SIMULATION OF FLUIDIZED BED COAL COMBUSTORS

by Renga Rajan, R. Krishnan, and C. Y. Wen

West Virginia University
Morgantown, West Virginia 26506

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Cleveland, Ohio 44135

February 1979

Grant NSG-3134
A comprehensive model for the simulation of fluidized bed coal combustors (FBC) is developed taking into account (i) devolatilization of coal and subsequent combustion of char and volatiles; (ii) kinetics of char combustion; SO$_2$ absorption by limestone; (iv) release of NO$_x$ and reduction of NO$_x$ by char; (v) attrition and entrainment of particles; (vi) hydrodynamics of gas and solids; (vii) freeboard reactions; (viii) heat transfer between bed and cooling tubes. The model is capable of simulating combustion efficiency, char and limestone elutriation and the corresponding particle size distribution in the bed, bed temperature profile, O_2, CO, CO_2, SO_2, and NO_x concentration profiles along the combustor. Agreement between the computed results and the observed data is good.
<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>g</td>
<td>Acceleration due to gravity, (\text{cms/sec}^2)</td>
</tr>
<tr>
<td>REP</td>
<td>(R_{e,p})</td>
<td>Particle Reynolds number</td>
</tr>
<tr>
<td>RHOGAS</td>
<td>(\rho_g)</td>
<td>Density of gas, (\text{gm/cm}^3)</td>
</tr>
<tr>
<td>RHOS</td>
<td>(\rho_s)</td>
<td>Density of solids, (\text{gm/cm}^3)</td>
</tr>
<tr>
<td>UM</td>
<td>(U_{mf})</td>
<td>Minimum fluidization velocity, (\text{cm/sec})</td>
</tr>
<tr>
<td>UT</td>
<td>(U_t)</td>
<td>Terminal velocity of the particle, (\text{cms/sec})</td>
</tr>
<tr>
<td>VISC</td>
<td>(\mu)</td>
<td>Viscosity of gas, (\text{gm/cm}.\text{sec})</td>
</tr>
<tr>
<td>DVBEFF</td>
<td></td>
<td>Volume of each compartment excluding the tubes, (\text{cm})</td>
</tr>
<tr>
<td>DZAV</td>
<td></td>
<td>Average compartment size used in design calculations, (\text{cm})</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td>Volume of bed (excluding tubes) at any height (ZZ), (\text{cm})</td>
</tr>
<tr>
<td>ZZ</td>
<td></td>
<td>Height above the distributor, (\text{cm})</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>viii</td>
</tr>
</tbody>
</table>

<p>| I. INTRODUCTION | 1 |
| II. LITERATURE REVIEW | 3 |
| III. OBJECTIVES OF PRESENT WORK | 10 |
| IV. MODEL ASSUMPTIONS | 12 |
| V. MODEL BACKGROUND | 13 |
| 1. DEVolatILIZATION AND COMBUSTION OF CHAR | 13 |
| 2. SULFUR DIOXIDE - LIMESTONE REACTION | 18 |
| 3. NOₓ - CHAR REACTION | 19 |
| 4. ATTRITION AND ENTRAINMENT OF CHAR AND LIMESTONE | 21 |
| 5. BUBBLE HYDRODYNAMICS | 23 |
| 6. SOLIDS MIXING | 25 |
| 7. HEAT TRANSFER | 26 |
| 8. FREEBOARD REACTIONS | 26 |
| VI. MODEL DESCRIPTION | 31 |
| 1. ELUTRIATION CALCULATIONS | 31 |
| 2. MATERIAL AND ENERGY BALANCES | 33 |
| VII. RESULTS AND DISCUSSION | 51 |
| VIII. SENSITIVITY OF THE MODEL PARAMETERS | 70 |
| IX. CONCLUSIONS | 78 |
| REFERENCES | 80 |
| APPENDICES | |
| I. ELUTRIATION PROGRAM | 83 |
| II. INPUT TO ELUTRIATION PROGRAM | 97 |
| III. OUTPUT OF ELUTRIATION PROGRAM | 98 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. COMBUSTION PROGRAM</td>
<td>101</td>
</tr>
<tr>
<td>V. INPUT TO COMBUSTION PROGRAM</td>
<td>132</td>
</tr>
<tr>
<td>VI. OUTPUT OF COMBUSTION PROGRAM</td>
<td>133</td>
</tr>
<tr>
<td>VII. MANUAL FOR THE COMPUTER PROGRAMS</td>
<td>136</td>
</tr>
<tr>
<td>VIII. NOMENCLATURE FOR THE COMPUTER PROGRAMS</td>
<td>155</td>
</tr>
<tr>
<td>Table No.</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Classification of FBC Models</td>
</tr>
<tr>
<td>2.</td>
<td>Correlations Used in Simulation</td>
</tr>
<tr>
<td>3.</td>
<td>Parameters in the Model</td>
</tr>
<tr>
<td>4.</td>
<td>Dimensions of FBC Examined</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Schematic Illustration of the FBC</td>
</tr>
<tr>
<td>2.</td>
<td>Rate Controlling Regimes in FBC</td>
</tr>
<tr>
<td>3.</td>
<td>Limestone Reactivity Profiles</td>
</tr>
<tr>
<td>4.</td>
<td>Schematic Illustration of the Gas Phase Model</td>
</tr>
<tr>
<td>5.</td>
<td>Two Modes of Solids Mixing</td>
</tr>
<tr>
<td>6.</td>
<td>Schematic Illustration of the Solid Phase Model</td>
</tr>
<tr>
<td>7.</td>
<td>Logic Diagram for the Computation of Limestone Entrainment</td>
</tr>
<tr>
<td>8.</td>
<td>Logic Diagram for the Computation of Char Entrainment</td>
</tr>
<tr>
<td>9.</td>
<td>Logic Diagram for Combustion Calculations</td>
</tr>
<tr>
<td>10.</td>
<td>Size Distributions of the Particles in the FBC</td>
</tr>
<tr>
<td>11.</td>
<td>Simulation of Axial Bed Temperature Profile</td>
</tr>
<tr>
<td>12.</td>
<td>Temperature and Carbon Concentration Profiles in the Bed</td>
</tr>
<tr>
<td>13.</td>
<td>Oxygen Concentration Profile in the Bed</td>
</tr>
<tr>
<td>14.</td>
<td>CO, CO₂ & Volatiles Concentration Profiles in the Bed</td>
</tr>
<tr>
<td>15.</td>
<td>Effect of Ca/S Ratio on SO₂ Retention</td>
</tr>
<tr>
<td>16.</td>
<td>Effect of Temperature on SO₂ Retention</td>
</tr>
<tr>
<td>17.</td>
<td>Effect of Fluidizing Velocity on SO₂ Retention</td>
</tr>
<tr>
<td>18.</td>
<td>SO₂ Concentration Profile in the Combustor</td>
</tr>
<tr>
<td>19.</td>
<td>Effect of Temperature on NO Emission</td>
</tr>
<tr>
<td>20.</td>
<td>NO and Carbon Concentration Profiles in the Bed</td>
</tr>
<tr>
<td>21.</td>
<td>Effect of Solids Mixing on the Bed Temperature Profile</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>22.</td>
<td>Effect of Solids Entrainment on the Temperature Profile</td>
</tr>
<tr>
<td>23.</td>
<td>Effect of Bed to Tube Heat Transfer Coefficient on the Bed Temperature</td>
</tr>
<tr>
<td>24.</td>
<td>Effect of Bubble (or Compartment Size) on the Bed Temperature Profile</td>
</tr>
<tr>
<td>25.</td>
<td>Effect of Location of Cooling Tubes on the Bed Temperature Profile</td>
</tr>
<tr>
<td>26.</td>
<td>Illustration for Regula Falsi Method</td>
</tr>
<tr>
<td>27.</td>
<td>Arrangement of Cooling Tubes</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A Defined by equation (V.2)

A_t Cross sectional area of the bed, cm2

$a_{B,NO}$ Defined by equation (VI.51)

a_{B,SO_2} Defined by equation (VI.49)

$a_{E,NO}$ Defined by equation (VI.47)

a_{E,SO_2} Defined by equation (VI.45)

a_{HE} Specific heat transfer area of the tubes, cm2/cm3 FBC volume

a_{HEW} Specific heat transfer area of the walls, cm2/cm3 FBC volume

a_{NO} Defined by equation (VI.55)

a_{SO_2} Defined by equation (VI.53)

a_m Defined by equation (VI.12)

a_x Proportion of total abrasion fines in the xth size fraction

a_1 Defined by equation (VI.9)

a_2 Defined by equation (VI.15)

a_3 Defined by equation (VI.25)

a_4 Defined by equation (VI.11)

a'_2 Defined by equation (VI.33)

a'_4 Defined by equation (VI.20)

B Defined by equation (V.3)

b_x Weight fraction of bed material in the xth size fraction

C_{cf} Heat capacity of coal feed, cals/gm·°C

C_{CO_2} Concentration of carbon dioxide, gmole/cm3
\(C_{\text{NO}} \): Concentration of nitric oxide, \(\text{gmole/cm}^3 \)

\(C_S \): Heat capacity of solids, \(\text{cals/gm} \cdot ^\circ\text{C} \)

\(C_{\text{Sf}} \): Heat capacity of feed additives, \(\text{cals/gm} \cdot ^\circ\text{C} \)

\(C_{\text{SO}_2} \): Concentration of sulfur dioxide, \(\text{gmole/cm}^3 \)

\(C_{\text{ch}} \): Carbon content in char, \(\text{gm carbon/gm char} \)

\(C_{\text{gm}} \): Molar heat capacity of gas at constant pressure, \(\text{cals/gmole} \cdot ^\circ\text{C} \)

\(\text{CH}_4 \): Wt. fraction \(\text{CH}_4 \) in the volatiles

\(\text{CO} \): Wt. fraction \(\text{CO} \) in the volatiles

\(\text{CO}_2 \): Wt. fraction \(\text{CO}_2 \) in the volatiles

\(D \): Molecular diffusivity for \(\text{O}_2 - \text{N}_2 \), \(\text{cm}^2/\text{sec} \)

\(D_B \): Bubble diameter, cm

\(D_{B_0} \): Bubble diameter at the distributor level, cm

\(D_{BM} \): Fictitious maximum bubble diameter, cm

\(D_t \): Diameter of the FBC as a function of height above the distributor, cm

\(d_c \): Diameter of char particle in the bed, cm

\(d_{ce} \): Diameter of char particle entrained in the freeboard, cm

\(d_L \): Diameter of limestone particle in the bed, cm

\(d_{le} \): Diameter of limestone particle entrained in the freeboard, cm

\(d_o \): Diameter of cooling tubes, cm

\(d_p \): Particle diameter, cm

\(d_x \): Mean diameter of the particles of \(x \)th size fraction, cm

\(E_x \): Elutriation rate constant, \(\text{gm/sec} \)

\(E_{e} \): Dispersion coefficient in the freeboard, \(1/\text{sec} \)

\(F_{BM} \): Molar flow rate of gas in the bubble phase, \(\text{gmole/sec} \)

\(F_{EM} \): Molar flow rate of gas in the emulsion phase, \(\text{gmole/sec} \)

\(F_T \): Total molar flow rate of gas in the combustor, \(\text{gmole/sec} \)

\(F_{\text{es}} \): Solids entrainment rate at the bed surface, \(\text{gms/sec} \)
Fractional conversion of limestone

Fraction of wake solids thrown into the freeboard

Solids mixing parameter, ratio of wake volume to the bubble volume including the wakes

Gas flow rate, gms/sec

Acceleration due to gravity, cms/sec^2

Volatiles burning rate in the bubble phase, g mole/sec

Carbon monoxide burning rate, g mole/sec

Volatiles burning rate in the emulsion phase, g mole/sec

Wt. fraction hydrogen in the volatiles

Wt. fraction H2O in the volatiles

Height above the bed surface, cm

Attrition rate constant, 1/cm

Gas exchange coefficient, 1/sec

Defined by Equation (VI.24)

NO reduction rate constant in the bubble phase, cm/sec

C-CO₂ chemical reaction rate constant, cm/sec

NO reduction rate constant in the emulsion phase, cm/sec

NO reduction rate constant, cm/sec

Overall rate constant for char combustion, cm/sec

Overall rate constant for char combustion in bubble phase, cm/sec

Overall rate constant for char combustion in emulsion phase, cm/sec

Gas film diffusion rate constant, gm/cm²·sec·atm

Chemical reaction rate constant for char combustion, gm/cm²·sec·atm

Overall volume reaction rate constant for limestone-SO₂ reaction, 1/sec

Abrasion rate constant for the xth size fraction, 1/sec
\[K' \quad \text{defined by Equation (VI.32)} \]

\[K'_v l \quad \text{Chemical reaction rate constant for limestone-SO}_2 \text{ reaction, l/sec} \]

\[M \quad \text{Weight of particles remaining in the bed after the size reduction from the original size to } d_x \]

\[M_b \quad \text{Weight of bed material, gms} \]

\[M_c \quad \text{Atomic weight of carbon, gms/gm atom} \]

\[M_x \quad \text{Weight of bed material in the } x \text{th size fraction} \]

\[N_A \quad \text{Number of limestone particles in the } i \text{th compartment in the freeboard} \]

\[N_{Pe} \quad \text{Peclet number, defined by Equation (V.43)} \]

\[N_{Re} \quad \text{Reynolds number, defined by Equation (V.42)} \]

\[N_{Sc} \quad \text{Schmidt number, defined by Equation (V.44)} \]

\[N_c \quad \text{Number of char particles in the } i \text{th compartment in the freeboard} \]

\[N_d \quad \text{Number of orifices in the distributor} \]

\[P \quad \text{Average pressure of the FBC, atm} \]

\[P_H \quad \text{Horizontal pitch distance between the tubes, cms} \]

\[P_V \quad \text{Vertical pitch distance between the tubes, cms} \]

\[P \quad \text{Defined by Equation (V.16)} \]

\[P_{O2} \quad \text{Partial pressure of oxygen, atm} \]

\[P_1 \quad \text{Proportion of fines recycled to the bed from the primary cyclone} \]

\[P_2 \quad \text{Proportion of fines recycled to the bed from the secondary cyclone} \]

\[q_{cal} \quad \text{Heat of calcination of limestone, cals/gm} \]

\[q_{ch} \quad \text{Heat of combustion of char, cals/gm} \]

\[q_v \quad \text{Heat of combustion of volatiles (complete burning), cals/gmole} \]

\[q_{v,CO} \quad \text{Heat of combustion of volatiles (partial burning), cals/gmole} \]
\(q_{1x} \) Collection efficiency of the primary cyclones for the \(x \)th size fraction

\(q_{2x} \) Collection efficiency of the secondary cyclones for the \(x \)th size fraction

\(R \) Gas constant, 1.987 cals/gmole °K

\(R_{B,NO,c} \) NO release rate in the bubble phase due to char combustion, gmole/sec

\(R_{B,NO,V} \) NO release rate in the bubble phase due to volatiles combustion, gmole/sec

\(R_{B,SO_2,c} \) \(SO_2 \) release rate in the bubble phase due to char combustion, gmole/sec

\(R_{B,SO_2,V} \) \(SO_2 \) release rate in the bubble phase due to volatiles combustion, gmole/sec

\(R_{CO} \) CO released during devolatilization, gmole/sec

\(R_{CO_2} \) \(CO_2 \) released during devolatilization, gmole/sec

\(R_{E,NO,c} \) NO release rate in the emulsion phase due to char combustion, gmole/sec

\(R_{E,NO,V} \) NO release rate in the emulsion phase due to volatiles combustion, gmole/sec

\(R_{E,SO_2,c} \) \(SO_2 \) release rate in the emulsion phase due to char combustion, gmole/sec

\(R_{E,SO_2,V} \) \(SO_2 \) release rate in the emulsion phase due to volatiles combustion, gmole/sec

\(R_{e,p} \) Particle Reynolds number, defined by equations (A.VII.22-24)

\(R_{NO} \) NO release rate, gmole/sec

\(R_{SO_2} \) \(SO_2 \) release rate, gmole/sec

\(R_a \) Attrition rate, gms/sec

\(R_{ch} \) Char produced per unit gm of coal fed, gm/gm

\(R_V \) Volatiles released, gmole/sec

\(R_g \) Gas constant, 82.06 atm cm³/gmole °K

\(r_{CO} \) Rate of combustion of \(CO \), gmole/cm³ sec

\(r_i \) Char combustion rate in \(i \)th compartment, gms/sec
\(r_c \)
Char combustion rate, \text{g mole/sec\cdotparticle}

\(S_g \)
Effective specific surface area of limestone, \text{cm}^2/\text{gm}

\(T \)
Temperature in the bed, \text{°K}

\(T_B \)
Mean temperature in the boundary layer of the char particle in the bubble phase, \text{°K}; also in the freeboard, \text{°K}

\(T_{\text{DH}} \)
Transport Disengaging Height, \text{cms}

\(T_E \)
Mean temperature in the boundary layer of the char particle in the emulsion phase, \text{°K}

\(\text{Tar} \)
Wt. fraction tar in the volatiles

\(T_C \)
Char particle temperature, \text{°K}

\(T_m \)
Mean temperature in the boundary layer of the char particle, \text{°K}

\(T_{\text{sf}} \)
Solids feed temperature, \text{°K}

\(T_w \)
Cooling water temperature, \text{°K}

\(T_{\text{wall}} \)
Average FBC wall temperature, \text{°K}

\(t \)
Temperature, \text{°C}

\(t_B \)
Burning time of a char particle, sec

\(U \)
Bed to tube heat transfer coefficient, \text{cals/sec\cdotcm}^2\cdot\text{°C}

\(U_B \)
Bubble velocity, \text{cms/sec}

\(U_{\text{mf}} \)
Minimum fluidization velocity, \text{cms/sec}

\(U_o \)
Superficial gas velocity or fluidization velocity, \text{cms/sec}

\(\overline{U_o} \)
Average superficial gas velocity in the freeboard, \text{cms/sec}

\(U_t \)
Terminal velocity of the particle, \text{cms/sec}

\(U_w \)
Bed to wall heat transfer coefficient, \text{cals/sec\cdotcm}^2\cdot\text{°C}

\(V \)
Volatiles yield during devolatilization, \% of coal daf

\(\text{VM} \)
Proximate volatile matter in the coal, \% of coal daf

\(V_{\text{CO}} \)
\text{CO produced due to volatiles burning, g mole CO/g mole volatile}
\(V_{CO_2} \)
CO\(_2\) produced due to volatiles burning, gmol CO\(_2\)/gmol volatile

\(V_N \)
Volatile nitrogen in coal, gm/gm, dry basis (d.b.)

\(V_S \)
Volatile sulfur in coal, gm/gm, dry basis (d.b.)

\(W_D \)
Solids withdrawal rate, gms/sec

\(W_{ent} \)
Solids entrainment rate, gms/sec

\(W_{f,a} \)
Additives feed rate, gms/sec

\(W_{f,c} \)
Coal feed rate, gms/sec

\(W_{f,x} \)
Solids feed rate of xth size fraction, gms/sec

\(W_{mix} \)
Solids mixing rate, gms/sec

\(W_{net} \)
Net flow rate of solids, gms/sec

\(W_X \)
Rate of transfer of particles from size fraction \(x \) to fraction \(x + 1 \) by size reduction, gms/sec

\(X \)
Weight fraction carbon in the bed

\(X_{O_2} \)
Oxygen required for partial combustion of volatiles, gmol O\(_2\)/gmol volatile.

\(X_{O_2,c} \)
Oxygen required for complete combustion of volatiles, gmol O\(_2\)/mole volatile.

\(X_{VM} \)
Proximate volatile matter content of coal, gms/gm coal (daf)

\(Y_B \)
Mole fraction O\(_2\) in the bubble phase

\(Y_{B,CO_2} \)
Mole fraction CO\(_2\) in the bubble phase

\(Y_{B,NO} \)
Mole fraction NO in the bubble phase

\(Y_{B,SO_2} \)
Mole fraction SO\(_2\) in the bubble phase

\(Y_{CO} \)
Mole fraction CO

\(Y_{CO_2} \)
Mole fraction CO\(_2\)

\(Y_E \)
Mole fraction O\(_2\) in the emulsion phase

\(Y_{E,CO} \)
Mole fraction CO in the emulsion phase

\(Y_{E,CO_2} \)
Mole fraction CO\(_2\) in the emulsion phase
$Y_{E,NO}$ Mole fraction NO in the emulsion phase

Y_{E,SO_2} Mole fraction SO_2 in the emulsion phase

$Y_{E,v}$ Mole fraction volatiles in the emulsion phase

Y_{H_2O} Mole fraction H_2O

Y_O Mole fraction O_2

Y_{NO} Mole fraction NO

Y_{SO_2} Mole fraction SO_2

Y_v Mole fraction volatiles

Z Height above the distributor, cms; AZ compartment size, cms

Greek Symbols

ε_B Bubble fraction

ε_C Cloud fraction including bubble

ε_m Emissivity of the char particle

ε_{mf} Void fraction at minimum fluidization

ε_{tube} Volume fraction of tubes

Θ Time, sec

λ Thermal conductivity of the gas, cals/sec.cm$^\circ$C

λ_L Reactivity of limestone

μ Viscosity of gas, gm/cm.sec

Π 3.14159265

ρ_B Density of the bed materials, gms/cm3

$\rho_{c, ch}$ Density of carbon in char, gms/cm3

ρ_{ch} Density of char, gms/cm

ρ_g Density of gas, gms/cm3

ρ_s Density of solids, gms/cm3

σ Stefan-Boltzman constant, 1.36×10^{-12}, cals/sec.cm2.\circK4

ϕ Mechanism factor of char combustion
\[\phi_B \] Mechanism factor in the freeboard

\[\phi_E \] Mechanism factor in the emission phase

Subscript

\(x \) \text{ xth size fraction}

\(i \) \text{ ith compartment}

Abbreviation

\textit{d.b.} \text{ dry basis}

\textit{daf} \text{ dry ash free basis}
I. INTRODUCTION

Among the various ways of direct burning of coal, fluidized bed combustion appears to be the most attractive, both from an economic and environmental standpoint. By carrying out combustion in a fluidized bed combustor (FBC) operating at relatively low temperature (750°C-950°C; 1382°F-1742°F), both SO₂ and NOₓ emissions can be maintained at environmentally acceptable levels. In addition, the FBC is well suited for burning low grade, high sulfur coal.

Fluidized bed combustion involves the burning of coal particles in a bed containing limestone/dolomite additives and coal ash. Under normal operating conditions the coal particles constitute less than 4 percent of the total solids in the bed. The limestone/dolomite is added to absorb the sulfur dioxide released from coal during combustion. Sulfur dioxide reacts with calcined limestone/dolomite according to the following reaction:

\[\text{CaO} + \text{SO}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{CaSO}_4 \]

NOₓ emission is kept low due to low combustion temperature and by the NOₓ reduction reaction with carbon present in the fluidized bed. The low temperature operation of the fluidized bed offers little, if any, clinker formation of the ash. The heat of combustion is removed by steam coils immersed in the bed. The steam coils also control the temperature of the bed with minimum hinderance to the solids mixing and circulation in the bed. The high heat transfer coefficients between the bed material and the heat exchange surfaces [250 to 420 W/m² °K (45 to 75 Btu/hr ft²°F)] and the large heat generation rates
[2.0 to 5.0 MW/m³ (0.193 to 0.483 x 10⁶ Btu/hr ft³)] in FBC result in a smaller boiler volume for a given duty than the conventional pulverized coal burning boilers.

Pressurized fluidized bed combustion is also being investigated because of its potential for power generation in gas turbines combined with conventional steam turbines. In pressurized FBC, the combustion is carried out at elevated pressures, generally in the range of 600 to 1000 kPa (6 to 10 atm abs.). The hot, high pressure flue gas is cleaned to remove the particulates and expanded through a gas turbine to generate additional electricity.

Although the FBC offers several advantages, it is not free from shortcomings. Problem areas include erosion of immersed heat-transfer coils, continuous feeding of solids into the bed, agglomeration of solids, formation of stagnant zones on the distributor plate, carry-over of unburnt char particles in the flue gas, high particulate emissions, and in the case of pressurized fluid bed combustor (PFBC), the difficulty in hot gas clean-up. The extent of these problems has to be evaluated and resolved before any large-scale commercialization is ventured.
II. LITERATURE REVIEW

A considerable amount of investigation on the performance of fluidized bed combustion system has been under way particularly in the U.S. and U.K. (Argonne National Laboratory (ANL), Combustion Power Company (CPC), Pope, Evans and Robbins (PER), Westinghouse Research Laboratories (WRL), Exxon Research and Engineering Company (ER&E), Morgantown Energy Technology Center (MBTC), National Coal Board (NCB), British Coal Utilization Research Association (BCURA). Most of the experimental tests have concentrated on feasibility evaluation of FBC. As a result of these studies, a considerable amount of pilot plant data related to FBC performance has become available in recent years.

A systematic, theoretical examination of these data has been initiated only recently, and attempts are presently being made to develop theoretical models for predicting the performance of FBC under various operating conditions. A review of the modeling efforts in fluidized bed combustion has been presented by Caretto (1977). The fundamental and engineering aspects of fluidized bed coal combustion have been discussed by Beer (1977). Almost all of the FBC models proposed to date are based on the two phase theory of fluidization (Davidson and Harrison (1963)). According to this theory, the fluidized bed is assumed to consist of two phase, viz., a continuous, dense particulate phase (emulsion phase) and a discontinuous, lean gas phase (bubble phase) with exchange of gas between the bubble phase and the emulsion phase. The gas flow rate through the emulsion phase is assumed to be that corresponding to minimum fluidization, and that in excess of the minimum fluidization velocity goes through the bubble phase in the form of bubbles. However, as pointed out by Horio and Wen (1977), Rowe (1978), Catipovic et al. (1978), this assumption may be an
oversimplification for particles smaller than 50 \(\mu \text{m} \) and larger than 2000 \(\mu \text{m} \). Experiments with fine powders (\(d_p < 50 \ \mu \text{m} \)) conducted by Rowe (1978) show that the dense phase voidage changes with gas velocity, and that as much as 30 percent of the gas flow may occur interstitially. Catipovic, et al. (1978) have pointed out qualitatively the difference in the fluidization of larger particles.

Avedesian and Davidson (1973) developed a combustion model based on the two phase theory. Their objective was to study the mechanism of combustion of carbon particles in a fluidized bed of ash particles at 1173°K. The combustion was assumed to be controlled by two diffusional resistances, namely:

(i) Interphase transfer of oxygen from bubbles of air to the surrounding ash particles.

(ii) Diffusion of oxygen through the ash phase towards each burning carbon particle.

Campbell and Davidson (1975) later modified the Avedesian and Davidson model to include the presence of carbon dioxide in the particulate phase and applied the model to predict the carbon particle size distribution in a continuously operated fluidized bed combustor.

Baron, et al. (1977) proposed a model for the FBC based on the two phase theory for predicting the combustion efficiency and carbon concentration in the bed. In their model, they took into account the carbon loss due to elutriation and attrition of bed particles, employing the correlations developed by Merrick and Highley (1974).

Borghi, et al. (1977) have proposed a mathematical model for the combustion of coal particles in fluidized bed which takes into account the evolution and burning of volatiles in addition to the combustion of
residual char. Their conclusions indicate that (i) the devolatilization times for coal particles are commensurable with the solids mixing time and (ii) the homogeneous release of volatiles in the bed, as opposed to instantaneous devolatilization is close to reality. Gibbs (1975) derived a mechanistic model for the combustion of coal in a fluidized bed capable of predicting the combustion efficiency, carbon hold-up and spatial distribution of oxygen in the bed. The carbon loss due to elutriation, attrition and splashing of coal from bursting of bubbles on the bed surface was taken into account in the model formulation. The burning rate of coal was assumed to be diffusion controlled. The carbon loss predicted by the model was strongly dependent on the mean bubble diameter which is an adjustable parameter.

Gordon and Amundson (1976) examined the influence of several operating variables on the steady state performance of a FBC. Based on the model calculations, they found that multiple steady state solutions exist in the typical range of operating variables. In particular, it was noted that one of the key factors in determining the state of the bed, as well as the multiplicity of the system was the gas interchange coefficient between the bubble phase and emulsion phase.

Horio and Wen (1978) have proposed a model based on the population balance technique to calculate the char elutriation loss, particle size distribution in the bed and size distribution of the elutriated char.

In the FBC models described so far, they have at least one of the following deficiencies:
(1) The bubble diameter was taken as a constant and an adjustable parameter. In reality, bubbles coalesce as they ascend through the bed. The bubble diameter changes with the height above the distributor. Bubble size is also affected by the immersed cooling coils. (Baron, et al. 1977; Gibbs, 1975).

(2) Devolatilization of coal is not considered. (Horio and Wen, 1978; Avedesian and Davidson, 1973; Campbell and Davidson, 1975; Baron, et al. 1977; Gibbs, 1975; Gordon and Amundson, 1976).

(3) The mechanism of carbon combustion was assumed to be diffusion controlled. This is true only for large particles at high temperatures. (Avedesian and Davidson, 1973; Campbell and Davidson, 1975; Borghi, et al. 1977; Baron, et al. 1977).

(4) Solids mixing in the emulsion phase was assumed to be uniform. Hence the bed was assumed to be under isothermal conditions. This is not true because the experimental data show a non-uniform temperature profile across the bed. (Avedesian and Davidson, 1973; Borghi, et al. 1977; Baron, et al. 1977; Horio and Wen, 1977).

Bethell, et al. (1973) presented a model for sulfur dioxide retention by limestone in a fluidized bed combustor. Horio and Wen (1975) have also formulated a model for the removal of sulfur dioxide by limestone in a FBC. In their model, the hydrodynamics of the fluidizing gas is based on the bubble assemblage model developed by Kato and Wen (1975). Chen and Saxena (1977) used a three phase bubbling bed model (bubble phase, cloud-wake phase and emulsion phase) for predicting the sulfur
retention efficiency in a FBC. The model predictions were compared with some experimental data. However, a limitation of the model is that it assumes isothermal conditions in the bed. The models described above for \(\text{SO}_2 \) absorption do not take into account the char and volatiles combustion in the bed. (Bethell, et al. 1973; Horio and Wen, 1975; Chen and Saxena, 1977).

Recently, Horio, et al. (1977) presented a model for fluidized bed coal combustion that can estimate the performance of a FBC under fuel rich operation and also predict the \(\text{NO}_x \) emissions from the combustor. This model does not deal with the \(\text{NO}_x \) release from volatiles and char during the combustion. Char particle temperature is assumed as a constant, 100°C above the bed temperature. Char particle temperature is actually dependent on the oxygen concentration and is different in the bubble and emulsion phases. Also, the char temperature affects the carbon concentration in the bed which in turn affects the \(\text{NO}_x \) reduction rate. Perira and Beer (1978) have proposed a mechanism for the formation of NO (nitric oxide) from fuel nitrogen and the subsequent reduction of NO by volatiles. However, they have not dealt with the reduction of NO by char subsequent to the completion of devolatilization in the bed which has been established by other workers (Oguma, et al., 1977).

A general mathematical model for FBC has been developed (Rengarajan, et al. 1977, Rajan, et al. 1978) employing the modified version of the bubble assemblage model (Kato and Wer, 1969, Mori and Wen, 1975). The model includes the devolatilization of coal, char combustion and \(\text{SO}_2 \) absorption. Predictions of the combustion efficiency, axial temperature profile and sulfur retention efficiency in the bed were compared with experimental data. A deficiency of the model is that the elutriation of
char and limestone is not considered. Experimental values are used for elutriation losses in the calculation.

All of the models proposed so far do not take into account the char combustion, SO_2 absorption and NO_x reduction in the freeboard, which may be substantial. A classification of the fluidized bed combustion models discussed above is presented in Table I.
<table>
<thead>
<tr>
<th>Model Description</th>
<th>Investigators</th>
<th>Bubble Phase</th>
<th>Emulsion Phase</th>
<th>Solids mixing in the bed</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two phase bubbling bed model</td>
<td>Avedesian and Davidson (1973)</td>
<td>a) Plug Flow</td>
<td>Plug Flow</td>
<td>Complete Mixing</td>
<td>1) Bubble diameter is assumed to be uniform throughout the bed in most cases and is an adjustable parameter</td>
</tr>
<tr>
<td></td>
<td>Gibbs (1975)</td>
<td>b) Plug Flow</td>
<td>Complete Mixing</td>
<td></td>
<td>2) Cloud and wake are combined in the emulsion phase.</td>
</tr>
<tr>
<td></td>
<td>Campbell and Davidson (1975)</td>
<td>c) Complete</td>
<td>Complete Mixing</td>
<td></td>
<td>3) No reactions in the bubble phase.</td>
</tr>
<tr>
<td></td>
<td>Gordon and Amundson (1976)</td>
<td></td>
<td></td>
<td></td>
<td>4) Char combustion is assumed to be diffusion controlled at all temperatures.</td>
</tr>
<tr>
<td></td>
<td>Baron, et al. (1977)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two phase compartment in series model</td>
<td>Horio, et al. (1977)</td>
<td>Complete</td>
<td>Complete Mixing</td>
<td>Complete mixing</td>
<td>1) Bubbles grow along the bed height.</td>
</tr>
<tr>
<td></td>
<td>Rengarajan, et al. (1977)</td>
<td>mixing</td>
<td>within</td>
<td>within each compartment</td>
<td>2) The backflow solid mixing is considered using an adjustable parameter.</td>
</tr>
<tr>
<td></td>
<td>Horio and Wen (1978)</td>
<td>Complete</td>
<td>Complete Mixing</td>
<td>within each compartment</td>
<td>3) Cloud is combined with the bubble phase.</td>
</tr>
<tr>
<td></td>
<td>Rajan, et al. (1978)</td>
<td>mixing</td>
<td>complete</td>
<td>compartment</td>
<td>4) Reactions take place in the bubble phase.</td>
</tr>
<tr>
<td>Three phase bubbling bed model</td>
<td>Chen and Saxena (1977)</td>
<td>Plug Flow</td>
<td>Plug Flow</td>
<td>Complete mixing</td>
<td>1) Cloud-wake is treated as a separate phase and is in plug flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) Isothermal condition throughout the bed for solids, char and gas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) Bubble growth is considered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4) Combustion occurs in cloud-wake and emulsion phases only.</td>
</tr>
</tbody>
</table>
III. OBJECTIVES OF PRESENT WORK

Most of the modeling work performed to date has concentrated on a few specific aspects of the fluid bed combustion process. The many deficiencies of the previous work have been pointed out earlier. It is the aim of the present work to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements which were either partially considered or not considered at all in the previous work.

1. Devolatilization of coal and the subsequent combustion of volatiles and residual char.
2. Sulfur dioxide capture by limestone.
3. NO_x release and reduction of NO_x by char.
4. Attrition and elutriation of char and limestone.
5. Bubble hydrodynamics.
7. Heat transfer between gas and solid, and solids and heat exchange surfaces.
8. Freeboard reactions.

This model will be able to simulate most of the important performance characteristics, viz.,

2. Sulfur dioxide retention efficiency.
3. SO_2 and NO_x emissions.
4. Particulates emission.
5. Attrition and elutriation of char and limestone.
6. Size distribution of char and limestone in the bed and in the elutriated material.
(7) Axial bed temperature profile.
(8) \(O_2, CO, CO_2, SO_2\) and \(NO_x\) concentration profiles.
(9) Pressure drop across the distributor and the bed.

The present work will aid in the understanding of the performance of FBC under a range of operating conditions. For example, \(SO_2\), \(NO_x\) and particulates emissions from the FBC can be estimated for a range of operating conditions. The optimum operating temperature and gas residence time in the bed, which would give maximum combustion efficiency and lower \(SO_2\) and \(NO_x\) emissions, can be estimated. The temperature profile simulated based on the model will help identify the proper location of cooling coils in the bed to avoid steep temperature gradients for design of coils configuration and packing density.

The uniqueness of the proposed model is its capability to account for (i) the freeboard reactions which may be substantial; (ii) the solids mixing within the bed; (iii) the devolatilization of coal; (iv) \(SO_2\) and \(NO_x\) release during the combustion of char and volatiles and the simultaneous absorption of \(SO_2\) by limestone and reduction of \(NO_x\) by char, and (v) the entrainment of char and limestone from the bed.
IV. MODEL ASSUMPTIONS

The following assumptions are made in constructing the FBC model:

1. Single phase backflow cell model is used for solids mixing calculation.

2. Two-phase bubble assemblage model is adopted for gas phase material balances.

3. Solids exchange between the bubble phase and emulsion phase is assumed to be rapid.

4. Bubble size is a function of bed diameter and height above the distributor. When cooling tubes are present, bubble size in the tubes region of the bed is based on the horizontal pitch distance between the tubes.

5. Bubbles and clouds are both combined into the bubble phase. The gas interchange coefficient between the bubble and emulsion phases is a function of the bubble size and is distributed axially.

6. The gas flow rate through the emulsion phase corresponds to minimum fluidization velocity.

7. Devolatilization of coal is neither instantaneous nor uniform in the bed. It is assumed that volatiles release rate is proportional to the solids mixing rate.

8. Volatiles are assumed to be released in the emulsion phase.

10. Sulfur and nitrogen in the residual char are assumed to be released as SO$_2$ and NO$_x$ during the combustion of char.
V. MODEL BACKGROUND

The various physico-chemical processes occurring in the FBC are shown in Fig. 1. The basic elements of the overall combustion process are described as follows:

1. Devolatilization and Combustion of Char:

Coal particle fed to the hot combustor is rapidly heated while undergoing devolatilization (or pyrolysis). The volatile matter of coal is evolved into the particulate phase or emulsion phase of the bed. The bed temperature and the proximate volatile matter content of coal determine the yield of volatiles. Volatile yield is estimated by the following empirical correlations (Gregory and Littlejohn, 1965):

\[V = VM - A - B \] \hspace{1cm} (V.1)

\[A = \exp(26.41 - 3.961 \ln t + 0.0115 VM) \] \hspace{1cm} (V.2)

\[B = 0.2(VM - 10.9) \] \hspace{1cm} (V.3)

where \(V \) = yield of volatiles, \% of coal, daf

\(VM \) = proximate volatile matter in coal, daf \%

\(t \) = devolatilization temperature, °C

The compositions of the products of devolatilization in weight fractions are estimated from the correlations developed using the data of Loison and Chauvin (1964):

\[CH_4 = 0.201 - 0.469 X_{VM} + 0.241 X_{VM}^2 \] \hspace{1cm} (V.4)

\[H_2 = 0.157 - 0.868 X_{VM} + 1.388 X_{VM}^2 \] \hspace{1cm} (V.5)

\[CO_2 = 0.135 - 0.900 X_{VM} + 1.906 X_{VM}^2 \] \hspace{1cm} (V.6)

\[CO = 0.428 - 2.653 X_{VM} + 4.845 X_{VM}^2 \] \hspace{1cm} (V.7)

\[H_2O = 0.409 - 2.389 X_{VM} + 4.554 X_{VM}^2 \] \hspace{1cm} (V.8)

\[Tar = -0.325 + 7.279 X_{VM} - 12.880 X_{VM}^2 \] \hspace{1cm} (V.9)
Fig. 1 Schematic Illustration of the FBC

- **EMULSION PHASE**
 - Gases
 - $\text{V.P.} + \text{O}_2 \rightarrow \text{CO}$
 - Devolatilization
 - Coal
 - Char $+ \text{V.P.}$
 - Char $+ \text{O}_2 \rightarrow \text{CO/CO}_2$
 - Char $+ \text{CO}_2 \rightarrow \text{CO}$
 - CO $+ 1/2 \text{O}_2 \rightarrow \text{CO}_2$
 - Char $+ \text{NO} \rightarrow \text{CO}_2 + \text{N}_2$
 - CaCO$_3$ $\rightarrow \text{CaO} + \text{CO}_2$
 - CaO $+ \text{SO}_2 + 1/2 \text{O}_2 \rightarrow \text{CaSO}_4$

- **BUBBLE PHASE**
 - Gases
 - $\text{V.P.} + \text{O}_2 \rightarrow \text{CO}_2$
 - Char $+ \text{O}_2 \rightarrow \text{CO}_2$
 - CO $+ 1/2 \text{O}_2 \rightarrow \text{CO}_2$
 - Char $+ \text{NO} \rightarrow \text{CO}_2 + \text{N}_2$
 - CaO $+ \text{SO}_2 + 1/2 \text{O}_2 \rightarrow \text{CaSO}_4$

- **FREEBOARD**

- **Solids Elutriation**

- **Solids Removal**

- **Coal + Limestone**

- **V.P.: Volatile Products**

- **Air**

- **U_m**

- **U_0 - U_m**
Volatile nitrogen released during devolatilization is expressed as (Fine, et al. 1974):

\[
V_N = 0.001 T - 0.6 \text{ gm/gm coal, (d.b.) (V.10)}
\]

and volatile sulfur is expressed as:

\[
V_S = 0.001T - 0.6 \text{ gm/gm coal (d.b.) (V.11)}
\]

Despite the extensive research in the area of coal devolatilization, accurate rate expressions describing the rate of devolatilization of coal are unavailable to date. However, it is estimated that the time needed for the devolatilization of a 1 mm coal particle is 0.5-1 sec under the conditions existing in the FBC (Beer, 1977). Solids mixing time for a 2 ft. combustor with a bed height of 4 ft. and a superficial gas velocity of 4 ft/sec lies in the range of 2 to 10 secs depending on whether solids mixing is good or poor. Hence it is more likely that a major portion of the volatiles will be released near the coal feed point. In the model, \(f_w \), the solid mixing coefficient will represent the amount of volatiles released uniformly and \((1-f_w) \) will represent the proportion of volatiles released near the coal feed point.

At temperatures above 650°C and in an oxidizing atmosphere the rate of burning of volatiles is fast compared to the time required for volatile evolution. However, the combustion of volatiles released in the emulsion phase is controlled by the availability of oxygen in the emulsion phase. Since the oxygen concentration in the emulsion phase is low, the volatile gases in the emulsion phase first tend to form CO by partial combustion; whereas, the volatiles exchanged to the bubble phase burns completely to CO\(_2\) because of excess oxygen present in the bubble phase.

The rate of burning of CO is expressed as (Hottel, et al. 1965)

\[
\text{CO} + \frac{1}{2} \text{O}_2 \rightarrow \text{CO}_2, \quad r_{\text{CO}} = 3 \times 10^{10} \left(\frac{P}{R T^2} \right)^{1.8} \exp (-1600000/RT) Y_{\text{H}_2\text{O}}^{0.5} \chi \frac{17.5 \ Y_0}{1+24.7 \ Y_0} \text{g mole/m}^3 \text{sec} \quad (V.12)
\]
Residual char burns according to the reaction:

\[C + \frac{1}{2} O_2 \rightarrow (2 - \frac{2}{\phi}) CO + (\frac{2}{\phi} - 1) CO_2 \] \hspace{1cm} (V.13)

where \(\phi \) is a mechanism factor, which takes the value 1 when \(CO_2 \) is transported away from the char particle and 2 when \(CO \) is transported away (Field, et al. 1967) during char combustion. The factor, \(\phi \), is a function of char particle diameter and temperature. For small particles, \(CO \) formed during char combustion diffuses out fast because of rapid mass transfer and burns to form \(CO_2 \) outside the particle; whereas, for large particles, because of slower mass transfer, \(CO \) burns within the particle and \(CO_2 \) is transported out, \(\phi \) is expressed as:

\[\phi = \frac{2 + \frac{2}{p}}{p + 2} \quad \text{for} \quad d_c < 0.005 \text{ cm} \] \hspace{1cm} (V.14)

\[\phi = \frac{(2p + 2) - p(d_c - 0.005)/0.095}{p + 2} \quad \text{for} \quad 0.005 < d_c < 0.1 \text{ cm} \] \hspace{1cm} (V.15)

where \(p \) is the ratio of carbon monoxide to carbon dioxide formed during char combustion and is given by (Arthur, 1951).

\[p = \frac{CO}{CO_2} = 2500 \exp(-12400/RT) \] \hspace{1cm} (V.16)

The rate expression for char combustion is estimated by Field et al. (1967)

\[r^* = \pi d_c^2 k_c C_{O_2} \quad \text{g mole/sec particle} \] \hspace{1cm} (V.17)

where \(k_c \) is the overall rate constant, and is given by:

\[k_c = \frac{R_g T_m / M_c}{\frac{1}{k_{cR}} + \frac{1}{k_{cR}}} \] \hspace{1cm} cm/sec \hspace{1cm} (V.18)

\[k_{cR} = \text{chemical reaction rate constant} \]

\[= 8710 \exp(-35700/RT_c) \] \hspace{1cm} gm/cm²·sec·atm \hspace{1cm} (V.19)

\[k_{cf} = \text{diffusion rate constant} \]

\[= 24 \phi D/d_c R_g T_m \] \hspace{1cm} gm/cm²·sec·atm \hspace{1cm} (V.20)
Fig. 2 Rate Controlling Regimes in FBC
For smaller particles, diffusion of oxygen to the surface of the char particle is faster than the chemical reaction rate of combustion while for larger particles, diffusion of oxygen is slower than the chemical rate. Thus, the diffusional term tends to dominate for larger particles at high temperatures, while the chemical term tends to dominate at low temperatures (Fig. 2). CO₂ formed during combustion reacts with char according to the following reaction:

\[\text{C} + \text{CO}_2 \rightarrow 2 \text{CO} \]
(V.21)

and the rate expression for the above reaction is

\[r_{\text{CO}_2} = \pi d^2 c \cdot k_{\text{CO}_2} \cdot C_{\text{CO}_2} \]
gmole/sec . particle, where

\[k_{\text{CO}_2} = 4.1 \times 10^3 \exp(-59200/RT) \text{ cm/sec} \]
(Caram and Amundson, 1977).

2. **Sulfur Dioxide - Limestone Reaction:**

When limestone is added to a fluidized bed burning coal, the SO₂ released from the combustion of coal reacts with calcined limestone according to the reaction:

\[\text{CaO} + \text{SO}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{CaSO}_4 \]
(V.22)

The reaction rate of a limestone particle can be expressed as

(Borgwardt, 1970)

\[r_l = \frac{\pi}{6} d^3 \gamma_l \cdot k_{vl} \cdot C_{\text{SO}_2} \]
gmole/sec particle
(V.23)

where \(k_{vl} \) is the overall volumetric reaction rate constant and is a rapidly decreasing function of limestone conversion, \(f_l \). The overall reaction rate constant, \(k_{vl} \), is calculated by the equation:

\[k_{vl} = k_{vl}^* \cdot S_g \cdot \lambda_l \]
(V.24)

where \(k_{vl}^* \) is equal to 490 \(\exp(-17500/RT) \) gm/cm³ sec. The value of activation energy was obtained by Wen and Ishida (1973). By using Borgwardt's data (1971), the specific surface area, \(S_g \), is correlated.
with calcination temperature as:

\[S_g = -38.4 \, T + 5.6 \times 10^4, \, \text{cm}^2/\text{gm} \text{ for } T \geq 1253^\circ \text{K} \quad (V.25) \]

\[= 35.9 \, T - 3.67 \times 10^4, \, \text{cm}^2/\text{gm} \text{ for } T < 1253^\circ \text{K} \quad (V.26) \]

\(\lambda_g \), the reactivity of limestone, is a function of conversion, temperature and particle size. \(\text{CaSO}_4 \) formed due to the sulfation of calcined limestone tends to block the pores formed during limestone calcination, building an impervious layer on the particle surface, thus reducing the reactivity of limestone. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). Typical profiles of limestone reactivity as a function of conversion for various particle sizes are shown in Fig. 3.

3. \(\text{NO}_x \)-Char Reaction:

Nitrogen oxides are generated during the combustion of volatiles and char, and are subsequently reduced to \(\text{N}_2 \) by reaction with nitrogeneous fragments (containing \(\text{NH}_3 \)) in the volatiles and also by the heterogeneous reaction with char. Fuel nitrogen compounds in the volatiles would be in the form of \(\text{NH}_3 \). When the volatiles burn, \(\text{NH}_3 \) is oxidized to NO. When the residual char burns, nitrogeneous fragments of the char are also oxidized to NO. The released nitrogen oxides are reduced by char according to the reaction

\[\text{C} + 2 \, \text{NO} \rightarrow \text{CO}_2 + \text{N}_2 \quad (V.27) \]

The rate expression for NO reduction is

\[r_{\text{NO}} = \pi \, d_c^2 \, k_{\text{NO}} \, C_{\text{NO}} \, \text{g mole NO/sec-particle} \quad (V.28) \]

where \(k_{\text{NO}} = 5.24 \times 10^7 \, \text{exp}(-34000/RT_m) \, \text{cm/sec} \) (Oguma, et al. 1977, Horio, et al. 1977).
TEMPERATURE = 850 °C

d₁ = 100 µm

Fig. 3 Limestone Reactivity Profiles
4. Attrition and Entrainment of Char and Limestone:

Limestone and char particles in the bed are subjected to erosion and attrition due to the rapid mixing of the solids. The attrition rate is proportional to the rate of energy input. The size distribution of the fines produced has been found to be approximately constant for a particular bed material and independent of the bed size distribution or operating conditions (Merrick and Highley, 1974). The rate of energy input to the particles is taken to be proportional to \((U_0 - U_{mf})\) and also to the bed weight. The rate of production of fines is correlated as:

\[R_a = K(U_0 - U_{mf})M_b \text{ gms/sec} \] \hspace{1cm} (V.29)

The value of \(K\) is dependent on the friability of the material. The values of \(K\) lie in the range \(9.11 \times 10^{-8}\) for ash and \(2.73 \times 10^{-8}\) for limestone.

The rate of elutriation of char and limestone for a size fraction \(x\), from a fluidized bed is directly proportional to their concentration in the bed, that is:

\[R_x = E_x b_x \text{ gms/sec} \] \hspace{1cm} (V.30)

where \(R_x\) is the elutriation rate of the close size fraction \(x\), for a given operating conditions, \(b_x\) is the weight fraction of the close size fraction in the bed. There are many correlations proposed to calculate the elutriation rate constant, \(E_x\). Many of the correlations exhibit an improper qualitative behavior in the smaller particle size ranges. A recent correlation proposed by Merrick and Highley (1974) accounts properly for the boundary conditions of a maximum limiting elutriation rate constant at zero particle size and the rate constant...
approaching zero with increasing particle size and at \(U_0 = U_{mf} \). It is of the form:

\[
E_x = 6 \exp[-10.4 \left(\frac{U_t}{U_0} \right) ^{0.5} \left(\frac{U_{mf}}{U_0 - U_{mf}} \right) ^{0.25}] \text{ gm/sec} \quad (V.31)
\]

The above correlation was obtained by Merrick and Highley with data from NCB combustor in which the freeboard height was around 275 cm.

When this correlation is used to simulate the performance of NCB combustor, the results agree well with data (Fig.10). This correlation does not take into account the effect of varying freeboard heights and hence cannot be used to calculate the entrainment rate along the freeboard height. In view of the fact that the entrainment below TDH is dependent on the freeboard height, the following correction is suggested to calculate the entrainment rate as a function of height above the bed surface. The rate of entrainment is given by:

\[
R_x = \frac{F_{0,x}}{275.0} \exp \left[\frac{h}{275.0} \right] \ln \left(\frac{E_x b_x}{F_{0,x}} \right) \text{ gms/sec} \quad (V.32)
\]

where \(F_{0,x} \) is the entrainment rate of particles of \(x \) th size fraction at the bed surface, \(h \) is the height above the bed surface in cm, and the constant 275.0 represents the freeboard height of the NCB combustor based on which Merrick and Highley's correlation is developed.

When the bubbles burst at the surface of the bed, solids in the wake of the bubbles are thrown into the freeboard. The amount of solids splashed into the freeboard can be calculated from the equation (Yates and Rowe, 1977).

\[
F_{0} = A_t \cdot (U_0 - U_{mf}) f_w (1 - \varepsilon_{mf}) \rho_s \cdot f_{sw} \quad \text{gms/sec} \quad (V.33)
\]

where \(f_w \) is the wake fraction and \(f_{sw} \) is the fraction of solids in the wake thrown into the freeboard. TDH represents the height (above the bed
surface) above which the entrained solids density is independent of the
eight. There are many correlations available in literature to calculate
is used here because of its simplicity and accuracy in the range of
fluidizing velocities encountered in the combustor.

\[\text{TDH} = 0.429 \overline{U_0}^{1.2} (11.43 - 1.2 \ln \overline{U_0}) \text{ cms} \] (V.34)

TDH is compared with the actual height (height between the bed surface
and the flue gas exit). If the TDH is smaller than the actual freeboard
height, then TDH is used to calculate the solids elutriation rate.
Entrainment rate of solids as a function of the height above the bed
surface is calculated using Equation (V.32).

5. **Bubble Hydrodynamics:**

A modified version of the bubble assemblage model (Rengarajan,
et al. 1977) is used to describe the bubble hydrodynamics. Fig. 4 is a
schematic representation of the gas phase model. Gas flow rate in the
emulsion phase is assumed to be that at minimum fluidization velocity.
The minimum fluidization velocity is calculated using Wen and Yu's
(1966) correlation:

\[U_{mf} = \left(\frac{\mu}{d} \right) \{ 33.7^2 + \frac{0.0408 d^3 \rho_g (\rho_s - \rho_g)}{\mu_2} \}^{1/2} - 33.7 \} \] (V.35)

Estimation of the bubble diameter along the bed height is one of the
most critical factors in FBC modeling. For a non-cylindrical bed,
the bubble size, \(D_B \), is calculated from (Mori and Wen, 1975):

\[\frac{dD_B}{dz} = \frac{0.3}{D_t} (D_{BM} - D_B) \] (V.36)

I.C. \(D_B = D_{BO} \) at \(z = 0 \), \(D_{BO} = \) initial bubble diameter where \(D_{BM} \) is the
Fig. 4 Schematic Illustration of the Gas Phase Model
fictitious maximum bubble diameter defined by Mori and Wen (1975) as:

\[D_{BM} = 0.652 \left[A_t (U_0 - U_{mf}) \right]^{0.4} \] (V.37)

When cooling tubes are present, the ascending bubbles impinge on the tubes. If the tubes are packed closely, depending on the horizontal pitch distance and tube diameter, bubbles may be broken, and coalescence may not occur. For lack of experimental evidence on the bubble sizes in the presence of internals of various designs, it is assumed here that if the impinging bubbles are of smaller size than the horizontal pitch distance, the bubbles coalesce as if tubes were absent. If the approaching bubble is bigger than the horizontal pitch distance, it is assumed that coalescence does not occur and hence the bubble size in the coils section of the bed is set equal to the pitch distance.

Bubble velocity is calculated from the following relation (Davidson and Harrison, 1963):

\[U_B = U_0 - U_{mf} + 0.711 \sqrt{gD_B} \] (V.38)

The gas interchange coefficient between the bubble phase and emulsion phase is estimated from (Kobayashi, et al. 1967)

\[K_{BE} = 11.0/D_B \] (V.39)

6. Solids Mixing:

The mixing of solids is caused by the motion of bubbles and their wakes. Both bulk circulation and turbulent mixing of solids are the effects of bubbling phenomena of the bed. The bulk circulation rate, \(W_{mix} \), caused by the lifting of particles by bubble wakes is expressed as:

\[W_{mix} = (U_0 - U_{mf}) A_t f_w (1 - \varepsilon_{mf}) \rho_s \] (V.40)

where \(f_w \) is the ratio of wake volume to the bubble volume including
the wake. The estimation of f_w for FBC has not been clearly established yet. Therefore, f_w is the parameter in the model which requires further investigations. A schematic representation of the solids mixing pattern and the backflow cell model used to describe the solids circulation in the bed are shown in Fig. 5 and Fig. 6. The bed is divided into compartments of size equal to bubble diameter at that height.

7. Heat Transfer:

In calculating the reaction rate for char combustion, the temperature of char particle, T_c, is calculated separately, using a heat balance around the char particle and the surrounding gas as:

$$\frac{2}{d_c} \frac{d}{dT} (T_c - T) + \varepsilon_m \sigma (T_c^4 - T^4) = r^* M_c q_{\text{char}} / (\pi d_c^2 \cdot C_{\text{ch}}) \quad (V.41)$$

where ε_m is the emissivity of the char particle (taken as 1.0 Field, et al., 1967), λ is the thermal conductivity of the surrounding gas and σ is the Stefan-Boltzman constant. The heat generated during combustion is removed by immersed cooling coils in the bed. Water is the cooling medium. Bed to cooling tubes heat transfer coefficient used in the model is selected from experimental data and is in the range of 0.0054 to 0.011 cals/sec, cm2. °C (40 to 80 Btu/hr.ft2.°F). Correlations of bed-wall heat transfer coefficient are also available for the estimation (Wender and Cooper, 1958; Wen and Leva, 1956).

8. Freeboard Reactions:

Char combustion, SO_2 absorption and NO_x reduction reactions take place in the freeboard. Heat generated by combustion and heat carried by the flue gases are removed by the cooling coils present in the freeboard. The hydrodynamics in the freeboard is different from that in the bed. There are no bubbles present in the freeboard. Any
Fig. 5 Two Modes of Solids Mixing

<table>
<thead>
<tr>
<th>CATEGORY I</th>
<th>CATEGORY II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bulk circulation)</td>
<td>(local mixing)</td>
</tr>
<tr>
<td>GROSS MIXING</td>
<td>DRIFT MOTION</td>
</tr>
</tbody>
</table>

- Particle trajectory after the passage of the bubble.
Fig. 6 Schematic Illustration of the Solid Phase Model

- **X**: wt. fraction carbon
- **T**: temperature
- **w\text{mix}**: solids mixing rate
- **w\text{net}**: net flow rate of solids
unburnt volatiles from the bed would be burnt in the freeboard.

The freeboard region is divided into a number of compartments of equal size. To estimate the compartment size in the freeboard region, the Peclet number is calculated using the Reynolds number in the freeboard region by the following correlation (Wen and Fan, 1974)

\[N_{Re} = \frac{D_t \overline{U}_o \rho_g}{\mu_g} \] (V.42)

\[N_{Pe} = \overline{U}_o \frac{D_t}{E_z} \] (V.43)

\[N_{Sc} = \frac{\mu_g}{D \rho_g} \] (V.44)

\[\frac{1}{N_{Pe}} = \frac{1}{N_{Re}} \frac{N_{Sc}}{N_{Re} N_{Sc}} \frac{1}{192} \] for \(N_{Re} < 2000 \) (V.45)

\[\frac{1}{N_{Pe}} = \frac{3 \times 10^7}{N_{Re}} + \frac{1.35}{1.8} \] for \(N_{Re} > 2000 \) (V.46)

Knowing the axial dispersion coefficient, \(E_z \), the average compartment size in the freeboard is calculated as:

\[\Delta Z = \frac{2 E_z}{\overline{U}_o} \] (V.47)

The concentrations of gaseous species vary with each compartment although the concentrations are uniform (completely mixed) within each compartment. Knowing the average height of each compartment above the bed surface, the solids entrainment rate at that height is calculated. Residence time of solids in each compartment is given by \(\Delta Z/(\overline{U}_o - U_T) \) where \(\Delta Z \) is the compartment size. Solids hold-up in each compartment is then obtained from

Solids hold-up in each compartment = (upward+downward) flow rate of solids x residence time of solids in that compartment (V.48)

Depending on the residence time of particles in the freeboard, and the char particles burning time, char particles will either be partially
or completely burnt, and the partially burnt char particles are elutriated. The burning time of a char particle is estimated from the equation (Field, et al. 1967):

\[t_b = \text{burning time of a char particle} \]

\[= \frac{\rho_{c,\text{ch}} R_g T_m d_c^2}{(96 \phi D P_{O_2})} \]
VI. MODEL DESCRIPTION

1. Elutriation Calculations:

A mathematical model has been developed for elutriation in a fluid bed system with size reduction and recycle to the bed of some or all of the fines from the primary and/or secondary cyclones. The model takes into account the variation in the rates of elutriation and size reduction with particle size. If the size reduction is due to more than one process, then there will be a separate value of size reduction constant for each process. In general, the rates of size reduction by the separate processes in each size fraction are additive.

A mass balance is performed for each size fraction, \(x \), as follows:

\[
W_{f,x} + W_{x-1} + a_x k_x M_x
\]

(feed rate) (gain of particles (gain of fines produced from next largest by abrasion) size due to size reduction)

\[
= M_x \frac{W_D}{M_b} + R_x q_{1x}^{(1-p_1)} + R_x q_{2x}^{(1-q_{1x})} (1-p_2)
\]

(withdrawal rate (particles captured by primary cyclone but not recycled) (particles captured by secondary cyclone but not recycled))

\[
+ R_x (1-q_{1x})(1-q_{2x}) + k_x M_x
\]

(particulate emission) (loss of weight due to production of fines by abrasion or to chemical reaction)

\[
+ W_x
\]

(loss of particles to next smallest size due to size reduction) (VI.1)
The rate of loss of particles to the next smallest size, \(W_x \), is determined by considering a mass of particles \(M_x \), at size, \(d_x \), and calculating the mass remaining \(M_{x+1} \) after the size has been reduced to \(d_{x+1} \). The rate of reduction is written as:

\[
\frac{dM}{dt} = -k_x M(U_o - U_m) \tag{VI.2}
\]

The rate of size reduction between \(d_x \) and \(d_{x+1} \) is:

\[
\frac{dd_x}{dt} = \frac{-k_x}{3} d_x (U_o - U_m) \tag{VI.3}
\]

Dividing equation (VI.2) by equation (VI.3) gives:

\[
\frac{dM}{dd_x} = \frac{dM}{d_x} \tag{VI.4}
\]

and integrating between \(d_x \) and \(d_{x+1} \) gives:

\[
\frac{M_{x+1}}{M_x} = \left(\frac{d_{x+1}}{d_x} \right)^3 \tag{VI.5}
\]

This fraction is the proportion of the total feed to the \(x \)th size fraction which is reduced in diameter to \((x+1)\)th size fraction.

Therefore, \(W_x = [W_{x-1} + a_x K(U_o - U_m)M_o + W_{x-1}](\frac{d_{x+1}}{d_x})^3. \tag{VI.6} \)

For the coarsest size fraction, \(W_{x-1} \) is zero.

The entire calculation is iterative, starting from initial guesses of the withdrawal rate of solids from the bed and the size distribution of particles in the bed. Mass balance is performed on each successive close size fraction, starting from the coarsest. The bed weight in each size fraction and hence the total bed weight and bed size distribution is calculated. The procedure is repeated till the calculated bed weight equals the given bed weight. The elutriation rate, fines collection/recycle rates, particle emission and size distribution of elutriated particles are then calculated.
2. Material and Energy Balances:

Material balances are made for volatile gases, CO, CO\(_2\), oxygen, SO\(_2\) and NO in the bubble and emulsion phases within the bed and in the freeboard. Depending on the concentration of oxygen in the emulsion phase, different material balances are used as shown below.

Case A: Volatiles concentration in the emulsion phase is not zero because of insufficient oxygen in emulsion phase for complete combustion of volatiles. Char and CO combustion do not proceed in the emulsion phase.

EMULSION PHASE EQUATIONS

Oxygen:

\[Y_{E,i} = 0.0 \] \hspace{1cm} (VI.7)

Volatile s:

\[F_{EM,i} Y_{E,v,i} = F_{EM,i-l} Y_{E,v,i-l} - a_l Y_{E,v,i-l} \]

(Volatiles out) (Volatiles in) (Volatiles Exchanged to Bubble Phase)

\[\frac{F_{EM,i-l} Y_{E,i-l} + a_l Y_{B,i}}{X_{O2}} + R_{v,i} \]

(Volatiles Burnt) (Volatiles Released during Devolatilization)

where \[a_l = K_{BE,i} A_t,i \Delta z_i \varepsilon_{B,i} \frac{P}{R T_i}, \text{ gmole/sec} \] \hspace{1cm} (VI.9)

Carbon monoxide:

\[F_{EM,i} Y_{E,CO,i} = F_{EM,i-l} Y_{E,CO,i-l} - a_l Y_{E,CO,i} \]

(CO out) (CO in) (CO Exchanged to Bubble Phase)
\[
\frac{F_{EM,i-1} Y_{E,i-1} + a_1 Y_{B,i}}{X_{O_2}} \cdot V_{CO} + R_{CO,i} \\
\]

(CO Produced by Volatiles (CO Released during Burning) Devolatilization)

\[+ 2 a_4 Y_{E,CO_2,i} \quad \text{(VI.10)} \]

(CO Produced by C-CO_2 Reaction)

where

\[a_4 = a_m A_t, i \Delta Z, i (1 - e, i - e_{tube}, i) \frac{k_{CO_2,i}}{R T, i} \frac{P}{g E, i} X_i, \text{ g mole/sec (VI.11)} \]

\[a_m = \frac{6 \rho_b (1 - e_{mf})}{d \rho_c \rho_{ch} C_{ch}} \quad \text{(VI.12)} \]

Carbon dioxide:

\[F_{EM,i} Y_{E,CO_2,i} = F_{EM,i-1} Y_{E,CO_2,i-1} - a_1 (Y_{E,CO_2,i} - Y_{B,CO_2,i}) \quad \text{(CO_2 out)} \]

(\text{CO_2 in}) \quad \text{(CO_2 Exchanged to Bubble Phase)}

\[+ R_{CO_2,i} \quad a_4 Y_{E,CO_2,i} \quad \text{(VI.13)} \]

(CO_2 Released during Devolatilization) (CO_2 Consumed by C-CO_2 Reaction)

Bubble Phase Equations

Oxygen:

\[F_{BM,i} Y_{B,i} = F_{BM,i-1} Y_{B,i-1} - a_1 Y_{B,i} \quad \text{(Oxygen out)} \]

(Oxygen in) \quad (Oxygen Exchanged to Emulsion Phase)
\[-a_2 \gamma_{B,i} - \frac{a_1 \gamma_{E,CO,i}}{2} - a_1 \gamma_{E,v,i} X_{O_2,c}\] (VI.14)

(Oxygen Consumed by Char) (Oxygen Consumed by CO Exchanged to Volatiles Exchanged to Bubble Phase)

where

\[a_2 = a_m A_{t,i} \Delta Z_i (\varepsilon_{c,i} - \varepsilon_{B,i}) k_{CB,i} \frac{P}{R_{TB,i}} x_i\] (VI.15)

Carbon dioxide:

\[
F_{BM,i} \gamma_{B,CO_2,i} = F_{BM,i-1} \gamma_{B,CO_2,i-1} - a_1 (\gamma_{B,CO_2,i} - \gamma_{E,CO_2,i})
\]

(CO_2 out) (CO_2 in) (CO_2 Exchanged to Emulsion Phase)

\[+ a_2 \gamma_{B,i} + a_1 \gamma_{E,CO,i} + a_1 \gamma_{E,v,i} V_{CO_2}\] (VI.16)

(CO_2 Produced by Char Combustion) (CO_2 Produced by CO Combustion) (CO_2 Produced by Volatiles Burning)

FREEBOARD EQUATIONS

Oxygen:

\[Y_{O,i} = 0.0\] (VI.17)
Volatiles:

\[F_{MT} Y_{v,i} = F_{MT} Y_{v,i-1} - F_{MT} Y_{0,i-1} / X_{O_2} \]
(Volatiles out) (Volatiles in) (Volatiles Burnt)

Carbon monoxide:

\[F_{MT} Y_{CO,i} = F_{MT} Y_{CO,i-1} + 2 a_4 Y_{CO_2,i} \]
(CO out) (CO in) (CO Produced by C-CO_2 Reaction)

\[+ F_{MT} (Y_{v,i-1} - Y_{v,i}) Y_{CO} \]
(CO Produced by Volatiles Burning)

where \[a_4 = \frac{P}{R T_{B,i}} \frac{nc_{e_i} d^2_i}{n_{C_1} c_{e_1} CO_2,i} \text{ g mole/sec} \]

Carbon dioxide:

\[F_{MT} Y_{CO_2,i} = F_{MT} Y_{CO_2,i-1} - a_4 Y_{CO_2,i} \]
(CO_2 out) (CO_2 in) (CO_2 Consumed by C-CO_2 Reaction)

Case B: Sufficient oxygen is present in the emulsion phase for the combustion of volatiles.

EMULSION PHASE EQUATIONS

Volatiles:

\[Y_{E,v,i} = 0.0 \]

\[Y_{E,v,i} = Y_{E,v,i-1} - a_1 (Y_{E,i} - Y_{B,i}) \]

(Oxygen out) (Oxygen in) (Oxygen Exchanged to Bubble Phase)
\[
- a_3 Y_{E,i} / \phi_{E,i} - \left(F_{EM,i-1} Y_{E,v,i-1} + R_{v,i} \right) X_{O_2}
\]

(Oxygen consumed by Char)

\[
- k Y_{E,CO,i} \left(\frac{Y_{E,i}}{1 + 24.7 Y_{E,i}} \right) / 2.0
\]

(Oxygen Consumed by CO)

\[
\text{where}
\]
\[
k = 3 \times 10^{10} \exp(-16000/RT_i) \left(\frac{P}{R T_i} \right)^{1.8} Y_{H_2O}^{0.5} \times A_{t,i} \frac{\Delta Z_i (1 - \epsilon_{c,i} - \epsilon_{tube,i}) \epsilon_{mf}}{R_{g E,i}} \text{g mole/sec (VI.24)}
\]

\[
a_3 = a_m A_{t,i} \frac{\Delta Z_i (1 - \epsilon_{c,i} - \epsilon_{tube,i}) k c_{E,i} P}{R g E_i} \text{X}_i
\]

(VI.25)

Carbon monoxide:

\[
F_{EM,i} Y_{E,CO,i} = F_{EM,i-1} Y_{E,CO,i-1} - k Y_{E,CO,i} \left(\frac{Y_{E,i}}{1 + 24.7 Y_{E,i}} \right)
\]

(CO out) (CO in) (CO Burnt)

\[
+ (F_{EM,i-1} Y_{v,i-1} + R_{v,i}) V_{CO} + R_{CO,i}
\]

(CO Produced by Volatiles Burning) (CO Released during Devolatilization)

\[
+ 2 a_4 Y_{E,CO_2,i} + a_3 (2 - \frac{2}{\phi_{E,i}}) Y_{E,i}
\]

(VI.26)

(CO Produced by C-CO$_2$ Reaction) (CO Produced by Char Combustion)

Carbon dioxide:

\[
F_{EM,i} Y_{E,CO_2,i} = F_{EM,i-1} Y_{E,CO_2,i-1} - a_1 (Y_{E,CO_2,i} - Y_{E,CO_2,i})
\]

(CO$_2$ out) (CO$_2$ in) (CO$_2$ Exchanged to Bubble Phase)
\begin{align*}
+ k \frac{Y_{E,CO,i}}{(1+24.7 Y_{E,i})} + R_{CO_2,i} \\
(\text{CO}_2 \text{ Produced by CO} \text{ Combustion}) \hspace{2cm} (\text{CO}_2 \text{ Released during Devolatilization})
\end{align*}

\begin{align*}
- \varepsilon_4 Y_{E,CO_2,i} + a_3 \left(\frac{2}{\varepsilon_{E,i}} - 1\right) Y_{E,i} \\
(\text{CO}_2 \text{ Consumed by C-\text{CO}_2 \text{ Reaction})} \hspace{2cm} (\text{CO}_2 \text{ Produced by Char Combustion})
\end{align*}

\section*{Bubble Phase Equations}

\textbf{Oxygen:}

\begin{align*}
F_{BM,i} Y_{B,i} &= F_{BM,i-1} Y_{B,i-1} - a_1 (Y_{B,i} - Y_{E,i}) \\
\hspace{0.5cm} \text{(Oxygen out)} & \hspace{1cm} \text{(Oxygen in)} \hspace{1.5cm} \text{(Oxygen Exchanged to Emulsion Phase)}
\end{align*}

\begin{align*}
- a_2 Y_{B,i} &= - a_1 Y_{E,CO,i/2} \\
\hspace{0.5cm} \text{(Oxygen Consumed by Char Combustion)} & \hspace{1cm} \text{(Oxygen Consumed by CO Exchanged to Bubble Phase)}
\end{align*}

\textbf{Carbon dioxide:}

\begin{align*}
F_{BM,i} Y_{B,CO_2,i} &= F_{BM,i-1} Y_{B,CO_2,i-1} - a_1 (Y_{B,CO_2,i} - Y_{E,CO_2,i}) \\
\hspace{0.5cm} \text{(CO}_2 \text{ out)} & \hspace{1cm} \text{(CO}_2 \text{ in)} \hspace{1.5cm} \text{(CO}_2 \text{ Exchanged to Emulsion Phase)}
\end{align*}

\begin{align*}
+ a_2 Y_{B,i} &= + a_1 Y_{E,CO,i} \\
\hspace{0.5cm} \text{(CO}_2 \text{ Produced by Char Combustion)} & \hspace{1cm} \text{(CO}_2 \text{ Produced by CO Combustion)}
\end{align*}

\section*{Freeboard Equations}

\textbf{Volatiles:}

\begin{align*}
Y_{V,i} &= 0.0 \\
(\text{VI.30})
\end{align*}

\textbf{Oxygen:}

\begin{align*}
F_{MT} Y_{O,i} &= F_{MT} Y_{O,i-1} - F_{MT} Y_{V,i-1} X_{O_2} \\
\hspace{0.5cm} \text{(Oxygen out)} & \hspace{1cm} \text{(Oxygen in)} \hspace{1.5cm} \text{(Oxygen Consumed by Volatiles)}
\end{align*}
\(\frac{17.5 Y_{O,i}}{1 + 24.7 Y_{O,i}} \) / 2 - \(a'_2 Y_{O,i}/ \phi_{B,i} \) \hspace{1cm} (VI.31)

\((\text{Oxygen Consumed by CO Combustion})\)

\((\text{Oxygen Consumed by Char Combustion})\)

\(k' = 3 \times 10^{10} \exp(-16000/RT_i) \left(\frac{P}{R T_i} \right) 1.8 Y_{D,5} t_i \Delta t_i (1 - e^{tube_i}) \) g mole/sec \hspace{1cm} (VI.32)

\(a'_2 = \left(\frac{P}{R T_{B,i}} \right) N_c i \frac{\pi d^2}{g_{B,i}} c_i \) g mole/sec \hspace{1cm} (VI.33)

Carbon monoxide:

\(F_{MT} Y_{CO,i} = F_{MT} Y_{CO,i-1} + 2 a'_1 Y_{CO,i} \) \hspace{1cm} (CO out)

\(F_{MT} Y_{CO,i} = F_{MT} Y_{CO,i-1} - \) \hspace{1cm} (CO in)

\(2 a'_1 Y_{CO,i} \) \hspace{1cm} (CO Produced by C-CO\(_2\) Reaction)

\(+ F_{MT} Y_{v,i-1} V_{CO} \) \hspace{1cm} (CO Produced by Volatiles Burning)

\(+ a'_1 Y_{O,i} \left(2 - \frac{2}{\phi_{B,i}} \right) \) \hspace{1cm} (CO Produced by Char Combustion)

\(- k' Y_{CO,i} \left(\frac{17.5 Y_{O,i}}{1 + 24.7 Y_{O,i}} \right) \) \hspace{1cm} (VI.34)

\((\text{CO Consumed by C-CO}_2 \text{ Reaction})\)

\((\text{CO Consumed by C-CO}_2 \text{ Reaction})\)

Carbon dioxide:

\(F_{MT} Y_{CO_2,i} = F_{MT} Y_{CO_2,i-1} - \) \hspace{1cm} (CO\(_2\) out)

\(F_{MT} Y_{CO_2,i} = F_{MT} Y_{CO_2,i-1} - a'_1 Y_{CO_2,i} \) \hspace{1cm} (CO\(_2\) in)

\(a'_1 Y_{CO_2,i} \) \hspace{1cm} (CO\(_2\) Consumed by C-CO\(_2\) Reaction)

\(+ a'_1 Y_{C,i} \left(\frac{2}{\phi_{B,i}} - 1 \right) \) \hspace{1cm} (CO\(_2\) Produced by Char Combustion)

\(+ a'_1 Y_{C,i} \left(\frac{2}{\phi_{B,i}} - 1 \right) \) \hspace{1cm} (CO\(_2\) Produced by Char Combustion)

\(+ k' Y_{CO_2,i} \left(\frac{17.5 Y_{O,i}}{1 + 24.7 Y_{O,i}} \right) \) \hspace{1cm} (VI.35)

\((\text{CO}_2 \text{ Produced by Char Combustion}) \)
The boundary conditions are:

\[Y_{B,1} = 0.21 \frac{F_{MF}}{F_{MT}} \]
\[(VI.36) \]

\[Y_{E,1} = Y_{B,1} \]
\[(VI.37) \]

\[Y_{E,V,1} = 0.0 \]
\[(VI.38) \]

\[Y_{E,CO,1} = 0.0 \]
\[(VI.39) \]

\[Y_{E,CO_2,1} = 0.0 \]
\[(VI.40) \]

\[Y_{B,CO_2,1} = 0.0 \]
\[(VI.41) \]

SULFUR DIOXIDE AND NITRIC OXIDE BALANCES

Nitrogen and sulfur content in the volatile products released during devolatilization is a function of bed temperature. Volatile nitrogen increases from 20 to 70% as temperature rises from 800 to 1300°C (Fine, et al. 1974) and is expressed as:

\[V_N = 0.001T - 0.6 \]
\[(VI.42) \]

Similarly the sulfur content in the volatiles is expressed as:

\[V_S = 0.001T - 0.6 \]
\[(VI.43) \]

Sulfur and nitrogen left in the residual char are released as \(\text{SO}_2 \) and \(\text{NO} \) when char burns. The following material balances are made for sulfur dioxide and NO in the bed and in the freeboard.

EMULSION PHASE EQUATIONS

\[\frac{F_{EM,i} Y_{E,SO_2,i}}{(SO_2 \text{ out})} = \frac{F_{EM,i-1} Y_{E,SO_2,i-1}}{(SO_2 \text{ in})} - a_1(Y_{E,SO_2,i} - Y_{B,SO_2,i}) \]
\[(SO_2 \text{ Exchanged to Bubble Phase}) \]
\[-a_{E,SO_2,i} Y_{E,SO_2,i} + R_{E,SO_2,c,i} + R_{E,SO_2,V,i}\] (VI.44)

(SO$_2$ Released during Char Combustion)

(SO$_2$ Released during Volatiles Combustion)

(SO$_2$ Absorbed by Limestone)

where

\[a_{E,SO_2,i} = A_{t,i} \Delta Z_i (1-\varepsilon_{c,i} - \varepsilon_{\text{tube},i})(1-\varepsilon_{\text{mf}}) k_{v_1} (\frac{P}{g_{T_i}}), \text{gmole/sec (VI.45)}\]

\[F_{EM,i} Y_{E,NO,i} = F_{EM,i-1} Y_{E,NO,i-1} - a_1(Y_{E,NO,i} - Y_{B,NO,i})\] (NO out)

(NO in) (NO Exchanged to Bubble Phase)

\[-a_{E,NO,i} Y_{E,NO,i} + R_{E,NO,c,i} + R_{E,NO,V,i}\] (VI.46)

(NO Reduced by Char)

(NO Released during Char Combustion)

(NO Released during Volatiles Combustion)

where

\[a_{E,NO,i} = a_m A_{t,i} \Delta Z_i (1-\varepsilon_{c,i} - \varepsilon_{\text{tube},i}) k_{E,NO,i} \frac{P}{g_{T_{E,i}}} X_i, \text{gmole/sec (VI.47)}\]

BUBBLE PHASE EQUATIONS

\[F_{BM,i} Y_{B,SO_2,i} = F_{BM,i-1} Y_{B,SO_2,i-1} - a_1(Y_{B,SO_2,i} - Y_{E,SO_2,i})\] (SO$_2$ out)

(SO$_2$ in) (SO$_2$ Exchanged to Emulsion Phase)

\[-a_{B,SO_2,i} Y_{B,SO_2,i} + R_{B,SO_2,c,i} + R_{B,SO_2,V,i}\] (VI.48)

(SO$_2$ Absorbed by Limestone)

(SO$_2$ Released during Char Combustion)

(SO$_2$ Released during Volatiles Combustion)

where

\[a_{B,SO_2,i} = A_{t,i} \Delta Z_i (\varepsilon_{c,i} - \varepsilon_{B,i})(1-\varepsilon_{\text{mf}}) k_{v_1} (\frac{P}{g_{T_i}}), \text{gmole/sec (VI.49)}\]
\[
F_{BM,i} Y_{B,NO,i} = F_{BM,i-1} Y_{B,NO,i-1} - a(B,NO,i) (Y_{B,NO,i} - Y_{E,NO,i})
\]
(NO out) (NO in) (NO Released during Char Combustion) (NO Released during Volatiles Combustion)

\[
- a(B,NO,i) Y_{B,NO,i} + R_{B,NO,C,i} + R_{B,NO,V,i}
\]
(VI.50)

\[a_{B,NO,i} = 0.1 A_t,i \Delta Z_i (c_{i} - \varepsilon_{tube,i}) k_{B,NO,i} \frac{p}{R T_{B,i} X_{i}} \text{, gmoles/sec} \]
(VI.51)

FREEBOARD EQUATIONS

\[
F_{MT} Y_{SO_2,i} = F_{MT} Y_{SO_2,i-1} + R_{SO_2,i} - a_{SO_2,i} Y_{SO_2,i}
\]
(SO\(_2\) out) (SO\(_2\) in) (SO\(_2\) Released) (SO\(_2\) Absorbed by Limestone)

\[a_{SO_2,i} = \frac{6 \pi d_{e,i}^2 k_{vi}}{R g_{B,i} N_{A,i}} \text{, gmoles/sec} \]
(VI.53)

\[
F_{MT} Y_{NO,i} = F_{MT} Y_{NO,i-1} + R_{NO,i} - a_{NO,i} Y_{NO,i}
\]
(NO out) (NO in) (NO Released) (NO Reduced by Char)

\[a_{NO,i} = \frac{2 \pi d_{e,i}^2 k_{NO,i}}{R g_{B,i} N_{A,i}} \text{, gmoles/sec} \]
(VI.55)

The boundary conditions are:

\[Y_{E,SO_2,1} = Y_{B,SO_2,1} = Y_{E,NO,1} = Y_{B,NO,1} = 0.0 \]
(VI.56)

SOLID PHASE MATERIAL BALANCE

The overall material balance for the solids in ith compartment in terms of net solids flow, \(W_{net,i}\), is given by:
The boundary condition is \(W_{\text{net},1} = 0.0 \).

The material balance for the carbon in \(i \)th compartment is given as follows by introducing the backmix flow, \(W_{\text{mix}} \):

\[
(W_{\text{mix},i} - W_{\text{net},i})X_{i+1} = [W_{\text{mix},i-1} - W_{\text{net},i-1} + W_{\text{mix},i} - W_{D,i}]X_i + W_{\text{mix},i-1} = r_i - W_{fci, i} C_{ch} M_c \quad (VI.58)
\]

where \(X_i \) is the weight fraction of carbon in the \(i \)th compartment.

The boundary conditions are:

\[
W_{\text{mix},1} = W_{\text{mix},M1} = 0.0 \quad (VI.59)
\]

The energy balance for the \(i \)th compartment is given as follows:

\[
C_S(W_{\text{mix},i} - W_{\text{net},i})T_{i+1} - C_S(W_{\text{mix},i-1} - W_{\text{net},i-1} + W_{\text{mix},i} - W_{D,i}) + C_g F\lambda T_i + r_i q_{ch} + \sum g_{E,i} q_{V, CO} + g_{B,i} q_V + g_{CO,i} q_{CO}\]

(heat in from \((i+1)\)th cell) (heat generated by char combustion)

(heat in from \((i-1)\)th cell) (heat generated by volatiles combustion in emulsion phase) (heat generated by CO combustion)

(heat generated by volatiles combustion in bubble phase)
-q_{cal} W_{fa,i} + (W_{fa,i} C_{sf} + W_{fc,i} C_{cf}) T_{sf,i}

(heat of calcination) (sensible heat of solids feed)

= A_{t,i} \Delta Z_{i} a_{HE,i} U_{i} (T_{i} - T_{w,i}) + A_{t,i} \Delta Z_{i} a_{HEW,i} U_{w,i}

(heat removed by cooling tubes) (T_{i} - T_{wall,i}) \quad (VI.60)

(heat losses through the walls)

ENERGY BALANCE IN THE FREEBOARD

The following equations are obtained for energy balance in the freeboard in ith compartment.

(W_{ent,i} C_{s} + C_{gm} F_{MT}) T_{i-1} + x_{i} q_{ch}

(heat in from (i-1)th compartment) (heat generated by char combustion)

+ g_{E,i} q_{V,CO} + g_{CO,i} q_{CO}

(heat generated by volatiles combustion) (heat generated by CO combustion)

- (W_{ent,i} C_{s} + C_{gm} F_{MT}) T_{i} = A_{t,i} \Delta Z_{i} a_{HE,i} U_{i} (T_{i} - T_{w,i})

(heat out from ith cell) (heat removed by cooling tubes)

+ A_{t,i} \Delta Z_{i} a_{HEW,i} U_{w,i} (T_{i} - T_{wall,i}) \quad (VI.61)

(heat losses through the walls)

Some of the correlations used in simulation are listed in Table 2.

Table 3 indicates the assumed values for the parameters involved in the model. If, in future, proper and accurate correlations become available, these parameters can be substituted with those correlations. The logic diagrams for the computer programs are shown in Figures 7, 8 and 9.

Symbols are explained in Appendix VIII. Algebraic equations obtained are solved using IBM 360 computer available at WVU.
TABLE 2. CORRELATIONS USED IN SIMULATION

Heat capacity of solids, \(C_S = 0.215 \) cals/gm.°C

Heat capacity of gas, \(C_{gm} = 6.8 + 0.5 \times 10^{-3} \) t(°C)

Density of limestone = 2.4 gms/cm³

Density of coal = 1.4 gms/cm³

Minimum fluidization velocity,

\[
U_{mf} = \left(\frac{\mu}{d_p^3 g} \right) \left[33.7^2 + \frac{0.0408 d_p^3 (\rho_s - \rho_g) g^{1/2}}{\mu^2} \right] - 33.7, \text{ cm/sec}
\]

Bubble diameter, \(D_B = D_{BM} - (D_{BM} - D_{BO}) \exp(-0.3 Z/D_t), \text{ cm} \)

where

\[
D_{BM} = 0.652 \left(A_t \frac{U_o - U_{mf}}{n_d} \right)^{0.4}
\]

\[
D_{BO} = 0.347 \left(A_t \frac{U_o - U_{mf}}{n_d} \right)^{0.4}
\]

Bubble velocity, \(U_B = U_o - U_{mf} + 0.711 \sqrt{g D_B} \)

Bubble fraction, \(\varepsilon_B = (U_o - U_{mf})/U_B \)

Cloud fraction, \(\varepsilon_C = \varepsilon_B \frac{\alpha_b}{(\alpha_b - 1)} \)

where \(\alpha_b = \varepsilon_{mf} U_B/U_{mf} \)

Void fraction at minimum fluidization, \(\varepsilon_{mf} = 0.5 \)
TABLE 3. PARAMETERS IN THE MODEL

Bed to tube heat transfer coefficient, $U = 0.00765$, cals/sec\cdotcm2°K

Freeboard heat transfer coefficient = $(1/3)U$, cals/sec\cdotcm2°K

Bed to wall heat transfer coefficient = 0.0021, cals/sec\cdotcm2°K

Solids mixing parameter, $f_w = 0.075$-0.3

Fraction of wake solids thrown into the freeboard, $f_{sw} = 0.1$-0.5

Cooling water temperature = 300°K

Wall heat transfer coefficient in the freeboard = 0.00025 cals/sec
Fig. 7 Logic Diagram for the Computation of Limestone Entrainment
Fig. 8 Logic Diagram for the Computation of Char Entrainment
Elutriation Results

Design Data → Input → Operating Conditions

Combustion

Hydrodynamics

Yes

Initial Values

ETCA, Ti, Xi

Ti, old : Ti

Hydrodynamics

Gas Phase Material Balance

ETCG : \(\frac{O_2 \text{ in} - O_2 \text{ out}}{\text{Stoichiometric } O_2} \)

Subroutine

CRRRECT

No

ETCA : ETCG

Yes

Carbon Balance

Xi

Gas Phase Balance

Energy Balance \(\Rightarrow T_i \)

\[TNORM = \frac{\sum |T_i, old - T_i|}{M} \]

\[TAV = \frac{\sum T_i}{M} \]

No

TNORM \(\leq 1\% TAV \) → Yes

Fig. 9 Logic Diagram for Combustion Calculations
Fig. 9 (Continued).
VII. RESULTS AND DISCUSSION

The validity of the proposed fluidized bed combustor model is tested under a set of operating conditions based on the experimental data reported by the National Coal Board, England (1971), Gibbs and his associates in Sheffield (1975), the Exxon Research and Engineering Company, U.S.A. (1976) and NASA Lewis Research Center, Cleveland, Ohio (1978). Table 4 gives the dimensions of the various beds simulated and the configuration of heat-exchange coils used.

Fig. 10 shows the size distributions of the particles in the bed and in the elutriated material for a given feed size distribution of particles under the set of operating conditions specified in the figure. The solid lines in Fig. 10 representing the results of the model simulation indicate close agreement with experimental data. The fine particles in the feed are entrained by the gas stream leaving the bed, and hence the bed particle size is larger than that of the feed particles. The fine particles are splashed into the freeboard by the bursting bubbles at the bed surface. Bigger particles return to the bed while the smaller ones are completely elutriated.

Fig. 11 shows the results of the simulation on axial bed temperature profiles for two different configurations of cooling tubes in the bed. The difference in the profiles is due to the solids mixing pattern in the bed. When horizontal tubes having closer horizontal pitch distance between the tubes are used, solids mixing is considerably hindered, resulting in steeper temperature profile in the bed. The solids mixing is promoted significantly by the action of bubbles lifting the solids in the wake while ascending. If internals are closely packed in the
Table 4. Dimensions of FBC Examined

<table>
<thead>
<tr>
<th>Type</th>
<th>Bed Cross-section (sizes in cms)</th>
<th>Specific surface area cm^2/cm^3 bed</th>
<th>Tube Outside Diameter cms</th>
<th>Vertical Pitch cms</th>
<th>Horizontal Pitch cms</th>
<th>Tube configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCB</td>
<td>90</td>
<td>0.15</td>
<td>3.4</td>
<td>9.9</td>
<td>11.4</td>
<td>Horizontal staggered</td>
</tr>
<tr>
<td>Gibbs, et al. (1975)</td>
<td>30</td>
<td>$-\pm$</td>
<td>1.25</td>
<td>$-\pm$</td>
<td>$-\pm$</td>
<td>$-\pm$</td>
</tr>
<tr>
<td>Exxon Mini Plant</td>
<td></td>
<td>0.205</td>
<td>1.9</td>
<td>$-\pm$</td>
<td>5.5</td>
<td>Horizontal serpentine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.149</td>
<td>1.9</td>
<td>$-\pm$</td>
<td>$-\pm$</td>
<td>Vertical coils</td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td>0.1744</td>
<td>1.25</td>
<td>8.0</td>
<td>2.86</td>
<td>Horizontal In line</td>
</tr>
</tbody>
</table>

[A = 52.8 E = 61.3 B = 29.2 F = 62.7 C = 22.7 D = 25.9]
BED HEIGHT = 67.1 cms
BED TEMP. = 749 °C
FLUIDIZING VEL. = 120 cms/sec
LIMESTONE 18
NO RECYCLE

Fig. 10 Size Distributions of the Particles in the FBC
Fig. 11 Simulation of Axial Bed Temperature Profile
bed, the free moving, coalescing bubbles are constrained and may be broken as they impinge on the walls of the tubes. Hence the solids movement is retarded which in turn affects the temperature profile. In the model the solids mixing in the bed is represented by the mixing coefficient, f_w. For poor solids mixing f_w takes on low values (0.05-0.2) and for vigorous mixing it takes high values (0.2-0.4).

A simulation of the operation of NASA fluid bed combustor is presented in Fig. 12. Again in this combustor, closely packed horizontal tubes are employed for heat removal. As indicated earlier, the solids mixing is poor which is clearly shown by the non-uniform temperature profile and the non-uniform carbon concentration profile in the bed. Carbon concentration peaks at the coal feed point and decreases rapidly within the bed as combustion proceeds. Because of the higher concentration of carbon and oxygen near the coal feed point near the distributor, the combustion rate and the heat release rate are higher than the remaining part of the bed. This results in a high temperature zone near the coal feed point. On the other hand, in the freeboard region, though combustion takes place, due to the heat losses through the wall, the temperature drops.

The concentration profiles of oxygen in the bubble and emulsion phases together with the volatiles concentration in the bed are shown in Fig. 13. Experimental observations reported by Gibbs, et al. (1975) on the time averaged oxygen concentrations along the bed height are also shown. Time averaged concentration is neither the bubble phase nor the emulsion phase concentrations since they are obtained from gas analyzer probes. The peaks and valleys of the analyzer response which
Fig. 12 Temperature and Carbon Concentration Profiles in the Bed
GIBBS ET AL. (1975)
TIME AVERAGED O₂ CONC.

EXCESS AIR : 0%

FLUIDIZING VEL. : 90 cms/s

BED TEMP. : 800°C

BED HT. (EXPANDED) : 61 cms

B : BUBBLE PHASE

E : EMULSION PHASE

Fig. 13 Oxygen Concentration Profile in the Bed
correspond to that of bubble and emulsion phase oxygen concentrations respectively are averaged to obtain the concentration profile.

Near the coal feed point, a large portion of the volatiles is released in the emulsion phase due to the rapid devolatilization of coal. These volatiles immediately burn consuming the available oxygen in the emulsion phase. The oxygen concentration in the emulsion phase is quickly reduced to zero. The volatiles in the emulsion phase are exchanged with the gas in the bubble phase where they are burnt completely. The excess volatiles move up to top compartments while they are burnt on the way. Thus, the oxygen concentration decreases gradually in the bubble phase along the bed height.

Fig. 14 shows the concentration profiles of CO$_2$, CO and volatiles in the bubble and emulsion phases. The concentrations of CO and volatile products in the bubble phase are zero since complete combustion of these gases is assumed in this phase. The experimental data shown are the time averaged concentrations of CO$_2$ and CO in the bed. Near the coal feed point, the volatiles released in the emulsion phase burn to form carbon monoxide, the concentration of which increases along the combustor height. As long as volatiles are present in the emulsion phase the combustion of char and CO does not take place, whereas the C-CO$_2$ reaction takes place. Hence the CO$_2$ concentration in the emulsion phase along the bed height decreases until all the volatiles are burnt. Once CO and char combustion start, CO$_2$ concentration increases in the emulsion phase. On the other hand, CO$_2$ concentration in the bubble phase increases gradually as a function of the bed height indicative of the progressive combustion of char and volatiles in the bubble phase.
Fig. 14 CO, CO₂ & Volatiles Concentration Profiles in the Bed
In regard to the absorption of SO\textsubscript{2} by the limestone present in fluidized bed combustors, the percentage absorption increases with an increase in the Ca/S ratio. Ca/S ratio is the most significant operating variable determining the reduction of SO\textsubscript{2} in the flue gas. Stoichiometrically, one mole of calcium is needed to capture one mole of sulfur. But experimental evidences indicate that even with a Ca/S ratio of 3, sulfur capture is not complete. This is due to the fact that as SO\textsubscript{2} reacts with fresh calcined limestone, an impervious layer of CaSO\textsubscript{4} is formed surrounding the particle and thereby rendering the particle ineffective in capturing SO\textsubscript{2} further. At Ca/S ratio of 1.2, SO\textsubscript{2} capture efficiency is about 60 percent (Fig. 15). SO\textsubscript{2} retention efficiency improves to 93 percent when Ca/S ratio is increased to 3.3. The experimental data and the calculated result from the proposed model are shown in the figure demonstrating good agreement between the two. The current EPA regulation on SO\textsubscript{2} emission (1.2 lbs. SO\textsubscript{2} per million Btu burnt) corresponds to a SO\textsubscript{2} retention efficiency of around 72 percent for 2.75 percent sulfur coal (Pittsburgh coal). From Fig. 15, a minimum Ca/S ratio of around 1.8 is needed based on the model calculation to meet the EPA requirements for the set of operating conditions specified in the figure.

The effect of operating temperature on SO\textsubscript{2} retention is shown in Fig. 16. An optimum temperature range of 800 to 850°C can be observed in which the SO\textsubscript{2} retention efficiency is maximum. At lower temperatures the rate of SO\textsubscript{2} capture is low, resulting in a lower sulfur retention efficiency. At higher temperatures, plugging of the pores occurs due to rapid formation of CaSO\textsubscript{4} around the outer shell
Fig. 15 Effect of Ca/S Ratio on SO₂ Retention

- **LIMESTONE 18 (-1680 μm)**
- **FLUIDIZING VELOCITY = 120 cms/sec**
- **BED TEMPERATURE = 850 °C**
- **BED HEIGHT = 67 cms**
- **NCB DATA**
- **PREDICTED**
Fig. 16 Effect of Temperature on SO₂ Retention

LIMESTONE 18 (-1680 μm)

FLUIDIZING VELOCITY = 120 cms/sec

Ca/S RATIO = 2.2

BED HEIGHT = 67 cms
Fig. 17 Effect of Fluidizing Velocity on SO₂ Retention

- HCB DATA
- PREDICTED
- LIMESTONE 18 (-1680 μm)
- BED TEMPERATURE = 800 °C
- BED HEIGHT = 67 cms
- Ca/S RATIO = 2.2
and reduces the effective specific surface area of the limestone particles resulting in a lower SO_2 retention efficiency. The agreement between the model predictions and the experimental data is satisfactory.

Fig. 17 shows the effect of fluidizing velocity on sulfur retention efficiency. At low velocities, elutriation is small and hence the average bed particle size is small. This implies a greater reactivity of the limestone particles. Also, the gas and solids residence times are increased. Hence a higher SO_2 retention efficiency is obtained. But, at higher fluidizing velocities, entrainment is large, and the particles entrained are also larger. Bed particle sizes are consequently larger resulting in lower reactivities. At higher superficial velocities, residence time is also short. A combination of these effects results in a lower sulfur dioxide retention efficiency. Fig. 18 shows the SO_2 concentration profiles obtained from simulation of the NASA combustor. Near the coal feed point, because of the combustion of volatiles, a large proportion of SO_2 is released into the emulsion phase. A high concentration of SO_2 is seen at this location. SO_2 is then absorbed by the calcined limestone particles in the bed and its concentration in the emulsion phase decreases as a function of height above the distributor. The gases leaving the bed surface come in contact with the fine limestone particles entrained into the freeboard, and sulfur capture is appreciable in the freeboard region. Also, in the case of NASA combustor, since the cross sectional area of the freeboard region increases as a function of bed height, the gas and solids residence time in the freeboard increases; hence the SO_2 retention is high and its concentration in the freeboard is low.
Figure 18: SO$_2$ Concentration Profile in the Combustor

- **Pressure:** 5.15 atm.
- **Excess Air:** 63.9%
- **Bed Temperature:** 878°C
- **Limestone:** 1359 (−2830 µm)
The effect of bed temperature on NO emission is shown in Fig. 19. The average carbon concentration in the bed— which is closely related to NO reduction—is also shown in the figure. NO concentration at the exit in the flue gas increases with the bed temperature while the average carbon concentration in the bed decreases. At low temperatures, NO formed is reduced by the large amount of char in the bed. At higher temperatures, the NO emission increases since the char content is low affecting the NO-char reaction rate. At temperatures above 825°C, the NO emission plateaus off. This is due to the fact that while the NO reduction rate by char above this temperature becomes fast, the char content of the bed is significantly lowered. EPA regulation limits the NO emission to 0.7 lbs per million Btu of heat released. This limit corresponds to a NO concentration of about 970 ppm in the exit gas under the conditions specified in the figure. Hence it is clearly demonstrated that fluidized bed coal combustors can meet the current EPA NO\textsubscript{x} emission standard.

Fig. 20 is an example of the NO concentration profiles in the bubble and emulsion phases. Data points are the time averaged NO concentrations obtained experimentally (Gibbs et al, 1975) near the wall and at the center of the bed. The NO concentration near the wall is higher than that at the center of the bed. The probability of a probe sampling the bubble is higher at the center and the emulsion near the wall since the proportion of the bubbles is small near the walls. These results indicate that NO is preferentially formed in the emulsion phase due to the release and subsequent combustion of volatiles in the emulsion phase.
Fig. 19 Effect of Temperature on NO Emission
Fig. 20 NO and Carbon Concentration Profiles in the Bed
Higher concentrations of NO in the emulsion phase near the coal feed point are the results of rapid evolution and combustion of volatiles from coal in this region. The NO concentration in the bubble phase increases because of char and volatiles combustion. Fig. 20 also indicates the NO concentrations in the freeboard. In the freeboard both char combustion and NO reduction take place. When the char burns NO is released from the nitrogen contained in the char. These two competing reactions determine the total NO emission at the outlet of the combustor.
VIII. SENSITIVITY OF THE MODEL PARAMETERS

The most important parameters in the model are the solids mixing parameter \(f_w \), the fraction of wake solids thrown into the freeboard \(f_{sw} \), and the bed to tube heat transfer coefficient \(U \). The effects of these parameters on the temperature profile in the bed are shown in Fig. 21, 22 and 23. For this parametric study, the bed dimensions and cooling location coils are similar to the NASA fluid bed combustor (Table 4). In future when more accurate correlations are developed these new correlations should be used for estimation of these parameters in the model. Fig. 21 shows the effect of \(f_w \) on the temperature profile in the bed. Low values of \(f_w \) represent poor solids mixing. When solids mixing is poor, most of the volatiles are released near the coal feed point. Combustion of these volatiles causes a rise in the temperature of the bed in the neighborhood of the solids feed point. As \(f_w \) increases, solids mixing becomes more vigorous, and heat liberated by the combustion of volatiles near the feed point is immediately dissipated by the rapidly mixing solids. Because of improved mixing, the bed temperature profile becomes uniform.

The extent of freeboard reactions depends on the solids hold up in the freeboard. Solids hold-up in turn depends on the amount of solids thrown up into the freeboard by the bursting bubbles at the bed surface. The rate of entrainment of solids from the bed surface, \(F_0 \), may be given by (Yates and Rowe, 1977).

\[
F_0 = A_t (U_o - U_{mf}) f_w (1 - \varepsilon_{mf}) \rho_s f_{sw} \text{ gm/sec} \quad \text{(VIII.1)}
\]
Fig. 21 Effect of Solids Mixing on the Bed Temperature Profile
For a set of operating conditions, increasing the value of f_{sw} increases the solids splashing rate at the bed surface. If a large portion of char leaves the bed, char elutriation from the combustor will also be large. This will result in lower combustion efficiency, and hence a lower temperature in the bed. The temperature drop in the freeboard decreases as f_{sw} increases because of increased combustion in the freeboard. This is clearly illustrated in the Fig. 22. It should be borne in mind that the NASA fluidized bed combustor is a small unit and heat losses from the wall in the freeboard are considerable. If the bed is bigger in size than that is used here for simulation, the heat losses through the walls will be minimal. Also, with good insulation, heat losses can be reduced. In large commercial combustors, if the entrainment is increased, combustion of char in the freeboard will also increase resulting in higher temperatures in the freeboard. Hence it is seen that the parameter f_{sw} is very critical and has to be carefully evaluated in order to properly account for the freeboard reactions.

Fig. 23 is a parametric study of the effect of bed to tube heat transfer coefficient on the temperature profile in the bed. Changes in the value of the heat transfer coefficient do not significantly affect the shape of the temperature profile but affect the level of bed temperature. As can be seen from Fig. 23, if the actual heat transfer coefficient were 0.00765 cal/sec.cm2°C (56 Btu/hr.ft2.°F), assuming a lower heat transfer coefficient of 0.0063 cal/sec.cm2°C (46 Btu/hr.ft2.°F) would result in a temperature difference of about 40°C above the actual temperature. So it is apparent that an accurate
Fig. 22 Effect of Solids Entrainment on the Temperature Profile
Fig. 23 Effect of Bed to Tube Heat Transfer Coefficient on the Bed Temperature
estimation of the heat transfer coefficient for a wide range of design is critical to make accurate predictions of bed temperatures.

Fig. 24 brings out the effect of bubble size (or the compartment size, since bubble size is same as compartment size) on the bed temperature profile. When a single bubble diameter is used as an adjustable parameter, a small value for the bubble diameter overestimates the combustion rate in the bed. This is because of increased mass transfer of oxygen to the emulsion phase from the bubble phase. This results in steep temperature profiles. As the bubble diameter is increased, the profile becomes less steep and also the average temperature decreases because of less combustion in the bed. Fig. 24 also indicates the predictions from the present work compared with experimental data. Clearly it is seen that bubble size cannot be assumed as an arbitrary parameter, and the coalescence of bubbles has to be incorporated in any realistic FBC model. The effect of the location of cooling tubes on the bed temperature profile is shown in Fig. 25 by moving the heat exchange zone. In this calculation, the other variables are kept constant. It appears that by properly adjusting the location of the cooling coils, the bed temperature can be maintained uniform.
NASA DATA
--- VARYING BUBBLE SIZE (PRESENT WORK)

EQN. V.36

PRESSURE = 5.15 atm.
EXCESS AIR = 64%
EXPANDED BED HEIGHT = 142 cms
C : COOLING TUBES

Fig. 24 Effect of Bubble Size (or: Compartment Size) on the Bed Temperature Profile
Fig. 25: Effect of location of Cooling Tubes on the Bed Temperature Profile
IX. CONCLUSIONS

The following conclusions can be drawn from this study:

1. The agreement between the simulated results and the experimental data attest to the validity of the proposed model for the fluid bed coal combustion and of the assumptions made.

2. The elutriation phenomenon is taken into consideration in the model. The results of simulation on elutriation agree well with the experimental data.

3. The model confirms the importance of the role of solids mixing in maintaining a uniform bed temperature. Poor solids mixing results in nonuniform temperature profile and carbon concentration profile in the bed. The poor mixing is accounted for by f_w, the solids mixing parameter in the model. This important parameter in the model also accounts for the devolatilization of coal. The assumption of a major portion of the volatiles being released near the feed point is justified by the concentrations of NO, O_2, and CO observed experimentally near the coal feed point.

4. Although a simple approach is taken to calculate the bubble size through internals (and the results seem reasonable), a proper bubble size correlation in the presence of cooling tubes with different configurations needs to be developed. Bubble size cannot be assumed as an adjustable parameter, and bubble coalescence has to be considered.

5. Attention has to be focused on the evaluation of the solids mixing parameter f_w, the fraction of wake solids thrown into the freeboard f_{sw}, and the bed to tube heat transfer coefficients. A parametric study of these variables indicates the necessity of accurate estimation for properly accounting for solids mixing.
freeboard reactions and bed temperature profile.

6. Although the validity of the two phase theory has been questioned for very large particles (> 2000 \(\mu \text{m} \)) and very small particles (< 50 \(\mu \text{m} \)), the predicted results indicate that the proposed two phase model can effectively simulate the performance of the FBC.

7. The concentration profiles of \(\text{O}_2 \), \(\text{CO} \), \(\text{CO}_2 \) and volatiles computed based on the model are in accordance with the experimental observations.

8. NO (nitrogen oxide) emission is shown to be dependent on the operating temperature. NO emission can be maintained below the EPA limits by maintaining a higher concentration of carbon in the bed and in the freeboard. NO concentrations in the bed indicate that most of the NO is formed in the vicinity of the coal feed point.

9. In operation of a FBC a balance has to be made between the combustion efficiency, the carbon loss, higher \(\text{SO}_2 \) retention and lower NO emission. Based on the analysis, the approximate optima are found to be (i) for the temperature range between 800 to 850\(^\circ \text{C} \), (ii) for the velocity between 90 to 100 cm/sec, (iii) for the particle sizes below 3000 \(\mu \text{m} \), and for the excess air between 10 to 25%.
REFERENCES

APPENDIX I
ELUTRIATION PROGRAM

A GENERAL MODEL FOR FBC ELUTRIATION CALCULATIONS
PROGRAMMED BY
RENGA RAJAN
AT
WEST VIRGINIA UNIVERSITY

REAL MC, MH2, MS, MO2, MN2, MON, MH2O, MSO2, MH2S, MCO, MCO2, MCAO, GAS, MV6, S
COMMON /A/ ZHE(30), AHE(30), DTUBE(30), PV(30), PH(30), ZW(30),
1 AIB(30), VHF(30), DVF(30), DVBEFF(30), UTAS(30), UFIC(30),
2 EMF, RG, GP, TILMF, HLF, PAV, TAUV, MO2, ROCH, ROBED, D2AV, VHF, XM, XAV, ETCC,
3 DPSVB, PNUMB, DCUPB, DCWMB, U0, GAS, HTS
COMMON /C/ DIA(30), FRACTA(30), FRACTC(30), DP(30), FRL(30), FRA(30),
1 LWF(30), Q1(30), Q2(30), RHI(30), W(30), E(30), ENTA(30), RELU(30),
2 NENTC(30,30), FRAEN(30), FRAEL(30), C(30),
3 DATA MC, MH2, MS, MO2, MN2, MON, MH2O, MSO2, MH2S, MCO, MCO2, MCAO, GAS, MV6, S
DATA RHOC, RHOASH/I, 4, 1.4/
RHOASH = 2.4
RHOAD = 82.05
G = 980.1
PI = 3.141593

CALL DESIGN
READ(5,1000) NDP, (DIA(I), I=INDP)
READ(5,1001) (FRACTA(I), I=INDP)
READ(5,1001) (FRACTC(I), I=INDP)
DP(I) = DIA(I)
SUMA = 0.0
SUMB = 0.0
SUMC = 0.0
SUMD = 0.0
DO 10 I = 2, NDP
DP(I) = (DP(I-1)+DIA(I)) * 0.5
SUMA = SUMA + FRACTA(I) / DP(I)
SUMB = SUMB + FRACTA(I) * DP(I)
SUMC = SUMC + FRACTC(I) / DP(I)
SUMD = SUMD + FRACTC(I) * DP(I)
10 CONTINUE
DASVF = 1./SUMA
DAWVF = 1./SUMB
DCSVF = 1./SUMC
DCWVF = 1./SUMD
LIMESTONE COMPOSITION.

READ(5,1010) NAME1, NAME2, XCAO, XMGO, XSI02, XCO2

COMPOSITION AND NET HEATING VALUE OF COAL

XCF : FIXED CARBON
XCV : VOLATILE CARBON
XH : HYDROGEN
XS : SULPHUR
XO : OXYGEN
XN : NITROGEN
XM : MOISTURE

----------- DRY BASIS -----------

READ(5,1010) NAMEC1, NAMEC2, XC1, XH1, XS1, XO1, XN1, XM1

OPERATING CONDITIONS 1 (RED CONDITION)

READ(5,1001) HMF, HLF, PV, TAV

OPERATING CONDITION 2 (SOLIDS AND GAS FEEDS)

READ(5,1001) HC, LA, C12, C14, FII, EEXAIR

CALCULATION OF VOLATILES YIELD AND THE COMPOSITION OF VOLATILES

WW = 0.2*EXP(100.*XW-10.9)
R = EXP(26.41-3.76*XN+LOG(TAV-273.)) + 0.015*XH*10.*XW
U = UX(1.-XU-XA)
RN = 1.6-0.01*XAV
IF (RN .GT. 1.) RN = 1.0
IF (RN .LT. 0.) RN = 0.0
RS = RN
RO = 0.0
RH = 0.0
CH4 = 0.201-0.469*XW+0.241*XW*XW
H2 = 0.157-0.868*XW+1.338*XW*XW
CO2 = 0.135-0.900*XW+1.901*XW*XW
CO = 0.423-2.653*XW+4.845*XW*XW
H2O = 0.409-2.389*XW+4.554*XW*XW
TAR = -3.3257+2.279*XW-13.88*XW*XW
HTAR = XH*(1.-RH)*(1.-XW) - XH*(XH/16.)*XH*(XH/16.)*XH*(XH/16.)*XH
QTAR = XG*(1.-XG) - XG*(XG/14.)*XG*(XG/14.)*XG*(XG/14.)*XG
H2 = 0.014-0.005*XW+0.01*
CH4 = XH*CH4/16.0
H2 = XH*H2/2.0
CO2 = UX*CO2/44.0
H20 = UX*H20/18.0
CTAR = V*Y - HTAR - OTAR
TAR = (CTAR+HTAR+OTAR)*AMTAR
COV = HC*HMF
COV2 = HC*HMF
COV3 = HC*HMF
XCV = CTAR + (CH4+C02+C0)*12.0

XCF = XC - XCV

RC = XCF / XC

COALC = XC / 12.0

COALH = XC

COALQ = XQ / 16.0

COALN = XN / 14.0

COALS = XS / 32.0

CHARC = RC * COALC

CHRH = RH * COALH

RCHAR = RC * COALC

CHRD = RH * COALH

CHARS = RS * COALS

R = 1.0 - V - XW

CCHAR = CHARC/12.0/RCHAR

HCHAR = CHARN*1.0/RCHAR

GCHAR = GCHAR*16.0/RCHAR

NCHAR = NCHAR*14.0/RCHAR

SCHAR = SCHAR*32.0/RCHAR

MAIR = 0.21*MO2+(1.0-0.21)*MN2

A2 = XH/MH2*2+XS/MS+XN/MN2+XQ/MQ2

FMTH = WCDA*(1.0-XW)*R2/0.21

IF (EXAIR .GT. 0.) FMF = ATB*(1.0)*UO*PAV/RH/TAV

UO = FMF*RG*TAV/PAV/ATB(1)

FM = FMF*(1.0-0.21)+(XC/MC+XH/MH2+XS/MS+XN/MN2+XQ/MQ2)*(1.0-XW)-1.

1XW/MH20 = WCDA+FMTH*0.21*EXAIR*MO2

MGAS = GFLOW/FMO

FMF : AVERAGE FLOW RATE OF GAS IN THE BED

RHOCH : DENSITY OF CHAR

IF (CAS.EQ.0.0) A1 = 0.85/CAS

IF (CAS .GT. 0.0) A1 = 0.4

RHOBED = (1.0-XQ2+XCAO/MCAO*A1*MCASO4)*RHOAD

IF (CAS .EQ. 0.0) RHOBED = RHOAD

WRITE (6) NAMEL1, NAMEL2, XCAO, XMGO, XSI02, XCO2,

* DIA(I), FRACTA(I) = 1, ND

WRITE (6) DASVF, DAWMF

WRITE (6) NAMEL1, NAMEL2, CHCF, XC, XH, XN, XS, XQ, XW, XA, YN, U

WRITE (6) NAMCF, NAMC2, XCF, XCV, XH, XN, XS, XQ, XW, XA, YN, U

WRITE (6) NAMC1, NAMC2, XCF, XCV, XH, XN, XS, XQ, XW, XA, YN, U

WRITE (6) DCSVF, DCSMF

IF (HLF .EQ. 0.0) VHF = VOLUME(HLMF)

IF (HLF .GT. 0.0) VH = VMF*(1.0-EMF)*RHOBED

CALL ELUT

WRITE (6) OPCF

ORIGINAL PAGE IS OF POOR QUALITY
180. WRITE (6,RES)
181. 1000 FORMAT(12,/,(8F9.0))
182. 1001 FORMAT(F9.0)
183. 1010 FORMAT(2A4/(SF9.0))
184. 2000 FORMAT (6.E10)
185. 1lt. ±000 FORMAT(12,/,(8F9.0))
186. 182. FORMAT(SF9.0)
187. 183. FORMAT(2A4/(SF9.0))
188. 184. FORMAT ('O'v1X,2A4,10X,'VC\ = ',F6.3,1OX,'VM\ = ',F6.3,10X,
189. 1e5. v'XS102
190. 244.XX,'0',<T41,FB.4,TSIF.4))
191. 192. 2010 FORMAT('O',SX,'SURFACE VOL MEAN DIA\ OF ADDITIVES FEED
192. 2020 FORMAT ('O',iXr2A4t3XY'XCF
193. 2030 FORMAT ('0',TA1,'DIAMETER
194. 2040 FORMAT('O',5X,'SURFACE VOL MEAN DIA\ OF COAL FEED = DCSVF
195. 2050 STOP,97.
196. 10000 STOP
197. 198. COMMON /A/ ZHE(30),AHE(30),OTUBE(30),PV(30),PH(30),ZB(30),
199. 200. 1ATBD30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTC(30),
200. 201. 2EHF,RG,0.0,HLF+HLF+PAV+TAV+FM0+RHOCH,RHOBD,DZAV+UMF+XAV+ETCC,
201. 202. 3DPSVBDPWMB,DCSVBECWMBtUO,MGAS,MTB
202. 203. COMMON /C/ DIA(30),FRAC(A30),FRACTC(30),DP(30),FRC(30),FRA(30),
203. 204. 1WF(30),QI(30),DQ2(30),BI(30),W(30),J(30),E(30),ENTC(30),ELUA(30),
204. 205. 2ENTC(30,30),FRAEN(30),FRAEL(30),CU(30),
205. 206. 3PFA(30),GFLOW,MCAL,AD,WE,AS,WEUA,CELW,EF,XT,CF,
206. 207. 4XAXWRCHARR,CHARR,WDIS,RHOC,HFR,NDFP
207. 208. C
208. 209. C CALCULATION OF THE CROSS SECTIONAL AREA GIVEN THE HEIGHT ABOVE
210. 211. C
211. 212. DO 10 J = 1 , MTB
212. 213. IF (ZI ,QI, ZB(J)) GO TO 10
213. 214. RJMl = SQRT (ATB(J-I) / PI)
214. 215. AI = (ZI - ZB(J-I)) / (ZB(J) - ZB(J-I))
215. 216. BI = SQRT (ATB(J) / ATB(J-I)) - 1.0
216. 217. RI = (1.0 + AI * BI) * RJMI
217. 218. RTI = 2.0 * RI
218. 219. ATI = PI * RI ** 2
219. 220. GO TO 10
220. 221. 10 CONTINUE
221. 222. 20 CONTINUE
222. 223. RETURN
223. 224. END
224. 225. SUBROUTINE AREA (ZI, DTM, ATI)
225. 226. REAL MCM
226. C
227. C THIS SUBROUTINE COMPUTES BURNING TIME OF A CHAR PARTICLE
227. 228. C
228. 229. EM=1.0
229. 230. SGM=1.36E-12
230. 231. INDX=0
231. 232. DTG= 100.0
232. 233. TP=T
233. 234. MC = 12.0
234. 235. DO 100 I=1,20
235. 236. ETSMAX=0.001*TP
236. 237. AKS=2710.0*EXP(-35700.0/1.986/TP)
237. 238. TAV = (TP+T)*S
238. 239. 240. 2000 FORMAT (6.E10)
240. 241. 1lt. ±000 FORMAT(12,/,(8F9.0))
241. 242. 182. FORMAT(SF9.0)
242. 243. 183. FORMAT(2A4/(SF9.0))
243. 244. 184. FORMAT ('O'v1X,2A4,10X,'VC\ = ',F6.3,1OX,'VM\ = ',F6.3,10X,
244. 1e5. v'XS102
245. 245.XX,'0',<T41,FB.4,TSIF.4))
245. 246. 187. 2010 FORMAT('O',SX,'SURFACE VOL MEAN DIA\ OF ADDITIVES FEED = DASVF
246. 188. 190. FORMAT (O',6X,'SURFACE VOL MEAN DIA OF COAL FEED = DCSVF
247. 192. 2020 FORMAT ('O',iXr2A4t3XY'XCF
248. 2030 FORMAT ('0',TA1,'DIAMETER
249. 2040 FORMAT('O',5X,'SURFACE VOL MEAN DIA OF COAL FEED = DCSVF
250. 2050 STOP,97.
251. 10000 STOP
252. 198. COMMON /A/ ZHE(30),AHE(30),OTUBE(30),PV(30),PH(30),ZB(30),
253. 199. 1ATBD30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTC(30),
254. 200. 2EHF,RG,0.0,HLF+HLF+PAV+TAV+FM0+RHOCH,RHOBD,DZAV+UMF+XAV+ETCC,
255. 201. 3DPSVBDPWMB,DCSVBECWMBtUO,MGAS,MTB
256. 202. 4XAXWRCHARR,CHARR,WDIS,RHOC,HFR,NDFP
257. 208. C
258. C CALCULATION OF THE CROSS SECTIONAL AREA GIVEN THE HEIGHT ABOVE
259. C THE DISTRIBUTOR
260. C
261. C
262. DO 10 J = 1 , MTB
263. IF (ZI ,QI, ZB(J)) GO TO 10
264. RJMl = SQRT (ATB(J-I) / PI)
265. 215. AI = (ZI - ZB(J-I)) / (ZB(J) - ZB(J-I))
266. 216. BI = SQRT (ATB(J) / ATB(J-I)) - 1.0
267. 217. RI = (1.0 + AI * BI) * RJMI
268. 218. RTI = 2.0 * RI
269. 219. ATI = PI * RI ** 2
270. 220. GO TO 10
271. 10 CONTINUE
272. 20 CONTINUE
273. RETURN
274. END
275. SUBROUTINE AREA (ZI, DTM, ATI)
276. REAL MCM
277. C
278. C THIS SUBROUTINE COMPUTES BURNING TIME OF A CHAR PARTICLE
279. C
280. EM=1.0
281. SGM=1.36E-12
282. INDX=0
283. DTG= 100.0
284. TP=T
285. MC = 12.0
286. DO 100 I=1,20
287. ETSMAX=0.001*TP
288. AKS=2710.0*EXP(-35700.0/1.986/TP)
289. TAV = (TP+T)*S
0 = 0.26 * (TAV / 1800.) * 1.75 / P

COND = 0.632E-5 * SQRT(TAV) / (I. + 245./TAV * 1.**(-12./TAV))

Z = 2500. * EXP(-12400./TAV)

IF (DC .LE. 0.005) PHI = (2.*Z+1.)/(Z+1.)

IF (DC .GT. 0.005 .AND. DC .LE. 0.10) PHI = 1./(Z+1.) * ((2.*Z+1.)

IF (DC .GT. 0.10) PHI = 1.0

Q = 7900.0*(2./PHI-1)+2340.0*(2.-2./PHI)

AKF = 24.*PHI*D/(DC*RG*TAV)

AKR = (RG*TAV/HC)/(1./AKS+1./AKF)

RHS = AKR*P*Y02*MCHG/(RG*TAV) - EM*SIGN*(TP**4-T**4)

ETS = TP - T - RHS*DC/(2.0*COND)

CALL CRRECT(I,INDX,DX,X,NEW,E1,E2,E,EMAX)

IF (INDX.EQ.2) GO TO 110

100 CONTINUE

WRITE (6, 4000)

4000 FORMAT ('O',10X,'TP CALCULATION HAS NOT CONVERGED. S.NO.=4000',/)
88

300. 2ENTC(30,30), FRAE(30), FRAEL(30), CU(30),
301. SFA(30), CELU, WCOAL, WAD, WB, WC, WELUA, CELU, EFF, XC, XCF,
302. 4XQ, XQ, RCHAR, CCHAR, WDI, RHOAD, RHH, HFB, CDP
303. DIMENSION IARR(30)
304. C
305. C AXIAL VARIATION OF BED CROSS SECTION
306. C
307. READ (5,1000) A1, A2, A3, A4
308. READ (5,1001) MB, (ZB(J), ATB(J)), J = 1, MB
309. C
310. C IARRNG 1 2 3
311. C 1 -------- VERTICAL INLINE ARRANGEMENT
312. C 2 -------- VERTICAL STAGGERED ARRANGEMENT
313. C 3 -------- HORIZONTAL INLINE ARRANGEMENT
314. C 4 -------- HORIZONTAL STAGGERED ARRANGEMENT
315. C
316. C
317. C HEAT EXCHANGE TUBES.
318. READ (5,1002) MTHE (ZHE(J+1), AHE(J), DTUBE(J), PV(J), PH(J),)
319. 1IARR(J), J = 1, MTHE
320. DO 100 J = 1, MTHE
321. IF (AHE(J) .GE. 0.0) GO TO 100
322. IF (DTUBE(J) .EQ. 0.0) GO TO 100
323. AHE(J) = F1 * DTUBE(J) / (PH(J) + PV(J)).
324. 100. CONTINUE
325. WRITE (6,2000) A1, A2, A3, A4
326. WRITE (6,2001)
327. WRITE (6,2002) (ZB(J), ATB(J)), J = 1, MB
328. WRITE (6,2003)
329. WRITE (6,2004) (ZHE(J+1), AHE(J), DTUBE(J), PV(J), PH(J), IARR(J),
330. 1J = 1, MTHE)
331. Z1 = ZB(1)
332. ABE(1) = ATB(1)
333. D(1) = SORT(4.0 * ABE(1) / PI)
334. D(1) = 0.0
335. D(1) = D(1) = 0.0
336. ZHE(1) = 0.0
337. DZAV = 30.0
338. N6 = IFIX(ZB(MTB)/DZAV)
339. 37. DO 10 I = 1, N
340. Z2 = Z1 + DZAV.
341. DO 20 J = 1, MTHE
342. IF (ZHE(J) .LE. Z1 * AND. ZHE(J+1) .GE. Z2) GO TO 30
343. IF (ZHE(J) .LE. Z3 * AND. ZHE(J+1) .LT. Z2) GO TO 20
344. F1 = (Z2 - ZHE(J)) / DZAV
345. F2 = (ZHE(J) - Z1) / DZAV
346. AHE(J) = F1 * AHE(J) + F2 * AHE(J-1)
347. DIAT = F1 * DTUBE(J) + F2 * DTUBE(J-1)
348. GO TO 40
349. 30 AHE(J)
350. DIAT = DTUBE(J)
351. 40. CONTINUE
352. GO TO 50
353. 35. CONTINUE
354. CALL AREA (Z2, D, ABE(1))
355. D(1) = 0.5 * (ABED + ABE(1)) * DZAV
356. D(1) = D(1) = D(1) = (1.0 - 0.25 * AHE(J) * DIAT)
357. Z1 = Z2
358. ABE(1) = ABE(1)
CONrINUE
1000 FORMAT (4A4)
1001 FORMAT (11/8F10.0))
1002 FORMAT (11/5F10.0,11))
1003 FORMAT ('1',20X,4A4,1/)
2001 FORMAT ('0',T41,'HT.ABOVIE DISTRIBUTOR',CH',TB1,'CROSS SECTIONAL
1 'AREA OF BED',SQ.CH',1/)
2002 FORMAT (T49,F8.4,T96,F10.3)
2003 FORMAT ('0',T6,'HEIGHT',CH',T20,'SP. HEAT TRANS.AREA',SQ.CH/CU.CH',
1T9B,'DIA.BF TUBES',CH',T78,'VER.PITCH',CH',T95,'HOR.PITCH',CH',
T70, 'T113, 'TUBES ARRNGT' 1/)
2005 RETURN
END
SUBROUTINE ELUT
C
C THIS SUBROUTINE PERFORMS THE ENTRAINMENT AND ELUTRIATION CALCULATIONS,
C USING THE MASS BALANCE FOR EACH SIZE FRACTION OF THE PARTICLES
C
REAL MGAS
COMMON /A/ ZHE(30),AHE(30),DTUBE(30),PV(30),PM(30),ZB(30),
1ATB(30),UMF(30),DVE(30),DVEFF(30),UTA(30),UTC(30),
2EMF,RG0,PI,MLF,HLMF,PAV,TAV,FMO,RHOBED,DIAV,UMF,XAV,ETC,
3DP,DPV,DPMB,DCSUM,UMGAS,MTB
COMMON /C/ DIA(30),FRACTA(30),FRACTC(30),DP(30),FRC(30),FRA(30),
1WF(30),D1(30),QQ(30),BE(30),RKL(30),W(30),E(30),ENF30),ENF30),
2ENTC(30,30),FRA30),FRAEL(30,30),CU(30),
3PSA(30),GFLOW,WCDA,WEB,WEB,WEUA,CDC,XXC,XXF,
4XA*X,CHAR,CHAR,WAD,CHAR,WEV,RHOAD,TDHC,RFB,NDP
DIMENSION FFI(30),R(30),FU(30),HP(30),DPSE(30),DPWE(30),DCSE(30),
1DCEW(30),DCW(30,30),PEE(30,30),WGA(30),DEC(30)
IF (HLMF .GT. 0.0) GO TO 1
1 HLMF = 0.5*HLF
2 UMF = VOLUME(HLMF)
3 WB = UMF/(1.-EMF)*RHOBED
4 CONTINUE
5 CONTINUE
6 WFL = WCDA*XA + WAD*RHOBED/RHOB
7 BB1(I) = 0.7
8 BB2 = 0.0
9 DO 25 I = 2,NDP
20 FFI(I) = 0.0
30 IF (DP(I) ,LT. 0.0125 .AND. DP(I) .GE. 0.0063) FFI(I) = 0.2
40 IF (DP(I) ,LT. 0.0063 .AND. DP(I) .GE. 0.0031) FFI(I) = 0.2
50 IF (DP(I) ,LT. 0.0031) FFI(I) = 0.6
60 CONTINUE
70 FW = 0.075
80 FS = 0.1
90 P1 = 0.0
100 P2 = 0.0
110 IF (HLF ,EQ. 0.0) HLF = 2.0*HLMF
120 HT = HLF
130 CALL AREA(HT,DT,CSAREA)
140 RHOAD = PAV*MGAS/RG/TAV
150 VISC = 3.72E-6*TAV**0.676
160 U0 = GFLOW/CSAREA/RHOGAS
170 TDH = 0.429*X0*1.2*(11.43-1.2*ALOG(U0))
180 TDHC = TDH
190 HFB = ZB(MTB)-HLF
200 IF (TDH .GT. HFB) TDH = HFB
210 DO 10 I = 1,NDP

ORIGINAL PAGE IS
OF POOR QUALITY
CALL VEL(VISC,RHOGAS,G,RHOBED,DP(I)*UMF(I)-UTA(I))

WF(I) = FRAC(I)*WAD*RHOGAS/RHOBED + FRAC(I)*WCOAL*X

Q1(I) = 0.0
Q2(I) = 0.0
CONTINUE

WRITE(6,11) (I,UTA(I),UMF(I),I=I,NDP)

FORMAT ('0',5X,'UTA,UMF = ',R5.3)

INDEX = 0
DO 30 L = 1,100
CONTINUE

SUMA = 0.0
DO 5 I = 2,NDP
IF ((UTA(I)-UQ) .LT. 0.2*UQ) FRA(I) = 0.0
SUMA = SUMA + FRA(I)
CONTINUE

DO 15 I = 1,NDP
FRA(I) = FRA(I)/SUMA
CONTINUE

WB = 0.0
DO 40 I = 2,NDP
BB(I) = FRA(I)*WB
R(I) = 0.0
DIFF = UQ-UMF(I)
PFA(I) = FFA(I)*RK*DIFF*WB
IF (FRA(I) .EQ. 0.0) GO TO 55
CU(I) = 1.0
DO 45 K = 2,NDP
CU(K) = CU(K-1) - FRA(K)*CU(K)
CONTINUE

IF (UMF(I) .GE. UQ) DIFF = 0.0
W(I) = (WF(I)+PFA(I)+W(I-1))*DP(I+1)/DP(I)***3
DR = Q1(I)*(1.2*P1)+Q2(I)*(1.0-P1)+(1.0-P2)+(1.0-Q1(I))*(1.0-Q2(I))
IF (UMF(I) .GE. UQ) GO TO 56
ARG = -10.4*SORT(UTA(I)/UQ)*(UMF(I)/DIFF)**K0.25
E(I) = (160.0*EXP(ARG))**GFLOW
F0(I) = DIFF*CSAREA*FW*FSW*(1.-EMF)*RHOBED*FRA(I)
R(I) = F0(I)**EXP(TDHC/275.0*ALOG(E(I)*FRA(I)/F0(I)))
CONTINUE

ANR = WF(I)+PFA(I)+W(I-1)
1-W(I)-RK*DIFF*WB*FRA(I)*CU(I-1)-R(I)*DR
IF (ANR .LT. 0.0) GO TO 57
FRA(I) = FRA(I)*0.5
GO TO 12
CONTINUE

BB(I) = WB*ANR/UDIS
CONTINUE

WBC = WB + BB(I)

WRITE(6,10)I,FRA(I)*ANR,E(I),BB(I),WF(I),W(I),CU = ',I2,IP7E13.3)

FORMAT (2X,'I,FRA*ANR*E,BB,WF,W,CU = ',I2,IP7E13.3)
C WRITE (6,111) L,WB,WBC,WDIS
111 FORMAT ('0',5X,'L,WB,WBC,WDIS = ',I2,1P3E12.3)

ERR = WBC-WB
CALL CRRECT (L,INDEX,WDIS,X1,X2,WDIS,E1,E2,ERR,EWB)
IF (WDIS .LT. 0.0) WDIS = 0.0
IF (INDEX .EQ. 2) GO TO 70
DO 60 I = 1,NDP
 FRA(I) = BB(I)/WBC
60 CONTINUE
30 CONTINUE
70 CONTINUE
C USING THE GAS REYNOLDS NUMBER, PECLET NUMBER IS CALCULATED
AND HENCE THE GAS DISPERSION COEFFICIENT AND THE NO. OF
COMPARTMENTS IN THE FREEBOARD AND THE AVERAGE COMPARTMENT SIZE

REY = DT*UO*RHO*VISC
IF (REY .LT. 2000.0) GO TO 300
PECI = 3.E7/REY**2.1 + 1.35/REY**0.125
GO TO 310
300 D = 4.26*(TAU/1800.0)**1.75/PAV
SC = VISC/RHO/GAS/D
PECI = 1.0/REY/SC + REY*SC/192.
310 EZ = UO*DT*PECI
 DZ = 2.0*EZ/UO
C SOLIDS ENTRAINMENT RATE ALONG THE FREEBOARD IS CALCULATED
C HB(C) = 0.0
320 DO 340 K = 1,30
 IF (N .GT. 1) HB(K) = HB(K-1) + DZ
 IF (HB(K) .GE. TDH) HB(K) = TDH
340 CONTINUE
R(I) = 0.0
313 DIFF = UO - UMF(I)
314 IF (FRA(I) .EQ. 0.0) GO TO 340
315 IF (UMF(I) .GT. UO) GO TO 340
316 ARG = -10.4*SLRT(UTA(I)/UO)*(UMF(I)/DIFF)**0.25
317 E(I) = 18.0*EXP(ARG)*3FLOW
318 FOD(I) = DIFF*CSAREA*FSW*(1.-EMF)*RHO*FRA(I)
319 R(I) = FOD(I)*EXP(HB(K)/275.0*ALOG(E(I)*FRA(I)/FOD(I)))
320 CONTINUE
321 WENTA = 0.0
322 DO 350 I = 2,NDP
323 ENTA(I) = R(I)
324 IF (FRA(I) .EQ. 0.0 .AND. UO .GT. 0.833*UTA(I))
325 1 ENTA(I) = WF(I) + PFA(I)
326 WENTA = WENTA + ENTA(I)
327 CONTINUE
328 WEA(K) = WENTA
329 DO 350 I = 2,NDP
330 FRAEN(I) = ENTA(I)/WENTA
331 IF (FRAEN(I) .LT. 1.0E-3) FRAEN(I) = 0.0
332 CONTINUE
333 SUMA = 0.0
334 SUMB = 0.0
335 DO 370 I = 2,NDP
336 SUMA = SUMA + FRAEN(I)*DP(I)
337 SUMB = SUMB + FRAEN(I)*DP(I)
338 CONTINUE
339 DPSE(K) = 1./SUMA

ORIGINAL PAGE IS OF POOR QUALITY
92

540. DPWEZ(I) = SUMB
541. IF (HB(I) EQ. TDH) GO TO 380
542. CONTINUE
543. 380 NT = NT + 1
544. WELUA = 0.0
545. DO 80 I = 2,NDP
546. ELUA(I) = (1.-Q1(I))*X(1.-Q2(I))*EN(TA(I))
547. WELUA = WELUA + ELUA(I)
548. 80 CONTINUE
549. DO 90 I = 2,NDP
550. FRAEI(I) = ELUA(I)/WELUA
551. IF (FRAEI(I) .LT. 1.E-3) FRAEI(I) = 0.0
552. 90 CONTINUE
553. SUMA = 0.0
554. SUMB = 0.0
555. SUMC = 0.0
556. SUMD = 0.0
557. DO 100 I = 2,NDP
558. SUMA = DP(I)*FRA(I) + SUMA
559. SUMB = FRA(I)/DP(I) + SUMB
560. SUMC = DP(I)*FRAEI(I) + SUMC
561. SUMD = FRAEI(I)/DP(I) + SUMD
562. 100 CONTINUE
563. DPSUB = NT/SUMB
564. DPWMB = SUMA
565. DPWME = 1./SUMD
566. WRITE (6,101) WEDIS,WETF,WELUA,DPWSB,DPWMB,
567. 1(DP(I),FRA(I),FRAEI(I),I=2,NDP)
568. 101 FORMAT ('O',10,'WDIS,WETF,WELUA,DPWSB,DPWMB
569. ,',15F9.5)/,'O',10,'PAR,DIA,C M',T30,'BED SIZE FRACTION',T60,'ELUT.
570. SIZE FRACTION',10,'(T10, 1PE10.3,T33,1PE10.3,T63,1PE10.3,/)')
571. C
572. C
573. SIMILAR ENTRAINMENT CALCULATIONS ARE PERFORMED FOR CHAR
574. C
575. C
576. DO 210 I = 1,NDP
577. WF(I) = FRACTC(I)*WCOAL
578. FRC(I) = FRACTC(I)
579. CALL VEL(VISC,RHODAS,GRHOCH,DP(I),UMF(I),UTC(I))
580. 210 CONTINUE
581. ETCA = 0.9995
582. IN0 = 0
583. DETC = -0.001
584. EETC = 0.001
585. CENT = 0.0
586. DO 200 L = 1,30
587. 211 CONTINUE
588. SUMA = 0.0
589. DO 150 I = 2,NDP
590. IF (((UTC(I)-U0) .LT. 0.2*U0) FRC(I) = 0.0
591. SUMA = SUMA + FRC(I)
592. 150 CONTINUE
593. DO 160 I = 1,NDP
594. FRC(I) = FRC(I)/SUMA
595. 160 CONTINUE
596. XAV = ((WCOAL*RCHAR-CENT)*CCHAR(I,ETCA))/WDIS
597. CBE = XAV*WBC/CCHAR
598. CELU = 0.0
599. CENT = 0.0
600. CBEDC = 0.0
601. DO 350 I = 2,NDP
602. BB(I) = FRC(I)*CBED
603. R(I) = 0.0
604. \!DIFF = U0-UMF(I)
605. PFA(I) = FFI(I)*R(I)*DIFF*CBED/CCHAR
606. FSC = 0.01
607. IF (FRC(I) EQ. 0.0) GO TO 256
608. DO 352 K = 2,NDP
609. \!C(K) = C(K-1)-FRC(K)
610. IF (UMF(I) .GE. U0) DIFF = 0.0
611. \!W(I) = (WF(I)+PFA(I)+W(I-1))*(DP(I)+DF(I))**3
612. OR = G(I)*Q(I)+Q(I)*(Q(I)-Q(I))*Q(I)*Q(I)**2+I.-Q(I)**2
613. 250 IF (UMF(I) .GE. U0) GO TO 255
614. \!ARG = -10.4*SQRT(UTC(I)/U0)*UMF(I)/DIFF)**0.25
615. E(I) = (18.0*EXP(ARG))*DFLOW
616. FO(I) = DIFF*CSAREA*FW*FSW*(1.-EMF)*RHOBED*XAV*FRC(I)
617. R(I) = FO(I)*EXP(TDC/275.0)*ALOG(E(I)*FRC(I)/FO(I)))
618. 255 CONTINUE
619. YO2 = 0.15
620. \!RHOCCH = RHOCH*CCHAR
621. CALL ATTR(RHOCCH*XAV,DP(I),PAU,YO2,RG+TB,RKI(I))
622. ANR = WF(I)+PFA(I)+W(I-1)-W(I)
623. 410 IF (ANR .GT. 0.0) GO TO 410
624. 415 ENTC(I) = FOCI(I)
625. IF (FRC(I) *EQ. 0.0).AND. UO GT. 0.833*UTC(I)) ENTC(1,I) = WF(I)*
626. IRCHAR
627. CENT = CENT + ENTC(1,I)
628. 430 CONTINUE
629. 420 J = 2,KT
630. CF(I) = ENTC(I)/CENT
631. 430 CONTINUE
632. 415 ENTC(I,1) = FO(I)
633. IF (FRC(I) EQ. 0.0 .AND. UO GT. 0.833*UTC(I)) ENTC(I,1) = WF(I)*
634. IRAH + PFA(I)
635. CENT = CENT + ENTC(1,1)
636. 400 CONTINUE
637. C C CHAR ENTRAINMENT RATE AS A FUNCTION OF THE FREEBOARD HEIGHT IS
638. C CALCULATED TAKING INTO ACCOUNT THE DECREASING PARTICLE SIZE DUE TO
639. C CHAR COMBUSTION
640. C WEC(I) = CENT
641. DO 430 I = 2,NDP
642. DCE(I,1) = DP(I)
643. FC(I,1) = ENTC(I,1)/CENT
644. 430 CONTINUE
645. DO 420 J = 2,HT
646. CENT = 0.0
94

4040 I = 2,NDP
4041 IF (DCE(J-1,I) .GT. 0.0) GO TO 435
4042 RT = 1.0E0
4043 TB = 0.0
4044 GO TO 436.
4045 435 CONTINUE
4046 CALL VEL(VISC,RHOGAS,G,RHOCH,DCE(J-1,I),UMF(I),UTC(I))
4047 HT = HLF + HB(J)
4048 CALL AREA(HT,DT,CSAREA)
4049 UAV = GFLOW/CSAREA/RHOGAS
4050 RT = (HB(J)-HB(J-1))/ABS(UAV-UTC(I))
4051 Y02 = 0.09
4052 CALL ATTR(RHOCCH,TAY,DCE(J-1,I),PAV,Y02,RT,B,RKI(I))
4053 IF (TB .GE. RT) DCE(J,I) = (1.-RT/TB)**0.5*DCE(J-1,I)
4054 436 CONTINUE
4055 IF (TB .LE. RT) DCE(J,I) = 0.0
4056 IF (DCE(J,I) .GT. 0.0) GO TO 437
4057 ENTC(J,I) = 0.0
4058 GO TO 438.
4059 437 CONTINUE
4060 CALL VEL(VISC,RHOGAS,G,RHOCH,DCE(J,I),UMF(I),UTC(I))
4061 IF (FRC(I) .GE. 0.0) AND. (UTC(I) .GE. J0) GO TO 439
4062 CONV = 1.0
4063 IF (TB .GE. RT) CONV = 1.-(1.-RT/TB)**1.5
4064 ENTC(J,I) = ENTC(J-1,I)*(1.-CONV)
4065 GO TO 438.
4066 438 CONTINUE
4067 CALL VEL(VISC,RHOGAS,G,RHOCH,DCE(J,I),UMF(I),UTC(I))
4068 RT = HB(J)/ABS(UO-UTC(I))
4069 DIFF = UO-UMF(I)
4070 IF (UMF(I) .GE. UO) GO TO 431
4071 ARG = -10.4*SQRT(UTC(I)/UO)*((UMF(I)/DIFF)**0.25
4072 E(I) = 18.0*EXP(ARG)*GFLOW
4073 IF (FO(I) .LT. 0.0) R(I) = FO(I)**EXP(HB(J)/275.0*ALOG(E(I)*
4074 FR(I)**FO(I)))
4075 CONV = 1.0
4076 IF (TB .LT. RT) CONV = 1.-(1.-RT/TB)**1.5
4077 R(I) = R(I)*(1.-CONV)
4078 GO TO 432.
4079 432 R(I) = 0.0
4080 433 CONTINUE
4081 CENT = CENT + ENTC(J,I)
4082 44C CONTINUE
4083 WEC(J) = CENT
4084 DO 450 I = 2,NDP
4085 IF (CENT .GT. 0.0) FCE(J,I) = ENTC(J,I)/CENT
4086 IF (CENT .GT. 0.0) FCE(J,I) = 0.0
4087 450 CONTINUE
4088 WRITE(6,190)CELU,CENT,DCSVB,DCVMB,(AD(I),FR(I),DCE(J,I),FCE(J,I),
4089 I=2,NDP)
4090 CWRITE(5,190)CELU,CENT,DCSVB,DCVMB,(AD(I),FR(I),DCE(J,I),FCE(J,I),
4091 I=2,NDP)
4092 420 CONTINUE
4093 DO 460 K = 1,KT
4094 SUMA = 0.0
4095 SUMB = 0.0
4096 DO 470 I = 2,NDP
4097 IF (FCE(K,I) .GE. 0.0) SUMA = SUMA + FCE(K,I)/DCE(K,I)
4098 SUMB = SUMB + FCE(K,I)*DCE(K,I)
4099 470 CONTINUE
4100 DCSE(K) = 0.0
IF (SUMA .GT. 0.0) DCSE(K) = 1./SUMA
DCWE(K) = SUMB
CONTINUE
CELU = WEK(I)
ETCC = 1. - WDIS*XAV/((WCOAL*RCHAR-CENT)*CCHAR)
XAV = ((WCOAL*RCHAR-CENT)*CCHAR*(I-ETCC))/WDIS
C WRITE (6,180) LCBED,ETCA,ETCC,CELU,CENT
C 11P7E12.3
C WRITE (6,180) LCBED,ETCA,ETCC,CELU,CENT
C 11P7E12.3
C ERR = ETCA - ETCC
C CALL CRRECT(L,IND,DETO,X1,X2,ETCA,E,E2,ERR,ETCC)
DO 240 I = 2,NDP
FRC(I) = BB(I)/CBEDC
240 CONTINUE
200 CONTINUE
230 CONTINUE
SUMA = 0.0
SUMB = 0.0
DO 270 I = 2,NDP
SUMA = DP(I)*FRC(I) + SUMA
SUMB = FRC(I)/DP(I) + SUMB
270 CONTINUE
DCSVB = I./SUMB
DCWMB = SUMA
CONTINUE
DCWMB = SUMA
DCSVB = 1./SUMB
EFF = 1.-(WDIS*XAV+CELU*CCHAR)/(WCOAL*1.-XAV*XC)
WRITE (6,190) CELU+CENT,DCSVB,DCWMB,(DP(I),FRC(I),OCEKTI),
1FCE(KT,I),I=2,NDP)
WRITE (6,390) (9X,DPSE(I),DPWE(I),K=1,T)
WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEK(K),K=1,K)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
ERR = ETCA - ETCC
DO 240 I = 2,NDP
SUMA = DP(I)*FRC(I) + SUMA
SUMB = FRC(I)/DP(I) + SUMB
240 CONTINUE
DCSVB = 1./SUMB
DCWMB = SUMA
CONTINUE
DCWMB = SUMA
DCSVB = 1./SUMB
EFF = 1.-(WDIS*XAV+CELU*CCHAR)/(WCOAL*1.-XAV*XC)
WRITE (6,190) CELU+CENT,DCSVB,DCWMB,(DP(I),FRC(I),OCEKTI),
1FCE(KT,I),I=2,NDP)
WRITE (6,390) (9X,DPSE(I),DPWE(I),K=1,T)
WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEK(K),K=1,K)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
ERR = ETCA - ETCC
DO 240 I = 2,NDP
SUMA = DP(I)*FRC(I) + SUMA
SUMB = FRC(I)/DP(I) + SUMB
240 CONTINUE
DCSVB = 1./SUMB
DCWMB = SUMA
CONTINUE
DCWMB = SUMA
DCSVB = 1./SUMB
EFF = 1.-(WDIS*XAV+CELU*CCHAR)/(WCOAL*1.-XAV*XC)
WRITE (6,190) CELU+CENT,DCSVB,DCWMB,(DP(I),FRC(I),OCEKTI),
1FCE(KT,I),I=2,NDP)
WRITE (6,390) (9X,DPSE(I),DPWE(I),K=1,T)
WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEK(K),K=1,K)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
ERR = ETCA - ETCC
DO 240 I = 2,NDP
SUMA = DP(I)*FRC(I) + SUMA
SUMB = FRC(I)/DP(I) + SUMB
240 CONTINUE
DCSVB = 1./SUMB
DCWMB = SUMA
CONTINUE
DCWMB = SUMA
DCSVB = 1./SUMB
EFF = 1.-(WDIS*XAV+CELU*CCHAR)/(WCOAL*1.-XAV*XC)
WRITE (6,190) CELU+CENT,DCSVB,DCWMB,(DP(I),FRC(I),OCEKTI),
1FCE(KT,I),I=2,NDP)
WRITE (6,390) (9X,DPSE(I),DPWE(I),K=1,T)
WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEK(K),K=1,K)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
ERR = ETCA - ETCC
DO 240 I = 2,NDP
SUMA = DP(I)*FRC(I) + SUMA
SUMB = FRC(I)/DP(I) + SUMB
240 CONTINUE
DCSVB = 1./SUMB
DCWMB = SUMA
CONTINUE
DCWMB = SUMA
DCSVB = 1./SUMB
EFF = 1.-(WDIS*XAV+CELU*CCHAR)/(WCOAL*1.-XAV*XC)
WRITE (6,190) CELU+CENT,DCSVB,DCWMB,(DP(I),FRC(I),OCEKTI),
1FCE(KT,I),I=2,NDP)
WRITE (6,390) (9X,DPSE(I),DPWE(I),K=1,T)
WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEK(K),K=1,K)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
490 FORMAT ('0',9X,'LCBED,CEDCXAV,ETCA,ETCCCELU,CENT =',12,
1IP7EI2.3)
CALCULATION OF THE EFFECTIVE VOLUME OF THE BED GIVEN THE HEIGHT

\[N = \text{IFIX}(ZZ/DZAV) + 1 \]
\[\text{IF}(N \neq 1) N = 2 \]
\[\text{SUM} = 0.0 \]
\[\text{ZN} = \text{FLOAT}(N-1) \times DZAV \]
\[\text{DO} 100 \text{ I = 2, N} \]
\[\text{SUM} = \text{SUM} + \text{DVBEFF}(I) \]
\[\text{IF} (I \lt N) \text{ GO TO} 100 \]
\[A1 = (ZZ - ZN) / DZAV \]
\[\text{SUM} = \text{SUM} + \text{DVBEFF}(I) \times A1 \]
\[100 \text{ CONTINUE} \]

\[\text{VOLUME} = \text{SUM} \]
\[\text{RETURN} \]
\[\text{END} \]
APPENDIX II

INPUT TO ELUTRIATION PROGRAM

<table>
<thead>
<tr>
<th>Al</th>
<th>ZB(1)</th>
<th>ATB(1)</th>
<th>ZB(2)</th>
<th>ATB(2)</th>
<th>ZB(3)</th>
<th>ATB(3)</th>
<th>ZB(4)</th>
<th>ATB(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>405.0</td>
<td>62.7</td>
<td>405.0</td>
<td>81.3</td>
<td>670.0</td>
<td>280.0</td>
<td>2193.0</td>
<td></td>
</tr>
</tbody>
</table>

Al
- A2
- A3
- A4

MTB
- 4

<table>
<thead>
<tr>
<th>ZHE(2)</th>
<th>AHE(1)</th>
<th>DTUBE(1)</th>
<th>PV(1)</th>
<th>PH(1)</th>
<th>IARR(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(3)</th>
<th>AHE(2)</th>
<th>DTUBE(2)</th>
<th>PV(2)</th>
<th>PH(2)</th>
<th>IARR(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0</td>
<td>0.1744</td>
<td>1.27</td>
<td>8.0</td>
<td>2.86</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(4)</th>
<th>AHE(3)</th>
<th>DTUBE(3)</th>
<th>PV(3)</th>
<th>PH(3)</th>
<th>IARR(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(5)</th>
<th>AHE(4)</th>
<th>DTUBE(4)</th>
<th>PV(4)</th>
<th>PH(4)</th>
<th>IARR(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.0</td>
<td>0.1744</td>
<td>1.27</td>
<td>8.0</td>
<td>2.86</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(6)</th>
<th>AHE(5)</th>
<th>DTUBE(5)</th>
<th>PV(5)</th>
<th>PH(5)</th>
<th>IARR(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

MTHE
- 5

<table>
<thead>
<tr>
<th>ZHE(2)</th>
<th>AHE(1)</th>
<th>DTUBE(1)</th>
<th>PV(1)</th>
<th>PH(1)</th>
<th>IARR(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.283</td>
<td>0.238</td>
<td>0.2</td>
<td>0.168</td>
<td>0.141</td>
<td>0.119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(9)</th>
<th>AHE(10)</th>
<th>DIA(11)</th>
<th>DIA(12)</th>
<th>DIA(13)</th>
<th>DIA(14)</th>
<th>DIA(15)</th>
<th>DIA(16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0707</td>
<td>0.059</td>
<td>0.05</td>
<td>0.042</td>
<td>0.035</td>
<td>0.0297</td>
<td>0.0212</td>
<td>0.0177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHE(17)</th>
<th>AHE(18)</th>
<th>DIA(19)</th>
<th>DIA(20)</th>
<th>DIA(21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>0.010</td>
<td>0.0074</td>
<td>0.0045</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NAMEL1 NAMEL2

LIMEST13

<table>
<thead>
<tr>
<th>XCA0</th>
<th>XM80</th>
<th>XS102</th>
<th>XC02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.557</td>
<td>0.003</td>
<td>0.006</td>
<td>0.434</td>
</tr>
</tbody>
</table>

NAMEC1 NAMEC2

PTGHC80AL

<table>
<thead>
<tr>
<th>XC</th>
<th>XM</th>
<th>XN</th>
<th>XS</th>
<th>XD</th>
<th>XW</th>
<th>XA</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.754</td>
<td>0.051</td>
<td>0.015</td>
<td>0.02</td>
<td>0.076</td>
<td>0.022</td>
<td>0.084</td>
<td>0.412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MLHF</th>
<th>HLF</th>
<th>PAV</th>
<th>TAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>141.9</td>
<td>5.15</td>
<td>1151.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WCOAL</th>
<th>WAD</th>
<th>CAS</th>
<th>UO</th>
<th>FMF</th>
<th>EXAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.81</td>
<td>0.4638</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.639</td>
</tr>
</tbody>
</table>

ORIGINAL PAGE OF POOR QUALITY
The data from the table is as follows:

<table>
<thead>
<tr>
<th>MEAN</th>
<th>DATA</th>
<th>OF</th>
<th>ADDITIVES</th>
<th>FED</th>
<th>AS</th>
<th>DRY</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.25</td>
<td>0.75</td>
<td>0.12</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

The ratio of the mean to the dry is:

Mean: 0.50
Dry: 0.25
Ratio: 2.00

The cross-sectional area of the pipe is:

Cross-sectional area: 0.43

The diagram shows the various sections of the pipe with measurements and calculations.
<p>| Original Page is of Poor Quality |</p>
<table>
<thead>
<tr>
<th></th>
<th>FIREHOSE FT.</th>
<th>NPSE</th>
<th>DPIF</th>
<th>ENTRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000E+01</td>
<td>9.000E-07</td>
<td>6.139E-02</td>
<td>1.933E+02</td>
</tr>
<tr>
<td>2</td>
<td>5.643E-01</td>
<td>2.970E-02</td>
<td>3.109E-02</td>
<td>5.927E-02</td>
</tr>
<tr>
<td>3</td>
<td>1.129E-02</td>
<td>2.632E-02</td>
<td>2.521E-02</td>
<td>1.446E-02</td>
</tr>
<tr>
<td>4</td>
<td>1.381E-02</td>
<td>1.675E-02</td>
<td>2.386E-02</td>
<td>7.281E-01</td>
</tr>
</tbody>
</table>

PCIF

<table>
<thead>
<tr>
<th></th>
<th>FIREHOSE FT.</th>
<th>NPSE</th>
<th>DPIF</th>
<th>ENTRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000E+01</td>
<td>9.110E-07</td>
<td>7.726E-02</td>
<td>5.870E-01</td>
</tr>
<tr>
<td>2</td>
<td>5.643E-01</td>
<td>4.491E-02</td>
<td>5.237E-02</td>
<td>1.387E-01</td>
</tr>
<tr>
<td>3</td>
<td>1.129E-02</td>
<td>4.066E-02</td>
<td>4.673E-02</td>
<td>5.120E-02</td>
</tr>
<tr>
<td>4</td>
<td>1.381E-02</td>
<td>4.766E-02</td>
<td>5.004E-02</td>
<td>2.608E-02</td>
</tr>
</tbody>
</table>

PCIF

<table>
<thead>
<tr>
<th></th>
<th>FIREHOSE FT.</th>
<th>NPSE</th>
<th>DPIF</th>
<th>ENTRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000E+01</td>
<td>9.220E-07</td>
<td>7.726E-02</td>
<td>5.870E-01</td>
</tr>
<tr>
<td>2</td>
<td>5.643E-01</td>
<td>4.491E-02</td>
<td>5.237E-02</td>
<td>1.387E-01</td>
</tr>
<tr>
<td>3</td>
<td>1.129E-02</td>
<td>4.066E-02</td>
<td>4.673E-02</td>
<td>5.120E-02</td>
</tr>
<tr>
<td>4</td>
<td>1.381E-02</td>
<td>4.766E-02</td>
<td>5.004E-02</td>
<td>2.608E-02</td>
</tr>
</tbody>
</table>

END
APPENDIX IV

COMBUSTION PROGRAM

2. C A GENERAL MODEL OF FLUIDIZED BED COAL COMBUSTOR
3. C PROGRAMMED BY
4. C
5. C RENGA RAJAN
6. C AT
7. C WEST VIRGINIA UNIVERSITY
8. C
9. C
10. C
11. C
12. C
13. C
14. C
15. C
16. C
17. C
18. C
19. C
20. C
21. C
22. C
23. C
24. C
25. C
26. C
27. C
28. C
29. C
30. C
31. C
32. C
33. C
34. C
35. C
36. C
37. C
38. C
39. C
40. C
41. C
42. C
43. C
44. C
45. C
46. C
47. C
48. C
49. C
50. C
51. C
52. C
53. C
54. C
55. C
56. C
57. C
58. C
59. C

REAL MC, MH2, MS, MO, MN2, MH2O, MO2, MH2S, HC0, MC02, MCAC03, MCA0, MCAS04
1, MMGC03, MGO, MAIR, MB0G, MB0S, M0 NC, MNC, HNC, MNO, NFCAR, C0TAR
COMMON /A/ ZHE(IO), AHE(IO), PV(IO), PH(IO), ZF(IO), HHE(IO), DHE(IO),
DVB(I0), DWEBF(I0), FFFD(IO), ZDI(10), FD(IO), AHEAV(IO), ETUBE(I0),
2U(I0), UMF(IO), H(10), AT(10), DT(IO), T(10), ZB(10), ATB(10), YVE(10), ZAVG(10), IARR(10)
COMMON /B/ YB(10), YED(10), DB(10), DPSVB, DPWMB, DCXVB, DCHVB, DRC0, DHC0,
1HLF, V0F, PM0, PMF, UF, FF, TF, RG, BS, HSG, DFFIX, DFLU, DDIS, RHOFO, RHOBE,
2EMF, PAV, HCR, B0V0, EFFVOL, SOLVOL, TETUBE, HLMF, FTER, PM, A0, M0
3FV, FSW, D2AN, M0FEED, M0DIS, M0HE, M0B, MT, M1, MCR, IFBC, NTc
FBC DESIGN DATA
INPUT DATA FROM ENTRAINMENT CALCULATIONS
READ(5,1000) KT
READ (5,1001) (HB(K),DPSE(K),DPWE(K),WEA(K),K=1,KT),
READ(5,1001) (DCSE(K),DCWE(K),WEC(K),K=1,KT)
READ (5,1001) WDIS,VELU,CELU,EFF,DPSEV,DPWEV,DCSEV,DCWEV
CALL DESIGN
COMPOSITION OF LIMESTONE
READ(5,1010) NAME1,NAMEL2,XCAO,XMGG,XS102,XC02
COMPOSITION AND NET HEATING VALUE OF COAL
READ(5,1010) NAMEC1,NAMEC2,XC,XH,XN,XS,XO,XW,XA,XM,HCOAL,XCAO
OPERATING CONDITIONS
READ(5,1001) HLMT,HLF,PAV,TAV,TSTA,TWIN,TWOUT,TWALLA,UHEAV1,UHEAV2,
IUWALL1,IWALL2,TF,TSF,PF
READ (5,1001) WCOAL,WAD,CAS,U0,FMF,EXAIR
READ(5,1001) IGNITE,ISO2,INDEX,ITEMP,IPRES
CALL DESIGN
CALCULATION OF VOLATILES YIELD AND THE COMPOSITION OF VOLATILES
W = 0.2*(100.)*VM=10.9)
R = EXP(26.51-3.961*ALOG((TAV-273.))+0.0115*100.*VM)
V = (100.*VM - R)*0.01
RN = 1.6-0.001*VM
IF (RN .GT. 1.0) RN = 1.0
IF (RN .LT. 0.0) RN = 0.0
RS = RN
VGASS = X8*(1.-XW)*V*(1.-RS)/32.0
VGASN = X9*(1.-XW)*(1.-RN)/14.0
R0 = 0.0
RH = 0.0
CHAR = 7000.0
C0 = 26350.0
CH4 = 0.201-0.469*VM+0.24*VM**2
H2 = 0.157-0.368*VM+1.338*VM**2
CO2 = 0.135-0.900*VM+1.906*VM**2
CO = 0.423-2.653*VM+4.845*VM**2
H2O = 0.409-2.339*VM+4.554*VM**2
TAR = -3.25+7.279*VM-12.88*VM**2
HTAR = XH*(1.-RH)*V*(1.-XW) - V*(CH4/16.+2.0*H2/2.+H2O/18.0)*2.0
OTAR = XO*(1.-RO) - V*(CO2/44.+CO/28.0*0.5*H2O/18.0*0.5)*32.0
MTAR = 120.0
MTAR = (MTAR+HTAR+OTAR)/MTAR
CH4 = V*CH4/16.0
H2 = V*H2/2.0
CO2 = V*CO2/44.0
CO = V*CO/28.0
H2O = V*H2O/18.0
PTAR = V*PTAR - HTAR - OTAR
TAR = (PTAR+HTAR+OTAR)/MTAR
RUVAS = CH4+H2+TAR
COV = CO/RUVAS
120. \(CO_{2V} = \frac{CO_2}{RVGAS} \)
121. \(COV_B = \frac{CH_4 + CTAR/12.0}{RVGAS} \)
122. \(CO_2V_e = COV_e \)
123. \(X_{02} = \frac{CTAR/12.0*0.5 + HTAR/2.0*0.5 - OTAR/32.0 + VGASS + VGASN*0.5 + ICH_4*1.5 + H_2*0.5}{RVGAS} \)
124. \(X_{02C} = \frac{CTAR/12.0 + HTAR/2.0*0.5 - OTAR/32.0 + VGASS + VGASN*0.5 + ICH_4*2.0 + H_2*0.5}{RVGAS} \)
125. \(X_{CV} = -CTAR + (CH_4 + CO_2 + CO)*1.2 \)
126. \(X_{CF} = X_{CV} - X_{CV} \)
127. \(RC = \frac{XCF}{XC} \)
128. \(Lill = \frac{H_2SV}{VGASS/RVGAS} \)
129. \(ANH_3V = \frac{VGASN}{RVGAS} \)
130. \(COALC = \frac{XC}{12.0} \)
131. \(COALH = \frac{XH}{14.0} \)
132. \(COAOL = \frac{XO}{16.0} \)
133. \(COALN = \frac{XN}{14.0} \)
134. \(COALS = \frac{XS}{32.0} \)
135. \(CH_4 = \frac{RC*12.0 + HTAR/2.0*0.5 - OTAR/32.0 + VGASS + VGASN*0.5 + ICH_4*1.5 + H_2*0.5}{RVGAS} \)
136. \(H_2 = XCF/XC \)
137. \(TARC = \frac{(CHARC + CHARH*0.5 + CHARS + CHARN*0.5 - CHARO*0.5)}{RCHAR*0.21} \)
138. \(QVGAS = (HCOAL - RCHAR * QCHAR - CO*QCO) / RVGAS \)
139. \(QCO = QVGAS - QCO*COVB \)
140. \(T(1) = TF \)
141. \(IF(WCOAL.EQ.0.,)\ IGNITE=0 \)
142. \(RG = \frac{RC*COALC}{RCHAR} \)
143. \(FMF = WCOAL*(1.-XW)*A2/0.21 \)
144. \(FMF = FMF*(1.-0.21)+((XC/MC+XH/MH2+XS/MS+XN/MN2+XO/MO2)*(1.-XW)+XW)*WCOAL+FMTH*0.21*EXAIR*M02 \)
145. \(MGAS = GFLOW/FMO \)
146. \(YH_2O = \frac{XH_2O*(XH/MH_2O+XH*(1.-XW)/MH_2O)}{FMF} \)
147. \(RHOCH = RCHAR*RHOC \)
148. \(IF(IGNITE.EQ.0.,)\ IGNITE=0 \)
149. \(RHOCH = RCHAR*RHOC \)
150. \(IF(CAS.EQ.0.,)\ AND.\ WAD.EQ.0.,)\ CAS=WAD*XCAO/MCAO/(WCOAL*(1.-XW)*XS/MS) \)
151. \(FMF = FMF*(1.-0.21)+((XC/MC+XH/MH2+XS/MS+XN/MN2+XO/MO2)*(1.-XW)+XW)*WCOAL+FMTH*0.21*EXAIR*M02 \)
152. \(MGAS = GFLOW/FMO \)
153. \(YH_2O = \frac{XH_2O*(XH/MH_2O+XH*(1.-XW)/MH_2O)}{FMF} \)
154. \(RHOCH = RCHAR*RHOC \)
155. \(IF(IGNITE.EQ.0.,)\ IGNITE=0 \)
156. \(RHOCH = RCHAR*RHOC \)
157. \(IF(IGNITE.EQ.0.,)\ IGNITE=0 \)
158. \(RHOCH = RCHAR*RHOC \)
159. \(IF(IGNITE.EQ.0.,)\ IGNITE=0 \)
160. \(RHOCH = RCHAR*RHOC \)
IF (CAS .GT. 0.0) Al = 0.85/CAS
IF (Al .GT. 0.4) Al = 0.4
RHOBEAD = (1.-XCO2+XCAO/MCAO)*AI*MCASO4
IF (CAS .EQ. 0.0) RHOBEAD = RHOAD
RHOGAS = PAV*MGAS/(RG*TAV)
VISC = 3.72E-6*(TAV**0.676)
QCLCN = (<2500.0*XCAO/MCAO + 23810.0*XMO/MMO>
CS = 0.315

C CCLCN : HEAT OF CALCINATION PER GRAM ADDITIVE
C
CS = 0.315
C MAIN OUTPUT 2
C
WRITE (6,2000) NAMELI,NAMEL2,XCAO,XMEO,XSIO2,XCO2
WRITE (6P2010) DASVFEAWMF
WRITE (6r2020) NAMECZiNAMEC2tXCF,XCVXHXNXSXOrXWXAVMYHCOAL
WRITE (6y2040) DCSVFvDCWMF
WRITE (6,2030) (K,HB(K),DPSE(K),DPWE(K),YWEA(I),ICSE(K),DCWE(K),
IWEC(K),K=IKT)
WRITE (6,OPCF)
ZAVG(1) = 0.0
X(I) = 0.0
IF (TEMP .GT. 0) TAU = TSTA
DO 20 I=2,60
T(I) = TAV
CONTINUE

C INITlAL BUBBLE HYDRODYNAMIC CALCULATION
C
IF (HLF .EQ. 0.0) VMF = VOLUME(HLMF)
IF (HLMF .GT. 0.0) WS = VMF*(1.-EMF)*RHOBEU
C
C IF IGNITE.EQ.1) GO TO 41
CALL HYDRO
DO 35 1=2,M
ZAVG(I) = H(I) + H(I-1)) *.5
35 CONTINUE

ETC=0.
YAV=0.21
XAV=WCOAL*XC/(WCOAL+WAD)*(1.-XW)
FMO=FMF
IF (WAD.EQ.0.0 .AND. IGNITE .EQ. 0) GO TO 900
C FOR CONDITIONS OF NO COAL COMBUSTION, IGNITION IS ZERO AND
C MATERIAL AND ENERGY BALANCES CALCULATIONS ARE SKIPPED

C
YB(1) = YAV
YE(1) = YB(1)
FEN(1) = UMF(1) * AT(1) * PAV / (RG*T(2))
FBM(1) = FMO - FEN(1)
DO 115 I = 2,60

RRB(I) = 0.0
RRE(I) = 0.0
YB(I) = YAV
YE(I) = YAV
X(I) = XAV
IF (I .GT. 1) GO TO 115
FEM(I) = UMFI*AT(I)*(1.0-ETUBE(I))*PAV/(RG*T(I))
FBM(I) = FMO - FEM(I)
IF (UO(I) .LE. UMFI) FEM(I) = 0.0
CONTINUE
IF (IGNITE .EQ. 0) GO TO 630
CONTINUE
C BOUNDARY CONDITIONS FOR GAS CONCENTRATIONS
Y0(1) = 0.21
YV(1) = 0.0
YCO(1) = 0.0
YS02(1) = 0.0
YNOX(1) = 0.0
YB(1) = FMF*0.21/FMO
YE(1) = YB(1)
YVE(1) = 0.0
YCOEC1) = 0.0
YCO2B(1) = 0.0
YCO2E(1) = 0.0
YCO2C(1) = 0.0
C FROM HERE TO THE STATEMENT NO. 600 : TEMPERATURE ITERATION LOOP
DO 600 ITrial = 1,30
C CALCULATION OF LOG MEAN TEMPERATURE OF THE COOLING WATER
A1 = TWOUT - TWIN
A2 = ALOG((TAV-TWIN)/(TAV-TWOUT))
TAV = TAV - A1/A2
CALL HYDRO
DO 25 I = 1,M1
TW(I) = TAV
IF (I .LE. M1) UHE(I) = UHEAV1
IF (I .GT. M1) UHE(I) = UHEAV2
IF (I .LE. M1) UHEW(I) = UWALL1
IF (I .GT. M1) UHEW(I) = UWALL2
AHEW(I) = 4.0/DT(I)
TWall(I) = TWallA
25 CONTINUE
M1P = M1 + 1
IF(ITORIAL .GT. 1 .AND. M1.EQ.M10LD) GO TO 170
J1 = 1
DO 56 I=2,M1P
WFC(I)=0.
WFAD(I)=0.
J2=J1
IF(J1.GT.MFEED) GO TO 56
DO 55 J=J1,MFEED
IF(ZF(J).GT.H(I)) GO TO 55
WFC(I)=WC0AL*FFC(J)
WFAD(I)=WFAD(I)+WAD*FFAD(J)
J2=J+1
55 CONTINUE
J1=J2
56 CONTINUE
IF(J1.GT.MFEED) GO TO 58
DO 57 J=J1,MFEED
WFC(M1)=WC0AL*FFC(J)
WFAD(M1)=WFAD(M1)+WAD*FFAD(J)
58 CONTINUE

300. CONTINUE
301. CONTINUE
302. CONTINUE
303. FEM(I) = UMF(I)*AT(I)*(1.0-ETUBE(I))*PAV/(RG*RT(2))
304. FBM(I) = FMF - FEM(I)
305. DO 133 = 2, M1
306. TOLD(I) = T(I)
307. CONTINUE
308. DISTRIBUTION OF THE VOLATILES EVOLVED
309. VPROD(I) = WCOAL * RVGAS * (H(I)-H(I-1))/H(M1)*FW
310. VPROD(I) = UVPD(I)*VFC(I)*RVGAS*(1.0-FW)
311. FEM(I) = FEM(I-1)+VPROD(I)
312. IF(UO(I).LE.UMF(I)) FEM(I) = FMO
313. FBM(I) = FMO-FEM(I)
314. CONTINUE
315. 133 CONTINUE
316. FROM THE STATEMENT NO. 200 TO 300 : ITERATION OF MATERIAL BALANCE
317. BASED ON THE GIVEN TEMPERATURE PROFILE. GAUSS SEIDEL METHOD
318. INDEX = 0
319. CONTINUE
320. 200 CONTINUE
321. DETC = -0.0001
322. IF (TAV .GE. 1100.0 AND TAV .LT. 1150.0) DETC = -0.0002
323. IF (TAV .GE. 1050.0 AND TAV .LT. 1100.0) DETC = -0.002
324. IF (TAV .LT. 1050.0 AND TAV .GE. 1000.0) DETC = -0.005
325. IF (TAV .LT. 1000.0) DETC = -0.01
326. DETCM = 0.01
327. DETCA = 0.99999
328. IF (ITRIAL > 1) GO TO 175
329. AMODF = 6.0*RMOBED*(1.-EMF)/(DCSVB*RHOCH*CCCHAR)
330. CONTINUE
331. PREPARATORY STATEMENTS FOR THE WHOLE ITERATION.
332. DO 130 = 2, 60
333. YAV = 0.16
334. IF (I .GT. M1) YAV = 0.09
335. YB(I) = YAV
336. YE(I) = YAV
337. YO(I) = YAV
338. 130 CONTINUE
339. 175 CONTINUE
340. ASSUMING THE CARBON COMBUSTION EFFICIENCY, CARBON CONC. IN THE BED IS CALCULATED. KNOWING THE CARBON CONCENTRATION IN THE BED, GAS PHASE MATERIAL BALANCE IS PERFORMED AND THE COMBUSTION EFFICIENCY IS CALCULATED. ITERATION IS CONTINUED TILL THE ASSUMED COMBUSTION EFFICIENCY EQUALS THE CALCULATED EFFICIENCY FROM OXYGEN BALANCE.
341. DO 201 NT = 1, 30
342. XAV = ((WCOAL*RCHAR*CELU)*CCCHAR*(1.-ETCA))/WDIS
343. DO I = 1, M1
344. XI(I) = XAV
345. TCRATE = 0.0
346. DO 233 I = 2, M1
347. CALL AXX(AKB,T(I),FAV,DCSVB,TPB(I),YR(I),RG,MC,AMCO2,PHIR)
348. TAVB=(T(I)+TPB(I))/2.
CALL AK(AK, T(I), PAV, DCSVB, TPE(I), YE(I), RG, MC, AKCO2, PHIE)
361. TAVE = (T(I) + TPE(I))/2.
362. I = I + 1
363. CALL GPB (YH20, AKB, AKE, AKBE(I), AMODF, DVBV(I), EMF, EPB(I), EPC(I),
364. TUBE(I), FMB(I), FBM(I), FEM(I), GB(I), C08(I), GE(I), PAV,
365. RG, RGVAS(T(I), TAVB, TAVE, UPROD(I)*X(I), XO2, XO2C, YB(I), YB(I),
366. YCOE(I), YCOE(I), YE(I), YE(I), YVE(I), YVE(I), AKCO2, COV + COV2, COV8,
367. AKCO2B(I), YCO2B(I), YCO2B(I), YCO2E(I), YCO2E(I))
368. AM = DVBV(I)*AMODF*X(I)*MC
369. RRB(I) = AM*(PAV/RG)*(EPC(I)-EPB(I))*YB(I)*AKB/TAVB/CHAR
370. RRE(I) = AM*(PAV/RG/TAVE)*(1-EPC(I)-ETUBE(I)/CHAR*(YEC(I)+2AKB)
371. YCO2E(I)*AKC02)
372. RR(I) = (RRB(I)+RRE(I))/X(I)
373. TCRATE = TCRATE + RR(I)*X(I)
374. YO(I) = (FEM(I)*YE(I)+FMB(I)*YB(I))/FMO
375. YCO2(I) = (FEM(I)*YCO2E(I)+FMB(I)*YCO2B(I))/FMO
376. YV(I) = FEM(I)*YVE(I)/FMO
377. YCO(I) = FEM(I)*YCOE(I)/FMO
378. CONTINUE
379. C
380. C GAS PHASE MATERIAL BALANCE IN THE FREEBOARD
381. C
382. DO 334 I = MI, MT
383. J = I-MI
384. K = J+1
385. HAV = (H(I-1)+H(I))/2.0
386. CALL AREA(HAV, TAVB, ATAV)
387. RHOGAS = PAV*MGAS/RG/T(I)
388. VISC = 3.72E-6*T(I)**0.676
389. DCSVE = 0.5*(DCSE(J)+DCSE(K))
390. DCWME = 0.5*(DCWE(J)+DCWE(K))
391. CALL VEL(VISC, RHOGAS, G, RHCHD, DCSVE, UMFAV, UTAU)
392. Ud(I) = FMOMGAS/RHOGAS/ATAV/1.0-ETUBE(I)
393. RT = (HB(K)-HB(J))/ABS(UO(I)-UTAV)
394. WCHOLD(I) = (2.0*WEC(J)-WEC(K))*RT
395. YCHOLD = WCHOLD(I)/RHOGAS
396. NC = VCHOLD*6.0/(PI*DCSVE**3)
397. CALL AK(AK, T(I), PAV, DCSVB, TPE(I), YE(I), RG, MC, AKCO2, PHIE)
398. TPE(I) = TPB(I)
399. TAVB = (T(I)+TPE(I))/2.0
400. I = I + 1
401. CALL FBC(YH20, AKC, DCSV, DVBV(I), TUBE(I), EPC(I), FMO, GB(I), C08(I),
402. G(I), NC, PAV, PHIB, P1, RB, RGVAS(T(I), TAVB, XO2, YCO(I), YCO(I), XO2(I),
403. Y(I), YCO2(I), YCO2B(I), YCO2E(I), YCO2B(I), YCO2E(I))
404. RRB(I) = MC*NC*PI*DCSVE**3*PAV/RG/TAVB/CHAR*(Y(I)+NANCE)
405. YCO2B(I)+YCO2E(I))
406. RRE(I) = 0.0
407. TCRATE = TCRATE + RRB(I)
408. CONTINUE
409. C
410. WRITE(6,205) (I, YB(I), YE(I), YCOE(I), YVE(I), H(I), YCO2E(I), YCO2B(I),)
411. KAT(I), UMF(I)-1.0,1.0)
412. C FORMAT ('O', TS, 'I', TI2, 'YB', T24, 'YE', T3S, 'YCOE', T46, 'YVE', T54,
413. 'I', 'H', 'T70', 'YCO2', 'T82', 'YCO2B', 'T94', 'U0', 'T106', 'UMF', '///,(I5,1P3E12.3))
414. A1 = FMTK0.21+WCALK(1.-XW)*MO2-FMO*Y0(HT)
415. ETGO = A1/(FMTH*0.21 - CELU*ARCTAN(0.21))
416. C
417. C
418. C FORMAT ('O', '10X', 'NT', 'ETCA+ETCG+XAV = (I4,1P3E12.3/)
419. ER+ETGO-ETCA
420. CALL CRRECT(I, INDEX, DETC, ETCA, ETCS, ETCA, ETG, EI, E2, ER, ETC)
421. IF (INDEX, EQ, 2) GO TO 236
FROM THE GAS PHASE MATERIAL BALANCE, CHAR COMBUSTION RATE HAS BEEN
ESTIMATED. KNOWING THIS AND THE SOLIDS MIXING RATE, CARBON BALANCE
IS PERFORMED, THE EQUATIONS ARE SOLVED BY THE SSP SUBROUTINE SIMQ
(SIMULTANEOUS SOLUTION OF ALGEBRAIC EQUATIONS). THE SOLUTION GIVES
THE CARBON CONCENTRATION PROFILE IN THE BED.

WMIX(1)=0,
WMIX(I)=0,
J1=1
WD(1)=0,
J2=J1
DO 61 I=2, M1
IF(J1.GT.MDIS) GO TO 61
DO 60 J=J1, MDIS
IF(ZDIS(J).GT.H(I)) GO TO 60
WD(I)=WD(I) + WDIS*FD(J)
J2=J+1
60 CONTINUE
J1=J2
61 CONTINUE
IF(J1.GT.MDIS) GO TO 63
DO 62 J=J1, MDIS
WD(M1)=WD(M1) + WDIS*FD(J)
62 CONTINUE
63 CONTINUE

WMIX : UP- AND DOWN-WARD SOLID MIXING FLOW WHICH IS SUPERPOSED ON
FLOW OF SOLIDS. G/SEC

WMIX(I) : NET FLOW RATE OF SOLID FROM THE TOP OF I-TH COMPARTMENT.
POSITIVE VALUE MEANS THE UPWARD FLOW.

TFC = WCOAL*RCHAR - CELU
RR(I) = RR(I)*TFC/TCRATE
WMIX(I) = WMIX(I-1) + WFC(I)*RCHAR + WFAI(I) - WD(I) - RR(I)*X(U,
WMIX(I) = AT(I)*1 - ETUBE(I)*X(U) - UMF(I)*FW(I)*EMF*RHOBED
IF(WMIX(I).LT.0.)WMIX(I)=0.
255 CONTINUE

WMIX(M1)=0,
CARBON CONCENTRATION CALCULATION.

MM=M*M
AAA(I)=0.
DO 411 I=1, MM
411 AAA(I)=0.
DO 412 I=1, M
BBB(I)=0.
412 BBB(I)=0.
AAA(I) = -WMIX(2)-WD(2)-RR(2)
400 AAA(M1) = WMIX(2)-WMIX(2)
401 AAA(MM) = WMIX(M)+WNET(M)-WD(M1)-RR(M1)
402 AAA(MN-M)=WMIX(M)
403 DO 413 I=1, M
413 I1=I+1
414 BBB(I) = -MC*RCHAR*WFC(I1)
415CONTINUE
416 M0=M-1
DO 270 I=2,M0
417 II=(I-1)*M+I
II=II+1
AAA(II) = -WMIX(II)+WMIX(I)+WMIX(I)
1-WD(II)-RR(II)
AAA(II+M)=WMIX(II)
AAA(II-M)=WMIX(II)+WMIX(I)

CONTINUE
CALL SIMQ(AAA,BBB,M,MM,HS)
SUM=0.
END
X(I+1) = BBB(I)
SUM = SUM+X(I+1)
END
CWRITE (6,286) XAV,(IX(I),H(I)I=I,MI)
C286 FORMAT ('0+',XAV',',IPE12.3,/,(' I,X,H',15,1P2El2.3))
SUM=0.
DO 285 I=2,MI
CARCON(I)=X(I)*RHOBED*(I.-EMF)*(1.-ETUBE(I)-EPB(-I))/(1.-ETUBE(I))
295 CONTINUE
CLOSE = SUM + CELU*CCHAR
ETCC = 1.0 - SUM
(WC0AL * RCHAR - CELU)*CCHAR
ETC = 1. - CLOSE / (WC0AL * XC *(1.-XW))

HAVING OBTAINED THE CORRECT CARBON CONCENTRATIONS IN THE BED,
GAS PHASE MATERIAL BALANCE IS REPERFORMED TO ARRIVE AT THE CORRECT
CONCENTRATION PROFILES FOR THE VARIOUS GASEOUS SPECIES

GAS PHASE MATERIAL BALANCE IN BED
TCRATE = 0.0
DO 235 I=2,MI
CALL ANK(ANB,I(I),PAV,DCSVB,TPB(I),YB(I),RG,MC,AKCO2,PHIB)
TAVB=(T(I)+TPB(I))/2.
CALL AKNCAKE,T(I),PAV,DCSVBTPE(I),YE(I),RG,MC,AKCO2,PHIE)
TAVE=(T(I)+TPE(I))/2.
I=I-1
CALL GPB (YH20,ANB,ANB,AKBE(I),ANBDF,DVB(I),EMF,EPB(I),ETC(I),
1ETUBE(I),FBM(I),FEM(I),FBM(I),GB(I),C0B(I),GE(I),PAV,
2PHIE,RO,ROAGT(I),TAVB,TAVE,TPHIE(I),X(I),XO2,XO2G,YB(I),YB(I),
3YCOE(I),YCOE(I),YE(I),YVE(I),YVE(I),AKCO2,C0V,C02V,C0VE,
4C0DVB+YCO2E(I),YC0E(I),YC0E(I))
AM = DVB(I)*ANBDF*MC
RRB(I) = AM*(PAV/RG)*(1.-ETUBE(I)-ETUBE(I))/1.-ETUBE(I))
RE(I) = AM*(PAV/RG/TAVE)*(1.-ETUBE(I)-ETUBE(I))/CCHAR*(YE(I)*ANB+
1YCOE(I)*AKCO2)
RR(I) = (RRB(I)+RE(I))/X(I)
TCRATE = TCRATE + RR(I)*X(I)
YV(I) = (FEM(I)*YE(I)+FBM(I)*YB(I))/FMO
YCO2E(I) = (FEM(I)*YCO2E(I)+FBM(I)*YCO2E(I))/FMO
YV(I) = FEM(I)*YVE(I)/FMO
YCO(I) = FEM(I)*YCOE(I)/FMO
YCO2(I) = YCO2E(I)*AKCO2
235 CONTINUE
BEDCOM = TCRATE
GAS PHASE MATERIAL BALANCE IN THE FREEBOARD
J = I-M1
\ = J+1
DCSVE = 0.5*(DCSE(J)+DCSE(K))

VCHOLD = WCHOLD(I)/RHOCH

NC = VCHOLD*0.5*(DCSE(J)+DCSEK)

CALL AAA(AKC,T(I),PAV,DCHSETP(I),YD(I),RG,MC,ACO2,PY)

TPE(I) = TRB(I)

TAVB = (T(I)+TPB(I))/2.0

II = I-1

CALL FBC(YH20,AKC,DCHS,DVBB(I),ETUBE(I),FM0,GB(I),CBB(I),)

18(I),NC+PAV+PHIB+PI,RG+RVGAS,T(I),TAUB,XXD,YCD(I),YD(I),

2YD(I),YV(I),YV(I),ACO2+COVB+CO2VB,YCD2(I),YCD2(I))

RBB(I) = MC*NCHPI*DCHS*2PAV/RG/TAVB/CCHAR*(YO(I)*AH+CH

1ACO2*YCO2(I))

RBE(I) = 0.0

TCRATE = TCRATE + RBB(I)

CONTINUE

FBCOM = TCRATE - BEPCOM

C THE DEFINITION OF RR(I) IS CHANGED FOR TEMPERATURE CALCULATIONS.

C RR(I)=(HEAT GENERATION RATE- HEAT CONSUMPTION RATE) IN THE

C ITH COMPARTMENT.

DO 295 I=2,M1

RR(I)=RR(I)*X(I)/TCRATE*QCHAR*(WCOAL*RCHAR-CELU)*ETCC+

18(I)*YV(I)+GB(I)*QVGAS+COB(I)*QCO-QCLCN*WFA(I)/RHOAD

295 CONTINUE

DO 300 I = MP1,MT

RR(I) = RBB(I)/TCRATE*QCHAR*(WCOAL*RCHAR-CELU)*ETCC+

18(I)*YV(I)+GB(I)*QVGAS+COB(I)*QCO

300 CONTINUE

IF (ITEMP EQ 0) GO TO 610

C CALCULATION OF TEMPERATURE

A1= CAOF

A2= CCF

CGM = 6.8+0.5E-3*(TAV-273)

A3=CGM*FM0

ALPHA(I) = (WMMIX(2)+WD(2))*CS+A3+UHE(2)*AHEAU(2)*DVBB(2)

1+UHEW(2)*AHEW(2)*DVBB(2)

BETA(I) = (-WNET(I)+WMIX(I)+WD(I))

C+CS+A3

DELTA(I) = RR(I) + CGM*FM0*(T(2)-273) + (AI*WFAB(2)+A2*WF2C(I))*TSF-273

1+UHE(I)+AHEAU(I)*DVBB(I)*(T(I)-273)+UHEW(I)+AHEW(I)*DVBB(I)*(TWALL(I)-273)

310 CONTINUE

A1= CAOF

A2= CCF

CGM = 6.8+0.5E-3*(TAV-273)

A3=CGM*FM0

ALPHA (I) = (WMMIX(I)+WD(I))*CS+A3

BETA(I) = (-WNET(I)+WMIX(I))*CS+A3

GAMA(I) = (WMMIX(I)+WD(I))

DELTA(I) = RR(I) + (AI*WFAB(I)+A2*WF2(I))*TSF-273 + UHE(I)+AHEAU(I)*DVBB(I)*

1+UHEW(I)+AHEW(I)*DVBB(I)*(T(I)-273)+UHEW(I)+AHEW(I)*DVBB(I)*(TWALL(I)-273)

310 CONTINUE

A1= CAOF

A2= CCF

CGM = 6.8+0.5E-3*(TAV-273)

A3=CGM*FM0

ALPHA(I) = (-WNET(I)+WMIX(I)+WD(I))

1+UHE(I)+AHEAU(I)*DVBB(I)+UHEW(I)+AHEW(I)*DVBB(I)

BETA(I) = (-WNET(I)+WMIX(I))*CS+A3

GAMA(I) = (WMMIX(I)+WD(I))

DELTA(I) = RR(I) + (AI*WFAB(I)+A2*WF2C(I))*TSF-273 + UHE(I)+AHEAU(I)*DVBB(I)*

1+UHEW(I)+AHEW(I)*DVBB(I)*(T(I)-273)+UHEW(I)+AHEW(I)*DVBB(I)*(TWALL(I)-273)

310 CONTINUE

A1= CAOF

A2= CCF

CGM = 6.8+0.5E-3*(TAV-273)

A3=CGM*FM0

ALPHA(I) = (-WNET(I)+WMIX(I)+WD(I))

1+UHE(I)+AHEAU(I)*DVBB(I)+UHEW(I)+AHEW(I)*DVBB(I)

BETA(I) = (-WNET(I)+WMIX(I))*CS+A3

GAMA(I) = (WMMIX(I)+WD(I))

DELTA(I) = RR(I) + (AI*WFAB(I)+A2*WF2(I))*TSF-273 + UHE(I)+AHEAU(I)*DVBB(I)*

1+UHEW(I)+AHEW(I)*DVBB(I)*(T(I)-273)+UHEW(I)+AHEW(I)*DVBB(I)*(TWALL(I)-273)

310 CONTINUE
901. +UHE(M1)*AHEAV(M1)*DVBB(M1)*(TW(M1)-273.)
902. +UHEW(M1)*AHEW(M1)*DVBB(M1)*(TWALL(M1)-273.)
903. C
904. C TEMPERATURE SOLUTION BY SIMQ
905. C
906. DO 501 I=1,MM
907. 501 AAA(I) = 0.
908. DO 502 I=1,M
909. 502 BBB(I) = DELT(I+1)
910. AAA(I) = ALFA(I)
911. AAA(M1) = - BETA(I)
912. AAA(MM) = ALFA(M1)
913. AAA(MM-M) = - GAMMA(M1)
914. DO 503 I=2,M0
915. 503 CONTINUE
916. CALL SIMQ(AAA,BBB,M,MMKS)
917. TNORM = 0.
918. TAV = 0.
919. DO 504 I=2,M
920. 504 CONTINUE
921. TAV = TAV / FLOAT(M)
922. TNORM = TNORM / ABS(T(I)-TOLD(I))
923. C HEAT BALANCE IN THE FREEBOARD
924. DO 320 I = MP1,MT
925. J = I-M1
926. WENTI = WEA(J)+WEC(J)
927. ANR = (WENTI*CS+A3)*(T(I-V)-273.) + RR(I) + DVBB(I)*UHE(I)*AHEAV(I)*
928. (TW(I)-273.) + DVBB(I)*UHEW(I)*AHEW(I)*(TWALL(I)-273.)
929. DR = WENTI*CS+A3+DVBB(I)*UHE(I)*AHEAV(I)+DVBB(-I)*UHEW(I)*AHEW(I)
930. T(I) = ANR/DR + 273.0
931. 320 CONTINUE
932. C CONVERGENCE CRITERION FOR TEMPERATURE CALCULATION
933. IF(TNORM.LT.0.01*TAV) GO TO 610
934. M1OLD = M1
935. M1 = M1 + 1
936. IF(M1.LT.MMKS) GO TO 900
937. WRITE (6,3003)
938. 3003 FORMAT('0',10X,'GAUSS SEIDEL TEMPERATURE TRIAL HAS NOT CONVERGED.'
QUOL = QTRANS/BEDVOL
HFB = H(MT) - H(M1)
IF (HAREA .NE. 0.0) OAREA = QTRANS/HAREA

TPB(I) = T(I)
TPE(I) = T(I) - 273.

DO 612 I = 1, MT
I = I + 1

CONTINUE

612

C

C MAIN OUTPUT 3
C

DO 613 I = 1, MT

TPB(I) = TPB(I) + 273.0
TPE(I) = TPE(I) + 273.0
T(I) = T(I) + 273.0

CONTINUE

613

C

CALCULATION OF SO2 REDUCTION

IF (IGNITE,EQ,0) TCRATE = 0.0

DO 710 I = 1, MT

IF (I .GT. MT) GO TO 709

YE(I) = YE(I)
YB(I) = YB(I)

709

CONTINUE

710

IF (ISO2, .EQ., 0) GO TO 811

CONTINUE

FRS = WCOAL*XG/MS*FLOAT(IGNITE)*(1.-XW)

IF (FRS , LE., 1.1E-6) GO TO 810

CASE = EFFECTIVE RATIO OF CA TO S(ACTIVE) IN THE FEEDS

CASE = (WAD*XCAO+WCOAL*XCAO)/XCAO/FRS

IF (CASE.EQ.0.) GO TO 811

SULFUR = WCOAL*(1.-XW)*XS*RS/MS - CLOSS*SCHAR/CCHAR/MS

REL(1) = 0.0
YB(1) = 0.0
YE(1) = YE(I)
ETS = 0.0

DO 711 I = 2, MT

REL(1) = 0.0

711

DO 711 I = 2, MT

GENE = GB(I)*VGASS/RVGAS
GENE = GE(I)*VGASS/RVGAS
REL(I) = RRB(I)/TCRATE*SULFUR+GENB
RELE(I) = REE(I)/TCRATE*SULFUR+GENE

CONTINUE
DO 800 ITRY=1,20

FS=ETS/CASE

FS : FRACTIONAL CONVERSION OF ADDITIVE
ASSUMING THE SULFUR CAPTURE EFFICIENCY, FS IS CALCULATED AND HENCE
THE LIMESTONE REACTIVITY. THEN, S02 MATERIAL BALANCE IS PERFORMED.
FROM THE EXIT S02 CONC. IN THE FLUE, S02 CAPTURE EFFICIENCY IS
CALCULATED. ITERATION IS CONTINUED TILL THE ASSUMED AND THE
CALCULATED SULFUR DIOXIDE RETENTION EFFICIENCIES AGREE.

AK=AKAD(FS,DPSE,T(I))

S02 BALANCE IN THE BED

DO 740 I=I-M1

II=I-1
AM=(I-1)-ENF
CALL GPHASE(AK,AM,FS,FPAV,RP,FETUBE(I),EPB(I),EPB(I),
1AM,EPB(I),FMB(I),FMB(I),REM(I),YB(I),RELE(I))
2YB(I),YE(I),RELB(I),RELE(I))
YS02(I) = (FEM(I)*YE(I)+FBM(I)*YB(I))/FMO

CONTINUE

S02 BALANCE IN THE FREEBOARD

DO 741 I=MP1,MT

J = I-M1
N = J+1
RHOGAS = FPAV*RHOGAS/RG/T(I)
VISC = 3.72E-6*T(I)**0.676
DPSE = 0.5*(DPSE(J)+DPSE(N))
DPWE = 0.5*(DPWE(J)+DPWE(K))
CALL VEL(VISC,RHOGAS,6,RHOBED,DPSE,UMFAV,UTAV)
RT = (HB(K)-HB(J))/ABS(UO(I)-UTAV)
WAHOLD(I) = (2.0*WEA(J)-WEA(K))*RT
VAHOLD(I) = WAHOLD(I)/RHOBED
NA = WAHOLD*6.0/(PI*DSVE*3)
AK = AKAD(FS,DSVE,T(I))
ANR = FMO*YS02(I-1)+RELB(I)+RELE(I)
DR = FMO + NA*PI*DSVE**3/6.0 *NAX*FPAV/RG/T(I)
YS02(I) = ANR/DR

CONTINUE

ETSC=1.0-FOG*YS02(3)/FRS
EE=ETS-ETSC
CALL CRRECT(ITRY,INDEX,ETS,ETS1,ETS2,ETS,E1,E2,EE,ETSM)
IF(INDEX.EQ.2) GO TO 910

CONTINUE

WRITE(6,3600)
3600 FORMAT(10X,'ETS HAS NOT CONVERGED. S.NO. = 3600')

CONTINUE

YSO2(I)=YSO2(MT)
WRITE(6,910)ETS,FS,CAS,CASE
910 CONTINUE

IF (INOX .EQ. 0) GO TO 914

NOX CALCULATIONS

CONTINUE
FRN = WCOAL *(1.-XW) * XN/HN * FLOAT(IGNITE)
ANITRO = WCOAL *(1.-XW) * XN * RN / MN - CLOAD*CHAR/CCHRN/MN
DO 750 I = 2,MT
GENB = 8B(I)*VGAM/RVGAS
GENE = GE(I)*VGAM/RVGAS
RELB(I) = RGB(I)/TCRATE * ANITRO + GENB
RELE(I) = RRE(I)/TCRATE * ANITRO + GENE
CONTINUE

YB(1) = 0.0
YE(1) = 0.0
FR = 3.24E7
AE = 34000.0

C NOX Balance in the Bed

C DO 760 I = 2,M1

I1 = I-1
TAVB = (T(I)+TPB(I))/2.0
TAVE = (T(I)+TPE(I))/2.0
ANE = FR*EXP(-AE/1.986/TAVB)
ARE = FR*EXP(-AE/I.986/TAVE)
ANODEF = 6.0*RHOBED*E1,-EHF) / (DCSVB*RHOCH*CHAR)
AN = ANODEF*(I)
C CALL QHASE (
AM*AKE*AM*PAV*RA*ETUBS(I),EPB(I),EPC(I),AKBE(I),
1,IVB(I)*FPM(I)*FEN(I),FPM(I),FEN(I),T(I),TAVB,TAVE,YB(I),
2Y(I),YE(I),REB(I),REL(I))
YNOX(I) = (FPM(I)*YB(I)+FEN(I)*YE(I))/FMO
CONTINUE

C NOX Balance in the Freeboard

C DO 770 I = M#1,MT

TAVB = (T(I)+TPB(I))/2.9
J = I-M1
K = J+1
DCSVE = 0.5*(DCSE(J)+DCSE(K))
XI(I) = WCHOLD(I)*CHAR/(WCHOLD(I)+W AHOLD(I))
CARON(I) = WCHOLD(I)*CHAR/DV8SIE(1)
VCHOLD = WCHOLD(I)/RHOCH
NC = VCHOLD*6.0/(PIN*DCSVE**3)
AKNO = FR*EXP(-AE/1.986/TAVB)
ANR = FMO*YNOX(I-1) + RELB(I) + RELE(I)
DR = FMO + NC*PI*DCSVE*2 *AKNO*PAV/RA/TAVB
YNOX(I) = ANR/DR
CONTINUE

ENOX = FMO*YNOX(MT)
EINDEX = ENOX/WCOAL
ETN = 1.0 - ENOX /FRN
ENOX = ENOX/FMO
WRITE (6,2007)EXAIRTAVETNENOXEINDEX(H(I),YB(I),YYE(I),X(11,
I=2,MT)
CONTINUE

C MAIN OUTPUT 4

YGO(2)=YCO2(NT)
YGO(4)=YH20
YGO(5)=YCC(MT)
WRITE (6,2006) (YGO(I),I=1,5)
IF (HLMF .EQ. 0.0) VMF = SOLVOL
IF (HLMF .EQ. 0.0) HLMF = HEIGHT(VMF)
IF (HLF .EQ. 0.0) HLF = H(M1)
IF (IPRES .EQ. 0) GO TO 950
CONTINUE
C
PRESSURE DROP CALCULATION

C

ALL THE PRESSURE DROP GIVEN IN CM OF WATER

C
PRESSURE DROP CALCULATIONS ACROSS THE DISTRIBUTOR
C
C TEMP = T(2)
RHOFB = PF * M GAS / (RG * TEMP)
UOR = FMF * RG * TEMP / PF / (AND * 0.25 * PI * DMZL * L2)
DPDIS = (UOR / 0.6) * 2 * RHOFB / (2.0 * KG)
WRITE (6,2050) DPDIS

C
PRESSURE DROP CALCULATIONS IN THE FLUIDIZED BED SECTION
C
C
WRITE (6,2051)
N1 = M1
DO 920 I = 2, N1
DPFLU (I) = (F(I) - EMF) * (I - EPB(I)) * (H(I) - H(I - 1)) * RHOBED
WRITE (6,2052) I, DPFLU
CONTINUE
C
IF (IFBC .EQ. 0) DPFIX = 0.0
WRITE (6,2053) DPFIX
950 CONTINUE
WRITE (6,OPCF1)
WRITE (6,2060)
DO 910 I = 2, MI
WRITE (6,2070) IH(I), ZAVG(I), DBAV(I), UO(I)
CONTINUE
DO 940 I = IMT
WRITE (6,2080) IH(I), DT(I)
CONTINUE
1000 FORMAT(5I1)
1001 FORMAT(8F10.0)
1010 FORMAT(2A4/(8F10.0))
2000 FORMAT(8F12.12,1X,'RESULTS ,ALL TEMPERATURES IN CENTIGRADE')
* ETC,XAV,TAV, ITRIAL=',3E12.4,'I',3X,'XCO2=',F6.3,'XCO2=',F6.3,'XCO2=',F6.3,'XCO2='
C

FUNCTION AKAD(FS,DP,T)

C THIS SUBROUTINE CALCULATES LIMESTONE-SO₂ REACTION RATE CONSTANT

DIMENSION FB(15),RR(15),RB(15),RC(15)

DATA FB/0.00,0.05,0.10,0.25,0.35,0.40,0.45,0.475,0.50,
 0.525,0.55/.

DATA RR/0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,
 0.09,0.10/.

DATA RB/0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,
 0.09,0.10/.

DATA RC/0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,
 0.09,0.10/.

DP1=0.2
DP2=0.1
DP3=0.01
S

IF (DP .EQ. DP2) XXX=ALOG(DP/DP2)/ALOG(DP1/DP2)

IF (DP .GT. DP2) XXX=ALOG(DP/DP3)/ALOG(DP2/DP3)

ALIME=0.0

AKAD = 0.0

IF (FS .EQ. 1.0) RETURN

DO 10 I=2,13

10 N=N+1
IF(FS .LE. FB(1)) GO TO 11

10 CONTINUE

11 CONTINUE

N1=N-1

A=(FS-FP(N1))/(FB(N)-FB(N1))

IF(DP .LT. DP2) GO TO 12

R1=(RR(N)/RR(N1))**A*RR(N1)

R2=(RB(N)/RB(N1))**A*RB(N1)

GO TO 13

12 CONTINUE

R1=(RB(N)/RB(N1))**A*RB(N1)

R2=(RB(N)/RB(N1))**A*RB(N1)

13 CONTINUE

ALIME=(R1/R2)**XXX*R2

IF(ALIME .GT. 1.0) ALIME=1.0

IF (T .LT. 253.0) SG = 35.9*T - 3.8504

IF (T .GE. 253.0) SG = 38.4*T + 5.64E04

IF (S6 .LT. 1.0) SG = 100.0

AKAD = 4.90.0*EXP(-17500.0/1.987/T)** SG ** ALIME

RETURN

END

SUBROUTINE ANK(AKR,TP,TNC,TP,YO2,RG,TCO2,PHI)

REAL MC

C THIS COMPUTES REACTION RATE CONSTANT FOR CHAR COMBUSTION AKR,

C RATE CONSTANT FOR C-CO2 REACTION AND THE CHAR PARTICLE TEMPERATURE

EM=1.0

SIGN=1.36E-12

INDEX=0

DTS=200.0

TP=300.0

DO 100 I=1,20

ETSMAX=0.005*TP

AKS=8.702.0*EXP(-35700.0/1.986/TP)

TAV = (TP**3)*T

D=4.26*(TAV/1800.)**1.75/P

COND=0.632*SQRT(TAV)/(1.245/TAV**10.0)**(-12.0/TAV)

Z = 2500.0 * EXP(-12400.0/1.986/TAV)

IF (DC .LE. 0.0) PHI = (2.*Z+2.)/(Z+2.)

IF (DC .GT. 0.0) AND DC .LE. 0.10) PHI = 1.0/(Z+2.)*(2.*Z+2.)

IF (DC .GT. 0.10) PHI = 1.0

Q = 2500.0*(2./PHI-1)+2540.0*(2.-2./PHI)

AKR=24.*PHI/(DC*RG*TAV)

AKR=AKR**(TP/10.0)*EM*SIGN*(TP**A-T**1)

ETS = TP - T - RHSTC/(2.0*COND)

CALL CRRECT(IINDEX,DTS,TP1,TP2,TP,E1,E2,ETS,ETSMAX)

IF (INDEX.EQ.2) GO TO 110

100 CONTINUE

WRITE (6, 4000) TP,ETS

4000 FORMAT ('O',IOX,'TP CALCULATION HAS NOT CONVERGED',/10X,'TP,ETS ')

1013 1 ,1,P2E12.3)

110 CONTINUE

AKRCD2 = 4.1E08*EXP(-59200.0/1.987/TAV)

D = 3.26*(TAV/1800.)**1.75/P

AKFC02 = 2.0*PHI**D/DC

AKRCD2 = 1.0/(AKRCD2+1.0/AKFC02)

RETURN
SUBROUTINE AREA (ZI, DTI, ATI)

COMMON /A/ ZHE(t,0),AHE(IO),PV(u0),PH(IO),ZF(IO),FFC(o)-TBE<LO),
 IDVB'(60),DVBEFF(60),FFAD(10),ZDIS(IO),FL(10),AHElV(60),ETUBE(60),
 IDUO(60),,UML(60),HR(60),AT(60)DT(60)X(60),AKBE(!O),B(zO),
 YE(60) YCOE(60'),-,EPB(60)rEPC(60) DVBB(60) DVBBEF(bu)
 DfEAV(6'),
 4U(40),UTC,-60),UTM6AOZB(10),ATB(10),YVE(60)rZAVG(60)-IARR'1O'

COMMON /B/

YBC(O),-YEO(60)',DB(60)BPSVBPWMB,DCSVB,DCUMB,RHOCH.,

2EMFrPAVrHCRBEDVOL,EFFVOLSOL'OL, TETUBE,

HLIFPIAND,

DNZL,

FW'rFSWrPD±AV,MFEEDMDMSMTHEMTBMT,M

IM7ICR,IFBCNTC

LnO2. C

CALCULATION OF THE CROSS SECTIONAL AREA GIVEN THE HEIGHT

ABOVE

DO 10 J = 1 , MTP

10 IF (ZI .GT. ZB(J)) GO TO 10

10 RJH1 = SORT (ATB(J-1) / PI)

10 A3 = (ZI - ZB(J-1)) / (ZB(J) - ZB(J-1));

10 B3 = SORT (ATB(J) / ATB(J-1)) - 1.0

10 RI = (1.0 + A3 * B3) * RJH1

10 DTI = 2.0 * RI

10 ATI = PI * RI ** 2

10 GO TO 20

10 CONTINUE

20 CONTINUE

RETURN

SUBROUTINE CPRRECT(I,,INDXDX,XIX2rXNEUEiE2EEMAX)

I: NUMBER OF THIS TRIAL, 1 FOR FIRST TRIAL

INDX: INDEX OF THE TRIAL LEVEL

INDX=0: JUST PROCEEDING

INDX=1: THE ROOT HAS BEEN CAUGHT BETWEEN X1 AND X2

INDX=2: THE ITERATION HAS CONVERGED

IF (ABSXEY).GT.EMAXY GO TO 5

INDX=2

RETURN

5 CONTINUE

IF(INDX.EQ.1) GO TO 100

X2=XNEW

E2=E

IF(I.EQ.1) GO TO 10

IF(E1XE2.EQ.0.) INDX=1

IF(INDX.EQ.1) GO TO 150

10 X1=X2

E1=E2

XNEW=XNEW+DX

RETURN

100 CONTINUE

IF(E1XE2.EQ.0.) GO TO 110

E1=E

X1=XNEW

GO TO 150

110 E2=E

X2=XNEW

150 CONTINUE

XNEW=(X1-X2)*E2/(E2-E1)+X2

RETURN

END

SUBROUTINE DESIGN
COMMON / A/ ZHE(10), AHE(10), PV(10), PH(10), IF(10), FFC(10), DTUBE(10),
1080. 1DF(10), DUEEFF(10), FFFAD(10), ZDIS(10), FD(10), AHEAV(60), EUSE(60),
1081. 2UF(60), ZP(60), AT(60), DT(60), T(60), X(60), ZABE(60), YB(60),
1082. 3Y(60), YCOE(60), EPB(60), EP(60), DVEB(60), DUEF(60), DUEEFF(60), DUEAV(60),
1083. 4UB(60), UTA(60), ZB(60), ATB(10), YVE(60), ZAVG(60), IARR(10),
1084. COMMON / B/ YBO(60), YEO(60), DB(60), DPSVBDPWMB, DCSVB, DCWMB, RMCH,
1085. 1HLF, VMF, FM, FMF, FP, FF, TP, RB, & SAG, DFFIX, DFPLU, DDIS, RMosed,
1086. EMF, VAV, CB, EFFVOL, SOLVOL, TETUBE, HLMBFPI, AND, DNZL,
1087. 3FW, FSW, DZAV, MFEED, MDIS, MTHE, MTB, MT, M1, M2, IF, FFC, NTC
1088.
1089. AXIAL VARIATION OF BED CROSS SECTION
1090.
1091. READ (5,1000) A1, A2, A3, A4
1092. READ (5,1001) MTB(ZB(J), ATB(J), J = 1, MTB)
1093.
1094. IARRNG I 2 3
1095. 1 ----- VERTICAL INLINE ARRANGEMENT
1096. 2 ----- VERTICAL STAGGERED ARRANGEMENT
1097. 3 ----- HORIZONTAL INLINE ARRANGEMENT
1098. 4 ----- HORIZONTAL STAGGERED ARRANGEMENT
1099.
1100. HEAT EXCHANGE TUBES
1101. READ (5,1002) MTHE, ZHE(J+1), AHE(J), DTUBE(J), PV(J), PH(J),
1102. I1ARR(J), J = 1, MTHE)
1103.
1104. LOCATION OF FEED AND DISCHARGE
1105. READ (5,1001) MFEED, (ZF(J), FFC(J), FFFAD(J), J = 1, MFEED)
1106. READ (5,1001) MDIS, (ZDIS(J), FD(J), J = 1, MDIS)
1107.
1108. DISTRIBUTOR
1109.
1110. READ (5,1003) AND, DNZL, FW, FSW
1111. DO 100 J = 1, MTHE
1112. IF (AHE(J), GT, 0.0) GO TO 100
1113. IF (DTUBE(J), EQ, 0.0) GO TO 100
1114. AHE(J) = PI * DTUBE(J) / (PH(J) * PV(J))
1115. CONTINUE
1116. 100
1117.
1118. CONDITION FOR COMPUTING AVERAGE CELL SIZE
1119.
1120. WRITE (6,2000) A1, A2, A3, A4
1121. WRITE (6,2001)
1122. WRITE (6,2002) (ZB(J), ATB(J), J = 1, MTB)
1123. WRITE (6,2003)
1124. WRITE (6,2004) (ZHE(J+1), AHE(J), DTUBE(J), PV(J), PH(J), I1ARR(J),
1125. 1J = 1, MTHE)
1126. WRITE (6,2005)
1127. WRITE (6,2006) (ZF(J), FFC(J), FFFAD(J), J = 1, MFEED)
1128. WRITE (6,2007)
1129. WRITE (6,2008) (ZDIS(J), FD(J), J = 1, MDIS)
1130. WRITE (6,2009) AND, DNZL, FW, FSW
1131. ZI = ZB(1)
1132. ABED = ATB(1)
1133. DBED = SORT(4.0 * ABED / PI)
1134. DVB(1) = 0.0
1135. DUEEFF(1) = 0.0
1136. ZHE(1) = 0.0
1137. DZAV = 30.0
FBC

```plaintext
THIS SUBPROGRAM PERFORMS THE GAS PHASE MATERIAL BALANCE FOR O2, CO2 IN THE FREEBOARD.

\[
\begin{align*}
A2 & = \frac{PAV/RG/TAVB*NC*PI*DCSVE}{AKC} \\
A4 & = \frac{PAV/RG/TAVB*NC*PI*DCSVE**2*AKC}{O2} \\
YV & = \frac{O2 - YOO}{X02} \\
\end{align*}
\]

IF (YV .LT. 0.0) GO TO 100

RETURN

END

SUBROUTINE FBC(YH2OANC,DCSVE,DVBB,ETUBEFO,GBCB,GE,NC,IPAVPHIBPIPRVGASTTAVB,XO2,YCOO,'YCO,YOOYO,,YVOY,' '02,COVB,CO2VB,yCO20,YC02)

REAL NC

C THIS SUBPROGRAM PERFORMS THE GAS PHASE MATERIAL BALANCE FOR O2, CO2 IN THE FREEBOARD.

\[
\begin{align*}
A2 & = \frac{PAV/RG/TAVB*NC*PI*DCSVE}{AKC} \\
A4 & = \frac{PAV/RG/TAVB*NC*PI*DCSVE**2*AKC}{O2} \\
YV & = \frac{O2 - YOO}{X02} \\
\end{align*}
\]

IF (YV .LT. 0.0) GO TO 100

RETURN

END
```
C OXYGEN RICH CONDITION

YV = 0.0

AKP = 3.610**EXP(-15000./1.787/T)**(PAV/OG/T)**1.3*YH20**0.5*DVB8*

I(1.ETUBE)

INDEX = 0

YO = 0.0

DYO = 0.01

EYD = 0.001

DO 110 I = 1,20

ANR = FMO*YCO0+2.0*A4/(FMO+A4)*(FMO*YCO20+A2*YO*(2./PHIB-1.))

DR = FMO+AKP*(17.5*YO/(1.+24.7*YO))

1-2.0*A4*AKP*(17.5*YO/(1.+24.7*YO))/(FMO+A4)

YCO = ANR/DR

IF (YCO .LT. 1.E-6) GO TO 130

YCO2 = (FMO*YCO20+A2*YO+FMO*YCO0)/(FMO)

YO = YO-YO*FMO/2.0

1-A2*YO/PHIB/FMO

0 TO 140

110 CONTINUE

WRITE(6,190) 1,YCO,YC02,YO,YOC

C190 FORMAT(1X,'YCO YCO2 YO YOC - ',14,IP4E12.3)

1200. C OXYGEN RICH CONDITION

1201. C

1202. C YCO2 = FMO*YCO20/(FMO+A4)

1203. C YCO = YCO0+2.0*A4*YCO2/FMO+(YV0-YV)*COVB

1204. C OR = 0.0

1205. G1 = FMO*(YV0-YV)

1206. COB = 0.0

1207. RETURN

1208. CONTINUE

1209. 100 CONTINUE

1210. C

1211. C OXYGEN RICH CONDITION

1212. C

1213. YV = 0.0

1214. AKP = 3.610**EXP(-15000./1.787/T)**(PAV/OG/T)**1.3*YH20**0.5*DVB8*

1215. I(1.ETUBE)

INDEX = 0

1216. YO = 0.0

1217. DYO = 0.01

1218. EYD = 0.001

1219. DO 110 I = 1,20

1220. ANR = FMO*YCO0+2.0*A4/(FMO+A4)*(FMO*YCO20+A2*YO*(2./PHIB-1.))

1221. IF (YCO .LT. 1.E-6) GO TO 130

1222. YCO2 = (FMO*YCO20+A2*YO+FMO*YCO0)/(FMO)

1223. YO = YO-YO*FMO/2.0

1-A2*YO/PHIB/FMO

0 TO 140

1224. 110 CONTINUE

1225. WRITE(6,190) 1,YCO,YC02,YO,YOC

1226. C190 FORMAT(1X,'YCO YCO2 YO YOC - ',14,IP4E12.3)

1227. IF (INDEX .EQ. 2) GO TO 120

1228. CALL CRRECT (I,INDEXDYOX1,X2,YOEIE2,ER,EYD)

1229. IF (INDEX .EQ. 2) 60 TO 120

1230. 60 CONTINUE

1231. WRITE (6,1000) YO,YOC,YOO

1232. 1000 FORMAT ('O',IOX,'YO HAS NOT CONVERGED. SUBROUTINE FBC',/,IOX'YO,

1233. YE = YE

1234. 120 YO = YO

1235. END

SUBROUTINE FBC (YH20,AKP,AE,A3E,AMDF,DUBB,EFB,EPF,ETUBE

1236. I,FMO,FHM,FM0,FER,G8,COB,GS,PAV,PHIE,PR,RVGAS,T,TAVE.

1237. 2VM010,X1X2X2X2X2YB0YB0YCOE0YCOE,YES0YE,YES0YES0,ACO2,CDY+C02Y

1238. 3COV8,C02V8,YC028,YC028,YC028)
DIMENSION A(25), B(5), AA(16), BB(4)

THIS SUBPROGRAM FORMS THE HEART OF THE CALCULATIONS FOR THE GAS PHASE BALANCES IN THE BED

A1 = ABE*DVB*KPAV/(RG*T)
A2 = AHOFF*DVB*X(EPC-EPB)*AKP*KPAV/(RG*XAVE)*X
A3 = AHOFF*DVB*(1.-EPC-ETUBE)*AKP*KPAV/(RG*XAVE)*X
DO 150 I = 1,25

OXYGEN CONCENTRATION IN EMULSION PHASE IS ZERO.

A(1) = FBM + A1
A(4) = -A1*CO2VB
A(5) = A1*XO2C
A(7) = A(1)
A(9) = -A1
A(10) = A1/2.0
A(12) = -2.0*AA
A(13) = FBM + A1 + A4
A(14) = -A1
A(18) = -A1
A(19) = FBM + A1
A(21) = A1/XO2
A(22) = -A1*CO2VB/XO2
A(24) = -A2
A(25) = FBM + A1 + A2
B(1) = FEMO*YVE0 - FEMO*YE0/XO2*VRP0
B(2) = FEMO*YCO2E0 - FEMO*YE0*CO2VB/XO2*VRP0*CO2
B(3) = FEMO*YCO2E0 + VRP0*CO2
B(4) = FBM0*YCO2E0
B(5) = FBM0*YCO2
CALL SIMQ(A,B,5,25,KS')

YVE = B(1)
IF (YVE .LE. 0.0) GO TO 10
YF = YVE
YCOE = B(2)
YCO2E = B(3)
YCO2B = B(4)
YB = B(5)
GE = (FEMO*YE0+A1*YB)/XO2
GB = A1*YVE
COB = A1*YCOE
CO TO 60

OXYGEN CONCENTRATION IN EMULSION PHASE IS LARGE ENOUGH TO BURN THE VOLATILES RELEASED IN THAT COMPARTMENT

YVE = 0.0
AKP = 3.1*EXP(-16000./1.987/T)*(PAV/RG/T)**1.8*YH2O**0.5*YVEB*
1*(1.-EPC-ETUBE)*EMF
INDEX = 0
YE = 0.0
DYE = 0.01
IF (YEO .LE. 0.05) DYE = 0.002
IF (YEO .LE. 0.025) DYE = 0.001
EMAX = 0.01
AA(1) = 0.0

AA(16) = FEM + A1 + A2

BB(1) = FEM0*YCEO + (FEM0*YEO + VPR0)*COV + VPR0*COV + A3

BB(2) = FEM0*YCO2E0 + VPR0*COV + A3*(2./PHIE-1.)*YE

BB(3) = FEM0*YCO2B0

BB(4) = FEM0*YBO + A1*YE

CALL SIMO(AABB,4V16,KS)

YCOE = BB(1)

YCO2E = BB(2)

YCO2B = BB(3)

YB = BB(4)

ANR = FEM0*YEO - A1*(YE-YB) - A3*YE/PHIE - (FEM0*YEO + VPR0)*X02 - 1*A0*YCEO*(17.5*YE/(1+24.7*YE))/2.0

YEC = ANR/FEM

IF (YEC .LT. 0.0) YEC = 0.0

IF (YEC .EQ. 0.0 .AND. YEO .LT. 0.005) YE = 0.0

ER = YE-YEC

CALL CORRECT(I,INDX,YOE,YEO,VPROD,YBO,YEO)

IF (INDX .EQ. 2) GO TO 60

50 CONTINUE

WRITE (6I1000) YE,YEC,YB,YBO,YEO

1000 FORMAT ('0',10X,'YE HAS NOT CONVERGED. SUBROUTINE GPB',/,1OX,'YE,'YEC','YB','YBO','YEO','= '1PSE12.3)

1056. YE = YEO

1057. 60 CONTINUE

IF (YE .LT. 0.0) YE = 0.0

IF (YE .GT. YEC) YE = YEC

IF (YB .LT. 0.0) YB = 0.0

IF (YC02B .LT. 0.0) YC02B = 0.0

IF (YCO2E .LT. 0.0) YCO2E = 0.0

GE = FEM0*YEO + VPR0

GB = 0.0

COB = AKP*YCEO*(17.5*YE/(1+24.7*YE))+A1*YCEO

RETURN

END

SUBROUTINE GPHASE(AhBAKEAMPAVR,ETUBE,EP,EPC,AKBE,BEFBO

*FEMO,FTM,rEM,TTB,TE,YBO,YEO,Y91,YE1,GENB,GENE)

C THIS SUBPROGRAM IS USED TO CALCULATE THE SO2 AND NOx CONCENTRATIONS IN THE BED

C D1 = ((1.-ETUBE-EPB)*AM*AKE/T)*PAV/RG*DBB+FEM

C ALF=AM*EPB*DBB*PAV/(DIYRG*T)

C B2 = FBM+ALF*FEM+(EPC-EPB)*AM3/TB+

C IALF=(1.0-ETUBE)*AM*TE*DBB*AM*PAV/RG

C IF (D2 .EQ. 0.0) YB1 = 0.0

C IF (D2 .NE. 0.0) YDI = (FEM0*YBO+GENB+ALF*FEM0*YEO)/D2
SUBROUTINE HAREA (ATI, DTI, ZI)
COMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), DTUBE(10),
1DVB(60), DVBEFF(60), FFAD(10), ZDIS(10), FD(10), AHEAV(60), ETUBE(60),
2UD(60), UMF(60), H(60), AT(60), DT(60), T(60), X(60), AHE(60), YB(60),
3YE(60), YCOE(60), EPB(60), EPC(60), DVBE(60), DVBEFF(60), ZNBV(60),
4UB(60), UTC(60), UT(60), ZB(10), ATB(10), YVE(30), ZAVB(60), IARR(10),
COMMON /B/ YBO(60), YE(60), DB(60), DSVB, DSVB, DCSUB, DCWBM, DCMB, HCHC,
1HLF, VMF, FMD, UFM, UF, TF, RG, MGAS, DPIFX, DPIFX, DPIFX, DPIFX, RHODES,
2EMF, PAV, HCR, BEDVOL, EFFVOL, SOLVOL, TETUBE, HLMF, PI, AND, DNLZ,
3FW, FSW, DZAV, MFEDE, MDIG, HTHE, MTB, HT, M, HT, ICR, IFBC, HTC
C
CALCULATION OF THE HEIGHT GIVEN THE CROSS SECTIONAL AREA
RI = SQRT (ATI / PI)
D = 10 J = 1, MTB
IF (ATI .GT. ATB(J)) GO TO 10
A1 = SORT (ATI / ATB(J-1)) - 1.0
B1 = SORT (ATB(J) / ATB(J-1)) - 1.0
C = ZB(J) - ZB(J-1)
ZI = ZB(J-1) + A1 * C / B1
GO TO 20
10 CONTINUE
RETURN
END
FUNCTION HEIGHT(VV)
COMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), DTUBE(10),
1DVB(60), DVBEFF(60), FFAD(10), ZDIS(10), FD(10), AHEAV(60), ETUBE(60),
2UD(60), UMF(60), H(60), AT(60), DT(60), T(60), X(60), AHE(60), YB(60),
3YE(60), YCOE(60), EPB(60), EPC(60), DVBE(60), DVBEFF(60), ZNBV(60),
4UB(60), UTC(60), UT(60), ZB(10), ATB(10), YVE(30), ZAVB(60), IARR(10),
COMMON /B/ YBO(60), YE(60), DB(60), DSVB, DSVB, DCSUB, DCWBM, DCMB, HCHC,
1HLF, VMF, FMD, UFM, UF, TF, RG, MGAS, DPIFX, DPIFX, DPIFX, DPIFX, RHODES,
2EMF, PAV, HCR, BEDVOL, EFFVOL, SOLVOL, TETUBE, HLMF, PI, AND, DNLZ,
3FW, FSW, DZAV, MFEDE, MDIG, HTHE, MTB, HT, M, HT, ICR, IFBC, HTC
C
CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED
HT = 0.0
SUM = 0.0
DO 100 I = 2, NTC
SUM = SUM + DVBEFF(I)
HT = HT + DZAV
IF (SUM .LT. VV) GO TO 100
HT = (VV - SUM) * DZAV / DVBEFF(I) + HT
GO TO 110
100 CONTINUE
110 CONTINUE
RETURN
END
SUBROUTINE HYDRO
REAL MGAS
COMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), DTUBE(10),
1DVB(60), DVBEFF(60), FFAD(10), ZDIS(10), FD(10), AHEAV(60), ETUBE(60),
CALCULATION OF BUBBLE HYDRODYNAMICS

LAST = 0

SUM = 0.0

SUMEFF = 0.0

BEDVOL = 0.0

SUMV = 0.0

ICR = 0

HCR = 0.0

IFBC = 0

ETUBE(1) = 0.0

ETUBE(2) = 0.0

RHOGAS = PAV*MAGAS/(RG*T(2))

VISC = 3.72E-6*T(2)**1.676

A1 = 33.7*2+0.0405*DPSVB**3*G*(RHOBED-RHOGAS)*RHOGAS/VISC**2

UMF(2) = VISC/DPSVB*RHOGAS) * (SQR(T(1)-33.7)

UMF(1) = UMF(2)

UMF(2) = FMF*MAGAS/RHOGAS/(AT(1)*(1.-ETUBE(2)))

DBO = 0.347*(AT(1)*(1.-ETUBE(2))*VISC(2))

DBA = DBO

H(2) = H(2)

ASSUMING THE COMPARTMENT SIZE, BUBBLE SIZE IS COMPUTED IN THAT

COMPARTMENT. ITERATION IS CONTINUED UNTIL THE ASSUMED COMPARTMENT

SIZE AND THE CALCULATED BUBBLE SIZE IN THAT COMPARTMENT AGREE

DO 200 I = 2,190

IF (I.EQ. 2) GO TO 16

DBB (5.0

INDEX = 0

EMAX = 0.1

DBA = H(I-1) - H(I-2)

IF (I .LE. M1) GO TO 5

T(I) = T(M1)

X(I) = X(M1)

YB(I) = YB(M1)

YE(I) = YE(M1)

CONTINUE

H(I) = H(I-1) + DBA

C
Identification of Cooling Tubes in the compartment

Do 210 J = 1:HTHE
If (ZH(J) .LE. H(I) .AND. ZHE(J+1) .LT. H(I)) Go To 210
If (ZH(J) .LE. H(I-1) .AND. ZHE(J+1) .GE. H(I)) Go To 220
 F1 = (H(I)-ZHE(J))/DBA
 F2 = (ZHE(J)-H(I-1))/DBA
 AHEAV(I) = F1*AHE(J)+F2*AHE(J+1)
 DTUBEI(I) = F1*DTUBE(J)+F2*DTUBE(J+1)
 Go To 230

220 AHEAV(I) = AHE(J)
 DTUBEI(I) = DTUBE(J)
 Go To 240

210 Continue

240 CALL AREA(H(I);DT(I);AT(I))
 HAV = 0.5*(H(I-1)+H(I))
 CALL AREA (HAV;DTAV;ATAU)
 DVBAB(I) = DVBAB(I)*1.0 - DUBBEF(I)/DVBAB(I)
 IF (I .EQ. 2) Go To 240
 RHOGAS = FMA*MGAS/CO2K(T(I))
 VISC = 3.72e-6*(T(I))**0.676
 A1 = 33.7**2+0.0408*DSUB**3*G*(RHOBED-RHOGAS)*MRHOGAS/VISC**2
 UNF(I) = VISC*(DSUB**3*RHOGAS**3/SORT(A1=33.7))

250 IF (IFBC .GT. 0) Go To 125
 IF (ABS(UO(I)-UMF(I)) .LE. 0.01*UMF(I)) Go To 18
 IF (UO(I) .LT. UMF(I)) Go To 10
 Go To 17

ICR = 1

DBMAX = 0.652*(ATAU(I)-ATUBE(I))**0.4

254 IF (DBBC .GT. 0.1) Go To 126
 DBC = DBC - (DBBC-DBAB)*EXP(-Q.3*HAV/DTAV)
 IF (IARRN(I).GT.2) AND. PHI(I).GE.DBAV(I-1) AND. DBC.GE.
 DBA = PHI(I)

259 IF (LAST .GT. 0) Go To 360
 ER = DBC - DBA
 IF (N .EQ. 1 .AND. DB .LT. DBA) DDC = -DB/2.0
 CALL CRRECT (*.INDEX;DBA;XI;X2;DBA;E1;E2;ER;EMAX)
 IF (INDEX .EQ. 2) Go To 260

250 Continue

260 Continue

260 DBAV(I) = DBA

ANBE(I) = 1.0/DBAV(I)

CALCULATIONS FOR UBR --- BUBBLE RISING VEL. AT MIN. FLUIDIZATION,

UBR = 0.711 * SORT (G * DBAV(I))

UBS = 0.355 * SORT (G * DTAV)

IF (UBR .GT. UBS) UBR = UBS

UB(I) = UO(I)-UMF(I)+UBR
 EBP(I) = (UG(I)-UMF(I)) / UG(I)**(1.0-ETUBE(I))
ALFB = EMF * UBR / UMF(I)
EPC(I) = EPB(I) * ALFB / (ALFB - 1.0)
IF (EPB(I) .GT. 0.7) EPB(I) = 0.7
IF (EPC(I) .GT. (0.99 - ETUBE(I))) EPC(I) = 0.99 - ETUBE(I)
IF ((EPC(I)-EPB(I)) .LT. 0.01) EPC(I) = EPB(I) + 0.01
BEDVOL = BEDVOL + DVB(I)
SUMV = SUMV + DVBBEF(I)
SOLVOL = DVBBEF(I) - DVB(I) * EPB(I)
SUMEFF = SUMEFF + SOLVOL
SUM = SUM + SOLVOL / (0.5 * (AT(I)+AT(I-1)))
IF (ICR .GT. 0) GO TO 35
IF (LAST .GT. 0) GO TO 125
IF (HLF .NE. 0.0) GO TO 20
C TEST FOR CONVERGENCE
IF (ABS(SUMEFF-UMF) .LT. 0.01*UMF) GO TO 125
IF (SUMEFF .LT. UMF) GO TO 200
VOL = SUMV-(SUMEFF-UMF) * (1.0 - ETUBE(I)) / (1.0-EPB(I)-ETUBE(I))
H(I) = HEIGHT(VOL)
CALL AREA (H(I),DT(I),Ar(I))
BEDVOL = BEDVOL - DVB(I)
SUMV = SUMV - DVBBEF(I)
SUMEFF = SUMEFF - SOLVOL
SUM = SUM - SOLVOL / (0.5*(AT(I)+AT(I-1)))
LAST = 1
DBA = H(I)-H(I-1)
GO TO 16,
20 CONTINUE
C TEST FOR CONVERGENCE
IF (ABS(H(I)-HLF) .LE. I.OE-3*HLF) GO TO 125
IF (ABS(H(I)-HLF) .LE. 0.5 * (H(I)-H(I-1))) GO TO 50
H(I) = HLF
BEDVOL = BEDVOL - DVB(I)
SUMV = SUMV - DVBBEF(I)
SUMEFF = SUMEFF - SOLVOL
SUM = SUM - SOLVOL / (0.5*(AT(I)+AT(I-1)))
CALL AREA (H(I),DT(I),AT(I))
LAST = 1
DBA = H(I)-H(I-1)
GO TO 16,
10 UD(I) = UMF(I)
ATAV = FMD * RG * T(I) / (PAV * UD(I) * (1.0-ETUBE(I)))
CALL HAREA (ATAV,DTAV,HAV)
H(I) = 2.0*MAV - H(I-1)
ICR = 1
LAST = 1
DBA = H(I)-H(I-1)
GO TO 16
200 CONTINUE
IF (IFBC .EQ. 0) GO TO 125
35 CONTINUE
HCR = H(I)
IF (ABS(H(I)-HLF) .LT. 1.0E-3*HLF) GO TO 125
IF (ABS(UMF-SUMEFF) .LE. 0.01 * UMF) GO TO 125
I = I + 1
DBAV(I) = 0.0
UB(I) = 0.0
L620. AKBE(I) = 1000.0
L621. EPB(I) = 0.0
L622. EPC(I) = 0.0
L623. IF (VMF .EQ. 0.0) GO TO 45
L624. C
L625. C FIXED BED CONDITIONS
L626. C
L627. VOL = SUMV + (VMF - SUMEFF)
L628. H(I) = HEIGHT(VOL)
L629. CONTINUE
L630. IF (VMF .EQ. 0.0) H(I) = HLF
L631. IF (I .LE. M1) GO TO 6
L632. T(I) = T(M1)
L633. X(I) = X(M1)
L634. YB(I) = YB(M1)
L635. YE(I) = YE(M1)
L636. 6 CONTINUE
L637. DO 310 J = 1,MTHE
L638. IF (ZHE(J) .LE. H(I) .AND. ZHE(J+1) .LT. H(I)) GO TO 310
L639. IF (ZHE(J) .LE. H(I-1) .AND. ZHE(J+1) .GE. H(I)) GO TO 320
L640. F1 = (H(I)-ZHE(J))/(H(I)-H(I-1))
L641. F2 = (ZHE(J)-H(I-1))/(H(I)-H(I-1))
L642. AHEAV(I) = F1*AHE(J)+F2*AHE(J-1)
L643. DTUBE(I) = F1*DTUBE(J)+F2*DTUBE(J-1)
L644. PV(I) = F1*PV(J)+F2*PV(J-1)
L645. PHI(I) = F1*PH(J)+F2*PH(J-1)
L646. GO TO 330
L647. 320 AHEAV(I) = AHE(J)
L648. DTUBE(I) = DTUBE(J)
L649. PV(I) = PV(J)
L650. PHI(I) = PH(J)
L651. 330 IARRNG(I) = IARR(J)
L652. GO TO 340
L653. 310 CONTINUE
L654. 340 CALL AREA(H(I),DT(I),AT(I))
L655. DVBB(I) = 0.5*(AT(I-1)+AT(I))*(H(I)-H(I-1))
L656. DVBBEF(I) = DVBB(I) - 0.25*AHEAV(I)*DTUBE(I)
L657. ETUBE(I) = 1.0 - DVBBEF(I)/DVBB(I)
L658. RHOGAS = PAV*MGAS/(RG*T(I))
L659. VISC = 3.72E-6*T(I)**.676
L660. A1 = 33.7*K*0.040*DPSVB**3*G*(RHOBEB-RHOGAS)*RHOGAS/VISC**2
L661. UMF(I) = VISC/(DPSVB*RHOGAS)*SQR(A1-33.7)
L662. HAV = 0.5*(H(I)-H(I-1))
L663. CALL AREA(HAV,DTAV,ATAV)
L664. UC(I) = FMD*MGAS/RHOGAS*(ATAV*(1.-ETUBE(I))
L665. BEDVOL = BEDVOL + DVBB(I)
L666. SUMV = SUM + DVBBEF(I)
L667. SOLVOL = DVBBEF(I) - DVBB(I) * EPB(I)
L668. SUMEFF = SUMEFF + SOLVOL
L669. SUM = SUM + SOLVOL / (0.5 * (AT(I)+AT(I-1))
L670. IFBC = 1
L671. 125 M1 = I
L672. TETUBE = 1.0 - SUMV/BEDVOL
L673. EFFVOL = SUMV
L674. SOLVOL = SUMEFF
L675. M = M1 - 1
L676. DO 460 K = 2,M1
L677. I = I + 1
L678. H(I) = H(M1)+HB(K)
L679. DO 410 J = 1,MTHE
IF (ZHE(J).LE.H(I).AND.ZHE(J+1).LE.H(I+1)) GO TO 410
IF (ZHE(J).LE.H(I-1).AND.ZHE(J+1).GE.H(I)) GO TO 420
F1 = (H(I)-ZHE(J))/(H(I)-H(I-1))
F2 = (ZHE(J)-H(I-1))/(H(I)-H(I-1))
AHEAV(I) = F1*AHE(J)+F2*AHE(J-1)
DTUBEI(I) = F1*DTUBE(J)+F2*DTUBE(J-1)
PVI(I) = F1*PV(J)+F2*PV(J-1)
PHI(I) = F1*PH(J)+F2*PH(J-1)
GO TO 430
420 AHEAV(I) = AHE(J)
DTUBEI(I) = DTUBE(J)
PVI(I) = PV(J)
PHI(I) = PH(J)
IARRNG(I) = IARR(J)
GO TO 440
410 CONTINUE
440 CALL AREA (H(I),DT(I),AT(I))
DVBB(I) = 0.5*(AT(I-1)+AT(I))*(H(I)-H(I-1))
DVBBEF(I) = DVBB(I) * (1.0-0.25*AHEAV(I)*DTUBEI(I))
ETUBE(I) = 1.0 - DVBBEF(I)/DVBB(I)
430 CONTINUE
460 CONTINUE
MT = I
HFB = H(MT)-H(M1)
RETURN
END
SUBROUTINE SIMQ(A,B,N,NN,KS)
DIMENSION A(NN),B(N)
TOL=0.0
KS=0
JJ=-N
DO 65 J=I,N
JY=J+1
JJ=JJ+N+1
BIGA=0.
IT=JJ-J
DO 30 I=J+1,N
I1=J+N*(J-2)
IT=IT+I
IF (ABS(BIGA) - ABS(A(IJ))) 20,30,30
BIGA=A(IJ)
IMAX=I
20 CONTINUE
30 CONTINUE
DO 65 J=I,N
IF (ABS(BIGA) - TOL) 35,35,40
BIGA=A(IJ)
IMAX=I
35 CONTINUE
DO 40 I=J+N*(J-2)
IT=IT+I
65 CONTINUE
40 STOP
END
SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
IF (ABS(BIGA) - ABS(A(IJ))) 20,30,30
BIGA=A(IJ)
IMAX=I
30 CONTINUE
TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
IF (ABS(BIGA) - TOL) 35,35,40
KS=I
WRITE(6,100) KS
100 FORMAT(//' NO SOLUTION'/' ,KS='',I2)
STOP
INTERCHANGE ROWS IF NECESSARY
DO 30 I=J+N*(J-2)
IT=IT+I
30 CONTINUE

DO 50 K = J + N

I2 = I1 + IT
SAVE = A(I1)
A(I1) = A(I2)
A(I2) = SAVE

C DIVIDE EQUATION BY LEADING COEFFICIENT

50 A(I1) = A(I1)/BIGA
SAVE = B(IMAX)
B(IMAX) = B(J)
B(J) = SAVE/BIGA

C ELIMINATE NEXT VARIABLE

C IF(J - N) 55, 70, 55

DO 65 IX = J + IT + 1

IXJ = IOS + IX
IT = J - IX

DO 60 JX = 1 + IX
JJX = IXJX + IT

60 A(IXJX) = A(IXJX) - (IXJ)*A(JJX)

65 B(IX) = B(IX) - B(J)*A(IXJ)

C BACK SOLUTION

NY = N - 1
IT = N*J

DO 80 J = 1, NY

IA = IT - J
IB = N - J
IC = N

DO 80 K = 1, J

B(IB) = B(IB) - A(IA)*B(IC)

IA = IA - N
IB = IB - N

80 IC = IC - 1

RETURN

SUBROUTINE VELYISCRHOGASG, RHOS, PARUM, UT

THIS SUBROUTINE CALCULATES THE MINIMUM FLUIDIZATION VELOCITY AND THE TERMINAL VELOCITY OF THE PARTICLE

A1 = 33.7**2 + 0.049*DPAR**3*G*(RHOS-RHOGAS)*RHOGAS/VISC**2
UM = VISC/(DPAR*RHOGAS)**(SQRT(A1)-33.7)

UT = (9.0*(RHOS-RHOGAS)**2*G**2/225.0/RHOGAS/VISC)**(1./3.)*DPAR

REP = DPAR*RHOGAS*UT/VISC

IF(REP > 0.4 .AND. REP .LE. 500.0) GO TO 210

UT = 0.4*(RHOS-RHOGAS)*DPAR**2/18./VISC

IF(REP .LE. 0.4) GO TO 210

RETURN

FUNCTION VOLUME (ZZ)

COMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), D1UBE(10),...
COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVB,DCWMB,R:IOCH,
1HLF,VMF,FMD,FMF,UF,PF,TF,PG,GMAS,DFEF,DPF,DPFLU,DPD,RHOR.
3EMF,PAV,HCR,EDVOL,EFFVOL,SOLVOL,ETUBE,HLF,PI,AND,DNL,
3FW,FSD,ZAV,FEED,MEDIS,MTHE,MTB,MT,M1,ICR,IFSC,NTC
C
calculate of the effective volume of the bed given the height
C
N = IFIX (ZZ/DZAV)+1
IF (N.EQ.1) N = 2
SUM = 0.0
ZN = FLOAT(N-1)*DZAV
LO 100 I = 2 + N
SUM = SUM + DVBEF(I)
IF (I .LT. N) GO TO 100
A1 = (ZZ - ZN) / DZAV
SUM = SUM + DVBEF(I) * A1
100 CONTINUE
VOLUME = SUM
RETURN
END
APPENDIX V

INPUT TO COMBUSTION PROGRAM

<table>
<thead>
<tr>
<th>KT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB(1)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>HB(3)</td>
</tr>
<tr>
<td>112.9</td>
</tr>
<tr>
<td>DCSE(1)</td>
</tr>
<tr>
<td>0.0464</td>
</tr>
<tr>
<td>WE(1)</td>
</tr>
<tr>
<td>DBIS</td>
</tr>
<tr>
<td>0.0542</td>
</tr>
<tr>
<td>DASVF</td>
</tr>
<tr>
<td>0.0758</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1 A2 A3 A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA LEWIS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB(1)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MTHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHE(2)</td>
</tr>
<tr>
<td>24.0</td>
</tr>
<tr>
<td>ZHE(6)</td>
</tr>
<tr>
<td>280.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MFEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZF(1)</td>
</tr>
<tr>
<td>6.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MDIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDIS(1)</td>
</tr>
<tr>
<td>142.0</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>84.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME1 NAME2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME1 NAME2</td>
</tr>
<tr>
<td>NAME1 NAME2</td>
</tr>
<tr>
<td>NAME1 NAME2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PTHCOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc</td>
</tr>
<tr>
<td>0.754</td>
</tr>
<tr>
<td>hcoal</td>
</tr>
<tr>
<td>7300.0</td>
</tr>
<tr>
<td>hlhf</td>
</tr>
<tr>
<td>5.15</td>
</tr>
<tr>
<td>uhvau1</td>
</tr>
<tr>
<td>0.00765</td>
</tr>
<tr>
<td>wcoal</td>
</tr>
<tr>
<td>4.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGNITE</th>
<th>ISO2</th>
<th>INOX</th>
<th>ITEMP</th>
<th>IPRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
Flume Sectional Area of DFD 50.0 CM

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>SPAHFRAT</th>
<th>TDIA.4</th>
<th>TUPES</th>
<th>CFR</th>
<th>PICH.CM</th>
<th>HFR</th>
<th>PITCH.CM</th>
<th>TUBES ARRANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>70.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>60.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>40.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Solids Feed Level

<table>
<thead>
<tr>
<th>Fractions</th>
<th>CCAI Feed</th>
<th>Limestone Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.91</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Solids Discharge Level

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Discharged</th>
</tr>
</thead>
<tbody>
<tr>
<td>142.00</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Nozzle Diameter

- Diameter: 0.1580 CM
- Diameter: 0.0075
- Diameter: 0.1000

Surface Vol Mean Dia of Additives Feed

- Base = 0.0750 IC M
- Dia = 0.051 IC
- XN = 0.029 IC
- WX = 0.022 IC

Surface Vol Mean Dia of CCAL Feed

- XN = 0.051 IC
- WX = 0.022 IC

Parts

- All Temperatures in Centigrade

<table>
<thead>
<tr>
<th>Part</th>
<th>YVE</th>
<th>YVE</th>
<th>YV0E</th>
<th>YV0E</th>
<th>K</th>
<th>ZAVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.389E-04</td>
<td>4.393E-04</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.393E-04</td>
<td>4.389E-04</td>
</tr>
<tr>
<td>MT.</td>
<td>YS02D</td>
<td>YS02E</td>
<td>ZAVG</td>
<td>YS02F</td>
<td>ZAVF</td>
<td>RF</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

GSA

PRESURE DROP ACROSS THE DISTRIBUTOR = 7.3566E 02

PRESURE DROP IN THE BED

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>PRESSURE DROP IN THE FIXED BED SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.0942E 00</td>
</tr>
<tr>
<td>3</td>
<td>5.9561E 00</td>
</tr>
<tr>
<td>4</td>
<td>2.311F 00</td>
</tr>
<tr>
<td>5</td>
<td>3.9766E 00</td>
</tr>
<tr>
<td>6</td>
<td>5.053E 00</td>
</tr>
<tr>
<td>7</td>
<td>5.3394E 00</td>
</tr>
<tr>
<td>8</td>
<td>6.6764E 00</td>
</tr>
<tr>
<td>9</td>
<td>8.0503E 00</td>
</tr>
<tr>
<td>10</td>
<td>1.1451E 00</td>
</tr>
<tr>
<td>11</td>
<td>1.5229E 00</td>
</tr>
<tr>
<td>12</td>
<td>2.0092E 00</td>
</tr>
</tbody>
</table>

PRESURE DROP IN THE FIXED BED SECTION = 0.0
APPENDIX VII

MANUAL FOR THE COMPUTER PROGRAMS

In this appendix, explanation for the main programs for elutriation and combustion calculations are given followed by the alphabetical list of subprograms used in both the programs. Except for the subroutine SIMQ which is the duplication of one of the subroutines in SSP supplied by IBM, explanation is given for each subprogram.

1. Elutriation Main Program

In the first part of the program, FBC design data and operating conditions are specified as input. From CN 89 (Card Number 89), the composition and the amount of volatiles and char produced are calculated. At CN 178, ELUT subprogram is called in to perform the elutriation calculations. Calculated results of particle size distributions of limestone and char in the bed and in the entrained solids, solids withdrawal rate, char elutriation rate and combustion efficiency are printed out.

2. Combustion Main Program

Computed results from the elutriation program are used as input in combustion calculations. From CN 64 to CN 84, all the input variables are specified. Then, the devolatilization of coal is considered. Knowing the average temperature of FBC, the yield of volatiles and char and their respective compositions are calculated. The input variables and calculated results so far are printed out.

The combustion of coal is specified by the indicator IGNITE. If IGNITE equals to zero, there is no combustion, and bubble hydrodynamics alone is calculated. Otherwise, the combustion calculations are started from CN 248. First the boundary conditions are specified.
Hydrodynamic calculations are then performed using the assumed temperature profile. The log mean temperature of the cooling medium is calculated knowing the inlet and outlet temperatures. Then, the axial distribution of solids feed is calculated in CN 281/302. Based on the solids mixing parameter f_w, the amount of volatiles released near the coal feed point and throughout the bed are calculated in CN 310/311. The flow rate of gas through the bubble and emulsion phases are computed.

Before proceeding with the combustion calculations, the combustion efficiency is assumed. From the combustion efficiency, the average carbon weight fraction is calculated in CN 350 using the overall carbon material balance. The gas phase material balance is performed and the axial distribution of concentrations of various gaseous species are calculated. Then, based on oxygen material balance, combustion efficiency is calculated.

\[
\text{Combustion efficiency} = \frac{O_2 \text{ in } - O_2 \text{ in the exit gas}}{\text{Stoichiometric O}_2 \text{ required}} \tag{A.VII.1}
\]

The criterion for the convergency of the gas phase balance is that the assumed combustion efficiency based on carbon balance should agree with the calculated combustion efficiency based on oxygen balance. Then, the axial distribution of the solids withdrawal rate, the solids mixing rate and the net flow rate of solids are computed in CN 429/460. Carbon material balance calculations for each compartment are then performed, and the equations are solved by the subroutine SIMQ in CN 486. The solution of the equations gives the carbon concentration in each compartment. Knowing the solids withdrawal rate, the carbon concentration in the bed and the char elutriation rate the overall
combustion efficiency is calculated in CN 502. Using the computed carbon concentration profile, the gas phase material balance is performed again from CN 510/555 to accurately estimate the concentrations of the gaseous species along the combustor. Then, the equations obtained for energy balance are solved using SIMQ subroutine. The temperature calculations converge when the assumed \((T_{i, \text{OLD}}) \) and calculated \((T_i) \) temperatures agree with each other within the specified tolerance limit. The results are printed out in CN 674/677.

\(\text{SO}_2 \) retention calculations are done in CN 696/775 if the indicator IS02 is greater than zero. Total feed rate of sulfur is estimated in CN 698. \(\text{SO}_2 \) generated from the burning volatiles and char is estimated in CN 718/721. \(\text{SO}_2 \) retention calculations are iterative. First, \(\text{SO}_2 \) retention efficiency is assumed, and hence the reactivity of the limestone particle is calculated. \(\text{SO}_2 \) material balance is performed and from the exit \(\text{SO}_2 \) concentration, \(\text{SO}_2 \) capture efficiency is calculated as \(\text{SO}_2 \) capture efficiency \(= 1 - \frac{\text{Sulfur in flue gas}}{\text{Total sulfur fed}} \). (A.VII.2)

If the assumed and calculated efficiencies agree, iteration is stopped, and the results are printed out.

If the INOX indicator is greater than zero \(\text{NO}_x \) material balance calculations are performed. \(\text{NO}_x \) release due to volatiles and char combustion is calculated in CN 783/786. \(\text{NO}_x \) balances in the bed and in the freeboard are done in CN 795/824 and the calculated results are printed out.

If IPRES is greater than zero, pressure drop calculations are performed from CN 854/876. Pressure drop across the distributor, across the fluidized bed and if there is a fixed bed section above
the fluidized bed, then, pressure drop across the fixed bed section are calculated using the equations provided by Kunii and Levenspiel (1969). The final results are printed out in CN 881/891.

3. **Subprogram AKAD**

This function subprogram calculates the overall rate constant for limestone-SO$_2$ reaction. This subprogram is designed based on the data of Borgwardt (1970) for Type 4 limestone. The overall reaction rate constant for limestone-SO$_2$ reaction is calculated by the equation

$$k_{vl} = k_{vl} \frac{S_g \lambda_g}{1/\text{sec}}$$ \hspace{1cm} (A.VII.3)

where k_{vl} is defined as:

$$k_{vl} = 490 \exp(-17500/RT) \text{ gm/cm}^3\text{sec}$$ \hspace{1cm} (A.VII.4)

S_g is the specific surface area of limestone, and is equal to

$$S_g = 35.9 T - 3.67 \times 10^4 \frac{\text{cm}^2}{\text{gm}}, \ T < 1253 \ ^\circ\text{K}$$ \hspace{1cm} (A.VII.5)

$$= -38.43 T + 5.64 \times 10^4 \frac{\text{cm}^2}{\text{gm}}, \ T > 1253 \ ^\circ\text{K}$$ \hspace{1cm} (A.VII.6)

and λ_g is the reactivity of limestone as a function of CaO utilization, particle temperature and size. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). The results are stored in the subprogram. The effect of temperature on the limestone reactivity is minimal for the range of temperatures encountered in the FBC. The reactivity of limestone for any intermediate particle size and conversion is calculated by linear interpolation on semilogarithmic scale as follows:

$$\lambda_{\text{kal}} = \left(\frac{\lambda_{\text{kal}}}{\lambda_{\text{kal}}}\right) \frac{f_2-f_1}{f_2-f_1} \chi \lambda_{\text{kal}}$$ \hspace{1cm} (A.VII.7)
\[
\lambda_{lb} = \left(\frac{2b_2}{2b_1} \right) \frac{f_b-f_1}{f_2-f_1} \times \lambda_{lb_1}
\]
(A.VII.8)

\[
\frac{\ln(d_x/d_{xb})}{\ln(d_x/d_{xa})} \times \lambda_{lb}
\]
(A.VII.9)

where \(\lambda_x \) is the reactivity of limestone, \(f_x \) is the fractional conversion of limestone and \(d_x \) is the limestone particle diameter. Subscripts \(a \) and \(b \) refer to the successive particle sizes for which the reactivity profiles are specified (for the same conversion). Subscripts \(1 \) and \(2 \) refer to the successive particle conversions for which the reactivity profiles are specified (for the same particle size).

4. **Subprogram AKK**

Overall rate constants for char combustion and C-CO\(_2\) reaction are calculated in this subroutine subprogram. Char particle temperature is calculated using the equation (V.38) by a trial and error procedure using Regula-Falsi method. The values of parameters used in this subprogram are given below:

Emissivity of the char particle, \(\varepsilon_m = 1.0 \)

Thermal conductivity of the surrounding gas, \(\lambda \)

\[
= 6.32 \times 10^{-6} \frac{T_m^{0.5}}{1 + \frac{245 \times 10^{-12/T_m}}{T_m}} \text{ calorie cm}^{-1} \text{ sec K}^{-1}
\]
(A.VII.10)

Stefan-Boltzman constant, \(\sigma = 1.36 \times 10^{-12} \text{ calorie cm}^{-2} \text{ sec K}^{-4} \)

Diffusivity of \(O_2-N_2 \) = 4.26 \((\frac{T_m}{1800})^{1.75}/P\) (A.VII.11)

Diffusivity of \(CO_2-N_2 \) = 3.26 \((\frac{T_m}{1800})^{1.75}/P\) (A.VII.12)
5. Subprogram AREA

By using this subroutine subprogram, cross sectional area of the combustor at any height above the distributor can be calculated. A set of data \(Z_j \) and \(A_t,j, j = 1 \text{-} MTB \) is fed into subroutine DESIGN and stored in the common address before subroutine AREA is called. The given height \(Z \) is searched between \(Z_{j-1} \) and \(Z_j \) so that

\[Z_{j-1} < Z < Z_j \]

Then, cross sectional area \(A_t \) corresponding to height \(Z \) is obtained as follows:

\[A_t = \pi r^2 \]
(A.VII.13)

where

\[r = \left[1 + \left(\frac{Z - Z_{j-1}}{Z_j - Z_{j-1}} \right) \left(\frac{A_t,j}{A_t,j-1} \right)^{1/2} - 1 \right]^{1/2} r_{j-1} \]
(A.VII.14)

\[r_{j-1} = \left(\frac{A_t,j-1}{\pi} \right)^{1/2} \]
(A.VII.15)

\(r = \) radius of the combustor at height \(Z \) above the distributor, cm

6. Subprogram ATTR

This subroutine subprogram calculates the burning time of a char particle of given size, and hence the size reduction constant due to combustion. Char particle temperature is first calculated using the Equation (V.38) by a trial and error procedure using Regula-Falsi method. The burning time, \(t_b \), of a char particle is calculated using the Equation (V.51). The values of parameters used in this subprogram are:

- Emissivity of the char particle, \(\varepsilon_m = 1.0 \)
- Stefan-Boltzmann constant, \(\sigma = 1.36 \times 10^{-12}, \text{cals/sec.cm}^2.\text{°K}^4 \)
- Thermal conductivity of the surrounding gas, and the diffusivity
of \(O_2-N_2\) are calculated by Equations (A.VII.10) and (A.VII.11) respectively. Char size reduction rate constant is equal to \((1/t_b)\).

7. **Subprogram CRRECT**

This subroutine subprogram provides the initial value for the unknown variable to be used in the next iteration of Regula Falsi method, and also judges if the iteration has converged. The Regula Falsi iteration has two periods.

- **Period 1:** the root is not found in the interval \((\text{INDX} = 0)\)
- **Period 2:** the root is found in the interval \((\text{INDX} = 1)\)

as shown in Fig. 26.

The parameter \(\text{INDX}\) is an indicator for the two periods, and if \(\text{INDX} = 2\), it means the iteration has converged. During the period 1, the search for the root is continued by proceeding in one direction indicated by the sign of increment for the variable. Once the root is found in the interval, Newton-Raphson method is applied to arrive at the exact value.

To use this subroutine, the following statements must be prepared in the program from where CRRECT is called.

1) Initial assumption for the unknown variable, \(X\)
2) Value of increment, \(DX\)
3) Tolerance limit for error, \(EMAX\)
4) Difference between the assumed and calculated values for the variable, \(E\)
5) Initial value for \(\text{INDX}, \text{INDX} = 0\)
6) \(\text{DO}\) loop for iteration
7) A statement to get off the \(\text{DO}\) loop when \(\text{INDX} = 2\)
Fig. 26 Illustration for Regula Falsi Method
The initial value of X and the sign of DX are very important factors to get a successful result from the iteration. If there are multiple roots, special consideration for choosing these values is needed. In the ordinary case it is recommended to start from either the maximum or minimum possible value of the unknown variable, X.

8. Subprogram DESIGN

Values of the design variables are fed into the main program by calling this subroutine. The axial variation of the bed cross section as a function of height above the distributor (A_t, V_s, Z), the locations of heat transfer tubes, the specifications of the tubes (specific heat transfer area based on outside diameter of the tube, tube diameter (o.d.), vertical pitch, horizontal pitch, tubes arrangement), solids feed locations and the fraction of total feed through each nozzle, solids discharge locations and the fraction of materials discharged through each nozzle, number of orifices in the distributor, orifice diameter, the solids mixing parameter, f_W and the fraction of wake solids thrown into the freeboard, f_{SW}, are the input variables in this subprogram.

Specific heat transfer area of the coils in a section of the bed refers to the outside surface area of the coils available for heat transfer per unit volume of the bed in that section. If the specific heat transfer area is not given, but the tube diameter is given, the former can be calculated.

For the triangular arrangement of the tubes (Fig. 27),

$$a_{HE} = \frac{\text{Heat transfer area}}{\text{Volume of bed}}$$

$$= \frac{\frac{1}{2} \pi d_o \Delta Z}{\left(\frac{1}{2}\right)(p_H p_V \Delta Z)} = \frac{\pi d_o}{p_H p_V}$$

(A.VII.16)
Fig. 27 Arrangement of Cooling Tubes
For the rectangular arrangement (Fig. 27),

\[a_{HE} = \frac{\pi d_o \Delta Z}{P_H P_V \Delta Z} = \frac{\pi d_o}{P_H P_V} \]

(A.VII.17)

For design purposes, the height of an elemental volume of the combustor corresponding to each compartment is chosen. The height should be so chosen that the total number of compartments in the combustor is always less than the maximum dimensions allowed by the program. Then, heat transfer tubes specifications for each compartment is calculated along with the diameter and cross sectional area. The differential volume of each compartment, and the effective volume (excluding the volume occupied by the tubes) are computed.

Volume occupied by the tubes per unit volume of bed is given as follows:

(for triangular arrangement): \[\frac{1}{2} \frac{\pi}{4} d_o^2 \Delta Z = \frac{d_o}{4} a_{HE} \] (A.VII.18)

(for rectangular arrangement): \[\frac{\pi}{4} d_o^2 \Delta Z = \frac{d_o}{4} a_{HE} \] (A.VII.19)

Volume fraction of tubes is then equal to

\[\epsilon_{tube} = 1 - \text{effective volume/total volume} \] (A.VII.20)

For each compartment, tube diameter, specific heat transfer area, tube fraction, volume and effective volume are calculated.

9. **Subprogram ELUT**

This subroutine subprogram is the basis for the entrainment calculations. Entrainment calculations for limestone are performed first followed by char entrainment calculations.

From the bed operating conditions, total bed weight is known.
Initially, the size distribution of the bed is assumed knowing the feed particles size distribution. Based on the assumed bed size distribution, mass balance calculations for each close size fraction are performed, and the bed weight and the new bed size distribution are calculated. If the calculated bed weight equals the known bed weight, the iteration is stopped; otherwise, procedure is repeated using the calculated bed size distribution for the next iteration.

The axial gas dispersion coefficient in the freeboard is then calculated from Reynolds number and Peclet number. From the dispersion coefficient, number of compartments and hence the compartment size in the freeboard are calculated. At each freeboard height, the solids entrainment rate and the average particle sizes are computed.

A similar procedure with slight modification is adopted for char entrainment calculations. To start with, carbon combustion efficiency is assumed and the average carbon concentration (weight fraction) in the bed is calculated based on carbon balance. Knowing the bed weight and carbon concentration in the bed, the weight of char in the bed is calculated. From the coal particle feed size distribution, the bed char size distribution is assumed. Mass balance for each close size fraction of char is performed. Based on the bed char size distribution, entrainment rate along the freeboard height is calculated. The effect of diminishing char particle size due to combustion is taken into account in the char entrainment calculations. The char leaving the combustor unburnt is calculated. The combustion efficiency is calculated again. If the assumed and calculated efficiencies equal, the iteration is stopped; otherwise, procedure is repeated by assuming
a new initial value for combustion efficiency. The calculated results will give the size distribution of limestone and char in the bed, the average particle sizes of limestone and char, and their entrainment rates along the freeboard height, bed solids withdrawal rate, char elutriation rate, solids elutriation rate and the combustion efficiency.

10. **Subprogram FBC**

This subroutine subprogram considers the freeboard char combustion and solves the material balance equations for oxygen in the freeboard. There will be two cases in the calculations: (i) oxygen rich or excess air conditions and (ii) oxygen starved conditions. For the oxygen rich case, Regula Falsi method is applied to calculate the oxygen concentration since the calculations involve a trial and error procedure.

11. **Subprogram GPB**

The material balance equations for oxygen in the emulsion phase and in the bubble phase are solved in this subroutine using the subroutine SIMQ. Two different cases are encountered in the solution: (i) the oxygen concentration in the emulsion phase is zero and (ii) the volatiles concentration in the emulsion phase is zero. The equations are solved by trial and error procedure.

12. **Subprogram GPHASE**

This subroutine is designed for solving the material balance equations in the emulsion phase and in the bubble phase for SO_2 and NO (nitric oxide).

13. **Subprogram HAREA**

This subprogram calculates the height of the specific compartment above the distributor for the given cross sectional area of that
The idea is basically the same as that of subprogram \(\text{AREA} \). The height \(Z \), corresponding to the area, \(A_t \), is calculated by the equation

\[
Z = Z_{j-1} + \frac{(A_t/A_{j-1})^{1/2} - 1}{(A_j/A_{j-1})^{1/2} - 1} (Z_j - Z_{j-1}) \quad (A.VII.21)
\]

This subroutine is called from subroutine \(\text{HYDRO} \) to determine the height of the bed where \(U = U_{o} \). This situation does not occur at the cylindrical section, but occurs only at the tapered section. Therefore, \(A_j > A_{j-1} \), and the error of dividing by zero is automatically avoided.

14. Subprogram \(\text{HEIGHT} \)

This function subprogram calculates the height of the bed for the given effective volume of the bed. Effective volume is the total volume of the bed minus the volume occupied by the tubes.

15. Subprogram \(\text{HYDRO} \)

This subroutine subprogram essentially calculates the bubble hydrodynamics of the bed. In the first part of the calculations, the compartment size is assumed and hence the bubble size. Then, from the correlation, bubble size in that compartment is calculated. If the assumed and calculated bubble sizes are equal to each other, then the iteration is stopped; otherwise, a new compartment size is assumed and the procedure repeated. For each compartment, cooling tubes specifications, effective volume, total volume, height above the distributor and the cross sectional area at that height are calculated. After the bubble size calculation, the hydrodynamic calculations are done using the equations listed in Table 2.
The program is also designed to take into consideration the formation of a fixed bed section over the fluidized bed section. First, the volume of bed at minimum fluidization is evaluated in the case when the expanded bed height is not given. (Either the minimum fluidization height or the expanded bed height has to be specified in the input). Subroutine HYDRO is called inside the temperature iteration loop. Depending upon the temperature of the bed, the hydrodynamic parameters and the bed height are determined. If more number of compartments are needed than that of the earlier iteration, then for the excess number of compartments the temperature, carbon concentration, bubble and emulsion phase oxygen concentrations are taken as those corresponding to the last compartment in the earlier iteration.

Knowing the temperature, density and viscosity of the gas, minimum fluidizing velocity and superficial velocity are calculated for each compartment. U_0 is compared with U_{mf}. If the cross-sectional area of the bed increases as the height increases (for tapered geometry), the superficial velocity decreases. If at any instance, U_0 is less than or equal to U_{mf}, it represents the end of fluidized section and the beginning of a fixed bed section. Then different calculations are to be performed for the fixed bed section. Four different cases are analyzed:

(i) Expanded bed height given, no fixed bed section:

For each compartment, the bubble hydrodynamics is calculated. The iteration is performed till the height of the last compartment reaches the expanded bed height.
(ii) Expanded bed height given, fixed bed section present:

The bubble hydrodynamics is calculated for each compartment. As the height increases, \(U_0 \) is decreasing, and when it is smaller than \(U_{mf} \), critical height has been reached. The critical height corresponds to the height of the bed above the distributor at which the fixed bed section starts. At this location \(U_0 \) is equal to \(U_{mf} \). Above this height, there is no fluidization, and the bubble fraction is zero. The presence of critical height and fixed bed are tagged by the symbols ICR and IFBC. If they are greater than zero, critical height and fixed bed section are present.

For each compartment the volume of solids (including the voids) and the effective height of the solids are calculated. Sum of these heights would be the height of the bed at minimum fluidization.

(iii) Height at minimum fluidization given, no fixed bed section:

Instead of basing the convergency criterion directly on the minimum fluidization height, the volume of the bed at minimum fluidization is used. This would help avoid any inaccuracy involved in the calculation of the effective solids height in each compartment. Also, it would be easy to determine the total bed height when the effective volume of solids in the bed equals the volume at the minimum fluidization. The sum of each compartment volume, effective volume of solids (excluding the bubbles and tubes) and the effective height of solids are computed. The iteration continues till the effective solids volume equals the volume at minimum fluidization. If it exceeds volume at minimum fluidization, the excess solid volume, corrected for the expansion and tube fraction, is subtracted from the effective
volume of the bed to give the correct volume of the bed. From this effective volume of the bed, the expanded bed height is calculated.

(iv) Height at minimum fluidization given, fixed bed section present:

As before, computations are performed till U_o becomes smaller than U_{mf}. In the fixed bed section, the bubble fraction is zero. Fixed bed is equivalent to the condition of minimum fluidization. Total volume of the bed is the sum of the effective volume of solids in the fluidized bed section and the difference in the minimum fluidization volume and the volume of solids in the fluidized section. Total height of the bed is computed from the total volume of the bed.

16. **Subprogram SIMQ**

A copy of this SSP (Scientific Subrouting Package) subroutine supplied by IBM is attached.

17. **Subprogram VEL**

This subprogram calculates the minimum fluidization velocity and the terminal velocity of the particle. The terminal velocity is calculated from (Kunii and Levenspiel, 1969):

\[
U_t = \frac{g(\rho_s - \rho_g)d_p}{18\mu} \quad \text{for } R_{e,p} \leq 0.4 \quad (A.VII.22)
\]

\[
U_t = \left[\frac{4}{225} \left(\frac{\rho_s - \rho_g}{\rho_g \mu}\right)^2 \frac{g^2}{d_p} \right]^{1/3} \quad \text{for } 0.4 < R_{e,p} < 500 \quad (A.VII.23)
\]

\[
U_t = \left[\frac{3.1 g}{\rho_g} \left(\frac{\rho_s - \rho_g}{d_p}\right)^{1/2} \right] \quad \text{for } 500 < R_{e,p} \quad (A.VII.24)
\]

\[
R_{e,p} = d_p \rho_g U_t / \mu \quad (A.VII.25)
\]
Subroutine SIMQ

Purpose

Solve a set of simultaneous linear equations.

Usage

CALL SIMQ(A,M,N,S)

Description

INPUT

- **A**: Array of coefficients.
- **M**: Number of equations.
- **N**: Number of unknowns.
- **S**: Initial guess for solution.

OUTPUT

- **S**: Solution to the equations.

Remarks

- **M** must be greater than **N**.
- **S** is an initial guess for the solution.

Subroutines and Function Subroutines Required

- **SQR**
- **FAC**

Method of Solution

- **Jacobian**, each stage of elimination consists of interchanging elements.
- The forward solution to obtain variable N is done in
 - **J** stages. The back solution for the other variables is
- Calculated by successive substitutions. Final solution values are developed in vector **S**, with variable **N** in column.
- **J** is the pivot number, variable **N** is in column.
- If the pivot value is beyond a tolerance of 0.1, the matrix is considered singular and **S** is set to 1.0. Tolerance can be modified by replacing the first statement.

Subroutine SIMQ

ORIGINAL PAGE IS OF POOR QUALITY
18. **Subprogram VOLUME**

This function subprogram calculates the effective volume of the bed (excluding the tubes, including the voids) for a given height above the distributor.
APPENDIX VIII
NOMENCLATURE FOR THE COMPUTER PROGRAMS
MAIN PROGRAM COMBUSTION

<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>-</td>
<td>Matrix coefficients</td>
</tr>
<tr>
<td>AE</td>
<td>-</td>
<td>Activation energy of char-NO reduction reaction, cals/gmole</td>
</tr>
<tr>
<td>AHE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>AHEAV</td>
<td>a_{HE}</td>
<td>Specific heat transfer area of the tubes, cm²/cm³ FBC volume</td>
</tr>
<tr>
<td>AHEW</td>
<td>a_{HEW}</td>
<td>Specific heat transfer area of the walls, cm²/cm³ FBC volume</td>
</tr>
<tr>
<td>AK</td>
<td>k_{vl}</td>
<td>Overall volume reaction rate constant for limestone - SO₂ reaction, 1/sec</td>
</tr>
<tr>
<td>AKB</td>
<td>$k_{c,B}$</td>
<td>Overall rate constant for char combustion in bubble phase, cm/sec</td>
</tr>
<tr>
<td>AKBE</td>
<td>K_{BE}</td>
<td>Gas exchange coefficient, 1/sec</td>
</tr>
<tr>
<td>AKC</td>
<td>k_c</td>
<td>Overall rate constant for char combustion, 1/sec</td>
</tr>
<tr>
<td>AKCO2</td>
<td>-</td>
<td>Overall rate constant for C-CO₂ reaction, cm/sec</td>
</tr>
<tr>
<td>AKE</td>
<td>$k_{c,E}$</td>
<td>Overall rate constant for char combustion in emulsion phase, cm/sec</td>
</tr>
<tr>
<td>AKNO</td>
<td>k_{NO}</td>
<td>NO reduction rate constant, cm/sec</td>
</tr>
<tr>
<td>ALFA</td>
<td>-</td>
<td>Temperature matrix coefficients</td>
</tr>
<tr>
<td>AMODF</td>
<td>a_m</td>
<td>Defined by Equation (VI.12)</td>
</tr>
<tr>
<td>AND</td>
<td>n_d</td>
<td>Number of orifices in the distributor</td>
</tr>
<tr>
<td>ANH3V</td>
<td>-</td>
<td>NH₃ content in the volatiles, gmoles NH₃/gmoles volatiles</td>
</tr>
<tr>
<td>ANITRO</td>
<td>-</td>
<td>Nitrogen released during char combustion, gatom/sec</td>
</tr>
<tr>
<td>AT</td>
<td>A_t</td>
<td>Cross sectional area of the bed, cm²</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ATB</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>BBD</td>
<td>Matrix coefficients</td>
<td></td>
</tr>
<tr>
<td>BEDCOM</td>
<td>Char combustion rate in the bed, gm/sec</td>
<td></td>
</tr>
<tr>
<td>BEDVOL</td>
<td>Total bed volume, cm³</td>
<td></td>
</tr>
<tr>
<td>BETA</td>
<td>Temperature matrix coefficients</td>
<td></td>
</tr>
<tr>
<td>CADF</td>
<td>Heat capacity of feed additives, cals/gm·°C</td>
<td></td>
</tr>
<tr>
<td>CARCON</td>
<td>Carbon concentration; gm carbon/cm³ bed volume (including tubes)</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>Ca/S molar ratio in feed solids</td>
<td></td>
</tr>
<tr>
<td>CASE</td>
<td>Effective Ca/S molar ratio (including Ca in ash)</td>
<td></td>
</tr>
<tr>
<td>ÇCF</td>
<td>Heat capacity of coal feed, cals/gm·°C</td>
<td></td>
</tr>
<tr>
<td>CGCHAR</td>
<td>Carbon content in char; gm carbon/gm char</td>
<td></td>
</tr>
<tr>
<td>CELU</td>
<td>Char elutriated from the combustor, gms/sec</td>
<td></td>
</tr>
<tr>
<td>CGM</td>
<td>Molar heat capacity of gas, cals/gmole °C</td>
<td></td>
</tr>
<tr>
<td>CGMF</td>
<td>Molar heat capacity of feed gas, cals/gmole °C</td>
<td></td>
</tr>
<tr>
<td>CHARC</td>
<td>Carbon content in char; gmole carbon/gm coal</td>
<td></td>
</tr>
<tr>
<td>CHARNH</td>
<td>Hydrogen content in char; gatom hydrogen/gm coal</td>
<td></td>
</tr>
<tr>
<td>CHARN</td>
<td>Nitrogen content in char; gatom nitrogen/gm coal</td>
<td></td>
</tr>
<tr>
<td>CHARO</td>
<td>Oxygen content in char; gatom oxygen/gm coal</td>
<td></td>
</tr>
<tr>
<td>CHARS</td>
<td>Sulfur content in char; gatom sulfur/gm coal</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>Wt. fraction CH₄ in the volatiles; CH₄ released during devolutilization, gmole CH₄/gm coal</td>
<td></td>
</tr>
<tr>
<td>CLOSS</td>
<td>Total carbon loss (elutriated + withdrawn), gm/sec</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Wt. fraction CO in the volatiles; CO released during devolutilization, gmole CO/gm coal</td>
<td></td>
</tr>
<tr>
<td>COALC</td>
<td>Carbon content in coal; gatom carbon/gm coal (d.b.)</td>
<td></td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>COALH</td>
<td>-</td>
<td>Hydrogen content in coal, gatom hydrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALN</td>
<td>-</td>
<td>Nitrogen content in coal, gatom nitrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALO</td>
<td>-</td>
<td>Oxygen content in coal, gatom oxygen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALS</td>
<td>-</td>
<td>Sulfur content in coal, gatom sulfur/gm coal (d.b.)</td>
</tr>
<tr>
<td>COB</td>
<td>-</td>
<td>Carbon monoxide burnt in each compartment, gmole/sec</td>
</tr>
<tr>
<td>COV</td>
<td>-</td>
<td>CO released during devolatilization per mole of volatiles released, gmole CO/gmole volatiles</td>
</tr>
<tr>
<td>COVB</td>
<td>-</td>
<td>CO produced during volatiles combustion, gmole CO/gmole volatiles</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>Wt. fraction CO₂ in the volatiles; CO₂ released during devolatilization, gmole CO₂/gm coal</td>
</tr>
<tr>
<td>CO2V</td>
<td>-</td>
<td>CO₂ released during devolatilization per mole of volatiles released, gmole CO₂/gmole volatiles</td>
</tr>
<tr>
<td>CO2VB</td>
<td>-</td>
<td>CO₂ produced during volatiles combustion, gmole CO₂/gmole volatiles</td>
</tr>
<tr>
<td>CS</td>
<td>C_s</td>
<td>Heat capacity of solids, cals/gm °C</td>
</tr>
<tr>
<td>CTAR</td>
<td>-</td>
<td>Carbon content in char, gm carbon/gm coal fed</td>
</tr>
<tr>
<td>DASVF</td>
<td>-</td>
<td>Surface volume mean particle diameter of additives in the feed, cm</td>
</tr>
<tr>
<td>DAWMF</td>
<td>-</td>
<td>Weight mean particle diameter of additives in the feed, cm</td>
</tr>
<tr>
<td>DBAV</td>
<td>D_b</td>
<td>Bubble diameter in each compartment, cm</td>
</tr>
<tr>
<td>DCSE</td>
<td>d_co</td>
<td>Surface volume mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCSVB</td>
<td>d_c</td>
<td>Surface volume mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DCSVF</td>
<td>-</td>
<td>Surface volume mean diameter of coal particles in the feed, cm</td>
</tr>
<tr>
<td>DCWE</td>
<td>-</td>
<td>Weight mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCWMB</td>
<td>-</td>
<td>Weight mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>DCWMF</td>
<td>-</td>
<td>Weight mean diameter of coal particles in the feed, cm</td>
</tr>
<tr>
<td>DELT</td>
<td>-</td>
<td>Temperature matrix coefficients</td>
</tr>
<tr>
<td>DETC</td>
<td>-</td>
<td>Increment in combustion efficiency</td>
</tr>
<tr>
<td>DETS</td>
<td>-</td>
<td>Increment in sulfur dioxide retention efficiency</td>
</tr>
<tr>
<td>DNZL</td>
<td>-</td>
<td>Diameter of orifice holes in the distributor, cm</td>
</tr>
<tr>
<td>DPDIS</td>
<td>-</td>
<td>Pressure drop across the distributor, cm H₂O</td>
</tr>
<tr>
<td>DPFIX</td>
<td>-</td>
<td>Pressure drop across the fixed bed section, cm H₂O</td>
</tr>
<tr>
<td>DPFLU</td>
<td>-</td>
<td>Pressure drop across the fluid bed section, cm H₂O</td>
</tr>
<tr>
<td>DPSE</td>
<td>dₑₑ</td>
<td>Surface volume mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPSVB</td>
<td>dₑ</td>
<td>Surface volume mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DPWE</td>
<td>-</td>
<td>Weight mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPWMB</td>
<td>-</td>
<td>Weight mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DTFUDE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>DVBB</td>
<td>-</td>
<td>Volume of each compartment, cm³</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DT</td>
<td>D_t</td>
<td>Diameter of the combustor, cm</td>
</tr>
<tr>
<td>EETCM</td>
<td>-</td>
<td>Tolerance limit for combustion efficiency convergency</td>
</tr>
<tr>
<td>EETSM</td>
<td>-</td>
<td>Tolerance limit for sulfur dioxide retention efficiency convergency</td>
</tr>
<tr>
<td>EFF</td>
<td>-</td>
<td>Combustion efficiency calculated from elutriation calculations</td>
</tr>
<tr>
<td>EFFVOL</td>
<td>-</td>
<td>Volume of bed (excluding tubes), cm3</td>
</tr>
<tr>
<td>EINDEX</td>
<td>-</td>
<td>Nitric oxide emission index, gmole NO/gm coal burnt</td>
</tr>
<tr>
<td>EMF</td>
<td>ε_{mf}</td>
<td>Void fraction at minimum fluidization</td>
</tr>
<tr>
<td>ENOX</td>
<td>-</td>
<td>Nitric oxide emission, mole fraction</td>
</tr>
<tr>
<td>EPB</td>
<td>ε_B</td>
<td>Bubble fraction</td>
</tr>
<tr>
<td>EPC</td>
<td>ε_c</td>
<td>Cloud fraction including bubble</td>
</tr>
<tr>
<td>ETC</td>
<td>-</td>
<td>Carbon combustion efficiency</td>
</tr>
<tr>
<td>ETCA</td>
<td>-</td>
<td>Assumed carbon combustion efficiency</td>
</tr>
<tr>
<td>ETCC</td>
<td>-</td>
<td>Carbon combustion efficiency based on oxygen balance</td>
</tr>
<tr>
<td>ETGC</td>
<td>-</td>
<td>Carbon combustion efficiency based on oxygen balance</td>
</tr>
<tr>
<td>ETN</td>
<td>-</td>
<td>NO$_x$ emission efficiency</td>
</tr>
<tr>
<td>ETC</td>
<td>-</td>
<td>Sulfur dioxide retention efficiency</td>
</tr>
<tr>
<td>ETSC</td>
<td>-</td>
<td>Calculated sulfur dioxide retention efficiency</td>
</tr>
<tr>
<td>ETUBE</td>
<td>ε_{tube}</td>
<td>Volume fraction of tubes in each compartment</td>
</tr>
<tr>
<td>EXAIR</td>
<td>-</td>
<td>Excess air, fraction</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FBCOM</td>
<td>-</td>
<td>Char combustion rate in the freeboard, gm/sec</td>
</tr>
<tr>
<td>FBM</td>
<td>F_{BM}</td>
<td>Molar flow rate of gas in the bubble phase, gmole/sec</td>
</tr>
<tr>
<td>FD</td>
<td>-</td>
<td>Fraction of solids withdrawn from the bed at each location</td>
</tr>
<tr>
<td>FEM</td>
<td>F_{EM}</td>
<td>Molar flow rate of gas in the emulsion phase, gmole/sec</td>
</tr>
<tr>
<td>FFAD</td>
<td>-</td>
<td>Fraction of total additives fed at each location</td>
</tr>
<tr>
<td>FFC</td>
<td>-</td>
<td>Fraction of total coal fed at each location</td>
</tr>
<tr>
<td>FMF</td>
<td>-</td>
<td>Molar feed rate of fluidizing air, gmole/sec</td>
</tr>
<tr>
<td>FMTH</td>
<td>-</td>
<td>Stoichiometric air feed rate, gmole/sec</td>
</tr>
<tr>
<td>FMO</td>
<td>F_{MT}</td>
<td>Total molar flow rate of gas in the combustor, gmole/sec</td>
</tr>
<tr>
<td>FR</td>
<td>-</td>
<td>Frequency factor for char-NO reaction, cm/sec</td>
</tr>
<tr>
<td>FRN</td>
<td>-</td>
<td>Feed rate of fuel nitrogen, gatom/sec</td>
</tr>
<tr>
<td>FRS</td>
<td>-</td>
<td>Feed rate of fuel sulfur, gatom/sec</td>
</tr>
<tr>
<td>FS</td>
<td>$f_{%}$</td>
<td>Fractional conversion of limestone</td>
</tr>
<tr>
<td>FSW</td>
<td>(SEE DESIGN)</td>
<td>Solids mixing parameter, ratio of wake volume to the bubble volume including the wakes</td>
</tr>
<tr>
<td>FW</td>
<td>f_{w}</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>Acceleration due to gravity, cm/sec²</td>
</tr>
<tr>
<td>GAMA</td>
<td>-</td>
<td>Temperature matrix coefficients</td>
</tr>
<tr>
<td>GB</td>
<td>g_B</td>
<td>Volatiles burning rate in the bubble phase, gmole/sec</td>
</tr>
<tr>
<td>GE</td>
<td>g_E</td>
<td>Volatiles burning rate in the emulsion phase, gmole/sec</td>
</tr>
<tr>
<td>GENB</td>
<td>-</td>
<td>SO_2 or NO_x release rate in the bubble phase or in the freeboard due to volatiles combustion, gmole/sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>GENE</td>
<td>-</td>
<td>SO$_2$ or NO$_x$ release rate in the emulsion phase or in the freeboard due to volatiles combustion, gmole/sec</td>
</tr>
<tr>
<td>GFLOW</td>
<td>G</td>
<td>Gas flow rate, gms/sec</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>Height above the distributor, cms</td>
</tr>
<tr>
<td>HB</td>
<td>h</td>
<td>Height above the bed surface, cms</td>
</tr>
<tr>
<td>HAREA</td>
<td>-</td>
<td>Total heat transfer area of cooling tube (based on outside diameter of tube), cm2</td>
</tr>
<tr>
<td>HCHAR</td>
<td>-</td>
<td>Hydrogen content in char, gm hydrogen/gm char</td>
</tr>
<tr>
<td>HCOAL</td>
<td>-</td>
<td>Lower heating value of coal, cals/gm</td>
</tr>
<tr>
<td>HCR</td>
<td>-</td>
<td>Critical bed height above which there is a fixed bed section, cm</td>
</tr>
<tr>
<td>HFB</td>
<td>-</td>
<td>Freeboard height, cm</td>
</tr>
<tr>
<td>HLF</td>
<td>-</td>
<td>Expanded bed height, cm</td>
</tr>
<tr>
<td>HLMF</td>
<td>-</td>
<td>Bed height at minimum fluidization, cm</td>
</tr>
<tr>
<td>HTAR</td>
<td>-</td>
<td>Hydrogen content in tar, gm hydrogen/gm coal fed</td>
</tr>
<tr>
<td>H2</td>
<td>H$_2$</td>
<td>Wt. fraction H$_2$ in the volatiles; H$_2$ released during devolatilization, gmole H$_2$/gm coal</td>
</tr>
<tr>
<td>H2O</td>
<td>H$_2$O</td>
<td>Wt. fraction H$_2$O in the volatiles; H$_2$O released during devolatilization, gmole H$_2$O/gm coal</td>
</tr>
<tr>
<td>H2SV</td>
<td>-</td>
<td>H$_2$S content in the volatiles, gmole H$_2$S/gm volatiles</td>
</tr>
<tr>
<td>IARR</td>
<td>(SEE DESIGN)</td>
<td>Indicator for critical bed height</td>
</tr>
<tr>
<td>FCR</td>
<td>-</td>
<td>Indicator for fixed bed section</td>
</tr>
<tr>
<td>IFBC</td>
<td>-</td>
<td>Indicator for combustion calculations</td>
</tr>
<tr>
<td>IGNITE</td>
<td>-</td>
<td>Indicator for NO$_x$ calculations</td>
</tr>
<tr>
<td>INOX</td>
<td>-</td>
<td>Indicator for pressure drop calculations</td>
</tr>
<tr>
<td>IPRES</td>
<td>-</td>
<td>Indicator for pressure drop calculations</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ISO2</td>
<td>-</td>
<td>Indicator for SO₂ calculations</td>
</tr>
<tr>
<td>ITEMP</td>
<td>-</td>
<td>Indicator for temperature calculations</td>
</tr>
<tr>
<td>ITRIAL</td>
<td>-</td>
<td>Number of trials made in the combustion calculations</td>
</tr>
<tr>
<td>KT</td>
<td>-</td>
<td>Number of compartments in freeboard</td>
</tr>
<tr>
<td>MAIR</td>
<td>-</td>
<td>Molecular weight of air, gms/gmole</td>
</tr>
<tr>
<td>MC</td>
<td>-</td>
<td>Atomic weight of carbon, gms/gatom</td>
</tr>
<tr>
<td>MCAO</td>
<td>-</td>
<td>Molecular weight of calcium oxide, gms/gmole</td>
</tr>
<tr>
<td>MCACO3</td>
<td>-</td>
<td>Molecular weight of calcium carbonate, gms/gmole</td>
</tr>
<tr>
<td>MCASO4</td>
<td>-</td>
<td>Molecular weight of calcium sulfate, gms/gmole</td>
</tr>
<tr>
<td>MCO</td>
<td>-</td>
<td>Molecular weight of carbon monoxide, gms/gmole</td>
</tr>
<tr>
<td>MCO2</td>
<td>-</td>
<td>Molecular weight of carbon dioxide, gms/gmole</td>
</tr>
<tr>
<td>MDIS</td>
<td>-</td>
<td>No. of solids withdrawal locations</td>
</tr>
<tr>
<td>MFEED</td>
<td>-</td>
<td>No. of solids feed locations</td>
</tr>
<tr>
<td>MGAS</td>
<td>-</td>
<td>Molecular weight of combustion gases, gms/gmole</td>
</tr>
<tr>
<td>MH₂</td>
<td>-</td>
<td>Molecular weight of hydrogen, gms/gmole</td>
</tr>
<tr>
<td>MH₂O</td>
<td>-</td>
<td>Molecular weight of water, gms/gmole</td>
</tr>
<tr>
<td>MH₂S</td>
<td>-</td>
<td>Molecular weight of hydrogen sulfide, gms/gmole</td>
</tr>
<tr>
<td>MMGCO₃</td>
<td>-</td>
<td>Molecular weight of magnesium carbonate, gms/gmole</td>
</tr>
<tr>
<td>MMGO</td>
<td>-</td>
<td>Molecular weight of magnesium oxide, gms/gmole</td>
</tr>
<tr>
<td>MN</td>
<td>-</td>
<td>Atomic weight of nitrogen, gms/gatom</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MNO</td>
<td>-</td>
<td>Molecular weight of nitric oxide, gms/gmole</td>
</tr>
<tr>
<td>MN2</td>
<td>-</td>
<td>Molecular weight of nitrogen, gms/gmole</td>
</tr>
<tr>
<td>MO2</td>
<td>-</td>
<td>Molecular weight of oxygen, gms/gmole</td>
</tr>
<tr>
<td>MS</td>
<td>-</td>
<td>Atomic weight of sulfur, gms/gatom</td>
</tr>
<tr>
<td>MSO2</td>
<td>-</td>
<td>Molecular weight of sulfur dioxide, gms/gmole</td>
</tr>
<tr>
<td>MTAR</td>
<td>-</td>
<td>Average molecular weight of tar in the volatiles, gms/gmole</td>
</tr>
<tr>
<td>MTB (SEE DESIGN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTHE (SEE DESIGN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>-</td>
<td>No. of compartments in the bed + 1</td>
</tr>
<tr>
<td>NA</td>
<td>-</td>
<td>No. of additive particles in the freeboard</td>
</tr>
<tr>
<td>NAMEC1</td>
<td>-</td>
<td>Name of coal</td>
</tr>
<tr>
<td>NAMEC2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NAMEL1</td>
<td>-</td>
<td>Name of limestone</td>
</tr>
<tr>
<td>NAMEL2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>-</td>
<td>No. of char particles in the freeboard</td>
</tr>
<tr>
<td>NCHAR</td>
<td>-</td>
<td>Nitrogen content in char, gm nitrogen/gm char</td>
</tr>
<tr>
<td>NTC</td>
<td>-</td>
<td>Total number of compartments in the combustor using DZAV + 1</td>
</tr>
<tr>
<td>OCHAR</td>
<td>-</td>
<td>Oxygen content in char, gm oxygen/gm char</td>
</tr>
<tr>
<td>OTAR</td>
<td>-</td>
<td>Oxygen content in tar, gm oxygen/gm coal fed</td>
</tr>
<tr>
<td>PAV</td>
<td>P</td>
<td>Average pressure in the combustor, atm</td>
</tr>
<tr>
<td>PF</td>
<td>-</td>
<td>Pressure of fluidizing air at the inlet to the distributor, atm</td>
</tr>
<tr>
<td>PH (SEE DESIGN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIB</td>
<td>φₜₜ</td>
<td>Mechanism factor in the freeboard</td>
</tr>
<tr>
<td>PHIE</td>
<td>φₑ</td>
<td>Mechanism factor in the emulsion phase</td>
</tr>
<tr>
<td>PI</td>
<td>π</td>
<td>3.14159265</td>
</tr>
<tr>
<td>PV (SEE DESIGN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>QAREA</td>
<td></td>
<td>Heat transfer rate to the tubes per unit heat transfer area of tubes, cals/cm² sec</td>
</tr>
<tr>
<td>QCHAR</td>
<td></td>
<td>Heat of combustion of char, cals/gm</td>
</tr>
<tr>
<td>QCLGN</td>
<td></td>
<td>Heat of calcination of limestone, cals/gm</td>
</tr>
<tr>
<td>QCO</td>
<td></td>
<td>Heat of combustion of carbon monoxide, cals/gmole</td>
</tr>
<tr>
<td>QTRANS</td>
<td></td>
<td>Total heat transferred to the cooling medium, cals/sec</td>
</tr>
<tr>
<td>QVCO</td>
<td></td>
<td>Heat of partial combustion of volatiles, cals/gmole</td>
</tr>
<tr>
<td>QVGAS</td>
<td></td>
<td>Heat of combustion of volatiles, cals/gmole</td>
</tr>
<tr>
<td>QVOL</td>
<td></td>
<td>Heat transfer rate per unit volume of bed, cals/cm³</td>
</tr>
<tr>
<td>R</td>
<td>A</td>
<td>Defined by Equation (V.2)</td>
</tr>
<tr>
<td>RC</td>
<td></td>
<td>Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal</td>
</tr>
<tr>
<td>RCHAR</td>
<td>Rch</td>
<td>Char produced per unit gm of coal fed, gm/gm</td>
</tr>
<tr>
<td>RELB</td>
<td></td>
<td>Total release rate of SO₂ or NOₓ in the bubble phase, gmole/sec</td>
</tr>
<tr>
<td>RELE</td>
<td></td>
<td>Total release rate of SO₂ or NOₓ in the emulsion phase, gmole/sec</td>
</tr>
<tr>
<td>RG</td>
<td>R₉</td>
<td>Gas constant, 82.06 atm.cm³/gmole.°K</td>
</tr>
<tr>
<td>RH</td>
<td></td>
<td>Fraction of hydrogen remaining in char after devolatilization, gm hydrogen/gm hydrogen in coal</td>
</tr>
<tr>
<td>RHOAD</td>
<td></td>
<td>Density of additives, gms/cm³</td>
</tr>
<tr>
<td>RHOASH</td>
<td></td>
<td>Density of ash, gms/cm³</td>
</tr>
<tr>
<td>RHOBED</td>
<td>ρₜ</td>
<td>Density of the bed materials, gms/cm³</td>
</tr>
<tr>
<td>RHOC</td>
<td></td>
<td>Density of coal, gms/cm³</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RHOCH</td>
<td>ρ_{ch}</td>
<td>Density of char, gms/cm³</td>
</tr>
<tr>
<td>RHOGAS</td>
<td>ρ_g</td>
<td>Density of gas, gms/cm³</td>
</tr>
<tr>
<td>RHOFG</td>
<td>-</td>
<td>Density of the fluidizing air at the inlet to the distributor, gms/cm³</td>
</tr>
<tr>
<td>RN</td>
<td>-</td>
<td>Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal</td>
</tr>
<tr>
<td>RO</td>
<td>-</td>
<td>Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm oxygen in coal</td>
</tr>
<tr>
<td>RR</td>
<td>-</td>
<td>Rate of combustion of char in each compartment per unit weight fraction of carbon in the bed, gms/sec; heat generation rate minus heat of calcination in each compartment, gms/sec</td>
</tr>
<tr>
<td>RRB</td>
<td>-</td>
<td>Rate of combustion of char in the bubble phase, gms/sec</td>
</tr>
<tr>
<td>RRE</td>
<td>-</td>
<td>Rate of combustion of char in the emulsion phase, gms/sec</td>
</tr>
<tr>
<td>RS</td>
<td>-</td>
<td>Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal</td>
</tr>
<tr>
<td>RVGAS</td>
<td>-</td>
<td>Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal</td>
</tr>
<tr>
<td>SCHAR</td>
<td>-</td>
<td>Sulfur content in char, gm sulfur/gm char</td>
</tr>
<tr>
<td>SOLVOL</td>
<td>-</td>
<td>Volume of solids in the bed (including voids) which is equal to volume of bed at minimum fluidization (excluding the internals), cm³</td>
</tr>
<tr>
<td>SULFUR</td>
<td>-</td>
<td>Sulfur released during char combustion, gatom/sec</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Temperature, °K</td>
</tr>
<tr>
<td>TAR</td>
<td>Tar</td>
<td>Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmole tar/gm coal</td>
</tr>
<tr>
<td>TARC</td>
<td>-</td>
<td>Stoichiometric air required per unit gm of char, gmole/gm char</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TAV</td>
<td>-</td>
<td>Mean bed temperature, °K</td>
</tr>
<tr>
<td>TAVB</td>
<td>T<sub>B</sub></td>
<td>Mean temperature in the boundary layer of the char particles in the bubble phase, °K; also in the freeboard, °K</td>
</tr>
<tr>
<td>TAVE</td>
<td>T<sub>E</sub></td>
<td>Mean temperature in the boundary layer of the char particles in the emulsion phase, °K</td>
</tr>
<tr>
<td>TCRATE</td>
<td>-</td>
<td>Total char combustion rate, gm/sec</td>
</tr>
<tr>
<td>TETUBE</td>
<td>-</td>
<td>Total volume fraction of tubes in the bed</td>
</tr>
<tr>
<td>TF</td>
<td>-</td>
<td>Temperature of fluidizing air at the inlet to the distributor, °K</td>
</tr>
<tr>
<td>TFC</td>
<td>-</td>
<td>Total char feed rate, gms/sec</td>
</tr>
<tr>
<td>TNORM</td>
<td>-</td>
<td>Temperature criterion for convergency</td>
</tr>
<tr>
<td>TOLD</td>
<td>-</td>
<td>Bed temperature in the previous iteration, °K</td>
</tr>
<tr>
<td>TPB</td>
<td>-</td>
<td>Char particle temperature in the bubble phase, °K; also in the freeboard, °K</td>
</tr>
<tr>
<td>TPE</td>
<td>-</td>
<td>Char particle temperature in the emulsion phase, °K</td>
</tr>
<tr>
<td>TSF</td>
<td>-</td>
<td>Temperature of feed solids, °K</td>
</tr>
<tr>
<td>TSTA</td>
<td>-</td>
<td>Starting temperature (assumed) for iteration, °K</td>
</tr>
<tr>
<td>TW</td>
<td>-</td>
<td>Cooling water temperature, °K</td>
</tr>
<tr>
<td>TWALL</td>
<td>-</td>
<td>Wall temperature, °K</td>
</tr>
<tr>
<td>TWALLA</td>
<td>-</td>
<td>Average wall temperature used for heat losses, °K</td>
</tr>
<tr>
<td>TWAV</td>
<td>-</td>
<td>Log mean temperature of the cooling water</td>
</tr>
<tr>
<td>TWIN</td>
<td>-</td>
<td>Inlet water temperature, °K</td>
</tr>
<tr>
<td>TWOUT</td>
<td>-</td>
<td>Outlet water temperature, °K</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UB</td>
<td>(U_B)</td>
<td>Bubble velocity, cm/sec</td>
</tr>
<tr>
<td>UHE</td>
<td>(U)</td>
<td>Bed to tube heat transfer coefficient, cals/sec.cm(^2).(^\circ)C</td>
</tr>
<tr>
<td>UHEAV1</td>
<td>-</td>
<td>Bed to tube heat transfer coefficient (average) within the bed, cals/sec.cm(^2).(^\circ)C</td>
</tr>
<tr>
<td>UHEAV2</td>
<td>-</td>
<td>Bed to tube heat transfer coefficient (average) in the freeboard, cals/sec.cm(^2) (^\circ)C</td>
</tr>
<tr>
<td>UHEW</td>
<td>(U_W)</td>
<td>Bed to wall heat transfer coefficient, cals/sec.cm(^2).(^\circ)C</td>
</tr>
<tr>
<td>UMF</td>
<td>(U_{mf})</td>
<td>Minimum fluidization velocity, cm/sec</td>
</tr>
<tr>
<td>UO</td>
<td>(U_o)</td>
<td>Superficial gas velocity as a function of bed height, cm/sec</td>
</tr>
<tr>
<td>UOR</td>
<td>-</td>
<td>Orifice velocity, cm/sec</td>
</tr>
<tr>
<td>UT</td>
<td>(U_t)</td>
<td>Terminal velocity of the particle, cm/sec</td>
</tr>
<tr>
<td>UWALL1</td>
<td>-</td>
<td>Bed to wall heat transfer coefficient (average) within the bed, cals/sec cm(^2) (^\circ)C</td>
</tr>
<tr>
<td>UWALL2</td>
<td>-</td>
<td>Bed to wall heat transfer coefficient (average) in the freeboard, cals/sec cm(^2) (^\circ)C</td>
</tr>
<tr>
<td>UO</td>
<td>-</td>
<td>Superficial gas velocity at the distributor, cm/sec</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>Volatiles yield during devolatilization, gms volatiles/gm coal (daf); also gms volatiles/gm coal</td>
</tr>
<tr>
<td>VAHOLD</td>
<td>-</td>
<td>Volumetric additives holdup in the freeboard; cm(^3) solid volume</td>
</tr>
<tr>
<td>VCHOLD</td>
<td>-</td>
<td>Volumetric char hold-up in the freeboard, cm(^3) solid volume</td>
</tr>
<tr>
<td>VGASN</td>
<td>-</td>
<td>Volatile nitrogen in coal, gatom/gm coal (d.b.)</td>
</tr>
<tr>
<td>VGASS</td>
<td>-</td>
<td>Volatile sulfur in coal, gatom/gm coal (d.b.)</td>
</tr>
<tr>
<td>VISC</td>
<td>(\mu)</td>
<td>Viscosity of gas, gm/cm\cdot sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VM</td>
<td>-</td>
<td>Proximate volatile matter in coal, gm/gm coal (daf)</td>
</tr>
<tr>
<td>VMF</td>
<td>-</td>
<td>Bed volume at minimum fluidization (excluding the internals), cm³</td>
</tr>
<tr>
<td>VPROD</td>
<td>-</td>
<td>Volatiles released in each compartment, gmole/sec</td>
</tr>
<tr>
<td>WAD</td>
<td>Wₚ,a</td>
<td>Additives feed rate, gms/sec</td>
</tr>
<tr>
<td>WAHOLD</td>
<td>-</td>
<td>Additives hold-up in the freeboard, gms</td>
</tr>
<tr>
<td>WB</td>
<td>Mₚ,b</td>
<td>Weight of bed materials, gms</td>
</tr>
<tr>
<td>WCHOLD</td>
<td>-</td>
<td>Char hold-up in the freeboard, gms</td>
</tr>
<tr>
<td>WCOAL</td>
<td>-</td>
<td>Coal feed rate as received basis, gms/sec</td>
</tr>
<tr>
<td>WD</td>
<td>-</td>
<td>Solids withdrawal rate at each location, gms/sec</td>
</tr>
<tr>
<td>WDIS</td>
<td>Wₚ,D</td>
<td>Solids withdrawal rate, gms/sec</td>
</tr>
<tr>
<td>WEA</td>
<td>-</td>
<td>Additives entrainment rate in the freeboard, gms/sec</td>
</tr>
<tr>
<td>WEC</td>
<td>-</td>
<td>Char entrainment rate in the freeboard, gms/sec</td>
</tr>
<tr>
<td>WELUA</td>
<td>-</td>
<td>Solids (excluding char) elutriation rate from the combustor, gms/sec</td>
</tr>
<tr>
<td>WFAD</td>
<td>Wₚ,a</td>
<td>Additives feed rate in each compartment, gms/sec</td>
</tr>
<tr>
<td>WFC</td>
<td>Wₚ,c</td>
<td>Coal feed rate in each compartment, gms/sec</td>
</tr>
<tr>
<td>WMIX</td>
<td>Wₚ,mix</td>
<td>Solids mixing rate, gms/sec</td>
</tr>
<tr>
<td>WNET</td>
<td>Wₚ,net</td>
<td>Net flow rate of solids, gms/sec</td>
</tr>
<tr>
<td>WW</td>
<td>B</td>
<td>Defined by Equation (V.3)</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Weight fraction carbon in the bed</td>
</tr>
<tr>
<td>XA</td>
<td>-</td>
<td>Ash content in coal as received basis, gm ash/gm coal</td>
</tr>
<tr>
<td>XACAQ</td>
<td>-</td>
<td>Calcium oxide content in ash, gm CaO/gm ash</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>XAV</td>
<td>-</td>
<td>Average weight fraction of carbon in the bed</td>
</tr>
<tr>
<td>XC</td>
<td>-</td>
<td>Carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XCAO</td>
<td>-</td>
<td>Calcium oxide content in limestone, gm CaO/gm limestone</td>
</tr>
<tr>
<td>XCF</td>
<td>-</td>
<td>Fixed carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XCO2</td>
<td>-</td>
<td>Carbon dioxide content in limestone, gm CO$_2$/gm limestone</td>
</tr>
<tr>
<td>XCV</td>
<td>-</td>
<td>Volatile carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XH</td>
<td>-</td>
<td>Hydrogen content in coal, gm hydrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XMGO</td>
<td>-</td>
<td>Magnesium oxide content in limestone, gm MgO/gm limestone</td>
</tr>
<tr>
<td>XN</td>
<td>-</td>
<td>Nitrogen content in coal, gm nitrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XO</td>
<td>-</td>
<td>Oxygen content in coal, gm oxygen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XO2</td>
<td>X_{O_2}</td>
<td>Oxygen required for partial combustion of volatiles, gmole O$_2$/gmole volatile</td>
</tr>
<tr>
<td>XO2C</td>
<td>$X_{O_2,c}$</td>
<td>Oxygen required for complete combustion of volatiles, gmole O$_2$/gmole volatile</td>
</tr>
<tr>
<td>XS</td>
<td>-</td>
<td>Sulfur content in coal, gm sulfur/gm coal (d.b.)</td>
</tr>
<tr>
<td>XS102</td>
<td>-</td>
<td>Silicon dioxide content in limestone, gm SiO$_2$/gm limestone</td>
</tr>
<tr>
<td>XW</td>
<td>-</td>
<td>Moisture content in coal as received basis, gm H$_2$O/gm coal</td>
</tr>
<tr>
<td>YAV</td>
<td>-</td>
<td>Average O$_2$ concentration (assumed) for iteration, mole fraction</td>
</tr>
<tr>
<td>YB</td>
<td>-</td>
<td>Mole fraction O$_2$ or SO$_2$ or NO in the bubble phase</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>YBO</td>
<td>Y_B</td>
<td>Mole fraction O_2 in the bubble phase</td>
</tr>
<tr>
<td>YCO</td>
<td>Y_CO</td>
<td>Mole fraction CO</td>
</tr>
<tr>
<td>YCOE</td>
<td>Y_{E,CO}</td>
<td>Mole fraction CO in the emulsion phase</td>
</tr>
<tr>
<td>YCO2</td>
<td>Y_{CO_2}</td>
<td>Mole fraction CO_2</td>
</tr>
<tr>
<td>YCO2B</td>
<td>Y_{B,CO_2}</td>
<td>Mole fraction CO_2 in the bubble phase</td>
</tr>
<tr>
<td>YCO2E</td>
<td>Y_{E,CO_2}</td>
<td>Mole fraction CO_2 in the emulsion phase</td>
</tr>
<tr>
<td>YE</td>
<td>-</td>
<td>Mole fraction O_2 or SO_2 or NO in the emulsion phase</td>
</tr>
<tr>
<td>YEO</td>
<td>Y_{E}</td>
<td>Mole fraction O_2 in the emulsion phase</td>
</tr>
<tr>
<td>YGO</td>
<td>-</td>
<td>Gaseous species concentrations at the exit, mole fraction</td>
</tr>
<tr>
<td>YH2O</td>
<td>Y_{H_2O}</td>
<td>Mole fraction H_2O</td>
</tr>
<tr>
<td>YNOX</td>
<td>Y_{NO}</td>
<td>Mole fraction NO</td>
</tr>
<tr>
<td>YO</td>
<td>Y_O</td>
<td>Mole fraction O_2</td>
</tr>
<tr>
<td>YSO2</td>
<td>Y_{SO_2}</td>
<td>Mole fraction SO_2</td>
</tr>
<tr>
<td>YV</td>
<td>Y_v</td>
<td>Mole fraction volatiles</td>
</tr>
<tr>
<td>YVE</td>
<td>Y_{E,v}</td>
<td>Mole fraction volatiles in the emulsion phase</td>
</tr>
<tr>
<td>ZAVG</td>
<td>-</td>
<td>Average height of each compartment above the distributor, cm</td>
</tr>
<tr>
<td>ZB</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>ZF</td>
<td>-</td>
<td>Locations of solids feed ports, cms</td>
</tr>
<tr>
<td>ZHE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>ZDIS</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AHE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>ATB</td>
<td>A_t</td>
<td>Cross sectional area of the bed, cm2</td>
</tr>
<tr>
<td>CAS</td>
<td>-</td>
<td>Ca/S molar ratio in feed solids</td>
</tr>
<tr>
<td>CCHAR</td>
<td>C_{ch}</td>
<td>Carbon content in char, gm carbon/gm char</td>
</tr>
<tr>
<td>CELU</td>
<td>-</td>
<td>Char elutriated from the combustor, gms/sec</td>
</tr>
<tr>
<td>CHARC</td>
<td>-</td>
<td>Carbon content in char, gmole carbon/gm coal</td>
</tr>
<tr>
<td>CHARN</td>
<td>-</td>
<td>Hydrogen content in char, gatom hydrogen/gm coal</td>
</tr>
<tr>
<td>CHARO</td>
<td>-</td>
<td>Nitrogen content in char, gatom nitrogen/gm coal</td>
</tr>
<tr>
<td>CHARS</td>
<td>-</td>
<td>Sulfur content in char, gatom sulfur/gm coal</td>
</tr>
<tr>
<td>CH4</td>
<td>CH_4</td>
<td>Wt. fraction CH_4 in the volatiles; CH_4 released during devolatilization, gmole CH_4/gm coal</td>
</tr>
<tr>
<td>CO</td>
<td>CO</td>
<td>Wt. fraction CO in the volatiles; CO released during devolatilization, gmole CO/gm coal</td>
</tr>
<tr>
<td>COALC</td>
<td>-</td>
<td>Carbon content in coal, gatom carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALH</td>
<td>-</td>
<td>Hydrogen content in coal, gatom hydrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALN</td>
<td>-</td>
<td>Nitrogen content in coal, gatom nitrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALO</td>
<td>-</td>
<td>Oxygen content in coal, gatom oxygen/gm coal (d.b.)</td>
</tr>
<tr>
<td>COALS</td>
<td>-</td>
<td>Sulfur content in coal, gatom sulfur/gm coal (d.b.)</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>COV</td>
<td></td>
<td>CO released during devolatilization per mole of volatiles released, gmole CO/gmole volatiles</td>
</tr>
<tr>
<td>COVB</td>
<td></td>
<td>CO produced during volatiles combustion, gmole CO/gmole volatiles</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>Wt. fraction CO₂ in the volatiles; CO₂ released during devolatilization, gmole CO₂/gm coal</td>
</tr>
<tr>
<td>CO2V</td>
<td></td>
<td>CO₂ released during devolatilization per mole of volatiles released, gmole CO₂/gmole volatiles</td>
</tr>
<tr>
<td>CO2VB</td>
<td></td>
<td>CO₂ produced during volatiles combustion, gmole CO₂/gmole volatiles</td>
</tr>
<tr>
<td>CTAR</td>
<td></td>
<td>Carbon content in tar, gm carbon/gm coal fed</td>
</tr>
<tr>
<td>DASVF</td>
<td></td>
<td>Surface volume mean particle diameter of additives in the feed, cm</td>
</tr>
<tr>
<td>DAWMF</td>
<td></td>
<td>Weight mean particle diameter of additives in the feed, cm</td>
</tr>
<tr>
<td>DCSE</td>
<td>d_{ce}</td>
<td>Surface volume mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCSVB</td>
<td>d_c</td>
<td>Surface volume mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>DCSVF</td>
<td></td>
<td>Surface volume mean diameter of coal particles in the feed, cm</td>
</tr>
<tr>
<td>DCWE</td>
<td></td>
<td>Weight mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCWMB</td>
<td></td>
<td>Weight mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>DCWMF</td>
<td></td>
<td>Weight mean diameter of coal particles in the feed, cm</td>
</tr>
<tr>
<td>DIA(I)</td>
<td></td>
<td>Feed particle diameter of ith fraction based on sieving screen size</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DP</td>
<td>d_x</td>
<td>Mean diameter of the particles of x th size fraction, cm</td>
</tr>
<tr>
<td>DPSE</td>
<td>d_{ge}</td>
<td>Surface volume mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPSVB</td>
<td>d_g</td>
<td>Surface volume mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DPWE</td>
<td>-</td>
<td>Weight mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPWMB</td>
<td>-</td>
<td>Weight mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DTUBE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>ε_{mf}</td>
<td>Void fraction at minimum fluidization</td>
</tr>
<tr>
<td>EXAIR</td>
<td>-</td>
<td>Excess air, fraction</td>
</tr>
<tr>
<td>FMF</td>
<td>-</td>
<td>Molar feed rate of fluidizing air, gmole/sec</td>
</tr>
<tr>
<td>FMO</td>
<td>F_{MT}</td>
<td>Total molar flow rate of gas in the combustor, gmole/sec</td>
</tr>
<tr>
<td>FMTH</td>
<td>-</td>
<td>Stoichiometric air feed rate, gmole/sec</td>
</tr>
<tr>
<td>FRACTA</td>
<td>-</td>
<td>Weight fraction of additives feed of x th size fraction</td>
</tr>
<tr>
<td>FRACTC</td>
<td>-</td>
<td>Weight fraction of coal feed of x th size fraction</td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>Acceleration due to gravity, cm/sec²</td>
</tr>
<tr>
<td>GFLOW</td>
<td>G</td>
<td>Gas flow rate, gms/sec</td>
</tr>
<tr>
<td>HCHAR</td>
<td>-</td>
<td>Hydrogen content in char, gm hydrogen/gm char</td>
</tr>
<tr>
<td>HFB</td>
<td>-</td>
<td>Freeboard height, cm</td>
</tr>
<tr>
<td>HLF</td>
<td>-</td>
<td>Expanded bed height, cm</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HLMF</td>
<td>-</td>
<td>Bed height at minimum fluidization, cm</td>
</tr>
<tr>
<td>HTAR</td>
<td>-</td>
<td>Hydrogen content in tar, gm hydrogen/gm coal fed</td>
</tr>
<tr>
<td>H2</td>
<td>H_2</td>
<td>Wt. fraction H_2 in the volatiles; H_2 released during devolatilization gmole H_2/gm coal</td>
</tr>
<tr>
<td>H2O</td>
<td>H_2O</td>
<td>Wt. fraction H_2O in the volatiles; H_2O released during devolatilization gmole H_2O/gm coal</td>
</tr>
<tr>
<td>IARR</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>MAIR</td>
<td>-</td>
<td>Molecular weight of air, gms/gmole</td>
</tr>
<tr>
<td>MC</td>
<td>-</td>
<td>Atomic weight of carbon, gms/gatom</td>
</tr>
<tr>
<td>MCAO</td>
<td>-</td>
<td>Molecular weight of calcium oxide, gms/gmole</td>
</tr>
<tr>
<td>MCASO4</td>
<td>-</td>
<td>Molecular weight of calcium sulfate, gms/gmole</td>
</tr>
<tr>
<td>MCO</td>
<td>-</td>
<td>Molecular weight of carbon monoxide, gms/gmole</td>
</tr>
<tr>
<td>MCO2</td>
<td>-</td>
<td>Molecular weight of carbon dioxide, gms/gmole</td>
</tr>
<tr>
<td>MGAS</td>
<td>-</td>
<td>Molecular weight of combustion gases, gms/gmole</td>
</tr>
<tr>
<td>MH2</td>
<td>-</td>
<td>Molecular weight of hydrogen, gms/gmole</td>
</tr>
<tr>
<td>MH2O</td>
<td>-</td>
<td>Molecular weight of water, gms/gmole</td>
</tr>
<tr>
<td>MH2S</td>
<td>-</td>
<td>Molecular weight of hydrogen sulfide, gms/gmole</td>
</tr>
<tr>
<td>MNO</td>
<td>-</td>
<td>Molecular weight of nitric oxide, gms/gmole</td>
</tr>
<tr>
<td>MN2</td>
<td>-</td>
<td>Molecular weight of nitrogen, gms/gmole</td>
</tr>
<tr>
<td>MO2</td>
<td>-</td>
<td>Molecular weight of oxygen, gms/gmole</td>
</tr>
<tr>
<td>MS</td>
<td>-</td>
<td>Atomic weight of sulfur, gms/gatom</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MSO2</td>
<td>-</td>
<td>Molecular weight of sulfur dioxide, gms/gmole</td>
</tr>
<tr>
<td>MTAR</td>
<td>-</td>
<td>Average molecular weight of tar in the volatiles, gms/gmole</td>
</tr>
<tr>
<td>MTB</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>MTHE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCHAR</td>
<td>-</td>
<td>Nitrogen content in char, gm nitrogen/gm char</td>
</tr>
<tr>
<td>NDP</td>
<td>-</td>
<td>Number of size fractions</td>
</tr>
<tr>
<td>OCHAR</td>
<td>-</td>
<td>Oxygen content in char, gm oxygen/gm char</td>
</tr>
<tr>
<td>OTAR</td>
<td>-</td>
<td>Oxygen content in tar, gm oxygen/gm coal fed</td>
</tr>
<tr>
<td>PAV</td>
<td>P</td>
<td>Average pressure in the combustor, atm</td>
</tr>
<tr>
<td>PH</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>π</td>
<td>3.14159265</td>
</tr>
<tr>
<td>PV</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>A</td>
<td>Defined by Equation (V.2)</td>
</tr>
<tr>
<td>RC</td>
<td>-</td>
<td>Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal</td>
</tr>
<tr>
<td>RCHAR</td>
<td>R<sub>ch</sub></td>
<td>Char produced per unit gm of coal fed, gm/gm</td>
</tr>
<tr>
<td>RG</td>
<td>R<sub>g</sub></td>
<td>Gas constant, 82.06 atm·cm<sup>3</sup>/g mole·°K</td>
</tr>
<tr>
<td>RH</td>
<td>-</td>
<td>Fraction of hydrogen remaining in char after devolatilization, gm hydrogen/gm hydrogen in coal</td>
</tr>
<tr>
<td>RHOAD</td>
<td>-</td>
<td>Density of additives, gms/cm<sup>3</sup></td>
</tr>
<tr>
<td>RHOASH</td>
<td>-</td>
<td>Density of ash, gms/cm<sup>3</sup></td>
</tr>
<tr>
<td>RHOBED</td>
<td>ρ<sub>b</sub></td>
<td>Density of the bed materials, gms/cm<sup>3</sup></td>
</tr>
<tr>
<td>RHOC</td>
<td>-</td>
<td>Density of coal, gms/cm<sup>3</sup></td>
</tr>
<tr>
<td>RHOCH</td>
<td>ρ<sub>ch</sub></td>
<td>Density of char, gms/cm<sup>3</sup></td>
</tr>
<tr>
<td>RN</td>
<td>-</td>
<td>Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RO</td>
<td>-</td>
<td>Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm oxygen in coal</td>
</tr>
<tr>
<td>RS</td>
<td>-</td>
<td>Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal</td>
</tr>
<tr>
<td>RV GAS</td>
<td>-</td>
<td>Volatiles released during devolatilization per unit gm of coal, gmoles volatiles/gm coal</td>
</tr>
<tr>
<td>S CHAR</td>
<td>-</td>
<td>Sulfur content in char, gm sulfur/gm char</td>
</tr>
<tr>
<td>TAR</td>
<td>Tar</td>
<td>Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmoles tar/gm coal</td>
</tr>
<tr>
<td>TAV</td>
<td>-</td>
<td>Mean bed temperature, °K</td>
</tr>
<tr>
<td>TD HC</td>
<td>TD H</td>
<td>Transport disengaging height, cms</td>
</tr>
<tr>
<td>U O</td>
<td>U₀</td>
<td>Superficial gas velocity as a function of bed height, cms/sec</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>Volatiles yield during devolatilization, gms volatiles/gm coal (daf); also, gms volatiles/gm coal</td>
</tr>
<tr>
<td>VM</td>
<td>-</td>
<td>Proximate volatile matter in coal, gm/gm coal (daf)</td>
</tr>
<tr>
<td>VMF</td>
<td>0</td>
<td>Bed volume at minimum fluidization (excluding the internals), cm³</td>
</tr>
<tr>
<td>W AD</td>
<td>W f,a</td>
<td>Additives feed rate, gms/sec</td>
</tr>
<tr>
<td>W B</td>
<td>M b</td>
<td>Weight of bed materials, gms</td>
</tr>
<tr>
<td>W BC</td>
<td>-</td>
<td>Weight of bed materials calculated, gms</td>
</tr>
<tr>
<td>W COAL</td>
<td>W f,c</td>
<td>Coal feed rate as received basis, gms/sec</td>
</tr>
<tr>
<td>W DIS</td>
<td>W D</td>
<td>Solids withdrawal rate, gms/sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>WELUA</td>
<td>-</td>
<td>Solids (excluding char) elutriation rate, gms/sec</td>
</tr>
<tr>
<td>WW</td>
<td>B</td>
<td>Defined by Equation (V.3)</td>
</tr>
<tr>
<td>XA</td>
<td>-</td>
<td>Ash content in coal, gm ash/gm coal</td>
</tr>
<tr>
<td>XC</td>
<td>-</td>
<td>Carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XCAO</td>
<td>-</td>
<td>Calcium oxide content in limestone, gm CaO/gm limestone</td>
</tr>
<tr>
<td>XCF</td>
<td>-</td>
<td>Fixed carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XCO2</td>
<td>-</td>
<td>Carbon dioxide content in limestone, gm CO2/gm limestone</td>
</tr>
<tr>
<td>XCV</td>
<td>-</td>
<td>Volatile carbon content in coal, gm carbon/gm coal (d.b.)</td>
</tr>
<tr>
<td>XH</td>
<td>-</td>
<td>Hydrogen content in coal, gm hydrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XMGO</td>
<td>-</td>
<td>Magnesium oxide content in limestone, gm MgO/gm limestone</td>
</tr>
<tr>
<td>XN</td>
<td>-</td>
<td>Nitrogen content in coal, gm nitrogen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XO</td>
<td>-</td>
<td>Oxygen content in coal, gm oxygen/gm coal (d.b.)</td>
</tr>
<tr>
<td>XS</td>
<td>-</td>
<td>Sulfur content in coal, gm sulfur/gm coal (d.b.)</td>
</tr>
<tr>
<td>XS102</td>
<td>-</td>
<td>Silicon dioxide content in limestone, gm SiO2/gm limestone</td>
</tr>
<tr>
<td>XW</td>
<td>-</td>
<td>Moisture content in coal as received basis, gm H2O/gm coal</td>
</tr>
<tr>
<td>ZB</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
<tr>
<td>ZHE</td>
<td>(SEE DESIGN)</td>
<td></td>
</tr>
</tbody>
</table>
FORTRAN Symbol | **Mathematical Symbol** | **Description**
---|---|---
ALIME | λ_L | Reactivity of lime
AKAD | k_{VL} | Overall volume reaction rate constant for limestone SO$_2$ reaction, 1/sec
DP | d_p | Particle diameter, cm
DP1 | - | Specified particle diameter for which the limestone reactivity is given, cm
DP2 | - |
DP3 | - |
FS | f_L | Fractional conversion of limestone
FB | - | Limestone reactivity (given)
RR | - | Mean reactivity of limestone particles of size, DP1
RB | - | Mean reactivity of limestone particles of size, DP2
RC | - | Mean reactivity of limestone particles of size, DP3
SG | S_g | Effective specific surface area of limestone, cm2/gm
T | T | Temperature in the bed, °K

SUBPROGRAM AKK

AKCO2 | - | Overall rate constant for C-CO$_2$ reaction, cm/sec
AKF | k_{cf} | Gas film diffusion rate constant for O$_2$, gm/cm2.sec.atm
AKFCO2 | - | Gas film diffusion rate constant for CO$_2$, gm/cm2.sec.atm
<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKRCO2</td>
<td>k_{CO_2}</td>
<td>C-CO$_2$ chemical reaction rate constant, cm/sec</td>
</tr>
<tr>
<td>AKR</td>
<td>k_c</td>
<td>Overall rate constant for char combustion, cm/sec</td>
</tr>
<tr>
<td>AKS</td>
<td>k_{CR}</td>
<td>Chemical reaction rate constant for char combustion, cm/sec</td>
</tr>
<tr>
<td>COND</td>
<td>λ</td>
<td>Thermal conductivity of the gas, cals/sec.cm.$^\circ$C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>Molecular diffusivity for O$_2$-N$_2$, cm2/sec; for CO$_2$-N$_2$, cm2/sec</td>
</tr>
<tr>
<td>DC</td>
<td>D</td>
<td>Diameter of char particle, cm</td>
</tr>
<tr>
<td>DTS</td>
<td>ΔT</td>
<td>Increment in temperature, $^\circ$K</td>
</tr>
<tr>
<td>EM</td>
<td>ε_m</td>
<td>Emissivity of the char particle</td>
</tr>
<tr>
<td>ETS</td>
<td>ΔT_{calc}</td>
<td>Difference between assumed and calculated temperatures, $^\circ$K</td>
</tr>
<tr>
<td>ETSMAX</td>
<td>ΔT_{max}</td>
<td>Tolerance limit for temperature convergency, $^\circ$K</td>
</tr>
<tr>
<td>MC</td>
<td>M_C</td>
<td>Atomic weight of carbon, gms/gatom</td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td>Pressure in the combustor, atm</td>
</tr>
<tr>
<td>PHI</td>
<td>ϕ</td>
<td>Mechanism factor for char combustion</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>Heat of combustion of char, cals/gm char</td>
</tr>
<tr>
<td>RG</td>
<td>R_g</td>
<td>Gas constant, 82.06 atm. cm3/gmole.$^\circ$K</td>
</tr>
<tr>
<td>SIGM</td>
<td>σ</td>
<td>Stefan-Boltzman constant, cal/s.cm2.$^\circ$K4</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Temperature in the bed, $^\circ$K</td>
</tr>
<tr>
<td>TAV</td>
<td>T_m</td>
<td>Mean temperature in the boundary layer of the particle, $^\circ$K</td>
</tr>
<tr>
<td>TP</td>
<td>T_c</td>
<td>Char particle temperature, $^\circ$K</td>
</tr>
<tr>
<td>YO2</td>
<td>Y_{O_2}</td>
<td>Mole fraction oxygen</td>
</tr>
<tr>
<td>Z</td>
<td>p</td>
<td>Defined by Equation (V.16)</td>
</tr>
</tbody>
</table>
SUBPROGRAM AREA

<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATB</td>
<td></td>
<td>Bed cross sectional area at height Z_B above the distributor, cm2</td>
</tr>
<tr>
<td>ATI</td>
<td></td>
<td>Bed cross sectional area at height Z_I above the distributor, cm2</td>
</tr>
<tr>
<td>DTI</td>
<td>D_t</td>
<td>Diameter of the combustor at height Z_I above the distributor, cms</td>
</tr>
<tr>
<td>MTB</td>
<td></td>
<td>Number of locations along the combustor where the cross sectional areas are specified.</td>
</tr>
<tr>
<td>PI</td>
<td>π</td>
<td>3.14159265</td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td>Radius of the combustor at height Z_I above the distributor, cms</td>
</tr>
<tr>
<td>ZB</td>
<td></td>
<td>Height above the distributor at which the cross sectional area is specified, cms</td>
</tr>
<tr>
<td>ZI</td>
<td></td>
<td>Height above the distributor, cms</td>
</tr>
</tbody>
</table>

SUBPROGRAM ATTR

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKF</td>
<td>k_{cf} Gas film diffusion rate constant, gm/cm2.sec.atm</td>
</tr>
<tr>
<td>AKR</td>
<td>k_c Overall rate constant for char combustion, cm/sec</td>
</tr>
<tr>
<td>AKS</td>
<td>k_{cR} Chemical reaction rate constant for char combustion, gm/cm2.sec.atm</td>
</tr>
<tr>
<td>COND</td>
<td>λ Thermal conductivity of the gas, cals/sec.cm.$^\circ$C</td>
</tr>
<tr>
<td>D</td>
<td>D Molecular diffusivity for O$_2$-N$_2$ cm2/sec</td>
</tr>
<tr>
<td>DC</td>
<td>D_c Diameter of the char particle, cm</td>
</tr>
<tr>
<td>DTS</td>
<td>ΔT Increment in temperature, °K</td>
</tr>
<tr>
<td>EM</td>
<td>ε_m Emissivity of the char particle</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ETS</td>
<td>-</td>
</tr>
<tr>
<td>ETSMAX</td>
<td>-</td>
</tr>
<tr>
<td>MC</td>
<td>M_c</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>PHI</td>
<td>ϕ</td>
</tr>
<tr>
<td>Q</td>
<td>-</td>
</tr>
<tr>
<td>RG</td>
<td>R_g</td>
</tr>
<tr>
<td>RHOCCH</td>
<td>$\rho_{c, ch.}$</td>
</tr>
<tr>
<td>RKI</td>
<td>-</td>
</tr>
<tr>
<td>SIGM</td>
<td>σ</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TAV</td>
<td>T_m</td>
</tr>
<tr>
<td>TB</td>
<td>t_b</td>
</tr>
<tr>
<td>TP</td>
<td>T_c</td>
</tr>
<tr>
<td>YO2</td>
<td>-</td>
</tr>
<tr>
<td>Z</td>
<td>p</td>
</tr>
</tbody>
</table>

SUBROUTINE CRRECT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX</td>
<td>Increment in the variable, x</td>
</tr>
<tr>
<td>E</td>
<td>Difference between the assumed and calculated values of the variable, x</td>
</tr>
<tr>
<td>EMAX</td>
<td>Tolerance limit for convergency</td>
</tr>
<tr>
<td>E1</td>
<td>Value of E in the iteration, I</td>
</tr>
<tr>
<td>E2</td>
<td>Value of E in the iteration, I+1</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>INDX</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
</tr>
</tbody>
</table>

SUBPROGRAM DESIGN

<p>| A1, A2, A3, A4 | | Alphanumeric characters |
| ABED | A_t | Cross sectional area of the combustor, cm² |
| AHE | a_HE | Specific heat transfer area of the tubes, cm²/cm³ FBC volume |
| AND | n_d | Number of orifices in the distributor |
| ATB | | Bed cross sectional area at height ZB above the distributor, cm² |
| DBED | D_t | Diameter of the combustor, cm |
| DNZL | | Diameter of orifice holes in the distributor, cm |
| DTUBE | d_o | Diameter of cooling tubes, cm |
| DVB | | Volume of each compartment based on DZAV, cm³ |
| DVBEFF | | Volume of each compartment excluding the tubes, cm³ |
| DZAV | | Average compartment size used in design calculations, cm |
| FD | | Fraction of solids withdrawn from the bed at each location |
| FFAD | | Fraction of total additives fed at each location |</p>
<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFC</td>
<td>-</td>
<td>Fraction of total coal fed at each location</td>
</tr>
<tr>
<td>FSW</td>
<td>f_{sw}</td>
<td>Fraction of wake solids thrown into the freeboard</td>
</tr>
<tr>
<td>FW</td>
<td>f_w</td>
<td>Ratio of wake volume to the bubble volume including the wakes</td>
</tr>
<tr>
<td>IARR</td>
<td>-</td>
<td>Tubes arrangement code</td>
</tr>
<tr>
<td>MDIS</td>
<td>-</td>
<td>No. of solids withdrawal locations</td>
</tr>
<tr>
<td>MFEED</td>
<td>-</td>
<td>No. of solids feed locations</td>
</tr>
<tr>
<td>MTB</td>
<td>-</td>
<td>No. of locations along the combustor where the cross sectional areas are specified</td>
</tr>
<tr>
<td>MTHE</td>
<td>-</td>
<td>No. of locations of cooling tubes</td>
</tr>
<tr>
<td>NTC</td>
<td>-</td>
<td>Total number of compartments in the combustor using DZAV + 1</td>
</tr>
<tr>
<td>PI</td>
<td>π</td>
<td>3.14159265</td>
</tr>
<tr>
<td>PH</td>
<td>P_H</td>
<td>Horizontal pitch distance between the tubes, cm</td>
</tr>
<tr>
<td>PV</td>
<td>P_V</td>
<td>Vertical pitch distance between the tubes, cm</td>
</tr>
<tr>
<td>ZB</td>
<td>-</td>
<td>Height above the distributor at which the cross sectional area is specified, cms</td>
</tr>
<tr>
<td>ZDIS</td>
<td>-</td>
<td>Locations of solids withdrawal ports, cms</td>
</tr>
<tr>
<td>ZF</td>
<td>-</td>
<td>Locations of solids feed ports, cms</td>
</tr>
<tr>
<td>ZHE</td>
<td>-</td>
<td>Locations of cooling tubes, cms</td>
</tr>
</tbody>
</table>

SUBPROGRAM ELUT

<p>| BB | - | Weight of bed material of x th size fraction, gms |</p>
<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBED</td>
<td>-</td>
<td>Weight of char in the bed, gms</td>
</tr>
<tr>
<td>CBEDQ</td>
<td>-</td>
<td>Weight of char in the bed (calculated), gms</td>
</tr>
<tr>
<td>CCHAR</td>
<td>C<sub>ch</sub></td>
<td>Carbon content in char, gm carbon/gm char</td>
</tr>
<tr>
<td>CELU</td>
<td>-</td>
<td>Char elutriated from the combustor, gms/sec</td>
</tr>
<tr>
<td>CENT</td>
<td>-</td>
<td>Char entrained in the freeboard, gms/sec</td>
</tr>
<tr>
<td>CU</td>
<td>-</td>
<td>Fraction finer than size, d<sub>x</sub></td>
</tr>
<tr>
<td>DCSE</td>
<td>d<sub>ce</sub></td>
<td>Surface volume mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCSVMB</td>
<td>d<sub>c</sub></td>
<td>Surface volume mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>DCWE</td>
<td>-</td>
<td>Weight mean diameter of char particles in the freeboard, cm</td>
</tr>
<tr>
<td>DCWMB</td>
<td>-</td>
<td>Weight mean diameter of char particles in the bed, cm</td>
</tr>
<tr>
<td>DETC</td>
<td>-</td>
<td>Increment in combustion efficiency</td>
</tr>
<tr>
<td>DP</td>
<td>d<sub>x</sub></td>
<td>Mean diameter of the particles of x th size fraction, cm</td>
</tr>
<tr>
<td>DPSE</td>
<td>d<sub>e</sub></td>
<td>Surface volume mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPSVB</td>
<td>d<sub>\lambda</sub></td>
<td>Surface volume mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DPWE</td>
<td>-</td>
<td>Weight mean particle diameter of additives entrained in the freeboard, cm</td>
</tr>
<tr>
<td>DPWMB</td>
<td>-</td>
<td>Weight mean particle diameter of additives in the bed, cm</td>
</tr>
<tr>
<td>DWDIS</td>
<td>-</td>
<td>Increment in the solids withdrawal rate, gms/sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E</td>
<td>E_x</td>
<td>Elutration rate constant, gm/sec</td>
</tr>
<tr>
<td>EETC</td>
<td>ϵ</td>
<td>Tolerance limit for combustion efficiency convergency</td>
</tr>
<tr>
<td>EMF</td>
<td>ϵ_{mf}</td>
<td>Void fraction at minimum fluidization</td>
</tr>
<tr>
<td>ENTA</td>
<td>-</td>
<td>Entrainment rate of additives of xth size fraction in the freeboard, gm/sec</td>
</tr>
<tr>
<td>ENTC</td>
<td>-</td>
<td>Entrainment rate of char of xth size fraction in the freeboard, gm/sec</td>
</tr>
<tr>
<td>ERR</td>
<td>-</td>
<td>Difference between assumed and calculated combustion efficiencies</td>
</tr>
<tr>
<td>ETCA</td>
<td>-</td>
<td>Assumed combustion efficiency</td>
</tr>
<tr>
<td>ETCC</td>
<td>-</td>
<td>Calculated combustion efficiency</td>
</tr>
<tr>
<td>EWB</td>
<td>-</td>
<td>Tolerance limit for bed height convergency</td>
</tr>
<tr>
<td>FCE</td>
<td>-</td>
<td>Weight fraction of char particles of xth size fraction entrained</td>
</tr>
<tr>
<td>FFI</td>
<td>a_x</td>
<td>Proportion of total abrasion fines in the xth size fraction</td>
</tr>
<tr>
<td>FFO</td>
<td>-</td>
<td>Solids entrainment rate at the bed surface of xth size fraction, gms/sec</td>
</tr>
<tr>
<td>FRA</td>
<td>b_x</td>
<td>Weight fraction of bed materials in the xth size fraction</td>
</tr>
<tr>
<td>FRACTA</td>
<td>-</td>
<td>Weight fraction of additives feed of xth size fraction</td>
</tr>
<tr>
<td>FRACTC</td>
<td>-</td>
<td>Weight fraction of coal feed of xth size fraction</td>
</tr>
<tr>
<td>FRAEL</td>
<td>-</td>
<td>Weight fraction of additives of xth size fraction elutriated from the combustor</td>
</tr>
<tr>
<td>FRAEN</td>
<td>-</td>
<td>Weight fraction of additives of xth size fraction entrained in the freeboard</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FRÇ</td>
<td>-</td>
<td>Weight fraction of char particles of x th size fraction in the bed</td>
</tr>
<tr>
<td>FSC</td>
<td>-</td>
<td>Fraction of solids in the cloud region</td>
</tr>
<tr>
<td>FSW</td>
<td>f_\text{sw}</td>
<td>Fraction of wake solids thrown into the freeboard</td>
</tr>
<tr>
<td>FW</td>
<td>f_\text{sw}</td>
<td>Volume fraction of wake to bubble (including wakes)</td>
</tr>
<tr>
<td>QFLOW</td>
<td>G</td>
<td>Gas flow rate, gms/sec</td>
</tr>
<tr>
<td>HB</td>
<td>h</td>
<td>Height above the bed surface, cms</td>
</tr>
<tr>
<td>HFB</td>
<td>-</td>
<td>Freeboard height, cm</td>
</tr>
<tr>
<td>HLF</td>
<td>-</td>
<td>Expanded bed height, cm</td>
</tr>
<tr>
<td>HLMF</td>
<td>-</td>
<td>Bed height at minimum fluidization, cm</td>
</tr>
<tr>
<td>MGAS</td>
<td>-</td>
<td>Molecular weight of gas, gms/gmole</td>
</tr>
<tr>
<td>MTB</td>
<td>-</td>
<td>No. of locations along the combustor where the cross sectional areas are specified</td>
</tr>
<tr>
<td>NDP</td>
<td>-</td>
<td>Number of size fractions</td>
</tr>
<tr>
<td>P1</td>
<td>P_1</td>
<td>Proportion of fines recycled to the bed from the primary cyclone</td>
</tr>
<tr>
<td>P2</td>
<td>P_2</td>
<td>Proportion of fines recycled to the bed from the secondary cyclone</td>
</tr>
<tr>
<td>PAV</td>
<td>P</td>
<td>Average pressure of the FBC, atm</td>
</tr>
<tr>
<td>PFA</td>
<td>-</td>
<td>Gain of fines in the x th size fraction due to abrasion, gms/sec</td>
</tr>
<tr>
<td>Q1</td>
<td>q_1x</td>
<td>Collection efficiency of the primary cyclones for the x th size fraction</td>
</tr>
<tr>
<td>Q2</td>
<td>q_2x</td>
<td>Collection efficiency of the secondary cyclones for the x th size fraction</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>Entrainment rate of particles of size d_x, gms/sec</td>
</tr>
<tr>
<td>RCHAR</td>
<td>R_{ch}</td>
<td>Char produced per unit gm of coal fed, gm/gm</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RG</td>
<td>R_g</td>
<td>Gas constant, 82.06 atm.cm3/g mole·°K</td>
</tr>
<tr>
<td>RHOAD</td>
<td>-</td>
<td>Density of additives, gms/cm3</td>
</tr>
<tr>
<td>RHOBED</td>
<td>ρ_b</td>
<td>Density of bed materials, gms/cm3</td>
</tr>
<tr>
<td>RHOCCH</td>
<td>$\rho_{c,ch}$</td>
<td>Density of carbon in char, gms/cm3</td>
</tr>
<tr>
<td>RHOCH</td>
<td>ρ_{ch}</td>
<td>Density of char, gms/cm3</td>
</tr>
<tr>
<td>RHOGAS</td>
<td>ρ_g</td>
<td>Density of gas, gms/cm3</td>
</tr>
<tr>
<td>RK</td>
<td>K</td>
<td>Attrition rate constant, 1/cm</td>
</tr>
<tr>
<td>RKI</td>
<td>-</td>
<td>Size reduction constant for char (due to combustion), 1/sec</td>
</tr>
<tr>
<td>RT</td>
<td>-</td>
<td>Residence time of solids in the freeboard, sec</td>
</tr>
<tr>
<td>TAV</td>
<td>-</td>
<td>Mean bed temperature, °K</td>
</tr>
<tr>
<td>TB</td>
<td>t_b</td>
<td>Burning time of a char particle, sec</td>
</tr>
<tr>
<td>TDH</td>
<td>TDH</td>
<td>Transport Disengaging Height, cm; if TDH > HFB, TDH = HFB</td>
</tr>
<tr>
<td>TDHC</td>
<td>TDH</td>
<td>Transport Disengaging Height, cm</td>
</tr>
<tr>
<td>UMF</td>
<td>U_{mf}</td>
<td>Minimum fluidization velocity, cm/sec</td>
</tr>
<tr>
<td>UO</td>
<td>U_o</td>
<td>Superficial gas velocity at the bed surface, cm/sec</td>
</tr>
<tr>
<td>UTA</td>
<td>-</td>
<td>Terminal velocity of additive particles of size d_x, cm/sec</td>
</tr>
<tr>
<td>UTC</td>
<td>-</td>
<td>Terminal velocity of char particles of size d_x, cm/sec</td>
</tr>
<tr>
<td>VISC</td>
<td>μ</td>
<td>Viscosity of gas, gm/cm.sec</td>
</tr>
<tr>
<td>VMF</td>
<td>-</td>
<td>Bed volume at minimum fluidization (excluding the internals), cm3</td>
</tr>
<tr>
<td>W</td>
<td>W_x</td>
<td>Rate of transfer of particles from size fraction x to fraction x+1 by size reduction, gms/sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$W_{f,a}$</td>
<td>W_{a}</td>
<td>Additives feed rate, gms/sec</td>
</tr>
<tr>
<td>M_d</td>
<td>W_{b}</td>
<td>Weight of bed materials, gms</td>
</tr>
<tr>
<td>$W_{f,c}$</td>
<td>W_{bc}</td>
<td>Weight of bed materials calculated, gms</td>
</tr>
<tr>
<td>$W_{f,c}$</td>
<td>W_{coal}</td>
<td>Coal feed rate, gms/sec</td>
</tr>
<tr>
<td>W_d</td>
<td>W_{dis}</td>
<td>Solids withdrawal rate, gms/sec</td>
</tr>
<tr>
<td>$W_{f,x}$</td>
<td>W_{EA}</td>
<td>Additives entrainment rate in the freeboard, gms/sec</td>
</tr>
<tr>
<td></td>
<td>W_{EC}</td>
<td>Char entrainment rate in the freeboard, gms/sec</td>
</tr>
<tr>
<td></td>
<td>W_{elua}</td>
<td>Solids (excluding char) elutriation rate, gms/sec</td>
</tr>
<tr>
<td>$W_{f,x}$</td>
<td>W_{f}</td>
<td>Solids feed rate of x th size fraction, gms/sec</td>
</tr>
<tr>
<td></td>
<td>W_{f}</td>
<td>Feed rate of (limestone + ash in coal)</td>
</tr>
<tr>
<td>X_{a}</td>
<td>X_{A}</td>
<td>Ash content in coal, gm ash/gm coal</td>
</tr>
<tr>
<td>X_{av}</td>
<td>X_{AV}</td>
<td>Weight fraction carbon in the bed (average), gm carbon/gm bed material</td>
</tr>
<tr>
<td>Y_{o}</td>
<td>Y_{02}</td>
<td>Mole fraction oxygen</td>
</tr>
<tr>
<td>Z_{b}</td>
<td>Z_{B}</td>
<td>Height above the distributor at which the cross sectional area is specified, cms</td>
</tr>
</tbody>
</table>

SUBPROGRAM FBC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>k_c</th>
<th>Overall rate constant for char combustion, cm/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKC</td>
<td>k_{c}</td>
<td>Overall rate constant for C-CO$_2$ reaction, cm/sec</td>
</tr>
<tr>
<td>AKCO2</td>
<td>-</td>
<td>Defined by Equation (VI.32)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>COB</td>
<td>Carbon monoxide burnt in each compartment, gmole/sec</td>
<td></td>
</tr>
<tr>
<td>COVB</td>
<td>CO produced during volatiles combustion, gmole CO/gmole volatiles</td>
<td></td>
</tr>
<tr>
<td>CO2VB</td>
<td>CO₂ produced during volatiles combustion, gmole CO₂/gmole volatiles</td>
<td></td>
</tr>
<tr>
<td>DCSVE</td>
<td>Surface volume mean diameter of char particles in the freeboard, cm</td>
<td></td>
</tr>
<tr>
<td>DVBB</td>
<td>Volume of each compartment, cm³</td>
<td></td>
</tr>
<tr>
<td>DYO</td>
<td>Increment in O₂ mole fraction</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>Difference between assumed and calculated O₂ concentrations, mole fraction</td>
<td></td>
</tr>
<tr>
<td>ETUBE</td>
<td>Volume fraction of tube in each compartment</td>
<td></td>
</tr>
<tr>
<td>EYO</td>
<td>Tolerance limit for O₂ concentration convergency</td>
<td></td>
</tr>
<tr>
<td>FMO</td>
<td>Total molar flow rate of gas in the combustor, gmole/sec</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Acceleration due to gravity, cm/sec²</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>Volatiles burning rate in the bubble phase, gmole/sec</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Volatiles burning rate in the freeboard, gmole/sec</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>No. of char particles in the freeboard</td>
<td></td>
</tr>
<tr>
<td>PAV</td>
<td>Average pressure in the combustor, atm</td>
<td></td>
</tr>
<tr>
<td>PHIB</td>
<td>Mechanism factor in the freeboard</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>(\pi)</td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>Gas constant, 82.06 atm.cm³/gmole.°K</td>
<td></td>
</tr>
<tr>
<td>RVGAS</td>
<td>Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal</td>
<td></td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Temperature, °K</td>
</tr>
<tr>
<td>TAVB</td>
<td>T_B</td>
<td>Mean temperature in the boundary layer of the char particles in the freeboard, °K</td>
</tr>
<tr>
<td>X02</td>
<td>X_O2</td>
<td>Oxygen required for partial combustion of volatiles, g mole O_2/gmole volatile</td>
</tr>
<tr>
<td>YCO</td>
<td>Y_CO</td>
<td>Mole fraction CO</td>
</tr>
<tr>
<td>YCOO</td>
<td></td>
<td>Mole fraction CO in the bottom compartment</td>
</tr>
<tr>
<td>YCO2</td>
<td></td>
<td>Mole fraction CO_2 in the bottom compartment</td>
</tr>
<tr>
<td>YH2O</td>
<td>Y_H2O</td>
<td>Mole fraction H_2O</td>
</tr>
<tr>
<td>YO</td>
<td>Y_O</td>
<td>Mole fraction oxygen</td>
</tr>
<tr>
<td>YOC</td>
<td></td>
<td>Mole fraction oxygen calculated</td>
</tr>
<tr>
<td>YOO</td>
<td></td>
<td>Mole fraction oxygen in the bottom compartment</td>
</tr>
<tr>
<td>YV</td>
<td>Y_V</td>
<td>Mole fraction volatiles</td>
</tr>
<tr>
<td>YVO</td>
<td></td>
<td>Mole fraction volatiles in the bottom compartment</td>
</tr>
</tbody>
</table>

SUBPROGRAM GPB

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Matrix coefficients</td>
</tr>
<tr>
<td>AA</td>
<td>Matrix coefficients</td>
</tr>
<tr>
<td>AKB</td>
<td>k_{c,B}</td>
</tr>
<tr>
<td>AKBE</td>
<td>K_{BE}</td>
</tr>
<tr>
<td>AKCO2</td>
<td></td>
</tr>
<tr>
<td>AKE</td>
<td>k_{c,E}</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>AKP</td>
<td>k</td>
</tr>
<tr>
<td>AMODF</td>
<td>a_m</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>BB</td>
<td>-</td>
</tr>
<tr>
<td>COB</td>
<td>-</td>
</tr>
<tr>
<td>COV</td>
<td>-</td>
</tr>
<tr>
<td>COVB</td>
<td>-</td>
</tr>
<tr>
<td>CO2V</td>
<td>-</td>
</tr>
<tr>
<td>CO2VB</td>
<td>-</td>
</tr>
<tr>
<td>DVBB</td>
<td>-</td>
</tr>
<tr>
<td>DYB</td>
<td>-</td>
</tr>
<tr>
<td>EMAX</td>
<td>-</td>
</tr>
<tr>
<td>EMF</td>
<td>ε_{mf}</td>
</tr>
<tr>
<td>EB</td>
<td>ε_B</td>
</tr>
<tr>
<td>EPC</td>
<td>ε_c</td>
</tr>
<tr>
<td>FBM</td>
<td>F_{BM}</td>
</tr>
<tr>
<td>FBMO</td>
<td>-</td>
</tr>
<tr>
<td>FEM</td>
<td>F_{EM}</td>
</tr>
<tr>
<td>FEM0</td>
<td>-</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>GB</td>
<td>s_B</td>
</tr>
<tr>
<td>GE</td>
<td>s_E</td>
</tr>
<tr>
<td>PAV.</td>
<td>P</td>
</tr>
<tr>
<td>PHIE</td>
<td>ϕ_E</td>
</tr>
<tr>
<td>RG</td>
<td>R_g</td>
</tr>
<tr>
<td>RVGAS</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TAVB</td>
<td>T_B</td>
</tr>
<tr>
<td>TAVE</td>
<td>T_E</td>
</tr>
<tr>
<td>VPROD</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>XO2</td>
<td>X_{O_2}</td>
</tr>
<tr>
<td>XO2C</td>
<td>$X_{O_2,C}$</td>
</tr>
<tr>
<td>YB</td>
<td>Y_B</td>
</tr>
<tr>
<td>YBO</td>
<td></td>
</tr>
<tr>
<td>YCOE</td>
<td>$Y_{E,CO}$</td>
</tr>
<tr>
<td>YCOE0</td>
<td></td>
</tr>
<tr>
<td>YCO2B</td>
<td>Y_{B,CO_2}</td>
</tr>
<tr>
<td>YCO2B0</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>YCO2E</td>
<td>Mole fraction CO$_2$ in the emulsion phase</td>
</tr>
<tr>
<td>YCOE0</td>
<td>Mole fraction CO$_2$ in the emulsion phase in the bottom compartment</td>
</tr>
<tr>
<td>YE</td>
<td>Mole fraction oxygen in the emulsion phase</td>
</tr>
<tr>
<td>YEC</td>
<td>Mole fraction oxygen calculated</td>
</tr>
<tr>
<td>YE0</td>
<td>Mole fraction oxygen in the bottom compartment</td>
</tr>
<tr>
<td>YH2O</td>
<td>Mole fraction H$_2$O</td>
</tr>
<tr>
<td>YVE</td>
<td>Mole fraction volatiles in the emulsion phase</td>
</tr>
<tr>
<td>YVE0</td>
<td>Mole fraction volatiles in the emulsion phase in the bottom compartment</td>
</tr>
</tbody>
</table>

SUBPROGRAM GPHASE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKB</td>
<td>Reaction rate constant in bubble phase</td>
</tr>
<tr>
<td>AKBE</td>
<td>Gas exchange coefficient, 1/sec</td>
</tr>
<tr>
<td>AKE</td>
<td>Reaction rate constant in emulsion phase</td>
</tr>
<tr>
<td>AM</td>
<td>Defined by Equation (VI.12) for NO$_x$ reduction reaction; $(1 - \varepsilon_m a_m^*)$ for SO$_2$ absorption reaction</td>
</tr>
<tr>
<td>DVBB</td>
<td>Volume of each compartment, cm3</td>
</tr>
<tr>
<td>EPB</td>
<td>Bubble fraction</td>
</tr>
<tr>
<td>EPC</td>
<td>Cloud fraction including bubble</td>
</tr>
<tr>
<td>ETUBE</td>
<td>Volume fraction of tubes in each compartment</td>
</tr>
<tr>
<td>PBM</td>
<td>Molar flow rate of gas in the bubble phase, gmole/sec</td>
</tr>
<tr>
<td>FBMO</td>
<td>Molar flow rate of gas in the bubble phase in the bottom compartment, gmole/sec</td>
</tr>
<tr>
<td>FEM</td>
<td>Molar flow rate of gas in the emulsion phase, gmole/sec</td>
</tr>
<tr>
<td>FEMO</td>
<td>Molar flow rate of gas in the emulsion phase in the bottom compartment, gmole/sec</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>GEB</td>
<td>-</td>
</tr>
<tr>
<td>GNE</td>
<td>-</td>
</tr>
<tr>
<td>PA</td>
<td>P</td>
</tr>
<tr>
<td>RG</td>
<td>R$_g$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TB</td>
<td>T$_B$</td>
</tr>
<tr>
<td>TE</td>
<td>T$_E$</td>
</tr>
<tr>
<td>YB0</td>
<td>-</td>
</tr>
<tr>
<td>YB1</td>
<td>-</td>
</tr>
<tr>
<td>YEO</td>
<td>-</td>
</tr>
<tr>
<td>YEO</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBPROGRAM HAREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATB</td>
<td>Bed cross sectional area at height Z_B above the distributor, cm2</td>
</tr>
<tr>
<td>ATI</td>
<td>Bed cross sectional area at height Z_I above the distributor, cm2</td>
</tr>
<tr>
<td>DTI</td>
<td>Diameter of the combustor at height Z_I above the distributor, cm</td>
</tr>
<tr>
<td>MFB</td>
<td>Number of locations along the combustor where the cross sectional areas are specified</td>
</tr>
<tr>
<td>PI</td>
<td>π 3.14159265</td>
</tr>
<tr>
<td>RI</td>
<td>Radius of the combustor at height Z_I above the distributor, cms</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>ZI</td>
<td></td>
</tr>
</tbody>
</table>

SUBPROGRAM HEIGHT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBVEFF</td>
<td>Volume of each compartment excluding the tubes, cm³</td>
</tr>
<tr>
<td>DZAV</td>
<td>Average compartment size used in design calculations, cm</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>Height above the distributor, cm</td>
</tr>
<tr>
<td>HT</td>
<td>Height above the distributor, cm</td>
</tr>
<tr>
<td>NTC</td>
<td>Total number of compartments in the combustor using DZAV + 1</td>
</tr>
<tr>
<td>VV</td>
<td>Volume of bed (excluding tubes) at any height, cm³</td>
</tr>
</tbody>
</table>

SUBPROGRAM HYDRO

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHE</td>
<td>Specific heat transfer area of the tubes, cm²/cm³ (DESIGN input) FBC volume</td>
</tr>
<tr>
<td>AHEAV</td>
<td>Specific heat transfer area of the tubes in each compartment, cm²/cm³, FBC volume</td>
</tr>
<tr>
<td>AKBE</td>
<td>Gas exchange coefficient, l/sec</td>
</tr>
<tr>
<td>ALFB</td>
<td>$\alpha_b = \frac{\varepsilon_{mf} U_B}{U_{mf}}$</td>
</tr>
<tr>
<td>AND</td>
<td>Number of orifices in the distributor</td>
</tr>
<tr>
<td>AT</td>
<td>Cross sectional area of the bed, cm²</td>
</tr>
<tr>
<td>ATAV</td>
<td>Average cross sectional area used in calculations for each compartment</td>
</tr>
<tr>
<td>BEDVOL</td>
<td>Total bed volume, cm³</td>
</tr>
<tr>
<td>DBA</td>
<td>Bubble diameter in each compartment assumed, cm</td>
</tr>
<tr>
<td>DBAV</td>
<td>Bubble diameter in each compartment, cm</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>DBE</td>
<td>-</td>
</tr>
<tr>
<td>DBMAX</td>
<td>D<sub>BM</sub></td>
</tr>
<tr>
<td>DBO</td>
<td>D<sub>BO</sub></td>
</tr>
<tr>
<td>DDB</td>
<td>-</td>
</tr>
<tr>
<td>DPSVB</td>
<td>-</td>
</tr>
<tr>
<td>DT</td>
<td>D<sub>t</sub></td>
</tr>
<tr>
<td>DTAV</td>
<td>-</td>
</tr>
<tr>
<td>DTUBE</td>
<td>d<sub>o</sub></td>
</tr>
<tr>
<td>DTUBEI</td>
<td>-</td>
</tr>
<tr>
<td>DVBB</td>
<td>-</td>
</tr>
<tr>
<td>DVBBFF</td>
<td>-</td>
</tr>
<tr>
<td>EFFVOL</td>
<td>-</td>
</tr>
<tr>
<td>EMAX</td>
<td>-</td>
</tr>
<tr>
<td>EMF</td>
<td>ε<sub>mf</sub></td>
</tr>
<tr>
<td>EPB</td>
<td>ε<sub>B</sub></td>
</tr>
<tr>
<td>EPC</td>
<td>ε<sub>c</sub></td>
</tr>
<tr>
<td>ETUBE</td>
<td>ε<sub>tube</sub></td>
</tr>
<tr>
<td>FMO</td>
<td>F<sub>MT</sub></td>
</tr>
<tr>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>HAV</td>
<td>-</td>
</tr>
<tr>
<td>HB</td>
<td>h</td>
</tr>
<tr>
<td>HCR</td>
<td>-</td>
</tr>
<tr>
<td>HFB</td>
<td>-</td>
</tr>
<tr>
<td>HLF</td>
<td>-</td>
</tr>
<tr>
<td>IARR</td>
<td>-</td>
</tr>
<tr>
<td>IARRNG</td>
<td>-</td>
</tr>
<tr>
<td>ICR</td>
<td>-</td>
</tr>
<tr>
<td>IFBC</td>
<td>-</td>
</tr>
<tr>
<td>LAST</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>MGAS</td>
<td>-</td>
</tr>
<tr>
<td>MT</td>
<td>-</td>
</tr>
<tr>
<td>MTHE</td>
<td>-</td>
</tr>
<tr>
<td>M1</td>
<td>-</td>
</tr>
<tr>
<td>PAV</td>
<td>P</td>
</tr>
<tr>
<td>PH</td>
<td>PH</td>
</tr>
<tr>
<td>PHI</td>
<td>PH</td>
</tr>
<tr>
<td>PV</td>
<td>PV</td>
</tr>
<tr>
<td>PVI</td>
<td>PV</td>
</tr>
<tr>
<td>FORTRAN Symbol</td>
<td>Mathematical Symbol</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>RG</td>
<td>R<sub>g</sub></td>
</tr>
<tr>
<td>RHOBED</td>
<td>ρ<sub>b</sub></td>
</tr>
<tr>
<td>RHOGAS</td>
<td>ρ<sub>g</sub></td>
</tr>
<tr>
<td>SUM</td>
<td>-</td>
</tr>
<tr>
<td>SUMEFF</td>
<td>-</td>
</tr>
<tr>
<td>SUMV</td>
<td>-</td>
</tr>
<tr>
<td>SOLVOL</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TETUBE</td>
<td>-</td>
</tr>
<tr>
<td>UB</td>
<td>U<sub>B</sub></td>
</tr>
<tr>
<td>UBR</td>
<td>-</td>
</tr>
<tr>
<td>UBS</td>
<td>-</td>
</tr>
<tr>
<td>UMF</td>
<td>U<sub>mf</sub></td>
</tr>
<tr>
<td>UO</td>
<td>U<sub>o</sub></td>
</tr>
<tr>
<td>VISC</td>
<td>μ</td>
</tr>
<tr>
<td>VMF</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>YB</td>
<td>Y<sub>B</sub></td>
</tr>
<tr>
<td>ZHE</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBPROGRAM VEL

<p>| DPAR | d<sub>p</sub> | Particle diameter, cm |</p>
<table>
<thead>
<tr>
<th>FORTRAN Symbol</th>
<th>Mathematical Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>g</td>
</tr>
<tr>
<td>REP</td>
<td>Re_p</td>
</tr>
<tr>
<td>RHOGAS</td>
<td>ρ_g</td>
</tr>
<tr>
<td>RHOS</td>
<td>ρ_s</td>
</tr>
<tr>
<td>UM</td>
<td>U_{mf}</td>
</tr>
<tr>
<td>UT</td>
<td>U_t</td>
</tr>
<tr>
<td>VISC</td>
<td>μ</td>
</tr>
</tbody>
</table>

SUBPROGRAM VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVBEFF</td>
<td>Volume of each compartment excluding the tubes, cm3</td>
</tr>
<tr>
<td>DZAV</td>
<td>Average compartment size used in design calculations, cm</td>
</tr>
<tr>
<td>VOLUME</td>
<td>Volume of bed (excluding tubes) at any height ZZ, cm3</td>
</tr>
<tr>
<td>ZZ</td>
<td>Height above the distributor, cms</td>
</tr>
</tbody>
</table>