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I
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and Process Laboratory, Solid State Division, Somerville, NJ, H. Veloric,

Manager; and at the Advanced Technology Laboratory, Government and Commercial
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SECTION I

SUMMARY

During this quarter, progress was made in the following areas:

A. ION-IMPLANTED JUNCTION FORMATION AND SOLAR CELLS

A stud was made of they	 performance of ion-implanted solar cells comparing

the effect of two gettering techniques and three different starting silicon wafer

materials. When the proper annealing or gettering treatment is applied, the

results show little difference in cell performance within the categories of

the starting silicon parameters chosen; however, the importance of obtaining

long diffusion lengths is clearly illustrated. Solar cells having AM-1 effi-

ciencies between 14 and 15% were consistently obtained when three-step furnace

annealing was used.

Experiments were conducted to determine the optimum implant energy at a

constant doping level. For the 5- to 100-keV energy range, the highest cell

efficiencies were obtained at energies <15 keV.

B. SCREEN-PRINTED THICK-FILM METALLIZATION

Additional characterization of two RCA AS metallization inks was performed.

RCA n-type AS containing 4.2 vol pct AgPO3 was found to be marginally solder-

able when fired at 700 to 800°C for 10 min and unsolderable at higher concen-

trations and shorter firing times. Electrical conductivity tests indicated

increasing conductivity with lower concentrations of AgPO 3 in the 8 to 30 vol

pct range. Adhesion strength and failure mode results at 4.2 vol pct AgPO3

are poor when fired at 800°C for 10 min. However, shorter firing times may

, improve solderability and adhesion.

The solderability of p-type metallization, containing 2.5 to 15 vol pct

PBS frit (8OPbO-1OB 203-lOSiO 2 wt pct), has been characterized by contact angle

measurements in the 600 to 900°C range for 1 to 10 min. Increasing solder-

ability is noted with decreasing frit concentration, firing temperature, and

time.

1



C. SPRAY-ON AR COATING

An alternative lower-cost second new source preparation based on titanium

ethoxide has been developed for depositing low-cost ant?reflection (AR) coat-

ings on metallized silicon solar cells by automated spraying. Effects of vari-

ous component additives were studied, resulting in optimized and simplified

solution compositions.

The post-deposition heat treatment sequence has been reduced to just 30 s

each at 70% 200°, and 400°C which will have a significant impact on increasing

the production throughput capacity.

D. PANEL ASSEMBLY

Varianions in the procedures for laminating the double-glass polyvinyl

butyral (PVB) panel design were investigated. An initial procedure consisting

of high vacuum, ]ow laminating pressure, and a high softening temperature was

found to allow considerable flow of the PVB and to result in successful lami-

nations with reduced time in the autoclave.

I



INTRODUCTION

The purpose of our overall program is to establish technological readiness

and provide verification for the elements of a manufacturing sequence which

would ultimately be amicable for the large-scale production of silicon solar—

array modules at a selling price of less than $500/kW. A program and process

plan for accomplishing this objective was developed and put into operation

during the first quarter. This plan is centered around the processing sequence

shown in Fig. 1. Three junction —formation processes are shown; since our cost

analysis shows that they do not differ greatly in cost, each should be con-

sidered for technical merits and possible future cost reduction. In Section III

the progress made in the various process steps of the plan is described, and

conclusions are presented in Section IV.

3
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SECTION III

PROGRESS

A. JUNCTION FORMATION - ION-IMPLANTED SOLAR CELLS

1. Furnace-Annealing Techniques

'

	

	 During this quarter, we have completed an experimental study of ion-

implanted solar cells; the purpose of the study was to compare the effect of

two gettering or annealing techniques and three different starting silicon

wafer materials. The test conditions for this study are given in Table 1.

TABLE 1. ION-IMPLANTED SOLAR CELLS

1. Variables

Starting Silicon	 Furnace Anneal Process

Monsanto* CZ 10-9-cm <100> 	 1. Boron-glass BSF (no back implant)

Monsanto CZ 1.5 9-cm <100> 	 2. Three-step anneal (11B back)
Wacker** CZ 3 0-cm <100>

2. Constants

Junction planar

Junction implant - 31P, 4 x 1015 A/cm 2 , 5 keV
Metallization - Ti/Ag evaporated (selected samples for screen printing)

AR coating - spin-on titaniumsilica film

Cell area - 4.5 cm 

*Monsanto Co., St. Peters, MO.
**Wacker Chemical Corp., Richardson, TX.

All samples were implanted in a planar configuration on the junction side with

31P at an energy of 5 keV and a dose of 4 x 10 15 A/cm2. Half the samples were
designated for BSF gettering which consisted of the deposition of a boron glass

on the back of the wafers followed by furnace annealing at 900°C for 30 min in

nitrogen. The remaining wafers were subjected to a three-step anneal after a

L,.; C?L;IdL PAGE IS
5	 POOR QUAM



boron implant (25 knV, 5 x 1015 A/cm2) into the back, the anneal schedule con-

sisting of 2 h at 500 a C; 15 min at 850 aC; and 2 h at 500 aC. Seven solar cells

and accompanying diagnostic diodes were fabricated in each category.

The average values and standard deviations for the AN-1 illuminated solar-

call parameters for all cells in the teat are given in Table 2. Some observa-

tions concerning these results are:

(1) The samples treated with the three-step anneal showed uniformly

excellent cell parameters. The maximum efficiency measured was

14.7%.
(2) The cells Bettered with BSF boron-glass generally had lower

efficiencies than those which received the three-step anneal.

(3) For the high-efficiency cells, there is little dependence on

the starting silicon within the categories chosen.

(4) The variations of cell parameters as indicated by the standard

deviations are small, indicating the uniformity and reproduci-

bility of the ion-implantation process.

TABLE 2. ION-IMPLANTED MATRIX COMPARING GETTERING
PROCESS AND STARTING WAFERS

Gettering Starting it
mA cm 2

ose
mA/cm2

Voc ooc
P.F.

OP. ntt an
Process W.fer Silicon (MV) SXL

Boron Glass BSF Mw LO n-cm 4100> CZ 28.8 0,61 529 7.7 0.769 0,005 11.7 0.3

Boron Glass BSF M 1.5 11-cm <100> CZ 28.3 0.28 566 4.4 0.779 0.006 12.6 0.2

Boron Glass BSF •l*k 3 O-cm <100> PZ 28.6 0.38 561 5.5 0.782 0.004 12.6 0,1

Three-Step Anneal M 10 .,-cm 4100> CZ 32.0 0.52 580 5.5 0.764 0,024 14.2 0.5

Three-Step Anneal H 1.5 O-cm <l0U> c2 31.1 0.31 595 5.8 0.781 0,006 14.5 0.3

Three-Step Anneal W 3 n-cm <100> F2 31.0 0.30 590 4.9 0.785 0,006 14,3 0.3

*M - Monsanto
•*W - Wacker
tCell area - 4.5 cm 
ttAM-1 simulation ELH lamp at 100 mW/cm2

The cells which received the three-step anneal exhibited excellent cell

characteristics. The characteristics of one such cell measured in New Jersey

sunlight on an exceptionally clear day are shown in Fig. 2. Under those con-

ditions (17 a C air ambient and an insolation of 101.9 mW/cm 2), the cell efficiency

6
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Figure 2. Power, I-V characteristics of an
ion-implanted solar cell.

was 15.2%. That same cell measured at the standard temperature of 27°C under

the BLH lamp simulator had an efficiency of 14.7%.

The lower efficiency results obtained with the boron-glass BSF cells are

counter to our experience [1,2] with this gettering technique. On the basis

of spectral response measurements and estimated diffusion lengths made for

these samples, we suspect that the boron source or the anneal furnace has be-

come contaminated. We are presently purchasing new BN wafers and replacing the

furnace tube. It is interesting, however, to note the effect of diffusion

length on the performance of these cells as compared with those annealed by the

three-step process. Spectral responses and the cell parameters are given for

two such cells in Fig. 3. It can be seen that the blue responses are equal but

the peak and red responses are better for the cells annealed by the three-step

process. The long diffusion length for the cells annealed by the three-step

	

1	 proces3 also contributes to the higher values of open-circuit voltage.

1. R. V. D'Aiello, Automated Array Assembly, Phase II, Quarterly Report No. 3,
prepared under Contract No. 954868 for Jet Propulsion Laboratory, June 1978.

2. R. V. D'Aiello, Automated Array Assembly, Phase II, Quarterly Report No. 2,
prepared under Contract. No. 954868 for Jet Propulsion Laboratory, March

	

_	 1978.
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Figure 3, Comparison of spectra responses for ion-implanted
cells with boron-glass BSF and three-step anneal.

2. Implant Energy

In the ion-implanted solar-cell studies conducted to date an implant

energy of 5 keV was used under the assumption that low-implant energy causes

less damage to the silicon surface layer and, after furnace annealing, results

in a more desirable shallow impurity profile. In order to verify this ',dea,

a series of cells was fabricated by implanting the 31P at energies of 5, 15,

30 0 50, 75, and 100 keV followed by a 900 0 C, 30 min, boron-glass (BSF) furnace

anneal for all samples. The 31P dose was adjusted at each energy to yield the

same peak phosphorus concentration (5.65 x 10 20 A c.-3 ) in the surface layer.

The results of this experiment are shown in Figs. 4 and 5. From these

data, it can be seen that the highest e"iciency does occur for the low-implant

energy due primarily to a fall-off in short-circuit curt-,nt with increasing

implant energy. This result could be due to one or more of several mechanisms

associated with heavy doping effects combined with deep junctions or excess

Implant damage in the surface layer. Although the residual surface damage was

not studied in these samples, the junction depths were measured, and the total

phosphorus profiles were obtained by a secondary-ion mass spectroscopy (SIMS)

analysis. These data, given in Figs. 6 and 7, show that quite deep junctions

S
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with heavily doped surface regions result from the implants at energies higher

than 30 keV.

B. SCREEN-PRINTED METALLIZATION

1. n-Type Silver Metallization Ink

AgPO3 , precipitated with AgNO3 and NaPO3 , was incorporated into a screen-

able ink containing Metz* FS type C flake silver, so that the final solids con-

tent was 80 wt pct. An 1874-square serpentine line (0.38 mm or 0.015 in. wide)

was screen-printed onto 96% Al203 substrates, dried, and fired. Electrical and

gravimetric measurements were made and the apparent percentage of bulk conduc-

tivity computed. Figures 8, 9, and 10 depict the changes in conductivity for

firing times of 1, 2 and 5 min, respectively, at 600 to 900°C and AgPO 3 con-

centrations of 8.3 to 30.1 vol pct. If the three plots are superimposed, the

conductivity results show the 5-min firing time to be slightly superior, but

the 1- and 2-min firing times are almost identical. The similarity in conduc-

tivity results provides a wide latitude in processing time. Hence, optimization

of metallization solderability and adhesion can proceed without too much con-

cern for conductivity losses. The slight decline in conductivity between 8.3

and 30.1 vol pct AgPO 3 may imply that lower concentrations would provide higher

conductivity. While apparently contrary to liquid-phase sintering theory, the

extreme wettability, e.g., the 0 0 contact angle previously reported between Ag

and AgPO3 , may account for very rapid sintering at lower concentrations than

are usually observed.

A cursory examination of solderability of 4.2, 8.3, and 16 vol pct AgPO3

inks showed the latter two to be unsolderable (with 62Sn-36Pb-2Ag wt pct and

Kester** 1544 flux) when the inks were fired on Si at 800 or 900°C for 1 or

2 min. The 4.2 vol pct-AgPO 3 ink produced contact angles of 90 to 95° when

the ink was fired at 700 or 800°C for 10 min. Adhesion strengths, however,

were lower than the p-type (PBS frit-based) ink with failure frequently occurring

at the Cu strap-metallization interface.

*Metz Metallurgical Co., South Plainfield, NJ.
**Kester Solder Co., Chicago, IL.
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y for RCA n-type ink. Firing time = 2 mine
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INK-RCA n-type

TIME,BMIN

Figure 10. Conductivity versus temperature and vol pct AgP03
for RCA n-type ink. Firing time = 5 mink

2. p-Type Silver Metallization Ink

Inks containing 2.5, 590, and 15 vol pct PBS (80PbO-10B 203 10S102 wt pct)

frit and Metz FS Type C flake silver were formulated in a manner similar to the

n-type inks, Samples for solderability contact angle measurements on n- and

p-type Si were prepared by screen printing, drying, and firing at 600 to 9000c

for 1 to 10 min for the p -Si and 700 to 8C0°C for 1 to 2 min for the n-Si sub-

strates. Solder balls composed of 62Sn-36ru-2Ag were reflowed at 215 * C for

about 5 s in the presence of Kester 15441 flux. After flux removal, contact

angle measurements were taken, and Figg•. 11, 12, and 13 illustrate the results

for the p-Si substrate bearing 2.5, 5.0, and 15 vol pct PBS frit-based metal-

lizations, respectively. In each ink it is clear that solderability improves

with decreasing firing time and temperature as shown by the decreasing contact

angles. I£ the curves are superimposed, solderability is also seen to improve

with decreasing frit content, as expected.

In Figs. 14, 15, and 16 contact angles on n-Si are shown for the 2.5, 5.0,

and 15 vol pct PBS frit-based inks, respectively, for the limited temperature

and time range of interest, e.g., 700 to 800°C for 1 to 2 min. Compared with

the p-Si substrate, the results on the n-Si substrate are almost identical.
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Therefore, in terms of solderability and conductivity (previously reported)

p-type (PBS frit) ink would serve as an adequate alternative to n-type (AgPO3)

ink*
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C. 'SPRAY-ON ANTIREMECTION COATINGS

I#	 Now Source Solutions for AR Coatings

In Quarterly Report No. 3 [1] we briefly reported on the formulation of

our own source solution based on titanium isopropoxida for depositing AR coat-

ings on metallized silicon solar calls with better materials control and at sub-

stantially reduced materials cost.

During the present reporting period we have introduced, as an additional

alternative, 4 second new source solution based on titanium ethoxide, studied

the effects of diluents and modifying agents at various mixing ratiosp and

formulated simplified optimum solution compositions for the two systems.	 The

effectiveness of the AR coatings from these source solutions has been demon-

strated by comparative electrical measurements of cell performance and found

to be at least as good as those obtained from the commercial source solution,

The physical and chemical requirements of a sprayable solution for pro-

ducing AR coatings were discussed in Quarterly Reports Nos. 2 [2] and 3 [1].

The composition of our source solutions and the function of each component can

be summarized as follows:	 (1) organometallic titanium compound as the essential

primary reactant, (2) a miscible ester diluent solvent, (3) a lower aliphatic

alcohol as a film leveling agent, and (4) 2-ethyl-l-hexanol as the key compo-

nent for rendering the solution successfully sprayable.

Suitable organometallic titanium reactants include soluble titanium com-

pounds which are hydrolyzable and can be readily oxidized and stabilized at

temperatures at or below 400°C to form adherent and uniform titanium oxide

films which have a refractive index of n - 2,0 to 2.2,	 The titanium compounds

we prefer and have demonstrated to perform excellently are titanium alkoxide

compounds such as titanium isopropoxide and titanium ethoxide.

The titanium compound is dissolved or diluted initially with an inert

diluent such as butyl acetate, ethyl acetate and the like to form a one-phase

solution.	 Suitably, the titanium compound is admixed in a ratio of 1:2 to

1:4 by volume, preferably 1:3 by volume, with the ester diluent.

Certain organometallic silicon compounds can be added at appropriate ratios

if refractive index values of less than 2.0 are required.	 However, for our

purpose of AR coating solar cells no such addition is necessary.

17
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	 A key ingredient that renders the solution suitable for automated spray

processing G-,ith the required utringent quality control of the film is 2-ethyl-

1-hexanol. The physical characteristics of this compound appear to be unique

in that when admixed with the other composition ingredients, it has the ability

to effect spreading of the solution evenly across the substrate; this is due to

the compound's surface tension and viscosity characteristics which promote

wetting and improve the uniformity of the film. The compound has an appropriate

vapor pressure causing it to evaporate slowly enough that the liquid film is

not disrupted during the evaporation. Therefore, a uniform film can be applied

to the substrate and dried to form a uniform continuous film of a titanium

compound on the substrate.

Of the lower aliphatic alcohols to serve as leveling agent, we found

isopropanol particularly effective. The sprayed-on solution mixture without an

aliphatic alcohol thickens u;. along the metallization grid lines. The effect

can be reversed by adding isopropanol, resulting in thinning along the metal-

lization grid lines if an excessive quantity is added. A carefully balanced

aB ratio can effect leveling of the liquid film along the metallization grid lines,

resulting in a solid AR film of partically uniform thickness throughout the sur-

face of the solar-cell areas between grid lines.

The spray solution ingredients are mixed in such proportions that the re-

sultant solution can be applied evenly using spray techniques to form a liquid

film of a desired thickness. The exact proportions can be varied within some

limits, although the 2-ethyl-l-hexanol should be present in at least about 33%

by volume of the spray solution. Not more than a maximum of about 33% by volume

of the lower aliphatic alcohol should be present; the exact ratio depends on

the thickness and morphology of the metallization system and must be optimized

by empirical tests.

Numerous compositional ratios for both titanium compounds have been pre-

pared and examined by automated spraying on test substrates and on solar-cell

wafers. We found the optimal and simplified compositional ratios by volume

`	 for the spraying solution to be in the following range;

18
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1

`	 Titanium isopropoxide or

Titanium ethoxide	 1 Vol	 8.3 Vol Y.

Butyl acetate	 ro 3	 ro 25

2-Ethyl-l-hexanol	 > 4	 > 33.3

Isopropanol	 < 4	 < 33.3

Total	 ti12 Vol	 ti100 Vol

2. Effectiveness of AR Coating Source Solutions

The effectiveness of AR films produced from the two optimized spray source

solutions, "RCA I" and "RCA II," were assessed by automatic spraying with a

Zicon* autocoater. A source solution we prepared from Emulslton** Titaniasilica

"C" concentrate was also tested under identical conditions for comparison. A

set of 3-in.-diameter silicon solar cells with etched surfaces and screen-

printed Ag-metallization grids were used a the test substrate for each solu-

tion. The cells were of only mediocre electrical quality, and were spray-

processed without special prior cleaning to examine the worst -case situation.

Measurements of film thickness across the wafers were carried out by ellipsometry

after heat treating the films step -wise at 70 °, 200°, and 400°C for only 30 s

each. Electrical efficiency evaluation by standard I sc and Voc measurements of

the cells before and after coating with the AR films showed the RCA preparations

to be at least as good as the commercial source solution. A summary of the re-

sults is presented in Table 3. It is important to point out that the greatly

reduced heat-treatment times appear to be adequate for producing stable AR

films. The practical consequence of the finding means a substantially itL-

creased production throughput capacit y . More detailed tests and film analyses

concerning this significant factor are being completed.

3. Effectiveness of AR Films as a Function of Thickness

The quality and performance of the AR films from any of the three source

solutions can be expected to be constant if all materials, cell surfaces,

*Zicon Corp., Mount Vernon, NY.
**Emulsitone Co., Whippany, NJ.
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metallization, and spray processing conditions are well controlled arid kept

fixed. However, minor fluctuations in the spray processing could easily affect

the film thickness. It is therefore imperative to ascertain experimentally the

effect of film thickness on the perfo •-mance of the AR coatings. All three

source. solutions (Emulsitone C, RCA I, RCA II) were tested by using them for

coating typical 3-in.-diameter - s olar cells with screen-printed Ag-metallization

patterns. Film thicknesses of nominally 600, 610, 730, and 800 R (after heat

treatments) were examined. Film deposition in this experimental matrix was

done by centrifuging, mairly because intended variations in film thickness are

more easily attained than by spraying. A second reason was to demonstrate that

the effectiveness of 0- AR coatings is essentially independent of the method

of film deposition ar,^ is solely a function of the optical film properties.

Measurements of the coating efficiency were done as described in the preceding

section. The compositions of the source solutions especially made for these

spinning applications are listed in Table 4.

TABLE 4. COMPOSITION OF SOURCE SOLUTIONS
FOR SPINNING APPLICATIONS

Nominal F.mulattone Butyl Spin Ti-Prop- Butyl Spin Ti- Butyl Spin

Film Thickr,_ss c Acetate Speed oxide Acetate Speed ethoxtde Acetate Speed

_ (A) (vol) (Vol) !r/min) _	 (Vol) (Vol) (r/min) (Vol) (vol) (r/min)

800 1 0 4500 1 3 750C 1 5 3'00

730 1 0 6000 5 22 5500 1 5 4000

660 1 0 7200 5 22 4000 1 5 4900

600 6 1 6200 5 22 3500 I 5 6500

A summary of essential data and results from the solar-cell efficiency

evaluation is presented in Table 5. Four major conclusions can be drawn:

(1) The AR efficiency of the three types of coatings is essentially

unaffected by the film thickness in the range studied (600 to

800 R); slight variations in film thickness are therefore not as

as critical as had been assumed previously on the basis it quarter-

wavelength optical theory.

)R

PAW 1%

 QUA1"
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1	 (2) The average increase in cell efficiency after coating is 32% for

the Emulsitone C film, 35% for the RCA I (titanium isopropoxide

derived) film, and 36% for the RCA II (titanium ethoxide derived)

film.

(3) Films deposited by centrifuge spinning exhibit similar efficiency

increases as those deposited by automated spraying (Table 3), both

ranging from 31 to 36% in the 800- to 850-R wavelength region.

(4) The maximum efficiency increase for the three source solutions is

34% at 800 ^ for Emulsitone C, 38% at 680 R for RCA I, and 37% at

630 A for RCA H.

The AR films created from the RCA source solo":ions are thus superior in

effectiveness to those derived from the commercial source solution, and, as

previously pointed out, can be obtained at a very substantial materials cost

reduction.

D. INTERCONNECT AND PANEL ASSEMBLY

1. PVB Lamination

Two attempts were made to produce a full 4-ft 2 panel which could be sub-

jected to the 50 lb/ft 2 cyclic wind loading test. Both panels were broken

due to handling accident and/or improper cool-down procedures by the laminator

(Figs. 17 and 18). In order to achieve the desired 4-ft 2 panel dimension, a

border (unfilled with cells) was included due to unavailability of optimum

diameter cells. In the first lamination (Fig. 17) complete PVB flow was

not achieved due to premature edge-seal formation which trapped air inside

the panel. The second panel (Fig. 18) laminated perfectly with all areas

completely void free. Several cells cracked due to solder lumps remaining

from hated-soldering operations. This problem will be alleviated with the

radiant-heat mass-soldering technique.

We investigated a modification of the laminator's standard production

process to determine if Tae could reduce the possibility of cell fracture and

also reduce the duration of the autoclaving process. The duration of the

autoclaving is proportional to the amount (mass) of air remaining after the

initial flow of the PVB. The laminator's standard process consists of drawing



Figure 17. Front view of first 4-ft2

trapped air inside panel.

of panel (both sides) may

24

panel. Premature edge seal caused

Starburst fracture at lower center
be due to thermal straYn.	
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Figure A. Front view of second 4-ft 2 panel. This panel has no voids.
Starburst cracks are believed due to presence of foreign
matter between the glass and glass pressure plates used
to preserve flatness during autoclaving.

PAGE IS
25	 U,V 1 

OOR QUALIN•
OF ^


	GeneralDisclaimer.pdf
	0002A02.pdf
	0002A03.pdf
	0002A03_.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A11_.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf



