp[yolb(k)} = Y][b(k)] + Yz[b(k)] the result follows directly from
theorems 1 and 2.
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Hoerl and Kennard (ref. 28). discuss a general Bayesian interpretation for the
ridge estimator. Marquardt (ref. 36) gives a more specific relationship to
Bayesian estimation, as follows. ’

THEQREM 4:

The ridge estimator is equivalent to a least-squares estimator when the

actual data are supplemented by a fictitious set of data points taken according
to an orthogonal experiment Hk; the response y is set to zero for each of
these supplementary data points.

PROOF :

Augmenting the X-matrix by Hy, the Teast-squares normal equations become

N

k

or
(x'x + HH )b = X'y (17)

Since Hk is orthogonal, Hl'<Hk is a scalar multiple of Ip; for any value k, the
matrix may aiways be scaled such that H!'<Hk = kIp, and eq. (17) is identical
to eq. (16). )

To illustrate, possible choices for H 172

¢ are (a) H = KT, or (b) H = 2P
factorial experiment with the variables at levels -a and +a , where ’

o = (kZ'p)]/z. This theorem ilTlustrates from another viewpoint the
mechanism by which the regression coefficients are -damped by the ridge
estimator. The estimator is seen to be a type of weighted average between
the actual data and other data (in Bayesian terms, the prior information) for
which the response values are arbitrarily set to zero. (For nonstandardized
variables, the response values for the fictitious data would be set equal to
the mean response to the actual data if the model y = Xg + e contains a

constant term.)



An excellent paper by Obenchain (ref. 48) develops the theoretical foundations
to hypothesis testing and confidence regions for ordinary and generalized
ridge regression estimators. He shows that any ridge estimator with strictly
positive and nonstochastic "shrinkage factors® k1, k2’ seey, kp yields the
same exact F {or t) statistic for the test of any linear hypothesis as does
least squares. It follows that the unbiased confidence region based upon
the F {{or t) distribution corresponding to any such ridge estimator is
identical to the least-squares region of the same confidence.

4.2 MARQUARDT'S GENERALIZED INVERSE ESTIMATOR

Marquardt (ref. 36) discusses a method of applying generalized inverses to
biased estimation. He also considers some relations ameng thesé estimators,
ridge estimators, and nonlinear estimation. He considers the mode!l

y = XB +-e - (18)

where the X-matrix has been scaled so that X'X is in the correlation form.
His family of estimators is indexed by a parameter h where G < h < p. The
family is defined by

b (h) = (x'x);x'v‘

The matrix (X'X); is defined as follows: 1et h* = [h] denote the greatest

integer in h and dh = h - h*. Then (x'x): is defined as

1ot 1 . dh .
XXy = 20 g vy freey T e (19)
i )
=G
As the notation is meant to indicate, (X'X); is closely related to a gener-
alized inverse of X'X. In fact, if r = rank (X'X), the (X'X): is the Moore-
Penrose pseudoinverse of X'X and is unique (ref. 49). An. important point

to note is that the Moore-Penrose pseudoinverse yields the minimum-norm
solution to the normal equations (ref. 50).
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Marquardt's estimators thus provide a sort of minimum norm solution to, the
normal equations. He also shows that there always exists a 0 < h < p such
that

M(h) = E [[ba(h) - b1'[b (h) - b1}

is minimized. It is also shown that M'(p) > 0 so that the mean-square error
of bm(h) is initially decreasing as h decreases from p. As with the ridge
estimators, no way is yet developed for determining the "best" h.

With X scaled so that X'X is in correlation form, Marquardt labels the
diagonal elements of (X'X): as variance inflation factors. His suggested
aralytical procedure is to consider several estimates bm(h) for h between

p and 0. He suggests the rule of thumb that an acceptable value of h.is one
such that the maximum variance 'inflation factor should usually be larger
than 1.0 but certainly not as large as 10.0. Marquardt has not been able

to show that this procedure results in a reduction in M(h).

For these estimators,

{
0 h<i-1
vib (h) =V (X X)Xy = {Myixey 4 oy <n< (20)
im T h* Y ' -
Ly fen
\E Y .
,
0 h<i-1

E|Viby(h) ] =qdnvip 1

|
—
A
-
VAN
-
—
™o
e
—

\Vib i<l
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and (

0 h<i-1
(dhizo2
Var[y;bm(h)] - AL i-1<h<i (22)
1
02 .
. i<h

;
From egs. (21) and (22), the following behavior is seen as h decreases from

h
The best determined linear combinations of the parameter estimates are the

Al

p: the V%bm(h) are successively set to zero in order of increasing %i.

tast to be set to zero, while the least determined are the first to be set
to zero.

THEOREM 5:

The estimate bm(h) js a Tinear transform of b, and the transform depends only
on X and h.

PROCF:
Let A = X'X, then

‘S'AS =L
and

1

At = sp7lgr

Suppose A is of rank r, so that the last {(p - r) ordered elements of L are

zero (or nearly so, if A is only "nearly singulqr"). Partition S as follows:

(S, © S,

S

1]

where S is [P x r]; Sp~r is [p x {p - r)]. Partition L similarly

2



where Lr is frxr]; L is[(p-r)x{p-r)].

p-r

Now, by supposition, Lp—r is zero, so that L"1 = 0 by definition. Thus,

p-r
the psuedoinverse becomes

+ -1 ,
Ar = Spby Sy
Therefore
— _]Il
bm(h) = SrLr er y
but
X'y = (X'X)b
“and thus
—_ _-!I
bm(h) = SrLr Sr(X'X)b
= 7 b
r

It follows immediately that bm(h) is a biased estimator of B, if L oy is a

nonnuil matrix. If L oy is precise]y'a nuﬁl matrix, bm(h) is conditionally
unbiased relative to the constraints E[bm(h)] = Z b implied by the columns
of Sp—r‘

THEOREM 6:

The variance of bm(h) is

Var[b (h)] = oZ[SrL;]Sé}(X’X)[SPL;Ts;]

PROOF:

Var(b) = o(x'x)""
thus,
Var(z b) = 0%z (x'x)" 'z
r r r
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Substitutingrzr, the result is immediate. - It can also be shown that

-1

..2' '
Var[bm(h)] =g SrLr Sr

THEOREM 7:
The mean-square error of b(h) is
27 . . .
E[LT] = trlVar(b_(h))] + B*(Z, - I)*(Z, - I)B

This may be proved in the same manner as in ridge regression (section 4.7).
The second term on the right side of E[L%] is the square of the bias; it will
be zero when r = p. ‘

COROLLARY 1:

The variance term in E[L%] is an increasing function of r.

PROOF;

Employing eq. (19), we have

-
R N IV
S.Lr S Z% > Vv

Hence,
r
tr [srLr sr] E %tr[VjVj]
: =7 9
But tr[VjVj] = |]vj1| = 1.0, since S is an orthonormal rotation. Thus,
tr{s LTS 1 = }f: &
r r L.
=1
-
and tr‘[\lar‘(bm(h)-.)] = 02 Z -p-j— (23)
) =]

Since ﬂj > 0 for all j, eq. (23) increases monotonically with r. In the special

case where the data are orthogonal, i.e., all Rj = 1.0, and where r = p, this
result becomes poz, as. expected.
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COROLLARY 2:

The bias term in E[L%] is a monotonic decreasing function of r.

PROOF :

The bias term is
(Bias)? = g'(Z_ - [)'(Z. - 1)B
r r

- 3‘[SPL;]SP(X'X) - I]'[SFL;]sr(x'x) - 1}3

Partitioning the severail matrices in (Z_ - I), and simplifying, results in

r
(Z, - 1) = SrS; B IP
- —Sp—rsé-r
and therefore, (Bias)2 = B'[Sp_r Sé_r]'[sp_rsé-r]si
= B'S B

1 1
P‘PSP“VSP‘VSP"r

But sp—rsp-r = Ip—r
a 2__' 3
and therefore, (Bias) = B Sp_rSp_rB
Now Tp-r = Saer is the (p - r)-element vector of projections of g onto the
subspace spanned by Sp_r. In this notation
(Bias)2 =TJ! T
p-r p-r
- Z
= t 4
>4 20
T=r+1

Since tj does not depend on r, we have the result that (Bias)2 is a monotonic
decreasing function of r. Furthermore, (Bias)2 has the timiting value 0.0

for r = p and the value 'R for r = 0, since TﬁTp = B'B.
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THEOREM 8:

A sufficient condition for the mean-square error E[Lf} to be Tess than the

least-squares variance is

P

D> L (8e)

jere1 d
PRCOF:
Using eqs. (23) and (24}, E[L%] is given by

r p

24 _ 221_ Z 2

E[L]] =g e ‘ tj
i=1 I gersl

while the Teast-squares variance is

P
Var(b) = 02 Z 1]—

j=1
Thus, a- neccesary and sufficient condition for
E[LZ] < Var(b)

1
is thaf
of S~ 1 ~ 2
GEET‘>ZtJ
J=r+l J j=r+l
or
P . [2
:E: g . t? >0
2s0007]
jer+1\ Y .
Thus, a sufficient gondition is that
2
o 2
— > 7 4 >
DA J->r
4.25
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Since eq. {26) would be difficult to apply in practice, a less stringent
but more useful sufficient conditjon can be obtained by noting that

2 j{: 2
By = £

j=r+l

p p
J=1

for any r < p. Thus, the inequality can be written as in eq. (25). This
result corresponds to the foilowing theorem.

THEOREM 9:

If B'8 is bounded, then there exists a k > 0 such that the mean-square error
of the ordinary ridge regression b(k) is Tess than the mean-square error of
the least-squares estimator (ref. 28). An important theorem due to Marquardt
{ref. 36) with some 1nterestingtintérpretation fQIiOWS.

THEOREM 10:

Let v, be the angle between‘bm(r) and g = X'y. Then Yo 2 Yyoq (r an

_ satisfy the inequalities (0 < zr), (Er/zr_1 << 1),
and (2,._1/%._, << 1). Since g is independent of b.(r). it follows that b _(r)
rotates toward g as r is decreased under these conditions.

integer) whenever Rr and £

4.3 SHRUNKEN ESTIMATORS

Mayer and Willke (ref..30) discuss several families of biased estimators which
may be labeled shrunken estimators. They consider the model y = XB + e, but
do not require that X'X be 1in correlation form. Each family of estimators is
indexed by a parameter E, 0 2°c < 1 and defined by

be(c) = c(X'X) X'y = cb

where b is the ordinary unbiased least-squares estimator. .If the constant c
is a scalar fixed in advance of the analysis, theﬁ bs(c) is called &
deterministically shrunken estimator. If ¢ is a scalar function of the
least-squares estimator, then bé(c) is called a stochastically shrunken
estimator.
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Hoerl and Kennard (ref. 28} justify the use of the ridge estimator in non-
orthogonal problems in two ways: (]1 They show that, for a fixed k, b{k)
corresponds to the point on a fixed ellipse of concentration of b which has
minimum Fuclidean length and (2) they show that in any given problem the
class of ridge estimators satisfy the following admissibility condition: A
ctass of estimators E will be called (mean square) admissible’'§if for every
probTem there is an e in E such that M{e) < M{b) = Var(h).

Althouch the shrunken estimator bs(c), with shrinkage factor c, may seem a
rather simplistic alteration of b, the following proposition proved in
reference 30 shows that these satisfy the admissibility condition presented
above.

PROPOSITION 1: For every B there exists a fixed ¢ in [0, 1] such that
M[bs(c)] < M(b) and thus the subclass of deterministically shrunken estimators
is admissible.

Consider the stochastically shrunken estimator bs(cl, where

¢ = [1-qs%(b'b)']

2

SE=yy-b' (XX 5 p>3

and
0<qg<2(p-2)(n-p+2)]
This estimator is one discussed by Sclove (ref. 27). Defining
Wby ()] = Effb (c) - b1'[b(c) - b1}
it was shown by Sclove that

= =—L—-—-2
1T T n o p 2

minimizes w[bs(c)]. This is the only biased estimator known to this author
for which a choice of biased estimator can be explicitly given which guarantees
a reduction in mean-square error.

4-27

K



Let C denote the class of linear transforms of b, and 1et t = Ab for some
p x p matrix A. Note that if we let t{(A) = Ab for fixed A, then

E[t(A)] = AB

2

Var[t(A)] = o“A'S™TA

MIE(A)T = ootrA'S A + ' (A - I)'(A - 1)8
and the sum-of-squares loss associated with t(A) is

L(A) = [y - Xt(A)]'[y - xt(A)]
(y - ¥b)'(y - Xb) + b*(A - I)'S{A - I)b

"

L{b) + L*(A)

Since L*{I}. = 0, L(A) is minimized by Tetting A = I, which yields the least-
squares estimator. However, if L*(A) > 0, then the mapping from the space
of p x p matrices to the real Tine defined by Y(A) = L*(A) maps an entire
class of matrices to the same value. The preimage of any fixed constant

o consists of all p x p matrices. satisfying

b'(A - 1)'S(A - Db = ry

let C(rO) denote the subclass of C such that t(AO) is in C(ro) if and only

if L*(AO) =rg. C(ro) is actually an equivalence class, the equivalence
being defined with respect to the 'sum-of-squares loss function. It can be
shown that both ridge estimators and the deterministically shrunken estimators
can be characterized as minimum normal estimators in the class C (ref. 30).
Suppose the criterion for selecting an estimator from an equivalence

class is to choose the estimator whjch'has minimum Euclidean length (normatl).
Let ’ )

m(A) = t‘éA)t(A) = b'A*Ab

denote the squared Euclidean length of £{A). Mayer and Willke (ref. 30)
have proved two propositions that 1ink the ordinary ridge estimators and the
shrunken estimators.
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PROPOSITION 2: . If Ay = (kS + I)-I for some k and t(AO) is in C(ro), then

m(AO) = min m(A)
C(rU)
This proposition states that within its equivalence class the ridge estimator
is the shortest estimator, provided m(A) is the norm used to measure Tength.

Now consider the design dependent norm

md(A) = t'(A)St(A) = b'A'SAb

and suppose the optimal estimator in an equiva?encé class is defined to be
the estimator with minimum Tength as measured by md(A). '

PROPOSITION 3: If A; = cI for some ¢ in [0, 1] and bs(c) belongs to C(ro),
then : ) : ’

m,(cI) = min m,(A)

Since t(A]) =cb = bs(c) we have shown that both ridge estimators and the
shrunken estimators 'are minjmum Tength estimators with réspect to the
appropriate norms.

For the choice of deterministically shrunken estimator bs(c) = ¢b we have

L yiys
ViX Y

V%bs(c) =,CV%b_= 21
E[V%bs(c)] = cVib . (27)
and
o’
Var[Vib (c)] = » (28)
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From eqs. (27) and (28) we observe that, uniike the ridge and generalized
inverse estimators, all linear combinations of the parameter estimates are
driven toward zero proportionately and that the variances are also propor-
tionately reduced.

The mean-square error of the estimated regression function is given (ref. 47)
by

Mp[yOle(c)] E[(yo . Xob)l(.yo - Xob)]

E{[(c - 1)Xgb * cxo(x'x)‘jx‘e]' [(c - g

+ cxo(k'x)“]x"e]}

It

'E[cz'efx(}('x)*xbxo(x'X)‘1x'e]
+ ZE[(C - T).cb'X('}XO('X‘X)qX‘-e]
+ E[(c - 1)2b'X6XOb]

For stochastically shrunken estimators. these expectafions may be somewhat
difficult. For a deterministically shrunken estimator, ¢ is a constant and
Mp[bs(c)] is easily found to be )
i —_ 2 1 l_-il |"']|
Mp[y0|bs(c)] = ¢ E[é X{(X'X) XOXO(X X)X é]

2 1 1 |
b XOXOb

= ;b (c)] + v,[by(c)]

+{c-1)

The following three theorems are due to Sidik (ref. 47).

THEOREM T1T:

The variance function YT[bS(C)] is a monotonically increasing function of
¢ > 0 and y;[b (1] > 0. -
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THECREM 12:

The bias function Y,[b (c)] is a monotonically decreasing function of ¢ for
0<c<l.

THECREM 13:

Mp[yolbs(c)] is. initially decreasing as c deécreases from ¢ = 1, and there is
a unique minimum for someé 0 < ¢ < 1.

Theorem 13 states that an optimal choice-of ¢ exists. However, this optimal
value of ¢ will be a function of 02 and b.

Several authors (refs. 51 and 52) have considered different ways of unifying
the study of biased estimators in an effort to determine their relative
merits. Obenchain (ref. 52) has considered the problem of testing whether
ridge analysis may be useful. He defines the shrunken statistic that is used
to decide if ridge analysis should be used or not.

4.4 PRINCIPAL COMPONENTS REGRESSION

A particular type of Marquardt's generalized inverse estimator is the
principal components estimator, which involves an orthogonal reparameterization
of the values of the regressor variables through the following procedure.

Let S be the orthogoné1 matrix whose columns are the eigenvectors of X'X
and, Tet L be a diagonal matrix whose diagonal elements are the eigenvalues
of X'X. If we also let Z = XS, then the jth column of Z, Zj’ is called the
Jjth principal component of X for j =1, 2, «+-, p.

The response variable is now regressed on the principal components z.,
rather than on the original variables X3 In place of the usual regression
mode ) '

y=X8 +e
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now we have
whare

Using least squares, we obtain

g=(22) "2y = LMy (29)
If all components are retained in the model, the estimates of the regression
coefficients when transformed from g back to b through b = Sg will be identical

to the Teast-squares estimates. ;

Use of the procedures discussed above would hardly be necessary when the

beta vector could be estimated directly by classical methods. At Teast two
situations arise, however, in which ordinary least-squares is not appropriate
(ref. 32): (1) when the independent variables are collinear with one another,
making inversion of the correlation matrix impossible and the e]ementé of
beta indeterminate; and (2) when, because of high (but not complete)
collinearity or for some other reason, it is desirable to collapse the
independent variable space by deleting one or more principal components from
the regression relationship. We are mostly concerned with the second case.

To overcome the effects of multicollinearity on the least-sguares estimates,
the procedure in principal components regression is to delete from the
analysis those components corresponding to small eigenvalues of X'X. The
regression analysis is then performed using least squares on the remaining
components. If s (1 < s < p) components are deleted, we can partition

S=10[sy + 5.1y = Ivp v
and
L = [Lt : LS]
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where £t = p - s. From eq. (29) we have

_—-Ill
zi = Lt StX y (30)

or, in terms of estimates of the original coefficients,

= “Tg x»
bpc StLt StX y

By inserting (X’)()()('}()"I into eq. (30) we have

= Ty
bye = Syl K'Xb

Marquardt (ref. 36) has shown that mean-square error (MSE)(pr) < MSE(h)
if and only if

EE: s ;—-B 5518

j=t+]

so that, as with b(k) and bs(c), there is potential for improvement in MSE
when compared with the least-squares estimator.

A major problem with the use of principal components regression is deciding
which components to delete. Two criteria are usually considered:

a. Delete components associated wﬁth‘sma11 eigenvalues

b. Delete components which. are relatively unimportant as predictors of
the response variable y.

Mansfield {ref. 53} has shown that the F-statistic used for measuring the
predictiveness of a component associated with a small eigenvalue is
unreliable and can lead to poor results. Mansfield recommends deleting atl
components associated with small eigenvalues, and he also provides a method

of variable selection following principal components regression.

Marquardt {ref. 36) points out the assumption of an integral number of
zero eigenvalues of X!X. may be overly restrictive (see section 4.2). He

1 4-33

By



notes that in the case where X'X is actually of rank t, eq. (30) is the
Moore-Penrose generalized inverse solution to the normal equations. In the
case where X'X has full rdhk p but has several small eigenvalues, Marquardt
suggested the concept of fractional rank of X, that is, we assume X to have
rank ¥ where t < f <t + 1 and use the generalized inverse

=5 lst vt

(X'X I '
tt Tt Ryt

The principal components estimators depend upon the'particu1ar method used
for determining the significance of the coefficients. The MSE of the
predicted regression function is not considered in this paper. Two different
procedures for subset regression in the principal components case were
considered in references 54 and 55.

The method of principal components regression is further discussed in’
references 31, 32, 56, and b7/.

4.5 LATENT ROOT REGRESSION

One of the most important issues (ref. 32) in principal components regression
is the criteria to be used in choosing a subset. There are at Teast two
alternative criteria for deleting components:

a. Delete the components that are relatively unimportant as predictors
of the original independent variables in the problem; i.e., the
components having the smallest eigenvalues should be dropped.

b. Delete the components that aré relatively unimportant as predictors of
the dependent variable y in the problem; In this case, the components
having the smallest values of the correlation between the components and
y should be dropped. )

Hotelling (ref. 58) has noted that in general there is no reason why

components that are important as far as the independent variabies of a
problem are concerned will be highly correlated with the dependent
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variable in a regression, so criteria a and b above are likely to Tead to
different results. Furthermore, it is easily shown that y need not be
highly correlated with components having large eigenvalues in order for the
explanatory power of the compiete principal component regression to be high.

The choice of c¢riteria must rest with the purpose of the analysis, as well

as the degree to which the principal components results can be interpreted

in terms of the structure of the process underlying the data for the
independent variables. If the first few principal components can be related
to something “real,” as is hopefully the case in factor analysis, for example,
then it may make sense to retain them as explanatory variables in a principal
components-regression analysis, regardless of their correlation with the
dependent variable. Massy (ref. 32} claims that components with Targe
eigenvalues are usuaily the dnes most 1likely to y1e1d'natura1 interpretations.
Conversely, if the emphasis is on finding the correlates of y rather than
testing its relation to any particular structural concepts, it would seem

to make more sense to adopt criterion b and retain those components with

the highest values of the correlation coefficients between the components

and the vector y. This is often the case in purely exploratory studies.

Latent root regression is a procedure for impiementing principal components
regression by using criterion b above; this analysis was first suggested by
Massy (ref. 32) and developed independently by Hawkins (ref. 59) and
Webster, Gurst, and Mason (ref. 60). It is a modified least-squares
procedure which uses the eigenvalues (latent roots) and eigenvector (latent
vector) of the correlation matrix of response and regressor variables.

Analysis of these eigenvalues and vectors will enable the experimenter to
a. Identify multicolliinearities among the regressor variables

b. Determine whether the multicollinearities have value in predicting the
response variable
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c. Obtain modified least-squares estimates of the regression coefficients
through a procedure which adjusts for nonpredictive muiticollinearities.

A stepwise backward elimination of variables was deve]obed (ref. 60), using
" ordinary least squares or the modified procedure. Using the model y = XB + e
where the vector y and the matrix X have been standardized, let

n
2 _—
t =E (.Y-i - .Y)z
i=1

and define the matrix A = [y : X]; i.e., the {n x p + 1) matrix of standardized
dependent and independent variables. A'A is the extended correlation of
dependent and independent variables and has eigenvalues and eigenvectors
defined by |A'A - Ajl| =0 and'(A’g - ﬂjI)Vj =0; ] = 0, 1, «++, p." Denote
the elements of thé jth eigenvector by : '

Vi = (Sp30 S1g, =m7s Spy)
and let
o' . L eee .
Also let
S = (Vos V]s T Vp)
and

- _p’
S'(ATA)S = L
and
A'A = SLS!
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Now note that the jzn column of AS can be expressed as
pu—r ) p —
1505 * 20 X4

k=T
P

Y2505 * D0 X2k
W, k=1
J -

M'c

YaS05 ¥ 22 *nkdkg
k=1

We also note that the j¢k eigenvalue of A'A can be expressed as

B = VARG = (AUy)" (AV,)
n p
= 20 (%05 * 20 *aiSiy)” (31)
i=1 k=1

Thus Qj is the sum of squares of the jth set of Tinear combinations of
response and regressor variables which is provided by the jzh column of AS.

If Rj =0 for any j = 0, 1, =<+, p then each term in eq. (31) is equal to
zero and an exact Tinear relationship exists among some or all of the
columns of A, If the corresponding SOj # 0, a perfect predictor exists of

the form :

Y
A~ = -1
Ji =Y 8805 20 XS
k=1
If 2. =0 and SUj = 0, we see from eq. (31) that an exact linear dependence

(exact multicollinearity) exists among the columns of X, the relationship
being
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t“j-c

XikSkj =
k=1

In general, none of the eigenvalues will be zero, but some may be quite

small. Small but nonzero eigenvalues indicate near singularities. Notice

from eq. (31) that if we have zj = () then each term in the sum must. be near

zero and we will have

S :E: S ®0 3 1 =1,2, -eeun (32)

If in addition SOj ~ (0, we have a multicollinearity involving only the
regressor variables and not the response variable, the relationship being

E:skﬁﬂ<mo 5 i=1,2, ===, n

Since this relationship does. not involve the response variable, it would
be of 1ittle value for prediction.

Let us see a geometrical interpretation of a nonpredictive multicollinearity.
Consider the n data points (yi, Xi1s Xips "%s X, ) i=1, 2, *+s, nasn
points in the p +.1 dimensional Euclidean space defined by the mutually
orthogongl axes Y, X], vee, Xp. The eigenvectors of A'A define a second

set of mutually orthogonal axes ZO’ Zys ***s Zp, where Z. is the axis defined
by V » =0, T, ==, p. The direction of axis ZJ re1at1ve to the original

axes is given by the vector sum

Eskjek ; j =05 T’ T, p

where T T ep are unit length vectors from the origin in the direction
axes Y, X], X2, .ee, Xp. The first element of Vj represents the cosine of
the angle between axes Y and Zj, while Skj (k =1, 2, »»+, p) represents the
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cosines of the angle between axes Xj and Zj. Assuming the eigenvectors are
normalized and the eigenvalues are distinct, Vj is uniquely determined apart
from a multiple of -1.

The eigenvalue corresponding to a particular eigenvector measures the
spread of the n data points in the direction defined by the eigenvector.
In other words, Ej is the sum of squares of the projections of the n data
points on the Zj axis. A small value of Rj indicates that there is little
variability in the Zj direction, i.e.,

p
235 = Y3501 * 22 %Sk
k=1

is near zero for i =1, 2, e+, n. If SOj is near zero, the axis Zj is
nearly orthogonal to the Y-axis. Hence, if both 2j and SOj are smail, the
eigenvector Vj reveals a nonpredictive near singularity; a strong linear
dependence only among the independent variables which produces 1ittie or
no change in the dependent variable. The situation wﬁere 23 is small but
SOj is not smail, so that the response variable is involved in the
relationship, s termed predictive multicollinearity. The ability to detect
the presence of predictive and nonpredictive mu]ticoﬁ1inearity and to
determine the nature of the relationships through eq. (32) is one of the
key features of the Tatent root regression procedure. This feature is not
shared by any of the other procedures outlined in the previous sections.

The least-squares estimator is a linear combination of all p + 1‘eigenvectors,
including eigenvectors-corresponding to nonpredictive near singularities.

The modified least squareé (ref. 60) utilize only Tinear combinations

of the eigenvectors not hé&ing both zj and SOj small. 1In this fashion,

the estimates of the regression coeffiqients are adjusted for the effept‘

of nonpredictive near singularities.

Figures 4 and 5 illustrate, for three dimehsions and four data points, the
cases of predictive and nonpredictive mulficollinearity. Nonpredictive
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SOO ~ ( and EO :E: 21.0 =0
j=]

Figure 4.— Nonpredictive multicollinearity.

4-40



- X,

4
. 2
1% E z: (but Sy, large)
i=1

Figure 5.— Predictive multicollinearity.
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multicollinearity characterized by a small Lo and small |SOO| is shown in
figure 4. The case in which £ is small but |SOOI is large is illustrated
by figure 5.

Hawkins (ref. 59) arrives at similar conclusions but from a different point
of view. Let (yi, Xiqs *0cs Xip) be the ith data point on the p + 1

dimensional space spanned by vy, Xq2 =% xp and let

y - b1xI - bzx2 - eee - bpxp =0 (33)

be a fitted hyperplane. Hawkins considers measuring deviations of the n
data points from the hyperplane (eq. (33)) in the direction of the normal
to the hyperplane rather than in the Y-diréction.

If we let

X = mean-squared deviation between fitted and observed responses in
the direction of the normal Tine

A:

=R

n- .
(Ai - _)2
i=1

where A, is the deviation of the i¢h data point in the direction normal to

the fitted plane, and

d2 = mean-squared deviation between fitted and observed responses in
the direction of the Y-axis

n n.
2 _ 1 2 : ~ 2 1 E : e
d- = Y (yi - yi) - (di - d)
i=] i=]

we then have
A= (cosze)d2 (34)

where 6 is the angle between the normal to the hyperplane and the Y-axis.
Hawkins calls X the vertical norm and d2 the Y-norm (see fig. 6). He proposes
X as an alternate measure of the fit of the hyperplane (eq. (33)).
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ith deviation in direction normal to hyperplane

ith deviation in direction of Y-axis

Figure 6.— Vertical norm.
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From eq. (34) we see that

a. If d2 is small, indicating the hyperplane provides a good fit to the
given points, then the vertical norm X is also smail.

b. If i is small, d2 is not necessarily small as cos 8 may be small. This
would correspond to a multicollinearity among the regressor variables.

Hawkins also notes that, for a hyperplane chosen to minimize d2, the vertical
norm will be equal to 20, the smallest eigenvé1ue of A'A, and will be in

the direction defined by the corresponding eigenvector, VO. Thus we see
that the Zj axis (ref. 60) will be in the direction normal to the fitted
hyperplane and that cos 8 = SOO’ where SOO is the first element of VO.

Thus the nonpredictive multicoliinearity characterized by a smaill 20 and a
small Sqq s the same as characterized {(ref. 59) by a small vertical norm

by a Targe Y-norm. This is illustrated in figure 6. If a second vector is
chosen so as to be orthogonal to VO and to minimize the vertical norm, that
vector will be V1 and the verticg] norm is now 21, the second smaliest

¥

eigenvalue of A'A.

Now consider the problem of estimation. If all SOj # 0, then eq. (31) will
provide p + 1 prediction equations of the form

-1,,,0 .
ijv' 5 J=0, 1, ===, p (35)

j=_.-‘|:S
yo =yl i

where 1 is an m x 1 vector of 1's.

Normally, none of the individual equations in eq. (35) will by itself be a
good predictor. Linear combinations of these predictors, therefore, will be
used to obtain estimates of the parameters of the model. Consider the
following arbitrary Tinear combination of the predictors (eq. 35)):
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Imposing the restriction

yields

R DR (36)
=

The residual sum of squares using this predictor is

p
S, “_'2 _2 2
(y -9y -y)=ta'l, =t E:ajzj
j=0
I = s w
where a' = (ao, ays R ap).

If a 1is now chosen to minimize the residual sum of squares subject to the
above restriction, eq. (32) will yield the least-squares estimator. Thus
we wish to minimize

.
L2 2 . .
pla) = t° 37 ajt; - 2D a;50s - 1 (37)
3=0 3=0

where -2 is a Lagrangian multiplier. The solution is (ref. 60)
= -] .—-E : T = re s
a. =S, 0" E’{ 5 j =0, 1, »oey p (38)

2
* =
where ﬁj gj/SOj'

From eqs. (36) and (38) the Teast-squares estimator of the regression

coefficients is then given by
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(39)

1
1
Lad
M-
o
o
-
.
\‘-—’-

J=0

with residual sum of squares error (SSE)

p
.2 -1
SSE =t} ) B
k=0

Suppose now that eigenvectors VD’ V1, ree, Vk—] correspond to nonpredictive

-1

near singularities. An obvious modification of the above procedure is to
take a 1inear combination of the predictors in eq. (35) except for those
which correspond to nonpredictive multicollinearities. We should then
expect to obtain improved estimates of the regression coefficients without
losing very much of the ability to predict the response variable y.

The above least-squares estimator can be adjusted by setting ag = a; = +-e
_1 = 0. Then minimizing eq. (37) yields ’

p -1
- "-I *.-'l - 1 = cee
aj Sojf,J Ek LY‘ H J k, k + ]s s P
r=

so that the modified Teast-squares coefficients are
' -1

P P
_ -1 -1,,0
b = -t{ 2 % > So5% V3 (40)
rek j=k

with residual sum of squares

-1

P
_ .2 ;E: -1
r=k
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Note that if X is not of full column rank, i.e., X'X is singular, this same
procedure can be applied and minimization of eq. (37) will yield results
identical with eq. (40). This follows from the fact that a singular matrix
X'X implies some of the Ej and corresponding SOj of A'A will be zero-
equivalent to setting the appropriate a5 in eq. (37) to zero. Hence
solutions to the normal equations can be obtained from this procedure
regardless of whether X is of full column rank.

The estimates obtained from egs. (39) and (40) are often strikingly different
when X is near singular. One reason for this is that the aj corresponding
to eigenvectors revealing nonpredictive near singularities are often large
relative to the remaining aj. When this occurs, the terms a-VQ, j=0,1,
s«+, k - 1 can dominate b. Removing these dominating terms will then yield
more accurate estimates of the true parameters B. The latent root estimator
is then a Tinear combination of vectors essentially orthogonal to the subspace
defined by the nonpredictivg mu]ﬁicd]Tinearities and hence may yield more
accurate estimates, dependihg on the orientation of g relative to that
subspace. (See refs. 33 and 60 for examples.)
In this example, with n = 12 and p = 6, 2, = 0.007 and ¢ = 0.0287 while
the remaining eigenvalues are Targer than 0.3. The corresponding SOj are
0.0339 and 0.6987 so that VO 1ndic§tes a nonpredictive multicollinearity
while Vl does not. Since 21 is sma1} and SO.I is the Tlargest SOj’ V]
provides more information about the underlying model than any of the other
eigenvectors. In this example, the latent root estimator is formed by
removing VO from ?hé analysis. The 3 for least squares (LS) and for
latent root (LR) are then:

T T T T

LS 1.760 - 1.317 0.012 0.002 0.017 0.015 0.004
LR 0 1.404 0.013 0.002 0.018 0.017 0.004
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Notice that the least-squares procedure gives 56 percent of the total weight

to VO and only 42 percent is given to V], the vector providing the most
information about the model.

The latent root procedure gives zeroc weight to VO and 96 percent of the
total weight to VT' The least squares estimates of the parameters of model
y = XB + e are given in the first row of table I with the true values of the
parameters in the third row. The matrix A'A, the extended correlation matrix,
is given in table II. The eigehvectors of A'A.are given in table III. Note
that the four estimates of parameters jnvolved in the near singularity are
moderately large negative values. The fact that these estimates are similar
despite the differences in their true values of the parameters is indicative
of the effect of the near singularity. Using the modified least-squares
procedure by ;omputing a Tinear combination of all the eigenvectofs except
VG yields the estimates in the second row of tab]e'I.‘ The absolute values
of the first elements of the eigenvectors and the eigenvalues are given in
table IV.

TABLE I.— LEAST SQUARES AND MODIFIED LEAST SQUARES

b . B B

LR Bk k2
L5 -6.0378 -~8.472 ‘-10.1435 -11.7271  4.0967 9.4506 1.¢762
LR 2.5447  -0.3982 0.2416 -0.7348  4.2125 9.4914 1.3575

True values 2.000 - 1.000 0.2000 -2.000 3.0600 10.000 1.000

TABLE II;—-A‘A, THE 'EXTENDED CORRELATION MATRIX.

vy A
1.000 0.252  -0.099 0.217  -0.339 0.364 0.811
1.000  .0.052  -0.343  -0.498 0.417  -0.162

1.000 -0.432  -0.3N 0.485  -0.317

1.000  -0.356  -0.505 0.494

1.000  -0.215  -0.087

1.000  -0.123

1.000
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TABLE III.— EIGENVECTORS OF A'A

. . . Sh. S.. . S.. S..
i Soj 315 25 >33 a3 355 65
6 0.1653 ~0.3300 ~0.4471 0.5165 0.7009 -0.4370 0.4427
5 .6006 .3444 .0925 . 1436 -.4785 .3294 .3925
4 .3406 -.1134 -.1886 -.4556 .6518 .3303 .3068
3 .0388 -.6944 6712 .0937 ~-.0417 . 1427 . 1869
2 0713 .2344 . 3550 -.4505 ~.0128 -.7033 L3410
1 .6987 ~.1694 024z -.0091 0453 -.2766 -.6355
0 .033% . 4407 4229 .b416 .5763 ~-.0071 -.0276
TABLE IV.— INDEXES FOR STANDARDIZED PREDICTION EQUATIONS
J: 0 1 . Z 3 4 5 &
Rj: 0.0010 0.0287 0.3115° 0.9178 1.1150 é.1816 2.844
]Sﬂjl: .039¢9 .6987 0713 .0388 . 3406 . 6006 .16563
Ajt: 19.1496 14.3352 1347 .0249 L1798 .1620 .03498

5

White (ref. 61) studies the problem of deciding whether an eigenvector of
A'A should be removed from the analysis. Upon first consideration, it
appears that the problem centers on deciding when |SOj| and Rj are small
White

proposes that a more crucial consideration is the orientation of the Llrue

enough to indicate the presence of nonpredictive multicollinearities.

coefficient vector, B, in thehp-dimensional subspace spanned by the
eigenvectors of X'X, the correlation matrix. His proposal is plausible if

we are willing to acceht that

ngjﬂ 5 370, 0, eeey k-1
where
Vj; j=1,2, ¢++, p = the eigenyectors of X'X
k - 1 = the number of nonpredictive multicollinearities
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5. APPLICATIONS

The author used the procedure of combining some of the good features of the
several biased techniques (section 4) and the unbiasness property of the
ordinary Teast-squares estimator, using weather data for Oklahoma and Texas.
In addition, trend data were available for Oklahoma. The weather variables
are the following: -

Varijable Name Type
X] January
X2 February
X3 March
Precipitation for current year
X4 Apr11
X5
XG June
X7 August
X8 September
X9 October Precipitation for previous year
X10 November
X]] December
X]2 dJanuary
X]3 February
X]4 March
Mean temperature
X]5 Apr1]
X16
X]7 June
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Varjable ~  Name Type

X18 January
X]g February
X20 : March
. Percent evapotranspiration
XZT April
X23 June
X24 Trend Trend
y Yield Yield

The model postulated is

24
~‘/=30+251‘x1+e
i=1 -

and if the matrix is standardized, then
y=X8+e

The 45 data points consist'of weather information from 1932 to 1976, inclusive.

The first task is to reduce the number of variables in a meaningful way.

The all-possible regressions procedure (see section 3.1) was used to analyze
all possible subsets of variables. The optimum number of variables that
should be kept in the model was determined by the adjusted R? (upper bound)
and the Mallows' Cp (lower bound). (See sections 3.2 and 3.3.)

The following results were obtajned from the all-possible regressions
approach.

OKLAHOMA

Ten variables were selected by using the adjusted R2 as a criterion of
goodness of fit, X], X3, X5, XE’ Xg, X11, X14, X]7, XZO’ and X24.
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The Mallows' Cp criterion selected-seven variables: X., X5, XG’ X]4, X]7,
Xpgs and X,g. The highest R® possible (using all 24 variables) is 91.65.

Ten Variable Results

Two small eigenvalues of the extended correlation matrix, E] = 0.004389 and
22 = 0.073157, were obtained, indicating two mu];ico]]inearities. Their
respective values of [Sp| and [Sy,] are 0.091927 and 0.71778, indicating
that the first eigenvectors correspond to a nonpredictive near singularity.
In fact, the second eigenvector provides the most information about yield.

This situation is very similar to the example given in section 4. The
second eigenvector is

Vé = [-0.04957, -0.16844, 0.29297, 0.21722, -0.07449, 0.06980,
0.05778, 0.17312, 0.2233, -0.47684, 0.71778]
so the following equation holds.

-0.04957X. - 0.16844X

] - 0.07449X

+ 0.29297}(3 + 0.21722X

2 4 5

+ 0.06980X6 + 0.05778X + 0.17312X +l0.2233X9 - 0.47684X]O

7 8

+ 0.71778Y = 0.073157

Notice that yield, y, is heavily involved in the multicollinearity.

The computed value of R2 is 89.22 and the value of the determinant of the
correlation matrix, |R|, is 0.003211. 1/|R| is called the generalized
variance (ref. 56). The size of [R| indicates possible instability in the
estimates of the’parameters.

Thus far, latent root regression techniqueé have been used to determine the
source and type of the multicollinearities present in the data; now the
problem is to remove the multicollinearity by deleting one or more variables.
Looking at the first eigenvector (which corresponds to the nonpredictive

near singularity), observe that two components are larger than the other; i.e.,
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Vi = [0.019389, 0.004192, -0.01999, -0.025515, 0.018872,
-0.004851, -0.716423, -0.009117, 0.687389, 0.062269, -0.091927]

Again, the interpretation is similar as the equation above, but here the
variable yield is not involved in the multicollinearity; only variables
X14 and XZO are involved in the nonpredictive near singuiarity. The
weights given to X,, and X,) are -0.716423 and 0.687389, which are much
larger than the other components in V].

We delete X20 rather than XM because XZO is more correlated with yield
than qu. Alternatively, the variabie that Teast decreases R2 could be

deleted.

Nine VYariable- Results

With variable Xzo'de]eted, we have only one small ejgenvalue of A'A,
%1 = 0.066375. Since [Sy;| = 0.70785, the eigenvector V, corresponds to a
predictive near singularity.. This eigenvector is

V{ = [0.05068, 0.161875, -0.28525, -0.21834, 0.073801, -0.069854,
-0.291657, -0.169026, -0.466021, -0.707851]

The interpretation of this eigenvector is as before. The computed value of
R2 is 87.33, so the net loss in goodness of fit is 1.89. The value of

[R|] s 0.2967, which is much higher than the previous value of 0.003211.
This new value of [R| is an indication of stability of the parameters

estimated; i.e., the variances of the estimates are not too large.

Let us see if the current results can be improved by introducing some bias
to the estimator (generalized ridge procedure). The determinant of R went
up to 0.3518 and the estimated R2 is now 87.02, so0 a loss of 0.308 1in R2
gives an improvement of 0.011. This result seems to be adequate as an
initial start in the modeling of wheat yield. The next step should be to
consider interaction and square terms. The resulting values of the
parameters are:
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by = 0.01005
b, = 0.02819
bg = -0.02465
b = -0.02182
bg = 0.01048

byq = -0.01537

by, = -0.60445

by, = -0.51368

b,y = 0.26523

The value of bO’ the intercept, needs tc be calculated by using the sample
means of the X's and Y.

TEXAS

Ten variables were selected by using the adjusted R2 as a criterion of good-
ness of fit. They are: X5, X]O, X]1, X]Z’ X]3, XT4’ X]G’ X]S’ x19’ and
x22' Trend, X24, is not available. Ma]}ows' Cp criterion selected five
variables: X3, X5,2X7, X]4, and X
cemputed value of R™ is 53.458.

18° If all 23 variables are used, the

Ten Variable Results

The A'A matrix has three small eigenvalues: 21 = 0.000332, 22 = 0.005177,

and 23 = 0.060468, so we have three near singularities. The respective

values of ISOi, are: ISOII = 0.004814, |502| = 0.025483, and |SO3[ = 0.082601,
indicating that we have three nonpredictive near singularities. The
determinant of R, |R|, is 0.00000054 and the computed value of R2 is 49.45,

The vector V] is

Vi = [0.005817, -0.008772, 0.002736, -0.012504, 0.014695,
-0.00475, -0.706582, 0.015953, -0.020851,
0.706764, 0.004814]

By observing the eigenvector V], we see that the weights for X16 and X22,
-0.706582 are 0.706764, are clearly larger than the other weights. Therefore,
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X16 and XZO are candidates for deletion. We delete X16 because the correlation
of X16 and yield is Tower than the correlation of XZO and yield.

Nine Variabje Results

Delete X, the A'A has two small eigenvalues: 2y = 0.005177 and Ly = 0.060408.
Their respective values of |301| are: lSOII = 0.005177 and [502| = 0.060408.
The value of |R| is 0.00079055 and the value of R® is 47.714. The candidates
for deletion were X]3 and x19; X19 was deleted by the same reasons as before.

Eight‘Variab1e Results

Delete XIQ’ and A'A has only one small eigenvalue, R] = (0.06354, which
corresponds to one nonpredictive near singularity. |R| is 0.0714075 and R2
is 43.88. The candidates for deletion are X12 and X]g. Variable X12 was

deleted.

Seven Variable Results

Delete XTZ’ and A'A has no small eigenvalues, IR] is 0.5797, and R2 is 42.72.

This value of |R| is excellent and the loss in R® has not been too great.

In this case, there is no need to enter the biased estimation procedure;
therefore, the unbiased least-squares estimator is used to estimate the
parameters of the yield model as

by = -0.05516
big = 0.07096
b,y = -0.06655
by, = -0.57036
by, = -0.70483
bg = -0.43672
bpp = -0-1944
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6. .CONCLUSIONS AND RECOMMENDATIONS

It was observed that OLS is not adequate as an estimation procedure when the
independent or regressor variables are involved in multicollinearities.

This was shown to caﬁse the presence of small eigenvalues of the extended ‘
correlation matrix -A'A. It has been demonstrated that the biased estimation
techniques and the all-possible subset regression can help in finding a
suitabie model for predictjng yield.

Latent root regression is an excellent tool that allows us to find how many
predictive an nonpredictive multicollinearities we have, and it also tells us
exactly what variables are involved in the multicollinearities. Thus, we can
decide what variables to drop from the model to remove the multicollinearities
and hence obtain estimates with small varTances

It is recommended that'the procedures discussed_in“this memorandum be made
available in the Earth Observations Diﬁision.Laborqtory for Applications of
Remote Sensing classification system. The author has made available to
NASA/JSC personnel the necessary proérams_to impTlement these techniques.

The results presented in this memorandum are the initial attempts to find a

yield model for wheat. Additional research should be conducted to estimate
interaction terms and dfher ways- of measuring trend.
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