
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NOVEMBER 1977

GODDARD SPACE FLIGHT CE
GREEK-ELT, MARYLAND

•

-11,

:I 

	 g o ^6T/y,
	

x-922a7-273

SATELLITE RELAY I NG OF
GEOPHYSICAL DATA

(NASA-TM-R0260)	 SA T ELLITE PELAYING OF	 N7q-70558
GEOPHYSTCAL DATA (NASA)	 25 p 11C A,12/MF A01

::SCL 08G
►inclas

G3/46 19650

RICHARD J. ALLENBY
WILLIAM J. WEBSTER, JR.

J. EARLE PAINTER
10



1

V

X-922-77-273

SATELLITE RELAYING OF GEOPHYSICAL DATA

Richard J. Allenby

William J. Webster, Jr.

J. Earle Painter

November 1977

GODDARD SPACE PLIGHT CENTER
Greenbelt, Maryland



n

^i.

d.

SATELLITE RELAYING OF GEOPIfYSICAL DATA

Richard J. Allenby

William J. Webster, Jr,

J. Earle Painter

ABSTRACT

Data Collection Platforms (DCPs) for transmitting surface data to an orbit-

ing satellite for relaying to a central data distribution center are being used in

a number of geophysical applications. "Off-the-shelf" DCP's, transmitting

through Landsat or GOES satellites, are fully capable of relaying1 data from

low-data-rate instruments, such as tiltmeters or tide gauges. In cooperation

with the Lamont -Doherty Geological Observatory, Goddard has successfully

Installed DCP systems on a tide gauge and tiltmeter array on Anegada, British

Virgin Islands.

Because of the high-data-rate requirements, a practical relay system ca-

pable of handling seismic information is not yet available. However, the neces-

sary components are developed or are well along in development and we hope to

have an operational prototype system within the next year. Such a system could

become the basis of an operational hazard prediction system for reducing losses

due to major natural catastrophies such as earthquakes, volcanic eruptions,

landslides or tsunamis.
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SATELLITE RELAYING OF GEOPHYSICAL DATA

INTRODUCTION

This report describes the "state-of-the-art" in ground and spacecraft in-

strumentation for near-real-time satellite relaying of remote data, analyzes

the advantages of this data collection method for field geophysics, describes a

Goddard/Lament low-data-rate relay system operating on Anegada, B. V.I. ,

and discusses present Goddard plans to upgrade the system to include collection

of seismic data for crustal hazard monitoring. Figure 1 illustrates the basic

components of a typical system. The most variable element, the sensor,

is not limited to geophysical data but can be used to collect information in such

diverse fields as ecology, agriculture or search and rescue operations (Figure

2). A signal conditioner which matches the sensor output to the Data Collection

Platform (DCP) input, or a field microcomputer programmed to extract specific

information or compact the data stream before transmission by the DCP, may

be required for specific applications. The DCP times the entire system, col-

lects identification and housekeeping data, and prepares and transmits this in-

formation to the orbiting satellite. The Data Collection Center identifies the

data from the individual sensors, reduces it to the form requested by the users,

and forwards it to the user in the fastest possible time (often less than one day

after receipt).

Data Collection by satellite is a relatively new technique first demonstrated

in 1967 using NASA t s ATS-1 (Applications Technology Satellite) satellite. The
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first demonstration was the NASA Omega Position Location Equipment System

(OPLE) which proved that accurate positions could be obtained from platforms

in remote locations and that a satellite relay did not degrade the data. Tilts ex-

periment was followed in 1969 by the Interrogation, Recording and Location Sys-

tem (IRLS) flown on 'Nimbus 3 and Nimbus 4. This was the first global satellite

system to demonstrate the worldwide capabilities of satellite data collection.

The IRLS concept was also applied to the rreneh EOLE satellite launched in

1971.

These ground systems, because they were designed to respond to interro-

gations from the satellites, were relatively large and expensive, and required

considerable power, This was overcome in the Landsat series of satellites,

initiated in 1972, by designing the ground platforms to transmit at random times,

thus eliminating the requirement for having a receiving system in the DCP.

A major geophysical program using the Landsat satellite was the USGS

prototype volcano surveillance system on 15 volcanoes in Alaeka, IIawaii, the

contiguous United States, Central America and Iceland (Ward, et al. 1974).

While the locations and DCP 1 s have been modified, the basic system is still in

operation furnishing information on the number of earthquakes per day and

ground tilt in the neighborhood of the monitored volcanoes.

In 1974 NOAA introduced the GCIES (Geostationary Operational Environmen-

tal Satellite) satellite system which employed either a scheduled or satellite in-

terrogated transmission system. Costs were kept low because of semiconductor

2
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technology improvements. In 1978 the French pin to initiate the ARGOS Loca-

tion and Data Collection System using Tiros N and NOAA A and a random DCP

transmission system. These spacecraft will he in quasi-polar orbit and provide

world coverage. Relay systems existing on commercial domestic or interna-

tional satellites have not, as yet, been used for systematic relaying of sensor

data. however, Comsat General Corporation and the Water Resources Division

of the U.S. Geological Survey initiated an evaluation program in October of 1.977

for relaying data on stream levels and water quality through the Telesat Canada

synchronous satellite ANIX-1 (Aviation Week and Space Technology, 1977).

ADVANTAGES OF A GEOPI'IYSICAL SATELLITE RELAY SYSTEM

Conventional field systems, particularly seismic, either have to be visited

every day or two, to replace the chart paper, or the information has to be trans-

mitted to a central location via expensive and somestime noisy phone lines and/or

radiorelays. Phone lines, almost non-existent in remote or underdeveloped seismic

areas such as Alaska, are often unreliable, even in populated areas. Further-

more, ground communications generally become inoperative before, during, and

after a major earthquake. When geophysical systems are operated in extremely

inaccessible regions, data are usually preserved on low-powered, slow speed

recording systems which can run unattended for months; the data are then col-

lected several times a year. Such systems require sacrifices in timing accu-

racy and information content, and, since data analysis must be delayed for

months after the events, earthquake prediction capability is lost. Also, there

3
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enn be no assurance that the instrument Is performing as planned. In addition,

It is often essential to augment rapidly a seismic network to collect earthquake

precursor signals or monitor aftershocks, and the dependence upon phone lines

or radio relays seriously impedes the mobility of instrument siting and increases

Installation time.

Early in the development of Data Collection systems it was obvious that, to

achieve general acceptance, thecost of the units must be kept low. The decreas-	 I I

6
ing cost of microprocessor technology leas helped acliieve this goal. DOP's tr&ns-

mhtting on either random (Landsat) or fixed (GOES) time schedules are now around

$3, 500.00 apiece. If a receiver is included in the DCP, enabling it to respond

to satellite interrogation (GOES), the prices are in the $5,000.00 neighborhood.

As long as the initial cost of the satellite is not Included, it appears that

the cost of a satellite system is competitive with phone lines and radio re-

lays, particularly if low cost government leased phone lines are not available.

Studies now underway should establish the practicality of private firms leasing

DCP and satellite time to investigators (Porcina and Smalley, 1977).

The greatest value of satellite relaying is, however, the acquisition of real

time geophysical data from those isolated and inhospitable regions where no

other data retrieval method is possible or feasible. For example, a recent sur-

vey conducted by the Regional Seismological Center for South America (CERESIS)

indicates that present coverage of seismic events in South America is only

complete for earthquakes with magnitude equal or above 4.8. On this one

ORIGINAL. PAGEIS
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continent it is estimated that a total of about 2200 seismic events with magnitude

between 4.0 and 4.7 take place per year, but present detection capabilities are

not sufficient to locate them or even, to detect them (Fernandez, )070). It is ap-

parent that a few, well placed sites could greatly improve this situation but col-

looting the data in a timely manner by conventional communication methods is a

major problem.

SATELLITE COLL rTION OF ANEGADA GEOPHYSICAL DATA

Anegada, British Virgin Islands, is a small island at the northern end of

the Lesser Anttliian Are where the chain of Caribbean islands suddenly turns

westward. Low seismic, activity in comparison with neighboring sectitgs of the

are suggests that this may be a locked seismic zone capable of supplying valu-

ablo earthquake precursor data. For this reason the Lamont-Doherty Geologi-

cal Observatory of Columbia University (LDGO) is collecting strain, tidal, tilt,

leveling and seismic data from this area. Much of these data are collected by

resident caretakers and returned to LDGO by mail or courier which imposes

undesirable delays in analyzing the data, allows instrument breakdowns to exist

for some time before being detected, and does not permit quick reactions to

sudden changes in geophysical parameters.

In 1970 Goddard engaged in a joint project with Roger Bilham of LDGO to

demonstrate the feasibility of collecting low-data-rate geophysical information

using the Landsat satellite relay system. Figure 3 shows the initial installation

on one of the tide gauges using an interface designed and made by LDGO and

5



Goddard, On the left is a voltage controlled oscillator feeding into the interface

box (background) and then into a General Electric DCP (foreground). Raver was

supplied by gel-cell batteries with one-year lifetimes. The data were transmit-

ted to the spacecraft by a small, printed-circuit, helix antenna (Figure h). Each

transmission consisted of 8 data sets, with each set representing 1-1/2 hours of

integrated and averaged tide data. Data were relayed G to 8 times a day when

the orbiting Landsat was in mutual view of Anegada and Goddard. The system

performed satisfactorily for over a year until the batteries failed.

Goddard has recently completed the design and construction of a more ad-

vanced interface that utilizes two LaBarge DCP f s to relay the data from six

tiltmeters (Allen, W. K. , et al. 1977). This interface, which is more rugged,

requires less power and is smaller than the original tide gauge DCP, was

installed on Anegada in September, 1977 and is returning excellent data.

DEVELOPMENT Or SEISMIC DCP

In contrast with the ready availability of the tow data rate assemblages al-

ready discussed, no practical relay system exists for satisfactorily returning

seismic data because of the high data rates involved. It will be no problem on

such a system to "piggy-back" information from low data rate instruments. 	 '

This type system, in view of its major advantages of ease of ins+allation, par -

ticularly in areas with little or no existing communication facilities, and the

near-real-time availability of the data, appears particularly suited for crustal

hazard studies and, eventually, an operational hazard prediction system for

G
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rodacing losses due to major oatnstrophies such as enrthqunkos, volcanic

eruptions, landslides or tsunamis. Goddard, in cooperation with the ASGS,

should have a completed prototype of this system by the .',ill of 1977.

The geophysical parameters involved in crustal hazard studies are listed in

Figure 5. Seismic information is obviously of major importance to these stud-

ies. Details on the requirements are contained in a 1975 NASA study (Wolff et

al. 1975). Figure G is a block diagram of the proposed Goddard system. The

critical components are discussed below.

1. Seismic Event Detector

The most straightforward way of reducing seismic data requirements is a

device that will reliably identify and preserve seismic events while discarding

background noise. Such a device could reduce on-site recording time from 24

hours a day to probably less than one. The majority of devices for accomplish-

ing this have generally depended on a manually set threshold for comparing short

term energy (signal) with long term energy (noise). The reliability of such a de-

vice is considerably inc'.-eased when cross correlation between multiple seismic

stations is possible (Morris, 1973; Lane, 1974). This cross correlation is obvi-

ously not feasible when a single seismometer/DCP system is under consideration.

Omote et al. (1955, 1957) developed a single channel energy level trigger-

ing scheme for preserving paper and chemicals while recording at a fast record

7
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speed. A revolving endlese magnetic tape loop served as a delay line enabling

a reproducing head to record and preserve the start of an event when activated

by an event doteetrr^ that was triggered when the input energy exceeded a se-

lected pro-set level. The percentages of "false picks" or "not recorded" everts

was critically dependent on the adjustment of tine energy level required to trig-

ger the system. Aki of al. (1909) utilized a similar system for recording micro-

aftershocks on the Kenai Peninsula in Alaska. Stewart of al. (1971; 1077) de-

veloped a system of monitoring up to 32 channels of data and detecting local

earthquakes in real time. Their algorithms, designed for relatively impulsive

events, filtered out low frequency components, successfully eliminated trans-

lent events and automatically compensated for variations in long term noise

level. Onset times, determined automatically, are in good agreement with

"hand" picks. A scheme similar to Stewart's was employed by Stevenson (1976)

to detect microearthquakes at Flathead Lake, Montana. In this case, two pas-

ses were mad0 through the data; the first pass identifying the event and the

second pass timing the onset.

Ambuter and Solomo p (1974) developed an ocean bottom event picker/mag-

netic tape recorder. Th jlr event Hatector utilized short term and long term

averages to survey the background noise, set a threshold and trigger a recorder.

Crampin and Fyfe (1974) describe a computer controlled tape searching system

with three separate sampling rates to eliminate transients and detect local, re-

gional or teleseismic events.

or 4°
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Recent offorts are concerned with generating increased confidence in the

automatic functions of the computer program. Allen (1977) Is producing

a system, expressly designed for inexpensive low-power microprocessors, that

will record arrival. time, direction of first motion, apparent "size" at the stagy

tion, describe the event in frequency and amplitude and furnish a reliability num-

ber for the pick. Joint efforts by the USGS and NOAH have developed an event

picker that utilizes frequency, amplitude and duration to decide on an event

(Clark, 1970; Clark and Medina, 1976). In this case the P wave arrival times

of the last four events are stored and relayed via the GOES satellite to a central

station. Advanced detection schemes under consideration include better fre-

quency discrimination utilizing a fast Fourier transform designed for micro-

proeessore (Tenn. , Univ. of, 1976) and the use of Artificial Intelligence to pro-

gram u. computer to analyze the data stream as would a seismologist (Anderson,

1976).

2, Event. Storage

Continuously recording seismic data, using an 8-bit word for signal device

and sampling at 60 Hertz, requires over 40 megabits per day per seismic axis.

If an event detector is employed and each event is recorded for a maximum of 2

minutes (10 seconds pre-event noise and 110 seconds of event), and the sampling

rate is reduced to 40 Hertz, then each event would consist of about 40 kilobits

per axis. A storage system of 400 Icilobits (00, 000 eight-bit words) would then

permit 10 events to be stored between transmissions. If the system "dumped"

9
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once it day his would provide a capability of ten events perY	 n	 n	 tY	 n day, wliicli should be

sufficienr, for recording most normal daily seismic activity unless swarms occur.

While magnetic tape can easily store this amount of data, mechanical motion

poses problems in long term reliability and fieldworthiness. Magnetic bubble

memories or CCD's (Charge Coupled Devices), while still in the developmental

stage, offer attractive alternatives and are being investigated.

3. Data Compression

While the above seismic data a gate can be acoommodated by present syn-

chronous satellites, such a data rate is not desirable if many seismometers are

reporting through the same system. Therefore, further data compression of

the picked events is needed. The overall extent of compression is the limiting

factor in the number of seismometers a given relay system can accommodate.

Figure 7 relates data that could be automatically picked in the field with its

scientific utility. Existing microcomputers can be programmed with minimum

difficulty to furnish all of the information listed in the Figure except the time of

the S wave arrival. The problem here is the difficulty of computer identification

of the S wave for a complex event. Until seismologists have more confidence in

automatic seismic processing, even if the S wave can be picked reliably by a

computer, it appears likely they will require the return of an accurate analogue

record so they can perform their own analysis and verify the automatic picking

results. The problem is, then, to reduce the data requirements for the analogue

record by applying compression or compaction before the data are transmitted

10
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from the DCP. Simple compression schemes, such as transmitting only time

and amplitude of turning and inflection points, appear to preserve nealy all the

original information, Other studies have considerably more complex transforms

(Wood, 1974), but further investigations are needed to determine how much com-

pression is possible before a permanent loss of significant data occurs. The

other components shown in Figure 0 are standard 'off-the-shelf" equipment and

need not be discussed here.

4. Satellite System

The two existing satellite systems now extensively engaged in data relaying

are the Landsat (formerly called ERTS) operated by NASA and the GOES (Goosta-

tionary Operational Environmental Satellite) operated by NOAA. The Landsats

(1, 2 and C) employ a 401.55 MHz uplink frequency and a 04-bit total message

block composed of 8 bytes (i.e., eight 8-bit measurements can be transmitted in

one message). These satellites have a nearly circular 900 km orbit and a 100

minute orbital period. At least one message can be relayed at each overhead

pass of the spacecraft, with the maximum number of messages being 7 and the

typical number 2. The minimum number of visible passes per day is 2, the max-

imum 0, and the typical 3. Transmission rate is 5 kilobits per second, and

transmission intervals, set at Vie DCP, are either 3 minutes or 90 seconds.

Increased data handling capability is furnished by the GOES (1, 2; SMS 1, 2)

synchronous satellites. This spacecraft employs a 401.7 MHz uplink frequency

and has a maximum data block length of 2kb. At the typical installation, DCP

11
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	 self-timed transmission occurs once every 3 hours. Transmisuion rate is 100

bps. The use of an entire GODS channel permits transmission at the 100 bps rate

as long as necessary, assuming proper framing. This system also has a com-

mand capability Which allows individual DCP I s to be turned on by the satellite.

The primary ground control and data distribution center for L' andsat is at

Goddard Space Plight Center, Greenbelt, Maryland. Other stations capable of

receiving Landsat relayed data are at Goldstone, California and Fairbanks,

Alaska. GODS data is received at Wallops Island, Va. , and ground linked to

Suitland, Md. for distribution.
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FIGURE CAPTIONS

.Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 6.

Figure 7.

Block diagram of a typical satellite data relay system.

Major scientific and engineering disciplines now using satellite data

collection and relaying systems.

Anegada, B. V. I. , tide gauge DCP satellite data relay installation.

Anegada tide gauge DCP antenna installation.

Geophysical parameters contributing to studies on crustal hazards.

Block diagram of a seismic data collection platform.

Capability of automatic seismic event detection as a function of scien-

tific usefulness.
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Figure 5. Geophysical Parameters Contributing
to Studies on Crustal hazards
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