
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



JPL PUBLICATION 79-11

Plausible Inference: A Multi-
Valued  Logic for Problem Solving

Leonard Friedman

(NASA-CP-158424)	 PLAUSIBLE INFERENCE: b 	 N701-20750
MTILTI-VRLUED LOGIC FOR PROBLEM SOLVING (Jet
Propulsion Lab.)	 26 p HC A03/MF A01

CSCL 12A	 Unclas
G3/59 17261

March 1, 1979

Space aAdmi^	
and

s at on  
	

5Ilk
^^

`v
Jet Propulsion Laboratory	 RF;, ;^,^ r
California Institute of Technology	 REEEJVE
Pasadena, California	 NASA 

S71 rA
F^ 

D^CI
AcC	

]



fT^ T/'^^i

yy

1, ^'4

JPL PUBLICATION 79-11

Plausible Inference: A Multi-
Valued Logic for Problem Solving

Leonard Friedman

March 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Ter,hnology
Pasadena, California

4



Page intentionally left blank 



i

CONTENTS

I. A MULTI-VALUED LOGIC ------------------------------------------ 2

2 SIMPLE CREDIBILITY PROPAGATION -------------------------------- 4

2.1 QUANTITATIVE PLAUSIBLE INFERENCE ------------------------------ 7

3 COMBINING CREDIBILITIES --------------------------------------- 9

3.1 DEFINING CRITERIA --------------------------------------------- 10

3.2 COMBINING FUNCTIONS ------------------------------------------- 11

4 REVISION OF OPINIONS ------------------------------------------- 14

4.1 QUANTITATIVE REVISION RULES ----------------------------------- 14

4.2 A LEGAL EXAMPLE OF OPINION REVISION --------------------------- 16

4.2.1 Solution to the Legal Problem --------------------------------- 16

5 SUCCESSIVE VERIFICATION --------------------------------------- 17

5.1 CREDIBILITY GROWTH THROUGH EXPERIENCE ------------------------- 18

5.2 A ROBOT LEARNING EXAMPLE -------------------------------------- 19

6 A MODEL OF HUMAN REASONING ------------------------------------ 20

6.1 FUZZY INTERFACES ---------------------------------------------- 20

6.2 PI IN PROBLEM SOLVING ----------------------------------------- 21

REFERENCES ------------	 ----------- 22

Table

1	 SYNTAX OF BELIEF CHANGE	 -------------- 6

iii



"A person has a background, a machine has not. Indeed,
can build a machine to draw demonstrative conclusions f
but I think you can never build a machine that will dra
plausible inferences."

George Polya, in Patterns of P1
Inference (Princeton University
Princeton, New Jersey, 1954), p

ABSTRACT

A new logic is developed which permits continuously variable strength

of belief in the truth of assertions. Four inference rules result, instead of

the two of formal logic, with formal logic as a limiting case. Quantification

of belief is defined using the methods introduced by Shortliffe and Buchanan.

Propagation of belief to linked assertions results from dependency-based tech-

niques of truth maintenance so that local consistency is achieved or contradiction

discovered in problem solving. Rules for combining, confirming, or disconfirming 	 a

beliefs are given, and several heuristics are suggested that apply to revising

already formed beliefs in the light of new evidence. The strength of belief that

results in such revisions based on conflicting evidence appears to be a highly

subjective phenomenon. Nevertheless, certain quantification rules r^pear to re-

flect an orderliness in the subjectivity. Several examples of reasoning by

Plausible Inference (PI) are given, including a legal example and one from robot

learning. Propagation of belief takes place in directions forbidden in formal

logic and this results in conclusions becoming possible for a given set of

assertions that are not reachable by formal logic.
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1. A Multi Valued Logic

One path to understanding the nature of intelligence is to compare various

modes of reasoning. A kind of logic, which we shall call common-sense reasoning,

is in constant use by all of us. It may produce guesses as output, and belief

in assertions is expressed by a continuum of likelihoods rather than certainties.

Formal logic, used by humans in special situations, proceeds instead with beliefs

that are either certain or unknown. There have been many attempts by logicians,

philosophers, and Al researchers to define new multi-valued logics in order to

model aspects of common-sense reasoning with limited certainty. (See Shortliffe

and Buchanan '75 for an introduction to the extensive literature produced by

logicians and philosophers. In addition to Shortliffe 1 75, see Duda, Hart,

Nilsson, and Sutherland '77 for several AI approaches.) . My own work building a

robot system for knowledge acquisition and learning from experience made me acutely

aware of the need for a multi-valued logic. The robot learning system generates

assertions whose truth is not certain and for which no formal probability of

being true is known. Itseemed highly desirable to find a logical system that

could assign appropriate likelihoods of belief in new assertions and simultane-

ously maintain consistency of beliefs with related knowledge already stored.

This paper describes such a multi-valued logic arrived at by combining and

generalizing the work of several investigators (Polya '54, Shortliffe and Buchanan

'75, Thompson 1 79). Its form was suggested by the work of George Polya (Poly. '54).

His term for this type of reasoning was "plausible inference" and we shall apply

it to the logic described here. Polya characterized assertions by qualitative

belief values such as "more-likely" or "less-likely." These belief values could

be most simply rendered quantitative by employing the methods introduced by

Shortliffe and Buchanan (Shortliffe and Buchanan 1 75)— hereafter referred to as S&B.

They gave simple rules for combining quantitative measures of belief in a hypothesis
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supported by evidence. In their technique, as a starting point, a human expert

supplied a numerical value for the belief in a hypothesis supported by a piece of

confirming evidence. Note that in PROSPECTOR, investigators at the Stanford

Research Institute (Duda, et al. '78) employ a somewhat different approach.

Still another line of research that provides an essential element to the

logic of Plausible Inference has been the development of truth-maintenance in

knowledge bases (Fikes '75, Stallman and Sussman '76, Doyle '78, London '73).

`	 Truth-maintenance systems automatically maintain the line of logical support for

the truth or falsity of logically related assertions in a data base when a change

in the truth of an assertion is introduced. Plausible Inference has been formu-

lated so as to be compatible with the truth-maintenance system being built in

our laboratory (Thompson 1 79). Thompson's approach has been to attach procedural

specialists to the logical connectives (AND, OR, NOT, IMPLIES). In this formal

logic system, each time the truth value of an assertion changes, logically con-

nected assertions are examined by the appropriate specialist. This causes truth

values to propagate through the knowledge base to maintain consistency, or discover

either contradiction orlost support in a manner similar to other truth maintenance

systems. Our implementation of plausible inference will proceed by augmenting

this truth-maintenance system with additional belief values and modified procedural

specialists.

We shall introduce several basic concepts and new notation, then review the

four inference rules that are our starting point. These are Modus Ponens, Modus
•

Tollens, the Method of Confirmation, and the Method of Weakened Support. This

leads to a definition of "credibility propagation" for the four possibilities

of antecedent truth-or-falsity, or consequent truth-or-falsity in a single impli-

cation. Rules for adding together confirming and disconfirming credibilities

occurring at the same time can be given, but new phenomena seem to take over
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when "opinions" have been formed and must be revised in the light of new evidence.

(In our model, an opinion formed is equivalent to a non-zero credibility assign-

..
ment.) When considering populations of linked assertions that require revision

of a previously formed belief, we discover that additional combining rules are

needed to model the propagation of credibility. No general theory for computing

credibility revisions is known to us, and we cannot do more here than examine

a few of the possibilities for this case. It is an area in which the discipline

of psychology and our own introspection should offer many clues. We shall give

an example of legal reasoning based on some of the heuristics we propose. A

method for gradually increasing credibility assignment from a "don't-know" level

to an appropriate probabilistic measure will be introduced for a special case of

learning. The robot, during learning sessions, must constantly be revising

already formed opinions, and modelling these situations may lead to additional

insights into the phenomenon of how opinions change over the course of time.

2. Simple credibility Propagation

Each assertion in the knowledge base has an associated property called

"Truth Value" (TV), with a value ,.et of true, false, or unknown {T, F, U}. In

Plausible Inference, we introduce an additional property called "Credibility"

which represents the degree-of-confidence in the truth or falsity of the asser-

tion. Either truth value or credibility will be referred to as a belief. Let

C(A) be the credibility of any assertion A. The value of C(A) is a number that

ranges from -1 to +1 with 0 representing the unknown, +1 representing complete

certainty, and -1 complete disbelief. In formal logic C(A) is restricted to the

three values (-1, 0, 4-1).

Consider the two assertions:

(A) 32 + 42 - 52.

(B) There exist integers x, y, z, such that x2 + y2 U z2.

If (A) is true, (B) must be also.

-4-



These ralationships are represented in Modus Ponens as:

A -► B and [TV(A) = T; C(A) = 1].

Therefore, [TV(B) = T; C(B) = 1].

NRxt, consider Fermat's Last Theorem in the following form.

(A) For any integers x, y, z, n, (n > 2),

it is false that x  + y  - zn.

Clearly a single example of integer numbers for which there existed the equality

•	 indicated would render (A) false. This mode of reasoning, called Modus Tollens,

can be represented as:

A 4-B and [TV(B) = F; C(B) _ -11.

Therefore [TV(A) = F; C(A) _ -1].

It is evident that Ponens and Tollens exhibit unattenuated propagation of

T or F in preferred directions (even through chains of implications). Polya

pointed out that in normal human reasoning we may make additional logical state-

ments. I call these the Method of Confirmation and the Method of Weakened

Support.

Consider assertions like:

(A) The robot hand grasps objectl.

(B) Touch sensors in the robot fingers are on.

If assertion (B) is true, that fact tends to confirm (A). The tendency for B to

confirm A may be represented logically and Polya did so with non-numeric indica-

tors. In conformity with the notation for Ponens and Tollens, the Method of Con-

firmation, in the form suggested by Polya, may be stated as:

A - B and [TV(B) - TJ.

Therefore the credibility increment

propagated to A from B is "more-likely."

For the same two assertions, if the robot should come to believe that (A)

-5-



is false, this would tend to make (B) lose likely. This kind of reasoning may

be described as the Method of Weakened Support. Polya's form is:

A + B and [TV(A) • F].

Therefore the credibility decrement

propagated to B from A is "less likely."

Note that these equations fill the gaps forbidden in formal logic, propagating

credibility change where nothing is transmitted in formal logic.

We now introduce a number, A, to represent the propagated change of belief.

A is a directed quantity (but not a vector) which represents the increment (or

decrement) of credibility propagated between the antecedent and consequent of

any implication.

A(AIB) is the change of credibility propagated to A from B.

A(BIA) is the change of credibility propagated to B from A.

0,A`_1.

Note also that the syntax of all four equations specifies whether what is

transmitted is an increment or decrement. See Table I.

Table I. Syntax of Belief Change

ForA -+B:

CONFIRMATION TV(B) - T A(AIB) is an increment.

TOLLENS TV(B) - F A(AIB) is a decrement.

PONENS TV(A) = T A(BIA) is an increment.

WEAKENED SUPPORT TV(A) = F A(BIA) is a decrement.

In dealing with multiple support for a given assertion, increments and

decrements are added separately by rules defined later, and the resultant sums

combined according to:

C(A) - I(A) - D(A),

where I(A) is the sum of increments and D(A) is the sum of decrements.

In order to maintain consistency between the notions of truth of an asser-

tion, and the degree of belief in the truth of that assertion, we introduce a
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convention. If credibility becomes positive, the system is to regard the

assertion as true with the credibility dust established. If credibility be-

comes negative, the assertion is to be regarded as false with that credibility.

The convention also applies to truth values. The rules are:

For any assertion A,

if C(A) > 0, set TV(A) - T.

If C(A) < 0, set TV(A) - F.

Conversely, if TV(A) - T, assert C(A) > 0.

if TV(A) - F, assert C(A) < 0.

Or, [TV(A) - T] =- [C(A)  > 0],

[TV(A) - F] =- [C(A)  < 0].

This equivalence is called the C-TV Consistency rule.

One further definition will permit us to state quantitative equations of

Plausible Inference (PI) concisely.

Let Al be the value of A for an {.mplication when there is either complete

belief or disbelief in either the antecedent or consequent. Then for A -► B:

AI(AIBI +) is the value of A (AIB) when C(B) - 1.

AI(AIBI-) is the value of A(AIB) when C(B) - -1.

A1(BIAI+) is the value of A,BIA) when C(A) - 1.

A1(BIAI-) is the value of A(BIA) when C(A) - -1.

2.1 Quantitative Plausible Inference

Plausible Inference will operate on a dynamic knowledge base. Whenever

a state-change takes place, causing either a change in truth value or credibility

of an assertion, a new PLANNER-like context layer is pushed. Once such a change

or disturbance has taken place, propa;ation of beliefs occurs along lines of

support for logically related assertions within the context layer until a state

of equilibrium is reached.
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In Plausible Inference logic #:be values of A(AIB) or d(B(A) may be calculated

by the following four equations for the inference A -)-B.

1) Confirmation

If in a new context layer, [C(B) > 01 is asserted, when previously C(B)

had been zero, then

A(AIB) - A1(AIBI+)-C(B).

This means that for our two robot-base assertions A and B, experience may have

shown if we are certain that the touch :sensors are on, our confidence in the

robot grasping something makes Al - 0.7. If, however, those touch sensors are

noisy, the robot may have to assign a credibility less than one to "touch sensors

are on." This decrease in certainty of touch reduces the credibility increment

transmitted to the grasp assertion below 0.7.

2) Graded Tollens

If it a new context layer [C(B) < 0] is asserted, when previously C(B) had

been zero, then

A1(AIBI-) - 1;

A(AIB) - A1(AjBj-) - jC(B)j - IC(B)I.

Our credibility decrement to the assertion that the robot is grasping something

is equal to the absolute value of the credibility of touch-oz being false.

If C(B) - -1, then A(AIB) - 1, and C(A) - -1 regardless of other support

(unless there is support for C(A) - 1, which would indicate a contradiction).

3) Graded Ponens

If in a new context layer [C(A) > 0] is asserted, when previously C(A) had

been zero, then

AI(BIAI+) - 1;

A(B!A) - A1(BIAI+)-C(A) - C(A).

If other evidence supports the notion that the robot is grasping something,

producing a C(A) > 0, the credibility increment transmitted to touch-on is
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equal to C(A).

If C(A) - 1, then A(BIA) - 1, and C(B) - 1, regardless of other support

(Mess there is support for C(B) - -1, which would indicate a contradiction).

4) Weakened Support

If in a new context layer [C(A) < 0] is asserted, when previously C(A) had

been zero, then

&(BIA)- A1(BJAJ-)-JC(A)f.

Using our robot-base assertions, suppose other evidence supports the notion that

the robot has dropped or lit go of the object. (It may see an object of similar

shape on the floor.) There is a dec:rea ,-nt to touch-on transmitted when we are

certain that grasp is not true, say 0.8. The decrement transmitted is reduced

by the actual credibility of grasp.

As noted above, graded Tollens and Ponens become identical to formal logic

when C(B) - -1 or C(A) - 1 respectively, with A1(AIBI-) - A1(B'AI+) - 1. To get

full formal logic requires, in addition, that A1.(AIBI+) - A1(BIAI-) - 0 for

equations 1 and 4, thus blocking transmission of belief in the forbidden dirac-

Lions. It is possible to temporarily reset these particular Al's to zero for a

selected subset of assertions, if there is a need to restrict inferencing to the

rules of formal logic for that subset.*

3. Combining Credibilfties

We have just considered belief propagation in an implication with a single

*The reader who is familiar with S&B's work can translate our PI notation

into S6B's notation by noting that our C(A) is their CF(A,B), our A(A,B) is

their MS(A,B) or MD(A,B), and A1(AIBI+) is MB'(A,B). S&B's equations for

strength of evidence are identical to our equation 1 for Confirmation.

-9-
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antecedent and consequent. When dealing with more complex logical expressions

with multiple support for antecedents or consequents, S&B's methods for combining

beliefs propagated from consequents can be extended to beliefs propagated from

antecedents. The following rules include both cases.

3.1 Defining Criteria

1) Notation

A is usually an antecedent or a hypothesis.

B is usually a consequent or evidence.

I(A) is defined as the combination of increments of credibility to A [I(A) '- 01.

D(A) is defined as the combination of decrements of credibility to A [D(A) 2 01.

C(A) - I(A) - D(A).

13 d---fined as the aet of confirming evidence.

b- is de ftned as the set of disconfirming evidence.

A+ is defined as the set of hypotheses that imply the evidence.

A- is defined as the set of hypotheses that deny the evidence.

& is defined as logical AND.

V is defined as logical OR.

ti is defined as logJzal NOT.

	

2)	 Relation between belief and disbelief.

I(A) - D('LA) .

In words, the belief in evidence for any proposition A equals the disbelief in

evidence against it.

	

3)	 Limits

(A) A1(BjAj+) z l; Punens

A1(Aj8j-) = 1; Tollens

Certainty is transmitted in Ponens and Tollens modes when certain of antecedent

or consequent, respectively.

f
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(B) 0 S Al(AIBI +) < 1; Confirmation.

0 S Al(BIAI-) < 1; Weakened Support.

Certainty is never transmitted in Confirmation or Weakened Suppor

(C) [C(A) from B-] S C(A) S [C(A) from B+].

(D) [C(B) from A-] s C(B) S [C(B) from A+].

4) Absolute Confirmation or Disconfirmation

(A) If A(AIB+) - 1, then C(A) - 1, regardless of B-.

(B) If A(AIB-) = 1, then C(A) _ -1, regardless of B+.

(C) If A(AIB-) = A(AIB+) - 1, this is contradictory and C(A) is undefined.

Similar considerations hold for A(BIA-) and A(BIA+).

5) Commutativity

If B1 and B2 indicate an ordered observation of evidence, first B1, then B2.

(A) A(A131 & B2) = A(AIB2 & B1).

(B) [C(A) from B1 & B2] = [C(A) from B2 & B13.

If Al V A2 indicates an ordered formulation of hypotheses, first Al, then A2.

(C) A(BIA1 V A2) = A(BIA2 V Al).

(D) [C(B) from Al V A2] _ [C(S) from A2 V Al].

6) Missing Information

If [TV(B2) = U]

then A(AIB1 & B2) = A(AIBl).

•	 [C(A) from B1 & B2] = [C(A) from B11.

If [TV(A2) = U]

then A(BIAl V A2) = A(BIAl).

[C(B) from Al V A21 = [C(B) from Al].

3.2 Combining Functions

When combining the increments of credibility of multiply supported asser-

tions, first the increments and decrements of credibility (confirming and

4
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disconfirming) are combined by rules given below, then the difference between

confirming and disconfirming beliefs is taken to give the resultant credibility.

In what follows, C(A) or C(B) need not be +1 or -1 unless explicitly noted.

1) Convergence of Evidence to Support a Given Hypothesis

(COMBO Assume A ► (B1 & B2)

tiA + (B3 & B4).

Bl, B2 are confirming evidence for A; B3, B4 are disconfirming evidence.

Suppose B1, B2, B3, B4 are all true.

Then

I[A] - A [A) B1] + A[AJ B2] (1 - A [A) Bl]Z ,

D[A] - A[A) B3] + A[A) B4] (l - A[A) B3]) ,

C[A] = I[A] - D[A].

As S&B ;,.int out, this rule makes the credibility added by the second incre-

ment proportional to the remaining disbelief after the first increment is

transmitted.

2) Convergence of Hypotheses on Given Evidence

(COMB2) Assume Al tiB

A2 ti B

A3 -► B

A4	 B

Let all antecedents be false.

Then

1[B] - A [ B I Al] + A[ B A2] (1 - A[ B I Al] )

D[B] = A[BIA3] + A[BIA4](1 - A[BIA3])

C[B] = I[B] - D[B].

3) Fanout of Evidence to Conjunctions of Hypotheses

(COMB3a) A[(Al & A2)jbl _ ain(A[A1 B], A[A2 B])

i
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(C6MB3b) A[-.(Al & A2)IB] - max(A[tiAIIB], A[tiA2IB]).

Belief in a conjunction of hypotheses, from confirming or disconfirming evidence,

is limited to the minimum confirmation or maximum disbelief.

4) Fanout of Evidence to Disjunction of Hypotheses

(COMB4a) 6[(A1 V A2)IB] = max(A[AlIB], A[A2IB])

(COMBO) A[--(Al V A2) I B] = min (A[141 1 B], A[-421B])

Belief in disjunctions is complementary to conjunctions.

5) Fanout of an hypothesis to Conjunctions of Evidence

(COMB5a) A[(Bl & B2)Ix]	 max(A[B1IA], A[B2IA])

(COMB5b) A[--(B3 & B4)IA] = min(A[ tiB3IA], A[tiB4IA]).

Disbelief in a conjunction of evidence is maximized by loss of support. Belief

is minimized by that loss.

6) Fanout of an Hypothesis to Disjunctions of Evidence

(COMB6a) A[(B1 V B2)IA] = min(A[B1IA], A[B2IA])

(COMB6b) A[--(B3 V B4)IA] = max(A[ tiB3IA], A[tiB4IA]).

Belief in disjunctions is complementary to conjunctions.

An example may serve to make the application of these rules clearer. Assume

the following assertions are in the data base:

(A) The robot hand is attached to objectl.

($1) The robot hand touch sensors are on.

(B2) Finger spread is close to a visually measured dimension D of objectl.

(B3) Objectl moves with the hand, or
s

(B4) Torque or force on the hand saturates when the hand tries to move, and

all velocities remain zero.

and A * (B1 & B2 & [B3 V B4]).

Let Z = (B1 & B2 & [B3 V B4]),

Y	 A1(AIZI+).

-13-
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Then C (A) - Y • CM,

C(Z) - I(Z) - D(Z).

Let c.m. stand for confirming measurements, d.m. for disconfirming measurements,

ml for measurement 1, etc. An example of a confirming measurement might be an

above-threshold voltage on the touch-sensor line. A disconfirming measirement

would be its absence.

IM -I(B1&B2& [B3VB4])

- A(Bl & B2 & [B3 V B4]1 c.m.)

- min(A[Blfml], A[B2im2], A[B3 V B41 c.m.])

- min(A[Bllml], A[B2,m2], max (A[B31m3], A[B4lm4]))

D(Z) - A(B1 & B2 & [B3 V B4]ld .m.)is calculated similarly.

4. Revision of Opinions

Polya suggested a number of qualitative rules modeling how we revise already

formed opinions in the light of new evidence. These rules were based on his own

introspection and exam i nation of the rational behavior of others. Polya stated

these rules in the following form:

1) If B is unlikely to be true without A, and B changes to true, there

is more than a normal increase in strength of belief in A.

2) If B is supported by many other propositions, B becoming true supports

C(A) only weakly.

3) If A is the only justification known for B, and A is false, C(B) is

greatly decreased.

4) If A is only one of several justifications for B, A becoming false only

slightly weakens belief in B.

4.1 Quantitative Revision Rules

These qualitative rules may be given a quantitative form such as the following

f
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four rules.

(REVD Assume in context 1, (Al V A2 V . . . V An) -^

and TV(A1) = U,

C(A1) - 0,

A2, .	 . , An are false.

By propagation of credibilities to maintain consiste

C(B) _ -D(B), computed by COMB2 and MISSING INFO;

TV(B) = F by C-TV Consistency.

If TV(B) - T in context 2,

C[A1] - I[A1] - A[AlIB] + 0.91C[B3ctxll(1 - A[AlIB])

Note: The empirical nature of these rules is i

introduced to prevent C(A1) from reaching +1 in cont=nr- &, =v=., L, ., % .,.l - -,L

in context 1. The factor 0.9 may be regarded as the degree-of-confidence that

the system has complete knowledge of the universe of discourse.

In words, REVI says we increment belief in a hypothesis supported by evidence

to the extent that the evidence was previously rendered unlikely by alternative

hypotheses.

(REV2) Assume in context 1, (Al V A2 V . . . V An) -0-B

and TV (Ai)	 U, 1 = 1, 2,	 , n.

C(Ai) = 0; 1 = 1, 2,	 , n.

This state of beliefs leaves TV(B) 	 U.

If TV(B) = T in context 2,

then A(AlIB) _ (1/n)A1(AlIBj+)-C(B).

Note: If in context 2, E1 - Al, and TV(El) - F, then C(Al) is computed by

I(A1) from REV2, and D(Al) from Weakened Support.

(REV3) Assume in context 1, A } B,

and no other support, present or potential, exists for B.

-15-



r77
r

IE-

Let TV(A)	 T; C[A] > 0.

In context 2, let TV(A)	 F. .Then

C[B] - -D[B] - -[A[BIA] + 0.9 C[A]ctxl • (1 - A[BIA])].

The loss of belief in consequence B is proportional to previous confidence in A.

(REV4) Assume in context 1, (Al V A2 V . . . V An) •* B.

TV(Ai) - U; i - 1,	 n.

Then, if TV(Al) - F in context 2, the decrement to B from Al is

A[B(A11 - [l/n]Al[BjAlj-]•jC[A1]j.

If TV(Ai) - T, i > 1, C(B) is computed by Graded Ponens and REV4.

4.2 A Legal Example of Opinion Revision .

Suppose we have the following legal problem, and we are seeking to arrive

at a judgment.

A defendant is accused of having blown up the yacht of his girlfriend's

father and the prosecution produces a receipt signed by the defendant acknowl-

edging the purchase of some dynamite. Is the defendant guilty?

Assume the following statements are part of the initial contents of the

legal knowledge base:

(Pl) "D blows up the yacht with dynamite."

(P2) "D acquires dynamite."

(P3) (Pl - P2).

(P4) "D clears tree stumps."

(P5) "D is a miner."

(P6) "D is a wrecker of buildings."

(P7) "D is a demolition expert."

(P8) (P4 V P5 V P6 V P7) - ► P2.

4.2.1 Solution to the Legal Problem

We are given in context layer 1,

-16-



(P1 V P4 V PS V P6. V P7) -^ P2

and	 TV (Pi) - F; C(Pi) - -1; 1 = 4,5,6,7.

TV(Pi) - U; C(Pi) - 0; 1 - 1,2

Take, a priori,

A(P21tiP4) - 0.1

A(P21 tiP5) - 0.1i
A(P21NP6) - 0.2

&(P21 ,-P7) - 0.8.

Then, applying COMB2, D(P2) - 0.87

C(P2) _ -0.87 (highly-unlikely)

TV(P2) F, by C TV consistency.

These are the beliefs attained in Context 1.

In context layer 2,

TV(P2) - T.

If we assume A(PlIPl) - 0.1 in the absence of other evidence, then applying

REV1, C(Pl) - 0.1 + (0.9) (0.87) (0.9).

C(Pl) ;= 0.80 (highly-likely) .

The unlikelihood of P2 being true without Pl being true makes the truth of P1

highly likely following the discovery that P2 is true.

5. Successive Verification

Of particular interestfor learning and knowledge acquisition is the case of

successive verification of the same hypothesis by similar evidence. (We shall

assume that to establish similarity suitable matching criteria are met.) Suppose

that the system, by the use of models, has asserted a new implication whose ante-

cedent and consequent may be considered a new hypothesis, A, and evidence for that

new assertion, B, respectively. Let the hypothesis A be an assertion to the

effect that the performance of some action produces a state whose measurement is
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available to the robot, and B is the observation of that measurement. We have

the opportunity to assign A(AIB) automatically so that it conforms to reasonable

criteria. If this can be done, it would be an experimentally determined degree-

of-belief rather than one supplied by a human expert. We propose the following

simple heuristic.

5.1 Credibility Growth Through Experience

Assume at the outset that a new implication has been generated by model M,

such that M -> (A -)- B), and both A and B are new assertions. We also assume that

the truth value of both A and B are measurable by the system in this special case.

We introduce a threshold, e, for the system such that

for (-e < A < e) , set A - U.

Then A - e is the smallest value of transmissible credibility (a kind of ,just-

noticeable difference). For A - ► B, set A1(AIBI+) = e, before any experience in

executing the action described by the hypothesis. We have, as before, that

A(A'B) - A1(AjBj+)•C(B).

Assume that C(B) - 1, during execution of the relevant action.

Let n be the total number of successive trials,

q be the number of trials for which [TV(B) - T; TV(A) - T],

r be the number of trials for which [TV(B) - T; TV(A) - F].

Then,

(SV1) A1(AIBI+) - e/n + [(n-1)/n][q/n].

(M) A1(tiAIBI+) - e/n + [(n-1)/n][r/n].

With these heuristics, for n - 1 0 either A1(AIB++) or A1(tiAIBj+) is at most

equal to e, the threshold value,

and A1(AIBI+) n m On, provided the limit exists,

A1(tiA+Bj+) - Lim On. provided the limit exists.
n.

During the gathering of data, q/n + r/n does not necessarily equal 1, since
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other factors may influence the truth or falsity of A in addition to B's truth;

i.e., A ^ B1 & B2 y B3, may be the true state of affairs. If this turns out not

to be the case, i.e., Lnim q/n + r/n 1, we may presume that a reliable probabil-

ity has been determined, and Ln^ q/n p(AIB).

As S&B show, if dl(AJBJ+) - p(AIB), then using their combining rule is con-

sistent with Bayes theorem.

5.2 A Robot Learning Example

4
Suppose the robot has a set of models in its knowledge base like the following:

(MODELI) For all OBJECTs, there is a threshold pressure, K1, such that if

(PRESSURE < K1) then

[CAUSES (GRASP OBJECT with PRESSURE)

(attached OBJECT)]

(MODEL2) For all OBJECTs, there is a threshold pressure, K1, such that if

(PRESSURE > Kl) then

[CAUSES (GRASP OBJECT with PRESSURE)

(broken OBJECT)]

After attempting to grasp an object, objectl, with a normal grasping

pressure P1, the robot may detect that it has broken it. The inference mechan-

ism then finds from visually interpreted data that rule MODEL2 matches the caused

state of the experience, "broken objectl." This enables the inference mechanism

`	 to instantiate a rule for objects similar to objectl that places an upper limit

on the threshold grasping pressure, K1, in the model rules. It may then use a

heuristic to generate a new assertion for grasping similar objects such as:

For all OBJECTs, and all PRESSUREs,

when [OBJECT is a member of class (objectl)] and

(PRESSURE < Pl) then

[CAUSES (GRASP OBJECT with PRESSURE)

(attached OBJECT)].
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By invoking the MODEL heuristics, the robot could learn a reasonable value for

the grasp pressure. The robot would then avoid breaking objects that fit the

measured description of the broken object. By using rules SVl and SV2, if the

ratios converged, it would simultaneously form a good estimate of the certainty

of that knowledge.

6. A Model of Human Reasoning

The rules of inference and assumptions introduced here constitute a model

of some aspects of human reasoning. The model permits both antecedent and conse-

quent reasoning in either an inexact plausible form or by formal logic when de-

sired. This type of model is designed to imitate belief propagation in bodies

of knowledge. It also seems to imitate certain aspects of observed human be-

havior such as a limited notion of "expertise." For example, one of the differ-

ences between a novice and an expert doctor can be represented by supplying the

novice model with almost all the relevant facts, but assigning zero or low values

to the novice Ala. The novice model will fail, to reach many of the conclusions

available to the expert model, which has high-confidence values assigned to A's.

This suggests that methods of building up Ala from zero by various reinforcement

schemes such as confirmation should be sought after. Learning Ala would be prcFer-

able in many circumstances to relying solely on a priori assignment of Ala by an

expert. The adoption of PI-type rules of inference does not prevent the use of

hierarchical organizations of knowledge to direct the flow of inference. Rec:.^nt

papers employing various rules for assigning confidence in confirmatory evidence 	 r

have used detailed hierarchical state models of disease for directing inference

in diagnosis (Szolovits and Pauker '78; Weiss, Kulikowski, Amarel, and Safir 178).

6.1 Fuzzy Interfaces

It is evident that our Al assignments are rough measures of experience, with

all its uncertainties. It might be unwise to place much significance in the

numbers computed past one or two places. For interfacing with humans, fuzzy set
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categories can be defined for ranges of credibility. For example, describe all

credibilities > 0.8 as "highly-likely," credibilities between -0.1 and 0.1 would

be "unknown," etc. Some such minimum threshold of belief rule is probably use-

ful even for internal operations. (If -0.1 < C(A) < 0.1, then set C(A) - 0.)

6.2 PI in Problem Solving

Plausible Inference permits propagation of belief to take place in directions

forbidden to formal logic, thus permitting assertions to become highly likely

s	 that are not reachable by formal logic from a given set of assertions. One use

of PI may be in combination with formal logic to suggest most promising paths

of search for proofs. Polya's thesis in Patterns of Plausible Inference was that

even in mathematics, a field where certainties are possible, the mathematician

constantly uses plausible reasoning to suggest likely answers before attempting

to prove them, and that it is employed in all human reasoning. The problem-

solver system being developed at JPL will seek to employ PI in this manner.

This problem-solving approach may permit generating command sequences automatically

to carry out scientific experiments on board a spacecraft (a kind of automatic

programming). PI will also be used in generating robot action sequences designed

to carry out high-level commands issued to the JPL robot. Still another applica-

tion is to RECOGNIZER, a robot problem-solver which learns from experience.

RECOGNIZER will be rewritten to incorporate PI.

One final comment is in order. When we quoted Polya at the beginning of

this paper, we had a double motive. Of course we are underscoring the manifold

developments that may now permit a machine to engage in a form of plausible infer-

ence, but in addition, we wish to point up his insight into the essential in-

gredient 	 proper background. The recent development of representations, truth-

maintanance, and credibility theory have all contributed to giving the computer that

necessary background.
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