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Annotatilon

The paper conslders the problem of energy and multlcomponent
ambipolar dilffusion of plasma 1n the lower lonosphere of a planet
wlith a weak magnetic field. Energy and diffusion equations are de-
rived for three-temperature plasma Iin which heat and mass transfer
processes are taking place jolntly with chemical reactions in a
form which is convenlent for calculating models of the composition
of a multicomponent ionosphere. Unlike 1n some early formulations
of the problem [1-4], 1t 1s shown that the coupling effect of the
electrle polarization field on the motion of charged partlcles in
the Zonosphere 1s such that the diffusion rates of individual ion
components are determined in terms of number denslty gradlents of
all ion componants of the mixture. The proposed approach general-
izes the known descriptilon of ambipolar diffusion derived earlier
as part of the theory of a traditional ternary mixture (e,i,n) [5-9]
to the case of an atmosphere composed of many charged components.
Energy interactions among components are analyzed, in particular,
thermal energy losses or electrons (lons, neutral particles) due
to elastlc and 1lnelastic collisions, which allowed to obtain energy
equations for each component of the system.
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MULTICOMPONENT DIFFUSION AND ENERGY CH. JACTERISTICS OF PARTIALLY
IONIZED BPLASMA IN THE IONOSPHERE OF A PLANET

M. Ya. Marov and A. V. Kolesnichenko

Introduction %/

The transfer of charged partlcles by means of diffusion, which
along wi%h the photochemical process controls the vertical distri-
bution of lonosphere components is an ilmportant factor in alldiverge
aeroncomy processes taking place in the lonosphere of a planet., The
diffusion of .harged partlicles in weakly charged multicomponent
plasma of the lower ionosphere differs from diffuslon of small com-
ponents in the conditions of a neutral atmosphere., This 1s related,
in the first place, to the necessity of taking into account electro-
static forces not only during the collisilon of charged particles,
but also during fthe collision of charged and neutral particles,
when an electric dipole moment is induced in the latter, and in the
second place, to the necessity of taking into account the electrie
fleld effect of a space charge formed during the fast diffusion
movement of giLectrons compared with the motion of ions, impeding the
relative diffuslon of charged partlcles,

In the case of three-component plasma (e,i,n), the electron-
ion plasma undergoes jolint (ambipolar) diffusion under the effect
of an electric polarigzation fleld E with a common diffusion coeffi-
clent and commen velocity §e=vi. Problems of plasma diffusion in
the ionosphere assuming a ternary mixture are discussed in detail
in a number of studies (see for example [5,8], and also the joint
authorship study [9]).

For weakly ilonized lonosphere plasma, consisting of electrons,
various kinds of ions and neutral particles, the diffusion rates of
individual charged componerts are not equal to each other and are

#Numbers in the margin indicate pagination in the foreign text.



determined from the condition which states that the longitudinal
electric current 1s approximately zero. Few studles discuss the
ambipolar diffuslon problem in the general case of a multicomponent
lonosphere (see for instance, [1-i#, 9-11]), while several studies
along these lines do not use equivalent expressions for diffusion
rates of Indiviiual lon components of the gas mixture (for Instance
[1] and [4].

The purpcse of thls study 1s to derive energy equations for
multi-temperature plasma of the lower lonosphere and also general
diffusion equations for determining diffusion flows for types cf
lons isolated in the mixture of atmospherlc lons using the concept /5
of effective ambipolar diffusion coefflcients. Another objective
of the study 1s to eliminate a number of inaccuraciles in the de~-
seription of ambipolar diffusion of a multicomponent conductive
medium which occurred in some early formulatlons of the problem

[1,3,4].

1. Stefan-Maxwell Relations for Multicomponent DIiffusion

For a quantitative analysis of multicomponent diffusionpro-
cesses in lonosphere plasma, we will consider the Stefan-Maxwell
relatlons derlved in classical kinetic theory of multlcomponent
gaseous mixtures of moncatomic gases of moderate density as part of
a first approximation for multicomponent diffusion coefficients and
a second approximation for thermal diffusion coefficients [12]

- Hg;x boaliied er PEE)_E_;Q)
LERRLAE T e

Here Mes Pgs T is the molecular weight, mass+density and number
density of the s-th component, respectlvely, Vs
diffusion velocity and molar concentration of the s-th component,
rn, p, T is the total number density, mass density and temperature
of the gas mixture and Dz, Dsk are respectively the thermal diffusion

coefficlents and binary diffusion coefficlents for all pairs of

,xs=ns/n is the



components, The vectors of diffuslon forces 33 are defined as

C‘, o N -
Js=V.Jcs+('x,-c,)v&p-p—(sﬁ'-;%g“ﬁ“)! (1.2)

o (§a1,2,..N)

vhere cs=ps/p is the mass concentration of the s~th component, p

is the pressure of the gas mixture and FS 1s the foree acting on the
8-th component., The order of approximation £=1,2,... wlth which the
transfer coefficents are determined in (1.1) corresponds to the
number of first terms in a series expansion of the coefficlents of
perturbed distribution functions of components in terms of Sonine's
polynomials.,

Untll recently, relations (1.1) for diffuslon rates were only
derived in first approximation in the kine.lc theory of gases. Usu- /6
ally such approximation is considered to we adequate, however in
ionized gases, the admissible error may turn out to be considerable.
The necessity of taking into conslideration higher order approxima-
tions 1n calculations of transfer coefficlents in an investigation
of flows of ionized mixtures of gases in the lonosphere (&£=3 and
higher [12,13]), when not only the temperature znd pressure but also
the elementary chemical composition [14] of the flow undergoes
changes, makes the Stefan-Maxwell equations in form (1.1) 1lnappli-
cable in aeronomy 1in the general case.

However, study [15] gave very recently a derilvation of relations
(1.1) from the kinetic theory of gases in any approximation for trans-
fer coefficients using the Chapman-Enskog method, and study [16] de~
rived relations (1.1} for the case of imperfect (perfect) mixtures
of gases by methods of thermodynamics of irreversible processes,
while demonstrating the symmetry of the matrix of resistance to dif-
fusion, in complete agreement with the latest results of the kinetlic

theory of gases.

Let us make some transformations. Henceforth we will consider
as external forces electric, magnetic and gravitational forces
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G*,%‘( E+1 U xB) (1.3)
where G is acceleration due to gravity, eg 1s the electric charpge of

the s-th component (for neutral components we will assume e =0),

E 18 the electric field intensity vector, B 1is the magnetic induction
vector, which in the general case 1ncludes the unperturbed magnetic

fleld of the planet and a small induced fleld. Using the relation

p =X P for the partial pressure of the s-th component, we have

8
Vxg *Wp /p-% Vinp, from which we obtain
s =7 { v~ e (ExdUxB)-qop o 2T}, (1.4)

4

where 3=ZS esns¢S ls the density of the total conduction current in

the plasma.

Expression (1.4) takes into account the quasineutrality of
lonosphere plasma

¥
sgv: € =0 (1.5)

Using formula (1.4) and also the full equation of motion (without

the viscous term) for thecontinupnl whlch models the mixture of pases
as an entlty, we rewrlite the Stefan~Maxwell equations (1.1) in the
form of equations of motion for individual charged components of /7
the ionospherel.

-»H'

JZ:n.rzJ ) vs -)= vp+n$e,(s+-v»gs) Kry o4 7F45,G, (1.6)

In the above, vSJ=KT/nDsj are the coefficlents of friction which are
elither determined experimentally or from a deialled investligation of
the dynamics of particle collisions using the kinetic theory of gases,
K 1s Boltzmann's constant, N' is the number of charged components

lThe viscoslty of the system is almost completely determlned by the
neutral component of the ionosphere [7].



of the gas mixture, and o 1s the thermsal diffuslon factor defined
by

ol =3 N[O
JEREO,J[ 5 :DJ] (1.7)

which constitutes a measure of the relative lmportance of thermal
diffusion and ordinary diffusion. In the general case, the thermal
diffusion factor 1s a complicated functlon of temperature, concen-
tration, and molecular weights depending parametrically on the laws
obeyed by intermolecular forces {12]. According to available esti-
mates, thermal diffuslicon for principal components of the lonosphere
1s a negliglbly small quantity due to the small difference in mole-
cular welghts, which essentlally should only be taken into account
in light gases (hydrogen and helium [17]).

Equation (1.6) did not take into account the possible aniso-
tropy of coefficients of friction iIn the magnetic fleld, which is
related to not having taken into account the effect of the magnetlc
field in Stefan-Maxwell equation (1 .l1l). At the same time, it is
clear that 1n strongly magnetized plasma (ne>>sei, ne= g% ), in
particular, such as the ionosphere in the F region of the Earth's
lonosphere, the c¢ollislon term must be anisotropic. 1In simple cases
(for example for completely ionized two~component plasma), in lon-

osphere condltions, this effect can be estlrated by the order of mag-
nitude [18]. We also note that although the presented derivation of
equations of motion (1.6) is only valid in a single-temperature ap-
proximation, the form of the equations remalns unchanged also in the
case of multi-temperature plasma {19].

Directly in the lonosphere of the planet, neutral molecules are
much more numerous than charged particles: nn>> Ng» ni. Therefore
in describlng physical processes in the lower lonosphere, one can /8
often restrict the analysis to the theory of a weakly ionized gas.
In this case, we can assume that the nydrodynamic velocity coincides

with the veloclty of the neutral gas Vzvn, all components of which



have the same veloclity ﬁn {(assuming rravitational-diffusion
equilibrium in the thermosphere). Then the general eouation
of motion for the plasma component of the ras mixture,
obtained by summing equations (1.6) over all charged gas com-
ponents, assumes the form

+E N m.( V) VP '*—IKB*KE““‘ VT P G. (1.8)
N N'
\'Lrl-sj? " ‘%j/n"' ’ n,f’% kN g"'"s=1rns %, pl-gsﬂ P
(1.9)

Here Gsn is thz total coefficient of friection of the s-th
charged component with the neutral component of the lonosphery;
n, 1s the total number density of neutral components of the
gaseous ulxture, Prs N> PL are respectively the mass density,
number denslty and pressure of the plasma component of

the ionosphere. The upper index "n" in a sum denotes

summation over neutral components of the system. The general
equation of motion for the neutral component of the

loncsphere

dv & o
9“‘2}- -:;:n':.nnv (V Vs)"'VP*’Vn*‘KZn.,g vT-i-J; G (1.10)
U\J

ﬁ,_,:—:--gniv'\ﬁ(v@ 2(v¥)f], R th §a7) Z’,m.n.s (111)
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follows from equation (1.8), and the full equation of
motion for the continuum modeling the gaseous mixture as

a whole entity gé{}'/ﬁié:-vmv-ﬁ-'—éﬁﬁt‘?a

where ﬁh is a tensor of viscous stresses of the paseous
mixture, Ny is the viscosity coeflficient and Prs Pp

are the mass density and pressure of the neutral component
of the ilonosphere.

2, Colllsion Effects

Detailed calculations of various transfer processes
in the ionosphere of a planet requirz a rigorous treatment
of the problem of collislons among various particles.

The collision term oWUF E(n.np%f(\“&-i)
in equation (1.6) represents the velocity with which a
unit of veolume of the k-component loses momentum as a

result of collislons of its particles with other componente,

Introducing the mean collislon frequency B, = nsvksm'l
we express the collision term ﬁk@ in the form

ks?

i - Lo d -t e
Q/\Am:n“nsvm'(vz-\',.)” n’f‘mxsgu ( Vs=Ve/, .

(2.1)



In tre above mks=mkms/(mk+ms) i1s the reduced mass, Gksﬂnsgksqﬁs is
the rean collision frequency wilth momentum transfer be.ween particles

of tyze k and s, Bl EBK'I'R/HkaJl/2 i3 the mean relatlve speed of
¥
particles with Maxwell veloclty distributions, TR=ka(E£ +£§ is the
m_m
k '8

reducad temperature and ﬁks is the mean colllsion cross-section with
momer.<um transfer. We shall present some estimates: The scatter-

ing crcss~-gection ﬁks is determined from an experiment or by means

of gzz kinetlcs calculations [12,18,19], when the law governing the
intgraction between particles is known sufflclently well. Kilnetic
theory gives the following expression for aks in the case of collision
of icns with a neutral gas [19]

Q=3 {Re) Janiglen (naon)ylsty, 22

where Qin(g) is the momentum transfer cross-sectlon between particles
of ty7e 1 and n, having relative thermal speed g and equal macro-
scoplzs velonitles of motlon V1=Vn. A more exact expression for Qin
takirz into account differences in the velceitles of motion of com-
ponerss 1 and n is presented in study [20]. Rigorous analysls shows
that zs a charged particle approaches a neutral particle, an electric
dipols moment 1s induced in the latter and the collision cross-section
betweszn the particles 1s determined to a conslderable degree by the
resu’lcant electrostatic forces. For ions with neutral particles,
Bankz [21,22] proposes the following semi-empirical expression

1
— T . Tn ]'5 2
-y, ¥ RIS
Qm:-};';.-fo ,40 ‘[m‘.u(m‘,‘“mn) | s G (2.3)

whers the atomic polarization a0(=10-2ua' cmj) for the princilpal

neutrzl components of Earth's lonosphere has the following values:
a'02=1.60, a'N2=O.82, a'.=0.89, a', =0.67, a'He=0.21, a',,=1.13 [23,24].
It iz assumed that the lons and the gas obey a Maxwell distribution,

In tris case, the collision frequency 1s independent of the temperature

0 M N

ané %z determined from relation [21,2] ORIGINAL PAGCE IS
OF POOR QUALITY



-3 1,
$i, <8610 Ry (oo S5) 7 pec™l (2.1)

AA
wherea Hps KE;K— and A 1is the mass of the particle in atomic units. /10

The resonance charge transport reactlion plays an important part
in the diffusion of ions of some type in the same type of gas. The
frequency of collisions for this process can be approximaiely repre-
sented 1ln the fcrml

&m "'&m. nm(Tl"'T:‘) "/2‘ cox™! (2.5)

vhere the constants Bgn (=10"126in cmz/sec-deg.l/2) for the prin-

elpal compcnents of the Earth's lonosphere have the following values:

1 '
B ot 0-1 .6, B =1.1, B HTH'_'I‘O’ 2=2.1,

+.=1,6 [29],

1 - t
0 " Helne™3 % By .y

2’ e

Byt N

While considering the collision frequency of electrons with a
heavy particle, we will use the corndivion m g S <my 5 then Men® Moo
TR = Te’ and we obtain for the uean colllsion frequency

Su 5 8KT¢ W( ’KTjTQon“P[ 2KTJM§ {Tg gm (2.6)

For the principal neutral components of the Earth's lonosphere, the
mean collision cross~sections with momentum transfer have the values:
(3.76-4.54.10~" T) T 1/2-10"17, em?, T,s0 0," 2.93-10"16‘(1+3.6-

16 2 =3me

Qe3n
=1 ) i1/2 2, 7 ’ —'
10 TE ), em ; e (11653 -1, 3) .0 cm o C M (f‘- 9 9 93 J-O

em®; q, o= (7.46-0.8) 1o:1 em® [21,22].

The total collision frequency of an electron in multicomponent

2In all formulas applied in practice, the temperature 1s expressed in
degrees Xelvin and all other magnitudes in CGS units.



plasma 1s equal to the sum of collision frequencies with different
components ﬂedzéﬂes'

The elastlc collision dynamice of two charged particles are
described by a well known potentlal, which allows to derlve an ex-
pression for the mean momentum transfer cross-sectlion [18].

q . Ll el e ! 2
Qei = Zrgevrr S0 BAN  en? (2.1)

vhere € 18 the dlelectrlc permeability coefficlent of the plasma and
hoy= 1.2M-107/T;37E; is the Coulomb logorithm (ni). The correspond~
ing mean electron colllsion frequency with momentum transfer is

— W mady o 2 45576 A
9“:”13:.'@“:”:—3- (HT; (YEfmb)@l ua Tqu s Sec—l (2.8)

For ion-ion collisions, according to [21,22], the cross-section /11
can he expressed 1n the form

Qq=44-10" Ay/T? ., em® (2.9)

vhere the parameter AiJ 1s deflned as A1J= 2E RD/ez, g ;5 the mean
energy of the relative motion of two ions and Rp= hae®Kc (ni/ri+
nJ/TJ)-]/2 is the Debye radius. It is assumed that both gases have
a Maxwell velocity distribution. Then the corresponding frequency
of lon-ion collisions 1s

—_ =2 Eniy
By=mgyQu=84-10"y pTmm | (2.10)

3. Ambipolar Diffusion of Ionosphere Plasma in the Absence of
Lxternal Electromagnetic Forces

We will now consider diffusion processes in a multicomponent
ionized gas in the lonosphere of a planet wlth a weak magnetic fleld
B A 0, on the assumption that all different types of particles par-

10



tleipating 1n thils motlon have a different temperature., Because of
the smaller mass, electrons undergo faster diffuslion than lons, how-
ever the space charge formed In the process givesrlse to an electric
f1eld E which tends to slow down their motion. The electric field
gcts in the opposlte direction on lons and accelerates them. 'Ignoring
the magnetic field induced by the separatlon of charges, the Stefan-
Maxwell relation (1.6) for a czharged lonosphere component s can be
expressed as follows

- & ‘
K—Ex‘sﬁe‘n“&‘:}‘% DSH(”'J - T) (5”12 H) (3-1)
- Mgy
A;w____l:nfd +Vns H f.s 'f‘i'w‘)VIG (3.2)

Here 38= ng (vx—V) 1s the diffusion flow (flow ol the number of par-
ticles of type s with respect to the mean mass velocity V=835, %% o
Ig=§/g 1s the unit direction vector ¢ and H =KT_/m_g 1s the local
altitud- scale of the s-~th component. Introducing the diffusion
movement coefficilents Cs and the diffusion coefflicients DB of charged
particles of type s

N - N .
t‘%*es[g:'\:‘“n‘] L slﬂz.:‘m-lx Ju]‘ D.l .%?& (3.3)

~~
b
n

relations (3.1) can be wrilitten in the form

8 1 :
=2 é\)mn,,]r ~D,A, 6’,!155, (s=12,..4) (3.1%)

Relation (3.3) between D and cs i1s the Einstein relation, known

earlier for a ternary mixture of neutral components, lons and electrons.

Let ns write down the expression for the electrle current den-

sity d;ue-* Taking into account (1.5) and (3.1), we have
;'1.:]5'
- L - S o rd
o= &)
I dEs;II(';DS 5+5§'§€5n5)?‘((’].ﬂ, (3 u)

11
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where the conductivity of the plasma (longitudinal conductivity in
the presence of a magnetic field) is determined from the expression

N ]
l -1
d ZP gsns Eean [Z‘ .M R :z'l‘e‘an&[?;:fhgx&x] . <3' 5>

Since a minute vertical separation of electrons with respect to
positive lons leads to the formation of a strong electric pelarization
fleld in the lonosphere impeding the relative diffusion of charged
particles, ultimately a statlionary state is established in dionosphere
plasma, In the presence of which ions and electrons move in such a
way that a space charge does not arise. In this case, only small
deviatlions from equllibrium can occur and any vertical electric
current must be neglipgible. Setting in expression (3.4) h=0, we
shall find the electric polarization field Ehunder the actlion of which
amblpolar diffusion 1s taking place 1in the ionosphere. Next, elim-
inating this field from relations (3.1) and omitting the subscript
h in the vertical component of vector quantitles, we write the Stefan-

Maxwell relations in the form

6{-1‘2;” " (a)y .
K‘E/\i-*d—;;,‘t('l;é’s/\s=21{‘(ntj;-n,J;)J (i=t2,.4] (3.6)

Saf

So-called ambipolar coefficients of friection Q?uh-qzaﬁggﬂe"

were introduced here. In deriving formula (3. 6), for symmetry of the
final relations, the zero terme; LZ Z 63,’2,’2,‘3%«/3 =0 (by virtue of the
quasilinearity of (1.5) and relations (3.3)) was added to the right
member of (3.1).

Relation (3.6) can be simplified. For atmospheres of planets,

electron mohility exceeds many times lon mobility |ce[>->c:‘_L [25]. /13
Consequently, the following approximate relations are valid

~ebs [1 ;‘@n,/e. Jx-efing,
T,.., s' s [T@A +ZT‘&A;]"__ Ae

12
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and equation {(3.6) for vertical diffusion of type 1 lons can be ex-
pressed as follows

KT;,A(‘V KTA ".2 p‘n) fZ(I R‘J) (;-12 )

(3.7)
Jn -ﬂ-’.x-ﬂbﬂ); %nspm/&ne Vou + Mo

In the case when electrons and lons have the same temperature
(Te=Ti=T), it 1s convenlent to rewrite relation (3.7) in terms of
amblpolar binary diffusion coefficlents

b I A W Diy Vo

<%“'J..—«-—- =[°bm "' &5“ &“-p-élwx (3.8)
in the form
N
B s Rede=nk
Nrhele S8 TRWRE (st (3.9)

In investigating the compositlion of the atmosphere of a planet, re-
lations (3.9) together with differential continulty egquations for the
concentrations ny of lon components of the atmosphere

& (n,/6) 0L =Bleu-n )T fnfe 0 finf]

.10
(u.-fi’ w') (3 )
and the plasma quasilinearity condition
an ST M
Re % 2ijze 1y (3.11)

allow to calculate the vertical distributlon of charged components in
the lower ilonosphere of the planet at a given temperature profile.
~Here Nyp> Yyp 2T€ the stoichiometric coefflcients in the r-th (r=1,2,

.,R) aeronomic reaction, %,[1J+#%.{2l%. “5* Duli+ig,020v..,. R 1s the
number of reactions, Kr, Kr' are the constant velocities of the
direct and reverse reaction respectively.

13
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Equatlons (3.9) generalize to the case of diffusion of various
types of lons and electrons in a mixture composed of many components
the well known diffusion equations introduced by Kolegrov et al [26]
for determining the densities of individual components used in many /14
Studies during calculations of models of the composltion of a neutral
atmosphere,

Ignoring for simpliclty theinertial term in expression (3.2)
for As’ and restricting ourselves to a consideration of statlonary
movement of a neutral atmosphere, we wrlte relation (3.7) in terms
of the gradients of principal hydrodynamic gquantitles in the fol-
lowing final form

T+elo
RW &mﬁTW&n+TW%TTWWmﬁ€ (3.12)

Z,, vt:(,(ntjn uJ)/Kn.',(Tg'PT) (u‘f - f)

where H1=K (T1+Te)/mig is the altitude of the homogeneous atmosphere
of the i-th ion component. The influence of the thermal diffusion
effect on the altitude distribution of lon components of the atmos-
phere 1s only considerable for minor components [27]. Equations
(3.12) for diffusion flows of ion components are fundamental in a
descritpion of ambipolar diffusion and generallize the results obtalned
earlier [5-10] for three-component plasma to the general case of
weakly lonized multlcomponent plasma in the lower ionosphere.

Finally, assuming that collislons among lons and neutral par-
tleles play a greater part than collisions among charged particles
(which is valid for the lower lonosphere in the E and F regions),
and also taking into account the fact that in the thermosphere the
neutral components are in a state of gravitational-diffusion equili-~
brium (Ji= 0), we obtain from eguations (2.7) an expression for the
diffusion rate of the j-th principal plasma component

V; vD‘“’[ V"’nn V@m*"eﬂ-ﬁe *ﬂ (3.13)

14



where the amblpolar diffusion coefflclent Dga) 1s defined by the
relation

@ _[ &Ml 17 DiDe(Te*T) _ K(Te+T) &
i [,‘, mreqe)]:'f:,be-ﬁebj— e(6~6) (3.14)

The index n in the sum denotes summatlion over neutral components of
the system. Thus, on the strength of relation (3.11), the drift vel-
oclty of each ilon component depends on the gradients of all ion com=
ponents of the lonosphere.

In the speclal case of three~component plasma (ne=ni=n), form-
ulas (3.13) and (3.14) become the well known relations for the coeffi-
cient and ambipolar diffusion rate of plasma in a coordinate system /15
moving with the velocity of the entire substance

q Te+T
\Q=V'D§.u[vh€ﬂ&+;%], I)::’:-:%i—-?—i) , PL-.:Kn(T¢+'E)(3.15)

4, Ambipolar Diffusion in Proper Magnetic Field of Planet

In discussing the problem of dlffusion in the lonocsphere of a
planet with 1ts own magnetic field g, we will limit ourselves to the
cagse in which 1t suffilces to consider the Interaction of charged
ionosphere components only with neutral particles (friction with
neutral gas) which are in a state of diffusion equilibrium, without
takirz into account collisions of charged particles among themselves.
In this case, the equation of motion (1.6} for each type of charged
particle will be represented in the form

l:ﬁ 8 L o e — - H '5 Es
Sl B b (B DR, gy frgn, (D
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Denoting by K" and ﬁ the components of an arbitrary vector
along and across the 1line of force of the magnetilc field g /A uqhﬁjﬁ
A*uhﬁ( R) B/B): we write the longltudinal and transverse com-
ponent of equation (4.1) in the form

e - KT‘-" ""_ "!ﬂ"’ < Hg - (”.2)
Jau"g:- (R‘ E“"_é; A"'J! J-SIEH(G’E: % '*)*6;\ qE= e‘/‘: ”"1
N
< w:}m/ w&n ___,_g/ w3, 12
6?"- Bm s [urr g 1’ A B :‘-1; J_L_:t]+1"
(4.3)
where st = e B/mskc is the generalized gyromagnetic frequency of the

s-th component, and ' = E + H V x B 1s the electric field in a
coordinate system moving at the veloclity of the neutral gas in the
lonosphere.

saing formulas (4.2), let us write down the expressions for the
density of the flow along and across the magnetic fileld

1-. - N - N -
T, =a, E/ *d, XL -20, R0 2 b0 KoK, (4.4)
Tl.l =2 E, '2 § Asu Ag=kT A, ’

where the transverse and Hall conductivity is determined from the /16

expressions

N
9y = ZEH S1, dﬂ’fsgies"'sgsn‘ (4.5)

In Earth's lower ionosphere (F~region) B & 0.3 gauss, sanmlsec—}
Banm 35 sec"% seimlsoo sed"% m,= 9.108'10—283, e= .‘I..602-10"2 e.m.u.
and the following estimates
g’en/ﬂen<<}tn/ﬂix<<1- \@Gl>>1g‘| (4.6)
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are valid in a considerable range of altitudes. Using these estim-

ates, we obtain the following approximate relations

. gx0 (4.7

W.?’sx ~£
‘1 B,é:- _n.“ ’ gSA'-B ,d-"d-e@:fe

Eliminating the longitudinal electric field EH from relatlons

(4.2) and (4.4) and ignoring terms which are sm2ll compared to unity,
we obtalin the following expresslon for the longltudinal diffusion

flow of ions

" 8 s & 6’_6’ 40 = 6, s
Ts.ll“_s—’]u ”(ne A.ill R A ) 57- iy /\s“«r
M, =»i 5’_,‘!2, (@) I‘L; R, — (’4.8)
ﬁ;/\et): YA/ “' [NTs:) )( r'{' )'f: ‘;yuj.

el (sxf: .- tn .

The term involving J” can be omitted. Indeed, C.n /C R ?

Jy v10 =12 ¢ m.u. [28], which together with n '\»loscm, gives I'J:q/en |

10°%cm/sec. Since IVS”
of’ magnitude 1 m/sec, the term irvolving F

small, so that we can assume

a)
IS,,- :D( [ T+T)(V”P5 o "P) Jﬂ Lﬁll (4.9)

| in the ionosphere is probably of the crder
in relation (4.8) is

in complete accordance with formula (3.13).

To obtain the transverse component of the diffusion lon flow
in lonosphere conditions (4.7), we proceed as follows: Using the

full eguation of motion of the plasma component of gas mixture (1.8)
in the form

N b
2/\ =3, &V eup, s;g’:iz.'nwvtc:rx 22T, (4.10)
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we write the last term 1n the right member of expression (4.4) for
i& as follows

N
EﬁsﬁAxh 2 Ak k== “‘a‘@,gfl"ﬁ. (4.11) /27

Then from (4.4) we obtain for the transverse component of the
electric field E!

--.- - 4

=—- =L -
E i s 5a, & 5 Tk (4.12)

.L Saf A

Mz:
o

-

'L sr

Next, eliminating E, from relations (4.2) and (4.12) and omit-
ting terms which are small by virtue of conditions in the ionosphere
[4.6], we obtain for the transverse diffusion ion flow the following
final expression

‘.‘Dl*-
EEP
St
[ ]
4

4

o Byn
A ‘T,?;' (4.13)

in which the last term in brackets is eliminated using the full
equation of motion of the neutral gas mixture component (1.0}

o 83 w! ¥ in) o dV
5,2.,;'—.‘,_;- S::EZ: J§ ey s;‘(Vs \f‘)"gnd* +VB- Vﬂ KznnLVJ ¢ e (4.14)

Formula (4,13) generalizes to the general case of weakly ion-
ized multicomponent plasma the results obtained earlier for three~
component plasma [6,7]. Ignoring for simplicity the inertia of
particles and also the effect of thermal diffusion in equation (4.14),
we obtain from (4.13) in the special case of a ternary mixture
(CiLni/§L=l/e } the following standard expression for the transverse
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dii rusion rate of electrons (ions) [6].

N - h
vu*a(E*eneVPe xh (4.15)

If PB denotes the rate at which the s~th component of the ion-
osphere 18 lormed as a result of all aeronomlc reactions, a good
approximatlion of the continuity equatlon for the s-th ionic compon-
ent 15 the followling equation

ou(n /3)- J-:JL ..{Kﬁ.ﬂ;)[ R V.Pe nmfj‘,) (4.16)

A

where 3S¢ is determined from formula (4.13), which allows to cal-
culate the distributlion of charged components in the lower ilonosphere
of a planet with a magnetic field when the temperature profiles in /18
the lonosphere and also the dynamics of the neutral gas are given.

The degree of complexity of the right member of equation (4.16) de-
pends on wvhich reactions and components are acknowledged to be neces-
sary for a descriptlon of properties of the loncsphere at the glven
altitude. Equations (3.12) and (4.16) derived in this study are
promising for a description of ambipolar multicomponent diffusion of
individual types of lons in plasma in the lower ionosphere. Numer-

ical morieling of the wvertical structure of the ionosphere based on

these egquations 1s of conslderahle interest.

5. Deviations from Local Thermodynamle Equliibrium in the Ionosphere
O0f a Planet

A characteristie peculiarity of the lonosphere of a planet is
the absence of thermal equilibrium, which is reflected, for example,
in a difference in kinetlec temperatures of electrons, ions and
neutral partlecles. The basic reason for the absence of loecal
thermodynamic equilibrium in the ionosphere is the circumstance that
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in the general case, the energy of solar photons or charged space
particles is greater than the energy necessary for ionizatlon. A
great portlon of this energy is carried away by photoelectrons.
Thelr initial energy spectrum

Eﬁh\’-i}; D}‘W“ZJ'E,{_D? (5.1)

is a complicated funetlon of an incoming photon hv, the lonization
potentlal Dgion) of an atom subjected to the effect of radiation

and also the degree of excitation (D? is the excitation energy of
the j-th component to the o level) of the positive lon thatis

being formed. The energy of fast photoelectrons goes partially into
heatlng the electron gas thermalized by elastic collisions, into
excltation of electronicvibfational -and rotational energy levels of
molecules and the fine structure 0(3p), and partially into formation
of excited lons and secondary electrons, which In turn are capable
of exclting electronic and vibrational energy levels of atmospheric
particles and elastle interactions with thermallzed electrons. The
heating of electron gas in the lonosphere during collisions with
photoelectrons and secondary electrons leads rapldly to a Maxwell
distribution of velociltles characterized by the electfbn temperature
Te (sometimes "tails" of high-energy superthermal electrons may /19
exlist in the upper ionosphere and protosphere, since collisioms at
high altltudes are rare, so that during their existence the electrons
are not able to undergo thermalization). The heated electron iono-
sphere gas whlch 1s generated is cooled on account of elastic and
inelastic collisions with neutral particles having temperature Tn

and also during Coulomb interaction with lons in the surrounding
medlum having temperature Ti' In principle, different ion components
may have different temperatures (for example, in the Earth's ion-
osphere, the temperatures of light and heavy lons may differ by 100°K
[30,31]); however in the general case, the latter is impeded by the
Coulomb interaction between them. Heated ionosphere ions are then
cooled in elastlc colllsions with neutral particles.
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We will present o quantltative description of the process of
equalizatlion of the temperatures of lons and electrons in the lon-
osphere, while limiting ourselves for simplicity to the case of
two-component plasma. We denote by Tee the time at whilch the Maxwell
distribution of electrons 1s established (thermalization time), which
occurg as a result of internal interactions among the elections pro-
per., The analogous quantity for lons will be denoted by Tii' Fin-
nlly Tgi will denotée the energy exchange time between electrons and
ions (time in which local thermodynamic equilibrium is established
within the system)}.

Rigorous theory [32] gives the following expressions for the

times Tee’ Tei

_3fm (kP2 am(k)¥A
WEEedren » YT ein eal . (5.2

Here 1n A 1s the Coulomb logorithm (which varies from 10 to 20 for
typical conditlons in the ionospheres of planets). If both elec-
trons and ions have approximately a Maxwell distribution wlth re-
spect to velocities wlth temperatures T, and Ty, the process of
equalization of the electron and lon temperatures 1s described by
the relaxation equatlon [33] (see also equation (6.11))

om TR e mm, {
o T eE o W‘ fae’e.eu\

4? (5.3)

The expression for Tgi can be simplified by taking advantage of the
smallness of the ratiOIneAmi. If conditlon

in «mtTe./mt, (5.4)

1s satlisfled, formula (5.3) implies

~
o
o

e P s i o e a - e ——
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3 ,
Tei 23m (KT.) %Veatrn, n.elel Gun, (5.5) 1‘
In the general case, by order of magnitude
Va2 /.
CoatGic 1€ = 12 (/) (T /1) e, g, (5.6)

Thus, when condition (5.4) is satisfiled, which holds nearly always
in ionosphere conditlons where the temperature of ions 1s lower
than the temperature of electrons’l‘ee«'}‘gi is valld. If, in addi-
tion, the condition

T« (mt/me)vlre. (5.7}

is satisfied, (which 1s valid in the ionosphere), Tii<<Te§ also holds.
In the case when Te=Ti’ then for example, for fully lonized plasma

consisting of electrons and protons, we have

TEad2 ﬁaf‘v‘gﬁ'o'?-ch_z_.

Thus, local thermal equilibrium within each plasma component of the
lonosphere 1s estalblished faster than among all components of the
system. As a result, a quasl~equilibrium state arises, which, in
general l1ls characterlzed by three temperatures: an electron T ,
lon Ti and neutral Tn temperature. This circumstance allows to de-
»ive macroscopic transfer equations with varilous temperatures in a
description of physicochemical processes taking place in the lono-
sphere of a planet.

Elaborate therial equilibrium of the lonosphere, and individually
the electron and ion temperature, depends on sources and sinks of
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thermal energy of lonosphere particles which will be discussed in
the next section.

6. Equations of Heat Balance 1in Ionosphere

One of the main difficultles of planetary aeronomy ils aa ade-
quate description of inflow of heat to the upper atmosphere. By
analogy with Earth's thermosphere, we start out with the fact that
the energy balance of large-scale dynamic systems 1n the upper
atmosphere of a terrestrial planet 1s essentlally determined by
absorption of short wave solar radiatlion by atmospherilc components,
absorption (emission) of thermal radiation from the surface of the /21
Plaret and atmosphere, aeronomlc reactlons, dissipation of particular
types of waves (acoustic, gravitational and magnetohydrodynamic),
dissipation of turbulent energy (in lower thermosphere) and Joule
dissipatlion of lonosphere current heated by corpuscular flows having
different characteristics and also dynamlce processes resulting in
a2 redistribution of heat from nonuniformly distributed sources, The
general form of the Intrinsic energy balance equation of a laminar
flow of a multicomponent gaseous mixture in the upper atmosphere can
be written as follows [12]

bl

Weim e, (6D

5=1

-r
S5
*-.._/ 1
"_"Ill

3 :pv-V-- (g

Here e= T_s__s_ 1z the thermodynamic intrinsle energy per unlt volume
of the gageous mixture, € ls the intrinsic energy per one molecule
of type =, q +'qk is the heat flow, qk 1s the inflow of energy due
to radilation and Qd are possible local heating sources of the at-
mosphere. The last term in the right member of equatlon (6.1) for
the external mass force (1.3) 1ls equal to J.&' and corresponds to
Joule heating of the atmosphere by lonosphere electrlc currents. In
the general case the energy inflow ER due to radiation consists of
an iifrared radiation flow from the Sun and the atmosphere near the
planey (EIH) and a flow of ultraviolet and X-ray radiation from the
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Sun, leading to heating of the atmosphere during photolonizatlon,
photodissoclation and the following aercnomle reactions. 1In the
case of a two-dimensional model of the atmosphere, we have for the

amount of short wave solar radiation absorbed per unit volume of the
medium per unit time the expression

YR L
Ro="Rucin [hoa b ul:3 ralnanady (6.2

W, ere va is the amount of lIlncident flow of solar photons on the
upper boundary of the atmosphere, OQ is the Sun's zenith angle and
68 (v) 18 the radiation absorption cross-section of the s-th com.
ponent of the atmosphere.

The akszence of thermal equilibrium in the lonosphere of a
planet, in the general case, does not allow using only equation
(6.1) written in terms of a single kinetic temperature of the gas
during calculatinn of the heat balance. Separate heat balance equa- 4gg
tions must be used for electrons, lons and neutral particles whose
temperatures differ sharply under ionosphere condlitions. In the
monograph by Ivanovskiy et al [34], ©“he equations of motion for the
energy of electrons and lons are derived on the basis of kinetic
theory. In this study we will derive these equations heurilstlcally,
considering the gas as a contlnuum. Using the deflinition of intrinsic
energy of a medium € and continuity equation (3.20), we write (6.1)
In the form

Q¢ cd - 3] . N
Lla(n&)enhrivd g Ase L8N,  (6.3)

where h_=e_ + ps/nS 1is the enthalpy per one molecule of the s-th
component, the coefficlents Yg indicate the portion of absorbed

short wave solar radlation converted directly intec intrinsilc aviergy
of the s-th component, §Y5= 1, esjs-ﬁ'is the rate at which the thermal
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enerey of component s increases per unit volume because of the
electromagnetic fileld.

Assuming that viscous energy dissilpation and radiant heat ex-
change are essentlally determined by the neutral component of the
thermosphere, using the energy equatlon form (6.1) for the entire
plasma, we will set up an equation which is analogous in structure,
expressing the law of conservation of indlvidual charged components
of the ionosphere

=» (Lary)
c%c(nsss).—.mv-q,s-nshsv.m -j;- QEAC".(E.);{_,' .."‘E‘“ (6.4)

vhere the last additional term in the right member of the equation
represents the exchange rate of energles between the iscolated s-th
and all other components (this term drops out from the full energy
equation (6.3), ? ESE 0), This term takes Into account, for instance,
the energy lost by component s (per unit time per unit volume) due

to elastic and inelastlc collisions leading to rotational, vibra-
tional and electron excitation of neutral particles wlth other one-
component media, having in the general case a temperature which 1s
different from TS.

The thermal energy losses of electrons per unlt volume due to
elastic collislons with heavy and neutral particles can be determined

using formula

g 2
;2.'1E ' r::'; (Te"i})&‘l’!.e, (6.5) /23

In fact, it is known that during a collislon of a light particle with
a heavy particle at rest, the portlon of transferred energy may be on
the order of magnitude of the ratio of the massesrneﬁnj. For example,
during isotropic scattering, the average portion of transferred ener-
gy is QHb/"B' Thus, the mean energy lost by one electron in one
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elastle collislon can be expressed in the form
A&y 2200 Ik (Te-T)),

The energy transfler rate EeJ for an electronlc gas interacting with
particles of component j is determlned from the formula

Eej=%"f§('rc-'l})gﬂnt =3hehy m"’K(g-m') ,(%7) (6.6)

Because of the factor Eme/mJ in the right member of (6.#), this
specific electron cooling rate (electrons undergo cooling when
Te > T35 when TJ > Te, the reverse process takes place) associa-
ted with elastic colllislons 1s rather small (in the lonosphere
Eme/mj 4" (2—3)-10”5). Electron energy losses occur much more rapldly
as a result of 1lnelastic colllsions, which were taken into account
by introducing the inelastic collision energy loss coefficlent 53
in equation (6.5) which may differ from unity by several orders of
magnitude. In the general case, calculation of GJ requires a know-
ledge of the cross-sectlions of all inelastie collislon processes
exlsting in the lonosphere (vibrational, rotational and optilcal

energy level excltation processes).

When the temperature of electrons 1s not high (Teé 103K), the
mailn part 1s played by excitation of molecular rotational energy
levels. According to [35], for nonpolar N2 and 02 molecules, wve
have as the portlon of energy & lost to excitation

8 =6,5(1+0,027 /B 5, <09 fa0zsTy, (6.7)

At T_ > 107K, the excitation of vibrational energy levels and at
(3 103~104)°K the excitation of optical energy levels already
plays an important part. In particular, according to [36],
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the optlcal energy losses 1in atomic oxygen are

= /2
G =82,5/TT, (6.8)

and owing to excltation of transitions between flne structure levels,
they become noticeable at temperatures which are characteristic for
lonospheres of planets (T 03°K)

For a mlxture of gases, § ls determined according to fowmnula /24

SJzz}nggis//_fj%s, (6‘9)

Aet

where Bes and Ses are the colllsion frequencles and the portlon of
transferred energy for a gas of type 5. Mention should be made of
the fact that the method of taking 1nto account the inelastilc col-
lision energy loss during colllsions of electrons with molecules

in terms of the coefficient 6 is approximate even in the case of
consliderably high energy transfer rates between rotational and vibra-
tional degrees of freedom on one hand and translatory degrees of
freedom on the other hand. A detalled calculatlion 1s necessary when
the relationship 1s weak [37].

In the case of interaction of heavy partieclies 1 and n we have '
[18]

2msg
A&, 'vm:’:;z':[zx('r “To)- A, (%%

from which follows the energy transfer rate for an ion colliding with
neutral particles n

Lf\.—\;n‘_ Ry, (P:l r:t (EK)V [1 :?)‘%n[(t ) ;;-n(f/:'\?f:] (6.10)

L
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Let us now write down the energy balance for an electron gas in
the case of three-~-temperature plasma. For electrons we have
g = 3/9KTe and he =5/2KTe, so that equation (6.4) after formula
(6.2) has been taken into account assumes the form

d,f[i\:u T;_;-—-V"f, L"Lp“"é_jV‘V"@TE%% gnj (b’)‘] erp[ S'

(6.11)
see B3 wdi]cf" Z'm)iinaag!{?g; a (Te-To) JZ' 2,:1 2 (i T)

whepre Qde = 2-10“12 ?f ¢ [eV/cm%osec] (¢e represents a flow of fast

electrons with energy E) is {he inflow of heat to the thermalized
electron gas of the lonosphere from high~energy particles which

fell out into the atmosphere [38], L, are the heat losses of elec-
trons during rotational excitation of nonpolszr molecules, during
vibrational excltation of molecules, and during excitation of tran-
sltions between levels of the fine structure of atomle oxygen [39].
Since Joule heat is essentlally released in electron gas, to empha~-
5lze this fact, it is convenient to represent the fterm —e?e-ﬁ' in
the form ZE"TE' AN T where I is the current flowing

in the lonosphere as a result of the action of an electrlc fleld
(for example auroral current or an equatorial electrojet in the
Earth's ilonosphere).

An additional source of heat for the loncsphere of a planet, /25
especially in the case of nonmagnetle planets, may be hot solar wind
plasma, the interaction of which with the planet constituting an
obstacle leads to generation of hydromagnetic and acoustic energies.
Another heating source in the topside lonosphere of a planet dis the
turbulent heat conductivity of hot solar wind plasma. We will pre-

sent some estimates:

The energy transfer rate Ee’n for an electron colliding wlth
neutral particles, for the principal neutral components of the

28



T W e TSR MOER AT TR

Earth's lonosphere has the following values:

Eoy, =1.77 ION."»/I-I.BI
10'% /Te (Te-T)eV/ent sec  Eew, =I,21- 16", Mo, /143.6- 20T /
"(Te “Tn) 3 Sgo=3.74.10 f&f:&"‘( Te- n)‘ Eo,.!.r'"g 6310, 7
/1-1 35 10T, /T4 (Tew “Th) i Eepy=2.46 1077 "‘(Ia~ N)[zx.za]

The rate at which an electron gas loses energy which is trans-
ferred to & mixture of pcsitive lons, for example Of Hg'and Hf 1s
defined in [40] as ’

Btw]J};E & fg__gf;ﬁ),k[n +hn, 1.,f(,;v,;”] eV/em3 - sec (6.12)
e - F

According to [40] cooling of electron gas by rotational exci-
tatlion of N2 and O2 molecules can be written in the form

I
“

L p2-0-10 R T HTT)s L8910 2, T " () (6.13)

At T >"%~1500°K, vibrational excitation [41] 1s more effective for

N2 and O2

2000 Te~ T _
5,99 10nen,,&exp(gazom.ﬂ)[e@(,fw-ﬁ -] eV/emisee  (6.14)
9=, 06-70% Y 51-70°4h[4 10107 (Te-1200)]  /6.14/
fe 35’00+~1f‘a’s,i,:(Te 1000) -3, 05610 (Te- 1004:')(Te yooo);
- 11e=£00
LQ’UA w7 b8 10 3, ofte, mp(g ;001 )[e,rp(
9'=3 502-10°% U, 39-10°¢h 1 4,66-107(Te- 24 oo)].
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Losgses by excltatlion of the fine structure of the 0 atom ground
level and the first exclted metastable *1) level of the same atom can
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be written respectively In the form

L‘G o"'3ﬂ'm-“"‘-”o i 10.%3)(7;‘7:‘3)']7&“; G,V/cm3 ‘sec
U‘o',a*‘*- 1 0?-i0'fz‘:,n,'l‘fexp -4 2?-:’0”/1&){@905 +0, 557 10" "~

- . yal
~{q333+g 133:0"T Jeapl: 'i%ﬁ’t].-«{q WS+ g 17010 ’f-.)w{._c_ngg 'l}

Caleculations of'*('eduring high and low solar activity were car- /26
ried out in [43~45]., According to [#5], we have for Ye

¢ [ 14922120 eV for 120222 600xn,
(6.16)

%=1 40 eV for 72 600xn,

We will write the intrinsie energy transfer equation for the
lon component of the atmosphere ignoring viscous dissipation of ilons
as follows

Qd.'. 3 ) ch £ T =
& (KT 1 € =03, L (K Tex €] o we b (6.17)
N . iy :
dMe 4 5 amdmy Bl o M
jE.‘: m; 3 i 3e; (T;‘ wﬂ) *_é,‘ ,?;n: m,m:,‘-?;,"‘a‘[‘é'*‘ Wi g '(‘I-'.“’:ﬂ*@,
where

~§
(IS T2 3T, e

1s the intrinsic enerev ner unit volume of the ion commno-
nent of the lonosphere., Heating of ions takes place during Coulomb

interaction with electrons, in this case, the rate at which heat
arrives in the lon gas Zfﬁgﬁﬂ is equal to the cooling rate of elec-
trons in equation (6.11). The ions undergo cooling during elastic
collisions wlth heavy particles. In thls case the heat transfer

rate is elther determined by the difference between the temperatures
of the 1lon and neutral gases or by the posslble difference in the
directed velocities ﬁi and ?n (frictional heating). Effective cooling
of ions in the "parental'" gas takes place during resonance transfer
of the charge; in thils case, the expression for Bin iz changed by
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the factor (Tn+Tion)m, where 0.3 SmA 0.4 for most atmospheric gases
[46]., Tor the Earth's ilonosphere, the heat losses consist of elas~-
tlc collislon losses of OT Het H lons (taking into account resonance

recharging) [21,22]

otﬂ..:[q é.m-%”n.* 51316%":2"3 10}2‘;‘? %-i m’;':*’.f ;) 3

2 1108t ) N W Tan)gus byt (B3 1On 258 Orrfostne  (6.18)
4,5 407'1;1-‘50-10?'2{,@(Ta7.'ﬁ,)'f‘;|y(Tn'Tton Ry 5 Lo &,, AR

35107, 12,810 45510 R, ¥ 1 w10, (T2 ) I T ) e

I

The inflow of heat to the ion gas from photoionizatlion 1s small
and it 1s not taken into account in equation (6.17). Usually the
lon temperature is determined from the equilibrium form of this
equation, while the effect of the thermal conductivity of lons com-
pared with the thermal conductivity of electrons (in view of the
smaller thermal conductivity rates of ions) can also be lgnored,
since A /Ay v /M 7m; >> 1 [18],

Kinetic theory of multicomponent gaseous mlxtures of single- /2
atom gases of moderate density in any approximation obtained by the
Chapman-Enskog method 1leads to the following expresslons for heat

flows transferred by electrons and lons [18,29]

— u' ~ "‘b-. N -~ (6'19)
o= A2 Ao RS

- A A T A 7
AESE VL1 MED M WL ) R 0 M I 3 X,
i ST e e (6.20)

vinciNAL PAGE IS
OF POOR QUALITY

where ae, Ai and hei’ Aie are the thermal conductlvity and mutual
thermal conductivity tensors for electrons and ions,}?e, JFi and
J?ei’ j?ie are thermoelectric force tensors. Usually the contri-

bution of cross-effects to the total rate of the process is smaller
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by one order of magnitude in comparison with the direct effect [12],
Moreover, at a moderate degree of ionizatlon of ionosphere plasma,

when colllsions with neutral particles play a cruclal part, the
reciprocal heat conductivity tensors Aei and kie and thermoelectric
force tenaarsJP and}e 1e &re insignificant (29]. The second sim-
plification is related to the clircumstance that the heat flow 1s
mainly determined by the thermal conductivity AAt, since on the
strength of the quasllinearity of plasma, the ion and electron dif-
fusion flows have the same order of magnitude and thermal conductlvity,
not coupled by guasilinearity conditions proceeds much faster

(v’mi7me times faster).

Thus, when §=0, formula (6.19) for a heat flow transferred by
electrons han the form [18]

T ~_ ak 'K"ncTe
‘i’e" AGVTQ ’ Ae 1"&9‘,/{—}3 the?g (6.21)

where A is the total electron thermal conductivity of the gaseous
mixture and B is the total mean collison frequency of electrons wilth
all heavy part icles. When ﬁ#o formulas (6.21) are valid for a heat
flow which is parallel to the magnetic fleld. There formulas take

on a different form for the perpendlicular component of the heat flow.

[1813.

In the topside ilonosphere of planets wlth a magnetlce fleld,
heat transfer in electron gas occurs only along the llines of force
of the magnetic field (the ratio Ay/A; 1is an extremely small quan-
tity, and essentlally, it depends on electron-ion collisions. 1In
this case, thermal conductivity i1s the same as that for a completely
ionized gas [30, 47]

T E4VER (2KT, )32
Acw%%%,ﬁ:”ﬁsaqzsé ey, €n/\)¢4 (6.22)

32



Since the atmospheres of planets represent incompletely lonlzed /28

plasma, especlally at low altlitudes, where considerable collisions
occur between electrons and neutral particles, in the general case

expression (6.22) is not valid and formula (6.21) must he used which,

taking into account (6.22), can be represented in the form

+§"’i (6.23)

1 _1
A < AQ‘ Ky AQK !

where Aek 1s the thermal conductlvity of electrons in a neutral gas
composed of varlious components (collislons of charged particles are

lgnored). This quantity is glven by

Qer( . (6'24)

The thermal conductivity coefficlent of tvpe 1 ions is
- : = s‘ - - -
AL=5,38 107852/ m, 2 (sgch by fous). (6.25)

Using the full energy equatlion and heat balance equation for
an electron and lon gas, an energy equatlion can be derived for a
neutral atmosphere with heat sources (sinks) because of the inter-
action with the plasma component of the planet's ionosphere. These
equations permit to investigate thermal conditions in a neutral
atmosphere and ionosphere plasma, while taking into account the
mutual effect of components of the system.

ORIGINAL PAGE Iy
OF POOR QUALITY
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