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Annotation

The paper considers the problem of energy and multicomponent

ambipolar diffusion of plasma in the lower ionosphere of a planet

with a weak magnetic field. Energy and diffusion equations are de-

rived for three-temperature plasma in which heat and mass transfer

processes are taking place ,jointly with chemical reactions in a

form which is convenient for calculating models of the composition

of a multicomponent ionosphere. Unlike in some early formulations

of the problem [1-4], it is shown that the coupling effect of the

electric polarization field on the motion of charged particles in

the ionosphere is such that the diffusion rates of individual ion

components are determined in terms of number density gradients of

all ion components of the mixture. The proposed approach ge,ieral-

izes the known description of ambipolar diffusion derived earlier

as part of the theory of a traditional ternary mixture (e,i,n) [5-9]

to the case of an atmosphere composed of many charged components.

Energy interactions among components are analyzed, in particular,

thermal energy losses or electrons (ions, neutral particles) due

to elastic and inelastic collisions, which allowed to obtain energy

equations for each component of the system.

iv
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MULTICOMPONENT DIFFUSION A14D ENERGY CH,iIACTERISTICS OF PARTIALLY
IONIZED PLAS14A IN THE IONOSPHERE OF A PLANET

M. Ya. Marov and A. V. Kolesnichenko

Introduction	 */4

The transfer of charged particles by means of diffusion, which
Cr

along with the photochemical process controls the vertical distri-

bution of ionosphere components is an important factor in all diverse

aeronomy processes taking place in the ionosphere of a planet. The

diffusion of charged particles in weakly charged multicomponent

plasma of the lower ionosphere differs from diffusion of small com-

ponents in the conditions of a neutral atmosphere. This is related,

in the first place, to the necessity of taking into account electro-

static forces not only during the collision of charged particles,

but also during the collision of charged and neutral particles,

when an electric dipole moment is induced in the latter, and in the

second place, to the necessity of taking into account the electric

field effect of a space charge formed during the fast diffusion

movement of eldetrons compared with the motion of ions, impeding the

relative diffusion of charged particles.

In the case of three-component plasma (e,i,n), the electron-

ion plasma undergoes ,joint (ambipolar) diffusion under the effect

of an electric polarization field t with a common diffusion coeffi-

cient and common velocity Va =VV Problems of plasma diffusion in

the ionosphere assuming a ternary mixture are discussed in detail

in a number of studies (see for example [5,8], and also the ,joint

authorship study [91).

For weakly ionized ionosphere plasma, consisting of electrons,

various kinds of ions and neutral particles, the diffusion rates of

individual charged components are not equal to each other and are

*Numbers in the margin indicate pagination in the foreign text.
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determined from the

electric current is

ambipolar diffusion

ionosphere (see for

along these lines d

rates of individual

[1] and [4],

condition which states that the longitudinal

approximately zero. Few studies discuss the

problem in the general case of a multicomponent

instance, [1-4, 9-11]), while several studies

D not use equivalent expressions for diffusion

ion components of the gas mixture (for instance

The purpose of this study is to derive energy equations for

multi-temperature plasma of the lower ionosphere and also general

diffusion equations for determining diffusion flows for types of

ions isolated in the mixture of atmospheric ions using the concept /5

of effective ambipolar diffusion coefficients. Another objective

of the study is to eliminate a number of inaccuracies in the de-

scription of ambipolar diffusion of a multicomponent conductive

medium which occurred in some early formulations of the problem

[1,3,4].

1. Stefan-Maxwell Relations for Multicomponent Diffusion

For a quantitative analysis of multicomponent diffusion pro-

cesses in ionosphere plasma, we will consider the Stefan-Maxwell

relations derived in classical kinetic theory of multicomponent

gaseous mixtures of monoatomic gases of moderate density as part of

• first approximation for multicomponent diffusion coefficients and

• second approximation for thermal diffusion coefficients [12]

"	 +	 " r,x,	 2)_ T(2)
d.,=	 K^ (v,-v,) +DenT a4.,(Q` 4K SS ^^	 (1.1)

( ^° ^. 2...4

Here ms , p s , n  is the molecular weight, mass density and number

density of the s-th component, respectively, V s ,x s =ns/n is the

diffusion velocity and molar concentration of the s-th component,

r., p, T is the total number density, mass density and temperature

of the gas mixture and DS , Dsk are respectively the thermal diffusion

coefficients and binary diffusion coefficients for all pairs of

2
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components The vectors of diffusion forces as are defined as

NCs y	 y
c7,=v.zs+(x,-C')v&n.P-P(sP EpF

where c s=Ps/P is the mass concentration of the s-th component, p

is the pressure of the gas mixture and F s is the force acting on the

s-th component. The order of approximation C=1,2,... with which the
transfer coefficents are determined in (1.1) corresponds to the

number of first terms in a series expansion of the coefficients of

perturbed distribution functions of components in terms of Sonine's

polynomials.

Until recently, relations (1.1) for diffusion rates were only

derived in first approximation in the kine.ic theory of gases. Usu- 16

ally such approximation is considered to ae adequate, however in

ionized gases, the admissible error may turn out to be considerable.

The necessity of taking into consideration higher order app •r,oxima-

tions in calculations of transfer coefficients in an investigation

of flows of ionized mixtures of gases in the !.onosphere (E =3 and

higher [12,131), when not only the temperature snd pressure but also

the elementary chemical composition [14] of the flow undergoes

changed, makes the Stefan-Maxwell equations in form (l.l) inappli-

cable in aeronomy in the general case.

However, study [15] gave very recently a derivation of relations

(1.1) from the kinetic theory of gases in any approximation for trans-

fer coefficients using the Chapman-Enskog method, and study [16] de-

rived relations (1.1) for the case of imperfect (perfect) mixtures

of gases by methods of thermodynamics of irreversible processes,

while demonstrating the symmetry of the matrix of resistance to dif-

fusion, in complete agreement with the latest results of the kinetic

theory of gases.

Let us make some transformations. Henceforth we will consider

as external forces electric, magnetic and gravitational forces
	 I

3



(1.3)

.

where ^ is acceleration due to gravity, e s is the electric charge of

the s-th component (for neutral components we will assume es=_0),

L is the electric field intensity vector, 9 is the magnetic induction

vector, which in the general case includes the unperturbed magnetic

field of the planet and a small induced field. Using the relation

p s =x sp for the partial pressure of the s-th component, we have

Vx s •Vp s/p-xs Vlnp, from which we obtain

d's° P{vp,— nJes( +^^xs)_^sQp,•^'jx91 	 (1.4)

where ^=E s e s nsys is the density of the total conduction current in

the plasma.

Expression (1.4) takes into account the quasineutrality of

ionosphere plasma

N

2e,tz,vo	 (1.5)
s=+ 	 .

Using formula (1.4) and also the full equation of motion (without

the viscous term) for the continuum which models the mixture of gases

as an entity, we rewrite the Stefan-Maxwell equations (1.1) in the

form of equations of motion for individual charged components of /7

the ionospherel.

-^	 H'

ssd{{^, 1 n:^Ia^l^s Vl^ 4pstltsEi(E+^Vix4)-Knd,VT ŷj a 	 (1.6)

In the above, v sj =KT/nDsj are the coefficients of friction which are

either determined experimentally or from a derailed investigation of

the dynamics of particle collisions using the kinetic theory of gases,

K is Boltzmann's constant, N' is the number of charged components

The viscosity of the system is almost completely determined by the
neutral component of the ionosphere C71.

4
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of the gas mixture, and a5 is the thermal diffusion factor defined

by

T
o4 N hJ ` i _ Vj

which constitutes a measure of the relative importance of thermal

diffusion and ordinary diffusion. In the general case, the thermal

diffusion factor is a complicated function of temperature, concen-

tration, and molecular weights depending parametrically on the laws

obeyed by intermolecular forces [12]. According to available esti-

mates, thermal diffusion for principal components of the ionosphere

is a negligibly small quantity due to the small difference in mole-

cular weights, which essentially should only be taken into account

in light gases (hydrogen and helium 1171).

Equation (1.6) did not take into account the possible aniso-

tropy of coefficients of friction in the magnetic field, which is

related to not having taken into account the effect of the magnetic

field in Stefan-Maxwell equation (1.1). At the same time, it is

clear that in strongly magnetized plasma (n e >>a ei' Ste= am ), in

particular, such as the ionosphere in the P region of the Earth's

ionosphere, the collision term must be anisotropic. In simple cases

(for example for completely ionized two-component plasma), in ion-

osphere conditions, this effect can be estimated by the order of mag-

nitude [18]. we also note that although the presented derivation of

equations of motion (1.6) is only valid in a single-temperature ap-

proximation, the form of the equations remains unchanged also in the

case of multi-temperature plasma [19].

Directly in the ionosphere of the planet, neutral molecules are

'r	 much more numerous than charged particles: n n >> n
e , ni . Therefore

in describing physical processes in the lower ionosphere, one can 	 /8

often restrict the analysis to the theory of a weakly ionized gas.

In this case, we can assume that the n:drodynamic velocity coincides

with the velocity of the neutral gasV=Vn , all components of which 	 k

h
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have the same velocity ern (assumin g rrravitational-diffusion

equilibrium in the thermosphere). Then the general eouation

'

	

	 of motion for the plasma com ponent of the was mixture,

obtained by summing equations (1.6) over all charp;ed gas com-

ponents, assumes the form

sl t
its	 7j+.?,

s•r
=-G PI+cJx B+ K^i Ki°^, 7Ts+P, G,

NN	

(1.6)s.r	 ^
t
	

^
M

+	
N

^1s^- 
1f n 1 'A1 t̂tn , M4=2Ytj , 3'=T tn' n' , PAZ P,

(1.9)

Here vsn is the total coefficient of friction of the s-th

charged component with the neutral component of the ionospherL;

nn is the total number density of neutral components of the

gaseous mixture, p L , r1 L , P L are respectively the mass density,

number density and pressure of the plasma component of

the ionosphere. The upper index "n" in a sum denotes

summation over neutral components of the system. The general

equation of motion for the neutral component of the

ionosphere

	

srtd Vmm v (y VS/=

-
vp +v. (I+K2In.evT+ w,

	 (1.10)

dis i a n an	 n	 a s.r a t s Pti G,

M A=-PjVV+ ( vv')L ( 0' V)T3, pn.su Ps, SM1t:'`M.as (1.11)

ORIGINAL PAGE IS
OF POOR QUALITY
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follows from equation (1.8) 3 and the full equation of

motion for the continuum modeling tl,e gaseous mixture as

a whole entity ?^VV'o=-ap+7-P+ JK1+9

where Fin is a tensor of viscous stresses of the gaseous

mixture, nn is the viscosity coefficient and pn' pn
are the mass density and pressure of the neutral component

of the ionosphere.

2. Collision Effects

Detailed calculations of various transfer processes

in the ionosphere of a planet requi_= a rigorous treatment

of the problem of collisions among various particles.

The collision term VA= ^t.n^^q(^j- ^)
in equation (1.6) represents the velocity with which a

unit of volume of the k-component loses momentum as a

result of collisions of its particles with other components.

Introducing the mean collision freque:icy Bits - n s v Its m IIts'
we express the collision term M ks in the form

g

tAgs ° MA Its ~Kt ( yb - 70) ° a  MKS 9, t ( Ys - yK)..—
	 (2.1)

7
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In t.h- above mks mkms/(mk+ms ) is the reduced mass, 8ks-nsgks 1yks is
the r.ean collision frequency with momentum transfer be..ween particles

of t;;;e k and s, gks= [8KTR/Rmks ] 1/2 is the mean relative speed of

particles with Maxwell velocity distributions, T R=mks (Tk + rs is the
M  ms

reduced temperature and Mks is the mean collision cross-section with

momentum transfer. We shall present some estimates: The scatter-

ing cress-section Mks is determined from an experiment or by means

of gas kinetics calculations [12,18,19], when the law governing the

interaction between particles is known sufficiently well. Kinetic

theorJ gives the following expression for Qks in the case of collision

Of ions with a neutral gas [19]

(I
	 n

	

ŷLIy° 312  rq)^^`^'Ln^a^P[ ImCn ^2KTn^9ysd^^	 (2.2)
U

where Qin (g) is the momentum transfer cross-section between particles

Of tyre i and n, having relative thermal speed g and equal macro-

scop_: velocities of motionV i =Vn . „ more exact expression for Qin

takir.F into account differences in the velocities of motion of com-

ponents i and n is presented in study [20]. Rigorous analysis shows

that as a charged particle approaches a neutral particle, an electric

dipole moment is induced in the latter and the collision cross-section

between the particles is determined to a considerable degree by the

resultant electrostatic forces. For ions with neutral particles,

Banks [21,22] proposes the following semi-empirical expression

I
v Y: T. rn 1 ' z	 2

4.rc =17, 7100!o Lmtnlm^
+tn

n 	 ,Cm	 (2.3)

where the atomic polarization a e ( =10-24a' cmj ) for the principal

neut ^al components of Earth's ionosphere has the following values:

a'0 ="_.60, a' N =0.82, a' 0= 0.89, a'M=0.67, a'He=0.21, a' N=1.13 [23,24].
2	 2

It is assumed that the ions and the gas obey a Maxwell distribution.

In t-.-'z case, the collision frequency is independent of the temperature

and _: determined from relation [21,2] 	 ORIGINAL PAGE IS
OF POOR QUALITY
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-9	 v:>° ItM(oGo/J"„)	 sec-1 (2.4)

whereu =A1An and A is the mass of the particle in atomic units. /10
A î  s

The resonance chargr transport reaction plays an important part

in the diffusion of ions of some type in the same type of gas. The

frequency of collisions for this process can be approximately repre-

sented in the forml

In t. '40.!^n(rt+rn)"'Z ceK' f 	(2.5)

where the constants Rin 
(=10-12Rin cm2/sec • deg. l/2 ) for the prin-

cipal components of the Earth's ionosphere have the following values:

R^0+^0=1.6,
 R'02202=1.1, R' H;H

=1.0, R' He;He-3.0, 0 N2,N2=2.1,

RAN
+N=1.6 [293.N ) N=

 considering the collision frequency of electrons with a

heavy particle, we will. use the con..t;ion m e<<mn ; then men= me'
T  = Te , and we obtain for the ;nean collision frequency

QQ — 
y	 81tr

c/ '/2l m ^/	
(( rn^9^

gS
	^8rcr^}y/i

.7en 3 n^J m	 'KT ^cn pf^PL 2Kre d^^ =n ^^m^ ?Cti (2.6)
0

For the principal neutral components of the Earth's ionosphere, the

mean collision cross-sections with momentum transfer have the values:

Qe , n = (3.76-4.54 . 10 -4 T e ) Tel/2. 10-17 , cm2 , 	
2
= 2.93.10-16-(I1.3.6-

10-1 ,Tel/2), 
cm 2 ; %'C ( 4 .53-1.3) 1.0

-16
  cm2; 4c M= ('2.9-9.93.10;3Te',

cm2; % ,He= (7.46-0.8) 10; 16 cm 2 [21,223.

The total collision frequency of an electron in multicomponent

2 I all formulas appliod in practice, the temperature is expressed in 	 <
degrees Kelvin and all other magnitudes in CGS units.

9
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plasma is equal to the sum of collision frequencies with different

components Se° saes'
The elastic collision dynamics of two charged particles are

described by a well known potential, which allows to derive an ex-

pression for the mean momentum transfer cross-section [18].

e l LOnAci	 _

^ct 2ND EKTQ)' °6;85 l0 ^ot/1e s cm2 (2.7)
where € is the dielectric permeability coefficient of the plasma and

Aei 1.24 . 10 7 y'T- e *3/n e is the Coulomb logorithm (ni). The correspond-

ing mean electron collision frequency with momentum transfer is

Q ^}	 4 2S hta ^/2 c^ z	 y5S7rPa^M

^.t=ntde: Jet=nt 3 KT.)' ^ytnr,,P^t^u"	 r v+	 see	 (2.8)

For ion-ion collisions, according to [21,22], the cross-section /1 1
can bc. expressed in the form

	

qt,= 4,4•fO-6&tA Lr/T2 . 2 (2.9)

^J
f

where the parameter Aij is defin

energy of the relative motion of

nj/TJ)
-]/2 is the Debye radius.

a Maxwell velocity distribution.

of ion-ion collisions is

:d as Aij = 2E RD/e 2 , E is the mean
two ions and ftD= One /Kc (ni/n+

It is assumed that both gases have

Then the corresponding frequency

&t - n	 =8.4.10 n 
Pn/It;

!' ! t91 94 	 jv^r	 (z.lo)

Ambi
	

f
	

e Plasma in the A

We will now consider diffusion processes in a multicomponent

ionized gas in the ionosphere of a planet with a weak magnetic field

9 ti 0, on the assumption that all different types of particles par-

10
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ticipating in this motion have a different temperature. Because of

the smaller mass, electrons undergo faster diffusion than ions, how-

ever the space charge formed in the process gives rise to an electric

field 9 which tends to slow down their motion. The electric field
acts in the opposite direction on ions and accelerates them. Ignoring

the magnetic field induced by the separation of charges, the Stefan-

Maxwell relation (1.6) for a charged ionosphere component s can be

expressed as follows

T- 	 (3.1)

ns

KT/1y-c's^SE 
xri ^sK^

nsJn `nKJ1 /, ^Sn^,2,...r^/

	

A s ;iT f a " ^' rt, - ^q, Cy + rb' (^ t^!.ti^ ^^	 (3.2)

Here * n  0 
X_
- ) is the diffusion flow (flow of the number of par-

ticles of type s with respect to the mean mass velocity ; 7-VX,SsZs

g=^/g is the unit direction vector ^ and H, =KT=KT /m
s
 g is the local

altitud e scale of the s-th component. Introducing the diffusion
movement coefficients C s and the diffusion coefficients D s of charged

particles of type s

	

'es ^ JK^K,^_° esl m e^^r b,'e ŝes	(3.3)

relations (3.1) can be written in the form 	 /12

J,=B
n	 I'

sE^^,K^t,JK- 1), +et as E; ( s =9,7,...x+/	 (3.1*)

Relation (3.3) between D s and C s is the Einstein relation, known

earlier for a ternary mixture of neutral components, ions and electrons.

Let ns write dov.n the expression for the electric current den-

sity 75J5
	

Taking into account (1.5) and (3.1), we have
es 

J
M ^^- Cs ysy +r 

^_j e	 y
=	 ,^;	 nE Sy„; r 5 n ^Sv JR,	 (3.4)	 e

f

II



where the conductivity of the plasma (longitudinal conductivity in

the presence of a magnetic field) is determined from the expression

H	 N	 N	 N	
c
^I

t4razP, 0, nss' e1rij Z ^:n'"^n]'F EZns tI+ ^K1 	 (3.5)

	

Sal s l	 PI

Since a minute vertical separation of electrons with respect to

positive ions leads to the formation of a strong electric polarization

field in the ionosphere impeding the relative diffusion of charged

particles, ultimately a stationary state is established in ionosphere

plasma, in the presence of which ions and electrons move in such a

way that a space charge does not arise. In this case, only small

deviations from equilibrium can occur and any vertical electric

current must be negligible. Setting in expression (3.4)
h

=0, we

shall find the electric polarization field E hunder the action of which

ambipolar diffusion is taking place in the ionosphere. Next, elim-

inating this field from relations (3.1) and omitting the subscript

h in the vertical component of vector quantities, we write the Stefan-

Maxwell relations in the form

N	 N o

K Tt /1 i - CSS =1 S S ^5 sE^^;'(ntJ-ntF.^ (^=^z,,.++) (3.6)

So-called ambipolar coefficients of friction

were introduced here. In deriving formula (3.6), for symmetry of the

final relations, the zero term e; T1^,'S^;'K BS ns n ,r N,K/a =0' (by virtue of the
quasilinearity of (1.5) and relations (3.3)) was added to the right

member of (3.1).

Relation (3.6) can be simplified. For atmospheres of planets,

electron mobility exceeds many times ion mobility 1C e l» C i [251•	 /13

Consequently, the following approximate relations are valid

d =-08e tLe[ 1 -	 n /
O

tt6j j . j^-
e 

n o,
e
&

I(̂ _s
...1 ses .As . nQ ee LTeB^ne t^TsBsAs,=` h,;K ^^e

12
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and equation (3.6) for vertical diffusion of type i ions can be ex-

pressed as follows

KTtAt+.-' KT
o
AC -2wa,(ntTK- n-JJ, (i-f,s,...e,'	

(3.7)Ae

In the case when electrons and ions have the same temperature

(Te=Ti=T), it is convenient to rewrite relation (3.7) in terms of
ambipolar binary diffusion coefficients

_KT	 "Bsnst	
_C ^^('^11	 1 1N ^i- O#t

q

^iK' n W ^LCOiH ^d t./ CZ4K J	 O^iK ^' Wolt	 (3-8)

in the form

e	 Kul h	 to

In investigating the composition of the atmosphere of a planet, re-

lations (3.9) together with differential continuity equations for the

concentrations n  of ion components of the atmosphere

^ n;^9^+ph jslJ^^ti ^a^LKan YtPL Ktn M 11	
(3.10)z.,

( L K t, 2, ...N^

and the plasma quasillnearity condition

nC CeziFCN, nJ
	

(3.11)

allow to calculate the vertical distribution of charged components in

the lower ionosphere of the planet at a given temperature profile.

Here T1Yir are the stoichiometric coefficients in the r-th (r=112,
ir'

,R) aeronomic reaction,	 is the
number of reactions, Kr, Kr' are the constant velocities of the

direct and reverse reaction respectively.

13
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Equations (3.9) generalize to the case of diffusion of various

types of ions and electrons in a mixture composed of many components

the well known diffusion equations introduced by Kolegrov et al [26]
for determining the densities of individual components used in many /14

studies during calculations of models of the composition of a neutral

i	 atmosphere.

Ignoring for simplicity theinertial term in expression (3.2)

for As , and restricting ourselves to a consideration of stationary

movement of a neutral atmosphere, we write relation (3.7) in terms

of the gradients of principal hydrodynamic quantities in the fol-

lowing final form

Te
TejtOA^^n`+T^T4OhPitl2Q+To"T.^hT`+TaTiVhTl: 	 (3.12)

ca
v;K( rZ,L- nJ;) Kn t (TC .TZ). (t=+,t,...^'^)

where H1 =K (Ti+Te )/mig is the altitude of the homogeneous atmosphere

of the i-th ion component. The influence of the thermal diffusion

effect on the altitude distribution of ion components of the atmos-

phere is only considerable for minor components [27]. Equations

(3.12) for diffusion flows of ion components are fundamental in a

descritpion of ambipolar diffusion and generalize the results obtained

earlier [5-10] for three-component plasma to the general case of

weakly ionized multicomponent plasma in the lower ionosphere.

Finally, assuming that collisions among ions and neutral par-

ticles play a greater part than collisions among charged particles

(which is valid for the lower ionosphere in the E and F regions),

and also taking into account the fact that in the thermosphere the

neutral components are in a state of gravitational-diffusion equili-

brium (J1= 0), we obtain from equations (3.7) an expression for the

diffusion rate of the j-th principal plasma component

V^ _	 )[ ^i Veit ' _ venn +ve&N, r7) +7 (3.13)— V—D • 
Te Tj 	 Tn j	 {

14
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where the ambipolar diffusion coefficient D (a) is defined by the

relation

	

bta)= ^ NOVI. ^1K ' D1Ze Te'TJ = K Ta+Tf §8e	 (3.14)
1 K• R(wi	 7DQ+Te'P,i e(Be-Bil)

The index n in the sum denotes summation over neutral components of

the system. Thus, on the strength of relation (3.11), the drift vel-

ocity of each ion component depends on the gradients of all ion com-

ponents of the ionosphere.

In the special case of three-component plasma (n e =n i=n), form-

ulas (3.13) and(3.14) become the well known relations for the coeffi-

cient and ambipolar diffusion rate of plasma in a coordinate system /15

moving with the velocity of the entire substance

car	 1	 (a) K (Te +T!)	
K n T +T)(3.15 )vi =v —Di ohC'iip4+ ]^ D- m	, p,= (. c

Cr, Tin,

4. Ambipolar Diffusion in Proper Magnetic Field of Planet

In discussing the problem of diffusion in the ionosphere of a

planet with its own magnetic field t, we will limit ourselves to the

case in which it suffices to consider the interaction of charged

ionosphere components only w3,th neutral particles (friction with

neutral gas) which are in a state of diffusion equilibrium, without

takin3 into account collisions of charged particles among themselves.

In this case, the equation of motion (1.6) for each type of charged

particle will be represented in the form

^FJxg+B n. (E+ ̂m) -i	 ^ _— `— g--^ (4.1)
S C S	 S S

	 5, S lzMylkt, 3^ IL1 X11

UR iGINAL t-k; iE IS
OF POOR QUALITY
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Denoting by 	 the components of an arbitrary vector

along and across the lima of force of the magnetic field B / A^i={A'^^

A.L - jLx (AMh), I'L /g ), we write the longitudinal and transverse com-
ponent of equation (4.1) in the form

1
ro 

8 (Yt E 
KssA 

)^ Js i^iu^ sEi- es'/1rB (E^ ^st/^1^^.	
(4.2)

sn° s s n" a su

SL BMcI .Q. L K 	sn Q 	 .A,^K
(4.3)

where Qsk = a a BIM skC is the generalized gyromagnetic frequency of the

	

s-th component, and ' _ 	 + o V x 9 is the electric field in a
coordinate system moving at the velocity of the neutral gas in the

ionosphere.

;.ing formulas (4.2), let us write down the expressions for the

density of the flow along and across the magnetic field

J1 =dii+a^Ah'EBs^/^sa`^'Bs^/1'xk 	 (4.4)
N A	

fa/	 Sal	 S

	

-a E	 g -.,	 -.

	

u- E ll	 sAsu, Asa'(T,As,

where the transverse and Hall conductivity is determined from the 116

expressions

	

„	 N	 n
cal= 2s r^s Bsi 	 do =Zesn'SRSA'	 (4.5)

In Earth's lower ionosphere (F-region) B = 0.3 gauss, 0 n'blsec ;

aan 35 sec-1 aeiti1500 seo -; me= 9.108"10-23g, e= 1.602.10-2^
^ 

	e.m.u.

and the following estimates

seK^-^e^«^iK/-^+K'^t^ r 6QelyD^B^I
(4.6)
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are valid in a considerable range of altitudes. Using these estim-

ates, we obtain the following approximate relations

N
8sl— B200:&K

 11sK ' esn B , C?-- e Q"Q ^ CiA'	 (4-7)

Eliminating the longitudinal electric field 	 relations

(4.2) and (4.4) and ignoring terms which are small compared to unity,

we obtain the following expression for the longitudinal diffusion

flow of ions

=B=ns~ +^; 0`B! ^Yt a /~' -n 0 n ')--="`	+
sn a J.. J,, des a s ii J r sn	 eB^n^ r, -e sn

+,	 t	
OAF, +—op 	(4.8)rr.,	 n -.

	

ns Ac °`eâ rl^ I II `^s `iK .	 n^ n e^

The term12involving Y#can be omitted. Indeed, CsnB!CeneN10-;

ill % 10	 e.m.u. [28], which together with n sti10 cm, gives jIll/en
s Jb

10 2cm/sec. Since 1V SO in the ionosphere is probably of the order
of magnitude 1 m/sec, the term involving 	 in relation (4.8) is

small, so that we can assume

FS11 ^Sa [ +r ^9^PS + 11P^ —n`K (r̂ s)	 ne	 je, Lvll	 (4-9)

in complete accordance with formula (3.13).

To obtain the transverse component of the diffusion ion flow

in ionosphere conditions (4.7), we proceed as follows: Using the

full equation of motion of the plasma component of gas mixture (1.8)

in the form

N',	 Nr

sZ n5'S,dd 
+Opp,-$..f — sz.', 1 "' VT'=c 

j'XK-zs 74.	 (4.10)
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we write the last term in the right member of expression (4.4) for

L as follows

e

E6'SA A,x h °BSE^Sxh = -J^-g̀—^ I3 7x 	 (4.11)	 /1.7
c.1 T

Then from (4.4) we obtain for the transverse component of the

electric field tl

	

ElGd1^f J./sl-C81 2 j.1TXZ 	 (4.12)

Next, eliminating Ei from relations (4.2) and (4.12) and omit•

ting terms which are small by virtue of conditions in the ionosphere

[4.6], we obtain for the transverse diffusion ion flow the following

final expression

N	

^r

^

 TJ,l =-n,^71+8 [nSE- e;ns- 
Bay SK`i B Tk]xk 	 (4.13)

in which the last term in brackets is eliminated using the full

equation of motion of the neutral gas mixture component (1.10)

hw N N	
II	

i
FS
	

s

Sfs Sat Ern ^ i^ys i'/=4n f+Rtes Pnn KF js0s-q
n

 9 (4.14)
sat

Formula (4.13) generalizes to the general case of weakly ion-

ized multicomponent plasma the results obtained earlier for three-

component plasma [6,7]. Ignoring for simplicity the inertia of

particles and also the effect of thermal diffusion in equation (4.14),

we obtain from (4.13) in the special case of a ternary mixture

(CiLni/6y= 1/e ) the following standard expression for the transverse

18



dif:usion rate of electrons (ions) [6].

++mY,.'".if,'µ i7

AV
1.

Vey =g E+ ene VQX	 (4.15)

If r  denotes the rate at which the s-th component of the ion-

osphere is eormed as a result of all aeronomic reactions, a good

approximation of the continuity equation for the s-th ionic compon-

ent 1,3 the following equation

a{ ^^s^s^ -fjJsl V^ fK^7^^ 1p^ P5} h	 ^ ^p^Pc•himaJli 	(4.16)

where 
^sx is determined from formula (4.13), which allows to cal- 	 J_

culate the distribution of charged components in the lower ionosphere

of a planet with a magnetic field when the temperature profiles in /18

the ionosphere and also the dynamics of the neutral gas are given.

The degree of complexity of the right member of equation (4.16) de-

pends on which reactions and components are acknowledged to be neces-

sary for a description of properties of the ionosphere at the given

altitude. Equations (3.12) and (4.16) derived in this study are

promising for a description of ambipolar multicomponent diffusion of

individual types of ions in plasma in the lower ionosphere. Numer-

ical morseling of the vertical structure of the ionosphere based on

these equations is of considerable interest.

5. Deviations from Local Thermodynamic Equilibrium in the Ionosphere
Of a Planet

A characteristic peculiarity of the ionosphere of a planet is

the absence of thermal equilibrium, which is reflected, for example,

in a difference in kinetic temperatures of electrons, ions and

neutral particles. The basic reason for the absence of local

thermodynamic equilibrium in the ionosphere is the circumstance that

19
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(5.1)

i
r

e

in the general case, the energy of solar photons or charged space

particles is greater than the energy necessary for ionization. A

great portion of this energy is carried away by photoelectrons.

Their initial energy spectrum

is a complicated function of an incoming photon hv, the ionization

potential D (ion) of an atom subjected to the effect of radiation
and also the degree of excitation (Da is the excitation energy of

the J-th component to the a level) of the positive ion thatis

being formed. The energy of fast photoelectrons goes partially into

heating the electron gas thermalized by elastic collisions, into

excitation of electronic vibrational and rotational energy levels of

molecules and the fine structure 0( 3p), and partially into formation

of excited ions and secondary electrons, which in turn are capable

of exciting electronic and vibrational energy levels of atmospheric

particles and elastic interactions with thermalized electrons. The

heating of electron gas in the ionosphere during collisions with

photoelectrons and secondary electrons leads rapidly to a Maxwell

distribution of velocities characterized by the electron temperature

T  (sometimes "tails" of high-energy superthermal electrons may	 /19

exist in the upper ionosphere and protosphere, since collision„ at

high altitudes are rare, so that during their existence the electrons

are not able to undergo thermalization). The heated electron iono-

sphere gas which is generated is cooled on account of elastic and

inelastic collisions with neutral particles having temperature T 

and also during Coulomb interaction with ions in the surrounding

medium having temperature T i . In principle, different ion components

may have different temperatures (for example, in the Earth's ion-

osphere, the temperatures of light and heavy ions may differ by 100°K

130,311); however in the general case, the latter is impeded by the

Coulomb interaction between them. Heated ionosphere ions are then

cooled in elastic collisions with neutral particles.

20
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We will present a quantitative description of the process of
i

equalization of the temperatures of ions and electrons in the ion-

osphere, while limiting ourselves for simplicity to the case of

two-component plasma. We denote by Tee the time at which the Maxwell

distribution of electrons is established (thermalization time), which

occurs as a result of internal interactions among the elections pro-

per. The analogous quantity for ions will be denoted by T ii .
 

Fin-

ally Tei will denote the energy exchange time between electrons and

ions (time in which local thermodynamic equilibrium is established

within the system).

Rigorous theory 132] gives the following expressions for the

times Tee' Tei

3^ ^KTe)^/s	 r — 34R,(Xro

	

4e ^4 2se^neQnn	 `^^ - ti xe vn4 e&A .	 (5.2)

Here In A is the Coulomb logorithm (which varies from 10 to 20 for

typical conditions in the ionospheres of planets). If both elec-

trons and ions have approximately a Maxwell distribution with re-

spect to velocities with temperatures T e and Ti , the process of

equalization of the electron and ion temperatures is described by

the relaxation equation 1331 (see also equation (6.11))

clTe^_Te^Tt tee 3	 `T

	

_	 a+T^3/
d,+	 roc	 ^`c'8	 e'e; lme. m^	 (5-3)

x

	

	 can be simplified by taking advantage of theThe expression for Tei 

smallness of the ratio m e/m i . If condition

I
T< c<mtTe/nta,	 (5.4)

F	
I:

r

is satisfied, formula (5.3) implies 	 /20

I
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ci= 3mt^K Te^
^//e 

2^ n, 0,'e' & A. (5.5)

In the general case, by order of magnitude

V2 1
na s ^^ : aE 	 ^	

/z
r,^^ :rm t/ma. 	 (5.6)

Thus, when condition (5.4) is satisfied, which holds nearly always

in ionosphere conditions where the temperature of ions is lower

than the temperature of electrons T ee<<Tei is valid. If, in addi-

tion, the condition

TL«(ML /Me) jljl	 (5.7)

is satisfied, (which is valid in the ionosphere), Tii « Tei also holds.

In the case when T e=T1 , then for example, for fully ionized plasma

consisting of electrons and protons, we have

LSE ^s22 L^ 9r0 tee.

Thus, local thermal equilibrium within each plasma component of the

ionosphere is estallished faster than among all components of the

system. As a result, a quasi-equilibrium state arises, which, in

genera]. is characterized by three temperatures: an electron T ,

ion Ti and neutral T  temperature. This circumstance allows to de-

,ive macroscopic transfer equations with various temperatures in a

description of physicochemical processes taking place in the iono-

sphere of a planet.

Elaborate ther,aal equilibrium of the ionosphere, and individually

the electron and ion temperature depends on sources and sinks of

22
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thermal energy of ionosphere particles which will be discussed in

the next section.

6. Equations of Heat Balance in Ionosphere

One of the main difficulties of planetary aeronomy is ae ade-

quate description of inflow of heat to the upper atmosphere. By

analogy with Earth's thermosphere, we start out with the fact that

the energy balance of large-scale dynamic systems in the upper

atmosphere of a terrestrial planet is essentially determined by

absorption of short wave solar radiation by atmospheric components,

absorption (emission) of thermal radiation from the surface of the /21

plh^et and atmosphere, aeronomic reactions, dissipation of particular

types of waves (acoustic, gravitational and magnetohydrodynamic),

dissipation of turbulent energy (in lower thermosphere) and Joule

dissipation of ionosphere current heated by corpuscular flows having

different characteristics and also dynamic processes resulting in

a redistribution of heat from nonuniformly distributed sources. The

general form of the intrinsic energy balance equation of a laminar

flow of a multicomponent gaseous mixture in the upper atmosphere can

be written as follows [12]

^̂t	 b ....
-'tT + vv+ m	 +	 (6.1)rt	 Ssut i pad=-v ^q qE ,JS 4d.

Here e= sP.na C s is the thermodynamic intrinsic energy per unit volume

of the gaseous mixture, e s is the intrinsic energy per one molecule

of type s, q + qk is the heat flow, qk is the inflow of energy due

to radiation and Q  are possible local heating sources of the at-

mosphere. The last term in the right member of equation (6.1) for

the external mass force (1.3) is equal to S • 9' and corresponds to

Joule heating of the atmosphere by ionosphere electric currents. In

the general case the energy inflow q  due to radiation consists of

an infrared radiation flow from the Sun and the atmosphere near the

planet (qIR ) and a flow of ultraviolet and X-ray radiation from the

23



Sun, leading to heating of the atmosphere during phot•oionization,

photodissociation and the following aeronomic reactions. In the

case of a two-dimensional model of the atmosphere, we have for the

amount of short wave solar radiation absorbed per unit volume of the

medium per unit time the expression

Ao=-D• ^
Rt

} ^^I^.uds(^)^p^iE^accBn,.a;l^)d^^dv	 (6.2)

were Fv. is the amount of incident flow of solar photons on the

upper boundary of the atmosphere, 0. is the Sun's zenith angle and

6  (v) is the radiation absorption cross-section of the s-th com-

ponent of the atmosphere.

The absence of thermal equilibrium in the ionosphere of a

planet, in the general case, does not allow using only equation

(6.1) written in terms of a single kinetic temperature of the gas

during calculation of the heat balance. Separate heat balance equa- /22

tions must be used for electrons, ions and neutral particles whose

temperatures differ sharply under ionosphere conditions. In the

monograph by Ivanovskiy et al [341, '-he equations of motion for the

energy of electrons and ions are derived on the basis of kinetic

theory. In this study we will derive these equations heuristically,

considering the gas as a continuum. Using the definition of intrinsic

energy of a medium a and continuity equation (3.10), vie write (6.1)

in the form

Lclf^ MA)+n, V-74T,-T,Aoesrs=-a^tnn:PvrQ	 (6.3)

where hs= e s + p s /n s is the enthalpy per one molecule of the s-th

component, the coefficients y  indicate the portion of absorbed

short wave solar radiation converted directly into intrinsic oy,ergy

of the s-th component, Ey s= 1, e sls •t'is the rate at which the thermal
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energy of component s increases per unit volume because of the

electromagnetic field.

Assuming that viscous energy dissipation and radiant heat ex-

change are essentially determined by the neutral component of the

thermosphere, using the energy equation form (6.1) for the entire

plasma, we will set up an equation which is analogous in structure,

expressing the law of conservation of individual charged components

of the ionosphere

!^	 N
^f2s Es)=-V. 45 rts lt sdrAJs	 ZAni() 'NO Es^c	 (6.4)CU	

I<f S

where the last additional, term in the right member of the equation

represents the exchange rate of energies between the isolated s-th

and all other components (this term drops out from the full energy

equation (6.3), ^
1
% Esk 0). This term takes into account, for instance,

the energy lost by component s (per unit time per unit volume) due

to elastic and inelastic collisions leading to rotational, vibra-

tional and electron excitation of neutral particles with other one-

component media, having in the general case a temperature which is

different from Ts.

The thermal energy losses of electrons per unit volume due to

elastic collisions with heavy and neutral particles can be determined

using formula	 N	 N

	

Z Ea =EKntm`Z K^T^-T.)^QIYL,	 (6.5)	 /23

In fact, it is known that during a collision of a light particle with

a heavy particle at rest, the portion of transferred energy may be on

the order of magnitude of the ratio of the masses m. e/m
J
. For example,

during isotropic scattering, the average portion of transferred ener-

gy is 2me/mj . Thus, the mean energy lost by one electron in one

25
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elastic collision can be expressed in the form

iniC Z K(Te-Tj)

The energy transfer rate Eej for an electronic gas interacting with

particles of component j is determined from the formula

2 ►ne 3(	 me 8KT '/? /
^eJ ^ Yii^ 2 1Te 'Tl^^ai 12e =^12ehJ m1 K 9'iw ^a^1 a-T) 	 (6.6)

Because of the factor 2me/mj in the right member of (6.6), this

specific electron cooling rate (electrons undergo cooling whon

T  > Tj ; when Tj > Te , the reverse process takes place) associa-

ted with elastic collisions is rather small (in the ionosphere

2me/mj ti (2-3) • 10-5 ). Electron energy losses occur much more rapidly

as a result of inelastic collisions, which were taken into account

by introducing the inelastic collision energy loss coefficient 61

in equation (6.5) which may differ from unity by several orders of

magnitude. In the general case, calculation of 6 1 requires a know-

ledge of the cross-sections of all. inelastic collision processes

existing in the ionosphere (vibrational, rotational and optical

energy level excitation processes).

When the temperature of electrons is not high (T eti 10 3X), the

main part is played by excitation of molecular rotational energy

levels. According to 1353, for nonpolar N 2 and 0 2 molecules, we

have as the portion of energy 6 lost to excitation

(6.7)

At T > 10 3K, the excitation of vibrational energy levels and at

Te ti (3 10 3-10
4 )°IC, the excitation of optical energy levels already

plays an important part. In particular, according to [36],
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the optical energy losses in atomic oxygen are

(^Ca = s2,s/r r,,	 (6.8)

and owing to excitation of transitions between fine structure levels,

they become noticeable at temperatures which are characteristic for

ionospheres of planets (Te ti 103OK).

For a mixture of gases, 6 is determined according to for :;nula /24

N	 N

^'r ses'g:S^Z& s
	(6.9)

^rr^	 sn 

where Des and 6 e are the collision frequencies and the portion of

transferred energy for a gas of type s. Mention should be made of

the fact that the method of taking into account the inelastic col-

lision energy loss during collisions of electrons with molecules

in terms of the coefficient 6 is approximate even in the case of

considerably high energy transfer rates between rotational and vibra-

tional degrees of freedom on one hand and translatory degrees of

freedom on the other hand. A detailed calculation is necessary when

the relationship is weak [371-

In the case of interaction of heavy particles i and n we have 	 '

[181

2	 ^ 	 y
A^^„ 'gy m m̀n^Z K(Tj—T„)- 2Mn(7j -^K)2^

from which follows the energy transfer rate for an ion colliding with

neutral particles n

	

N2. 17t 	 81( ' Tr 1r/z	
YM	 e s

Ecn 3n nhK	 tî 2 ( ^	 ^+ L .^(T•-T 1 	 (6.10) s

	

(m.+m	 rn. ra	 L hl-3K
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Let us now write down the energy balance for an electron gas in

the case of three-temperature plasma. For electrons we have

C  = 3/211Te and he = 5/2KTe , so that equation (6.4) after formula

(6.2) has been taken into account assumes the form

r ^	 S	 /	 r^	
i(	 _r N p°V

`r^?,KTeJ='V' ^'e` ^^^.•?. itT^^vy" e^a^^'^syn"`^^^"^Fv.;''^'l^^J^'
,y	 /r/	 g	 'x/3	 (6. 7.1)

	

a¢e Qod^(v)d^^ dV
a^'

a)
 OLS A K ^ecna(Te-Tt^)	 1) ^^ epifr-T^ *g4 ^¢

cohere Qde = 2.10-12 E $e [eV/cm, see] (0 e represents a flow of fast

electrons with energy E) is the inflow of heat to the thermalized

electron gas of the ionosphere from high-energy particles which

fell out into the atmosphere [38], L e are the heat losses of elec-

trons during,, rotational excitation of nonpoler molecules, during

vibrational excitation of molecules, and during excitation of tran-

sitions between levels of the fine structure of atomic oxygen [39]•

Since Joule heat is essentially released in electron gas, to empha-

size this fact, it is convenient to represent the term -ek
e •' in

the form ZrWTE^^ e T4 r, T441 r.c J1 ,aee^ f	 where is the current flowing

in the ionosphere as a result of the action of an electric field

(for example auroral current or an equatorial electro]et in the

Earth's ionosphere).

An additional source of heat for the ionosphere of a planet, 	 /25

especially in the case of nonmagnetic planets, may be hot solar wind

plasma, the interaction of which with the planet constituting an

obstacle leads to generation of hydromagnetic and acoustic energies.

Another heating source in the topside ionosphere of a planet is the

turbulent heat conductivity of hot solar wind plasma. We will pre-

sent some estimates:

The energy transfer rate EO On 
for an electron colliding with

neutral particles, for the principal neutral components of the

28
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f y^:•>rr rs l w:s-,rST fix!t' Y

f	 Earth's ionosphere has the following values:
s

4

Eqw -I.77 TOry /I-I,2I
Ie Te /Te (Te-rn) evcli i• C EqN, -1.21•INna

{	 T^/a(Te-T1) :	 Soo X3.74 •IO^ir/toTi"`'l TQ- T..)	 Co,N=9.63 •I0'<nQ hM•

/I-I.35 1Cr Tc/Ta"8 (Te-T&) i S.,,,.-2.46 I0'jn,n^T`t'(ra-Tw)^2T.22].

The rate at which an electron gas loses energy which is trans-

ferred to a mixture of positive ions, for example 0. He and H * is

defined in [401 as

â
[401 ,'-6•>^Ta

a)lkj tzo,+gtL * l6n,f,]^ eV/em3
^Q

J
.	

sec	 (6.12)
Jte .. ^ T ^	 ,e

According to [401 cooling of electron gas by rotational exci-

tation of N 2 and 0 2 molecules can be written in the form

roIla2.9•IO-no `ToYs(Ts_T L^ oa6.9 . 10 h,, n, TQ.(re„71,	
(6.13)

At T  >"ti 1500 0 K, vibrational excitation [41] is more effective for
N2 and 02

it =2 39'fO n nN 00(9	 48 T.-20o0 tto // Te4Tn. l 1	 eV/cm3 • see	 (6-14)l. o,N,	 +^ b	 2oo0re^t PI-^TuTn./-^^

^=1,0610+ 751lo^^ll[^,10. w -,(TP-1800)j,	 l6.Yh/
= 3300+1,233 (Te-9000)-a, OS4•10-YTa-4000)(Te-boot

AlaG^b6.10- fallen,oe,^^(c^rTe-ToO^texP^3000Ta----r-1^	 ORIGINAL PAGE 19
0d	 a	 aT00ia L	 To To	 OF POOR QUALI y

9 `_3,,9o2 . 1o a+t^,3^• >o21.h[4;56 . 90 y(ra- 2400).

Losses by excitation of the fine structure of the 0 atom ground

level and the first excited metastable J-Dlevel of the same atom can

29
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,^A'jT':nAs'1SG;s^ Ca s,w..	 .., .	 -	 i	 m,,F^.	 „	 r^-

be written respectively in the form

F

	

1	 .}

^ Q̂ o .:.^^y•fO .fEtt.it,9-^40"^o^^TG 'Tti^Tn eV/ cm sec

Lp,o-- L®^f0'j n,rK a(-z2^ro^.){o,4os+a,3srT ro•tr
N333+0, 03- 1.f^T —°YJ Oi 456*6fi4 fo' u^^ z !v"^1.

Calculations of y e during high and low solar activity were car- 126
ried out in [43 - 115]. According to [ 1151, we have for yI

1+.9 ; i120 ev for	 Iau7;s60OKM,

10 
y80 

eV for	 7L600x„.	 (6.16)

We will write the intrinsic energy transfer equation for the

ion component of the atmosphere ignoring viscous dissipation of ions

as follows

alCn+l2KTuwn ^^1`^^`p^'^'[nt^2K7b„ue^]o•V+ef^E+L; 	 (6.17)
ÔVI 21iq	 N^ cN	 r /	 e	 ^7G ry^^C Kst,jtti^T^-jon)+le'tnlri 

111^^K î
L2(Tw..{ :r^J `dK̂ i :11

where	

JJ

al

,yl

	

ce	 + "

is the intrinsic enervv ner unit volume of the ion comno-
nent of the ionosphere. Heating of ions takes place during Coulomb

interaction with electrons, in this case, the rate at which heat

arrives in the ion gas ^'^ F; R+(t is equal to the cooling rate of elec-
trons in equation (6.11). Rfhe ions undergo cooling during elastic

collisions with heavy particles. In this case the heat transfer

rate is either determined by the difference between the temperatures

of the ion and neutral gases or by the possible difference in the

directed velocities V1 and V  (frictional heating). Effective cooling

of ions in the "parental" gas takes place during resonance transfer

of the charge; in this case, the expression for S in is changed by
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the factor 
(Tn*FTion)m' 

where 0.3 ti m ti n.4 for most atmospheric gages

[46]. For the Earth's ionosphere, the heat losses consist of elas-

tic collision losses of 0, He; H ions (taking into account resonance

recharging) [21,22]

t

tE =[68•io' yn. +§' g•1on +^ 84 t2H+3,34011 +Lo,n	 ^^^	
7	

Ny	 Oy	 C 
i4	

H

2 i ion (T +T^'^^](T„•T;^)n .; 	 +^ •- ^i3'i0hr+b,8 /On^ rjo'lo 0	 (6.18)
wft h	 o	 No^ H^,4	 _

4 ' 5•.40n y+4,0 . 14. (r4«,T01 (TnTry ^^n^^d ^s
 EH ^3•' fpnN.+

3S do•,rn,*2,S fo j+5;6 0o ie	 4qo'^„^T Tn^^^T^:Tba^"•

The inflow of heat to the ion gas from photoionization is small

and it is not taken into account in equation (6.17). Usually the

ion temperature is determined from the equilibrium form of this

equation, while the effect of the thermal conductivity of ions com-

pared with the thermal conductivity of electrons (in view of the

smaller thermal conductivity rates of ions) can also be ignored,

since X A ti ^m, >> 1 [18].

Kinetic theory of multicomponent gaseous mixtures of single- /27

atom gases of moderate density in any approximation obtained by the

Chapman-Enskog method leads to the following expressions for heat

flows transferred by electrons and ions [18,29]

"'A 	 (6.19)
Q$ --7 VTe-E AeAloo—ie Je — ]xQ^ .

JH
4 r6

	

	 (6.20)
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A	 A	 ,.	 A
where ae, Xi and Xei' Xie are the thermal conductivity and mutual

thermal conductivity tensors for electrons and ions,;-e e „Jfi 
and

l ei' R 
ie are thermoelectric force tensors. Usually the contra

bution of cross-effects to the total rate of the process is smaller
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4	 by one order of magnitude in comparison with the direct effect [12].

Moreover, at a moderate degree of ionization of ionosphere plasma,

when collisions with neutral particles play a crucial part, the
A	 A

reciprocal heat conductivity tensors lei and l ie and thermoelectric

force tensors R e3. and /e is 
are insignificant [29]. The second, sim-

plification is related to the circumstance that the heat flow is 	 !

mainly determined by the thermal conductivity XAt, since on the

strength of the quasilinearity of plasma, the ion and electron dif-

fusion flows have the same order of magnitude, and thermal conductivity,

not coupled by quasilinearity conditions proceeds much faster

( mi me times faster).

Thus, when 9=0, formula (6.19) for a heat flow transferred by

electrons has the form [18]

^'Vc ='/^e oTo	 ^e =	
k	 K^neTe

(6.21)
i+seL^^^e rn¢ ^E	 )

of the gaseous

of electrons with

valid for a heat

formulas take

of the heat flow.

where l e is the total electron thermal conductivity

mixture and g  is the total mean collison frequency

all heavy particles. When !^^0, formulas (6.21) are

flow which is parallel to the magnetic field. Ther

on a different form for the perpendicular component

[18].

In the topside ionosphere of planets with a magnetic field,

heat transfer in electron gas occurs only along the lines of force

of the magnetic field (the ratio is/ljj is an extremely small quan-

tity, and essentially, it depends on electron-ion collisions. In

this case, thermal conductivity is the same as that for a completely

ionized gas [30, 471

x3 $0 K"►PeTe	 64^^2KTe syz
Ott , 3m	a0^236 Cy #_ae ehAtj	 (6.22)

R
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i	 Since the atmospheres of planets represent incompletely ionized /28

plasma, especially at low altitudes, where considerable collisions

F	 occur between electrons and neutral particles, in the general case

expression (6.22) is not valid and formula (6.21) must be used which,

taking into account (6.22), can be represented in the form

i•

	

h __ 1 + "^,cd S	 (6.23)
AeK i

where Aek is the thermal conductivity of electrons in a neutral gas

composed of various components (collisions of charged particles are

ignored). This quantity is given by

r e l (	 +/2

XeK =3 `MK/K`XM¢^ gat(	 (6.24)

The thermal conductivity coefficient of tvoe i ions is

5, 9 5 •to-8 m `11/m`
aBcni'crK^pcy 	 (6.25)

Using the full energy equation and heat balance equation for

an electron and ion gas, an energy equation can be derived for a

neutral atmosphere with heat sources (sinks) because of the inter-

action with the plasma component of the planet's ionosphere. These

equations permit to investigate thermal conditions in a neutral

atmosphere and ionosphere plasma, while taking into account the

mutual effect of components of the system.

ORIGINAL PAGE IS
OF POOR QUALITY
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