
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

I .,

JPL PUBLICATION 78-107

,."

(RASA-CR-158419) APPROII"AT! "All""" N19-20190
LIKELIHOOD DECODING OF BLOCK CODES (Jet
Propulsion Lab.) 65 p HC A04/"F A01

CSCL 09B Unclas
G3/63 11265

Approximate Maximum
Likelihood Decod~ng of Block
Codes

H. J. Greenberger

February 15, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute ~f Technology
Pasadena, California

-'

JPL PUBLICATION 78-107

Approximate Maximum
Likelihood Decoding of Block
Codes

H. J. Greenberger

February 15, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research descnbed In thiS pubhcatlon was carned out
by the Jet PropulSIOn Laboratory. Cahfornla Institute of
Technology. under NASA Contract No. NAS7-100

ABSTRACT

Approximate maximum likelihood decoding algorithms, based
upon selecting a small set of candidate code words with the aid of
the estimated probability of error of each received symbol, can give
performance close to optimum with a reaaonable amount of computation.
By combining the best features of various algorithms and taking care
to perform each step as efficiently as possible, a decoding scheme
was developed which can uc~~de codes which have better performance
than those in use today and yet not require an unreasonable amount of
computation. The discussion of the details and tradeoffs of presently
known efficient optimum and near optimum decoding algorithms leads,
naturally, to the one which embodies the best features of all of them.

I

iii

CONTENTS

INTRODUCTION -- 1-1

2 AN ITERATIVE ALGORITHM APPROXIMATING MINIMUM
PROBABILITY OF SYMBOL ERROR DECODING ------------------ 2-1

3 ERROR PATTERNS AND ALGEBRAIC DECODING ----------------- 3-1

4 DECODING WITH ERASURE AND ERROR PATTERNS -------------- 4-1

4.1 INTRODUCTION -- 4-1

4.2 GENERATING ERASURE PATTERNS ORDERED ACCORDING
TO PROBABILITY -- 4-1

4.3 GENERATING CANDIDATE CODE WORDS FROM THE
ERROR PATTER~S -- 4-4

5 DECODING USING SETS OF ERASURE PATTERNS --------------- 5-1

5.1 INTRODUCTION -- 5-1

5.2 GENERATING AN EFFICIENT SET OF ERASURE
MASKS --- 5-2

5.3 ORDERING THE MASKS FOR EFFICIENT DECODING ------------- 5-5

6 DECODING USING BOTH SETS OF ERASURE PATTERNS
AND ERROR PATTERNS OF LOW WEIGHT ---------------------- 6-1

7 AN EFFICIENT HYBRID ALGORITHM ------------------------- 7-1

7.1 INTRODUCTION -- 7-1

7.2 PARTIAL SYNDROME DECODING ----------------------------- 7-1

7.3 GENERATING AND TESTING CANDIDATE CODE

WORDS --- 7-7

7.4 AN ESTIMATE OF THE COMPLEXITY OF THE
ALGORITHM --- 7-8

8 SUMMARY AND CONCLUSIONS ------------------------------- 8-1

.! :t.(,EuiI1G PAGE BLANK NOj
tlu.·.·

v

REFERENCES -- 9-1

APPENDIX EFFICIENT ALGORITHMS FOR SORTING AND MATRIX
REDUCTION -- A-1

A.1 INTRODUCTION --- A-1

A.2 SORTING THE RECEIVED SYMBOLS tCCORDING TO
THEIR RELIABILITY ------------------------------------ A-1

A.3 REDUCING THE PARITY CHECK MATRIX TO STANDARD
FORM --- A-6

[!sures

1-1 Estimated Maximum Likelihood Performance of
Several Rate 1/2 Block Codes ------------------------- 1-4

2-1 Improvement of Bit Estimates as a Function of
Iteration Number ------------------------------------- 2-8

2-2 Performance of the Algorithm for the (23,12)

Golay Code --- 2-9

3-1 Relative Performance of the Chase Decoding
Algorithm for the (128,64) BeH Code ------------------ 3-2

4-1 Average Bit Amplitude of Received Bits ~fter
Ordering Block Length = 128 -------------------------- 4-3

4-2 Cumulative Number of Error Patterns for a Given
Index -- 4-5

4-3 Performance of the Error and Erasure Decoding
Algorithm --- 4-6

5-1 Weighing Functions for the (128,64) BCH
Code -- 5-4

5-2 Performance of a Set of Masks with Linear

Weighing -- 5-5

5-3 Relative Performance of Sets of Masks Using
the Weighing Function of Figure 5.1 (SNR =
2.0 dB) --- 5-6

5-4 Weighing Functions for Rate 1/2 Codes ----------------- 5-1

5-5 Performanoe Using the weighing Funotion of

L. Baumert (g) -- 5-8

vi

5-6

5-7

5-8

6-1

7-1

7-2

A-l

A-2

A-3

A-4

Tables

2-1

2-2

7-1

Comparison of Performance Using Different Sets
of Masks Generated from the Same Weighing
Funotion -- 5-9

Hamming Distance Between 1000 Arbitrary Order-
ed Mas~s with Weighing 'g' ---------------------------- 5-12

Hamming Distance Between Masks After S~rting
to Reduce Distance Between Successive Masks ----------- 5-12

Probability of Errors Not Being Covered When
Using Masks of 64 Bits out of 128 --------------------- 6-2

Flow Chart of Soft Decision Decoding

Algorithm --- 7-2

Performance as a Function of Number of Redun-
dant Bits and Number of Masks ------------------------- 7-7

Flow Chart of the Linksort Algorithm ------------------ A-3

Schematic Representation of the Links in the
Linksort Algorithm ------------------------------------ A-4

Development of the Chain in the Linksort

Algorithm --- A-5

Matrix Reduction Algorithm ---------------------------- A-9

Amplitude, Likelihood Ratio, and Tranformed
Likelihood Ratio for Bit Locations -------------------- 2-4

New Bit Labeling Ordered by Tranformed

Likelihood Ratio -------------------------------------- 2-4

Possible Double Error Patterns ------------------------ 7-4

vii

SECTION 1

INTRODUCTION

The quest for practical error correcting schemes with better
performance at low signal-to-noise ratios has lead to the realization
that one must use codes of high Q (distance x rate) and decode them with
algorithms whose probability of error approach or equal the theoretical
minimum for the code being used. For codes whose words are equally
likely and which are transmitted over a memoryless channel, the optimum
decoder is a correlator which calculates the distance between the received
vector and all possible code words and selects as the best estimate
of the transmitted code word that one which is closest to it. Because
of the amount of computation required, it is unreasonable to decode
directly in this way all but the smallest codes, whose error correcting
power is relatively weak. Many schemes have been suggested which reduce
the computational complexity while maintaining the desired performance.
These schemes can be roughly divided into two groups: those that use
code structures for which highly efficient decoding algorithms, equivalent
to optimum decoders, are known (for example, convolutional codes decoded
using the Viterbi algorithm, see Reference 1-1); and those that use
non-optimum decoding algorithms whose performance is close to optimu~
but whose complexity is much less than the optimum algorithm.

One class of non-optimum decoding algorithms, which select
a small number of candidate code words to be correlated with the received
vector, can approach maximum likelihood perfor·mance even at low signal
to-noise ratios. The best of these algorithms take advantage of a
preliminary sorting of the bits of the received vector according to
absolute magnitude in order to arrange them in order of their estimated
probability of being correct. These algorithms then select candidate
code words such that, on the average, those bits which are most probably
correct almost always keep the same value as the hard limited received
vector, while those which are considered unreliable change sign more
often. Each of the algorithms discussed here utilizes the constraints
of the parity check equations in a different way in order to generate
a set of code words while adhering to this general principle.

One of the first algorithms of this kind was developed
by D. Chase (Reference 1-2). He suggested perturbing the hard limited
received code work X by adding it, modulo 2, to a test pattern I to
obtain a new sequence X'. This new sequence is decoded algebraically
to find the unique code word (if one exists) within a distance ~d-1)/2J
(d : minimum distance between code words) of I'. If all the binary
sequences of weight Ld/2J and of length n (n : number of bits in code
word) are used for test patterns, all code words within a distance
d-1 of I will be in the set {I' : I + I}. This two-fold increase over
the error oorreoting capability of a conventional binary decoder makes
up for the loss of non-optimum decoding and, at high signal-to-noise
ratios, the performance asymptotically approaches that of a maximum
likelihood decoder. This scheme is not practical, however, since, except
for short codes of small minimum distance, the number of test sequences
is very large. The information on the reliability of the received

1-1

symbols can reduoe this number to a praotioal value, for example, by
disoarding test patterns with many ones in bit positions oorresponding
to reliable bits. In this and in a later paper (Referenoe 1-3), Chase
desoribes methods of oonstruoting sets with a reasonable number of
patterns whioh not only approaoh maximum likelihood performanoe at
high signal-to-noise ratios, but do so also at low signal-to-noise
ratios.

L. Baumert, R. MoElieoe and G. Solomon (Referenoes 1-4
and 5-2) have done much work using sets of erasure patterns, of whioh
only a small amount has been published. In this teohnique a set of
bits, equal to the number of redundant bits in the oode, is erased.
A oandidate oode word is then generated by reoonstruoting these bits
from the unerased ones. Eaoh erasure pattern generates another oandidate
to be oorrelated with the received veotor.

The reasoning behind using erasure patterns rather than
error pattern3 is that the redundanoy of binary oodes is muoh greater
than its error correcting power. For instanoe, the (128,64) BeH code
used as an example in this report has 64 redundant bits but oan oorreot
only 10 errors. On the other hand, to oorreotly deoode a reoeived
word, this so heme must cover all hard decision errors. Using error
masks, a number or errors, up to the oorrecting power of the oode,
may remain exposed. The effioiency of both schemes is dependent upon
the set of masks used and much thought has gone into finding methods
of generating effioient sets. This will be disoussed further in later
seotions desoribing eaoh deooding soheme in detail.

If only the single most probable erasure pattern is used,
the probability of an error remaining in the unerased bits is considerably
greater than the probability of deooding wrongly using a maximum likelihood
deooder. B. Dorsoh (Referenoe 1-5) noted that the unerased bits have
a high probability of being correot and maximum likelihood performanoe
oould be approached by generating oandidate oode words by assuming
error patterns of low weight in these bits.

A deooding algorithm that tries all error patterns of weight
w or less in the unerased bits must generate and oheok

candidate oode words. The large number of patterns required is somewhat
offset by the ease in generating them. However, a slight modifioation
results in a oonsiderably more effioient algorithm.

If one does not erase all of the redundant bits, then the
ensuing redundanoy can be used to eliminate many error patterns in
the remaining bits. Combining erasures and redundanoy was implioit
in Forney's error and erasure algorithm (Reference 1-6) whioh oan be
thought of as shortening the oode a bit at a time by suooessively erasing
the most unreliable bits and algebraioally deooding the shortened oode.
This scheme does not work well, however, at low signal-to-noise ratios.

1-2

One that does was developed by E. Berlekamp (Referenoe 1-7) for oorreoting
a oombination of burst errors and a small number of random errors and has
been adapted here for random errcrs in linear oodes. With a redundanoy
of r bits, on the averase only 1 out of 2r error patterns satisfies the
r parity oheok equations. Inoreasing the number of unerased bits inoreases
the total number of error patterns and, sinoe the added bits are of lower
reliability, the probability of errors of higher weight also inoreases.
For small values of r, the first faotor predominates and the oomputational
effioie~oy of the algorithm increases signifioantly.

If the maximum weight of the error in the unerased bits that
need be oonsidered is 2, then the generation of error patterns oonsistent
with the parity oheck equations is oonsiderably simplified. For the
(128,64) BCH code many of the more probable err~r patterns of weight
3 must be tried in order to approach maximum likelihood performanoe,
especially when redundant bits are left unerased. On the other hand,
Baumert's and McEliece's algorithm, which uses many erasure masks, can
approach maximum likelihood performance without considering errors in
the unerased bits at all. This sussests that these algorithms can be
combined into a hybrid scheme which uses a small number of erasure masks,
a few bits of redundancy, and consideration of error patterns of weight
2 or less to achieve comparable performance. With a suitable splection
of parameters such an algorithm is computationally more effici~nt than
anyone of its ancestors and is a possible competitor, in terms of com
plexity versus performance, to Viterbi decoding of convolutional codes.

An alternate approach to selecting a set of candidate code
words is to disregard some of the channel information and make an optimum
decision on what remains. This method works well at low signal-to-noise
ratios where many bits have a high probability of error and can be dis
regarded with only a small penalty in performance. Such an algorithm
oan be put into an iterative form. Starting with an initial estimate of
a set of independent bits, the estimates can be improved by considering
bits related to the initial set through the parity oheck equations of
the code. These redundant bits are considered one at a time, in order
of increasing probability of error. Eaoh bit improves the estimate of
the previous bits, and the ones with a higher probability of error have
a smaller effect than those with a lower probability of error. As poorer
and poorer bits are examined, they perturb the previous estimate less
and less and a point is reached where the algorithm may be stopped with
a high probability of being close to the optimum estimate.

The oode that was ohosen to compare the various algorithms
was the (128,64) BCH code of rate 1/2 and minimum distanoe 22. It was
chosen beoause it is one of the shortest codes whose maximum likelihood
performance is at least 1 dB better than that of the rate 1/2 constraint
length 7 convolutional code. Figure 1-1, which compares the performance
of a number of rate 1/2 codes, shows this clearly. These curves were
obtained by Baumert and McEliece ~Reference 1-4), who estimated the
maximum likelihood performance by increasing the number of candidate
code words generated by their algorithm until most of the wrong decodings
were identifiably maximum likelihood errors. That is, the code word
chosen as the best estimate had a higher correlation with the received
vector than the known transmitted code word.

1-3

A (48, 24) QI. Q 0 6

• (10. 40) QI, Q ~ II

C (1211.64) ICH. Q-ll

" " , , " , " ' , ,', , , " , '" , "
\ ,,' \ ,,,

\ , " c \ ., A'
\ '
\ '
\ "
\ \
\ \
\ \
\ \
\ \
\ \

IO-3L-_____I. ______ --L..J...._

o 2 3

Fig. 1-1. Estimated Maximum Likelihood Performance of Sev~~al
Rate 1/2 Block Codes.

The results on the estimated performance of various decoding
schemes were made using computer-generated bit error patterns. A random
error vector was added to the vector (1,1, •.• ,1,1), corresponding to the
all zero code word, and the components of the resulting vector sorted ac
cording to decreasing absolute magnitude. The location of the symbols
with negative values indicated the pattern of errors that would be made
by a bit by bit hard decision decoder. If the decoding algorithm could
erase or correct all these errors, then a correct decoding was assumed.
This gives a lower bound to the performance of the decoder Since, in
order to decode correctly, the error pattern must be erased or corrected.
This does not guarantee, however, that a maximum likelihood error will not
occur. This bound was found to be quite close to the actual performance
of the decoding algorithm when operating more than 0.5 dB away from the
maximum likelihood curves.

Since the received vectors in most cases were not actually
decoded, the probability of information symbol error also had to be esti
mated. Given the probability of code word error, a lower bound on the
bit probability of error could be found by assuming all errors result in
estimating code words located the minimum distance from the transmitted
code word. For the (128,6~) BeH code of minimum distance 22,

Pr errQI' (symbol) (zz.... = -L
Pr error (word) - 128 5.8

1-4

This ratl0 ls aay.ptotloally oorreot at hlah slcnal-to-nolse ratlos.
At low sisnal-to-nolse ratlos ln the ranse aonsldered here, a ratl0
or 1/5 yields a sood e.tl .. te or the syabol probablllty or error.

1-5

SECTION 2

AN ITERATIVe ALGORITHM APPROXIMATING MINIMUM PROBABILITY

OF SYMBOL ERROR DECODING

2.1 INTRODUCTION

Decoding algorithms that minimize the probability of symbol
error are relatively rare because of the more complex form of such
a decoder. One of the first attempts to reduce the amount of computation
was that of L. Bahl, J. Cocke, F. Jelinick, and J. Raviv (Reference 2-1),
who used a trellis to represent the possible states of the decoder.
The amount of computation required, however, w~s n (n = block length
or decoding constraint length) times that of a Viterbi decoder for the
same code. The next. step was taken by Hartmann and Rudolph (Reference 2-2),
who showed how to transform the decoding equations into the space of
the dual code to a form that required much less storing of intermediate
results. Their algorithm still required n times the computation of
a minimum probability of code word error algorithm.

The algorithm of Rudolph and Hartmann consists of generating
a test statistic for each bit which is compared to a threshold. The
statistic takes the form of the sum of a large number of terms, one
for each code word in the dual code. By sorting the bits of the received
vector according to probability of error, the order of the terms can
be permuted so that the terms contributing significantly to the sum
are considered first. The optimum estimate is then approached after
only a small fraction of the terms have been summed (Reference 2-3).

The ordering of the terms is a natural consequence of sortin~
the received bits according to increasing probability of error and
decoding in the space of the dual code. It can be thought of as converting
the algorithm to an iterative form. The k most reliable bits are independent
and their value is initially estimated by hard limiting the received
vector. The estimate can be improved by successively looking at bits
related to them through the parity check equations of the code. These
redundant bits are examined in order of increasing probability of error.
Each bit, as it is examined, improves the estimate of the previous
ones. However the redul.dant bits with a higher probability of error
have a smaller effect than those with a lower probability of error.
As poorer and poorer bits are examined, they perturb the previous estimate
less and less and a point is reached where the algorithm may be stopped
with a high probability of being close to the optimum estimate.

The algorithm, in its present form, is not as efficient as
the ones described in subsequent sections for a number of reasons. The
computation primarily consists of the products and sums of real numbers
rather than of binary vector additions, and common with the other minimum
probability of symbol error algorithms, it requires a separate calculation
for each symbol.

rRi.CEDING PAGE BLANK NOT FILMED

2-1

2.2 A DESCRIPTION OF THE ALGORITHM

As each symbol is received, the likelihood ratio,

is calculated and mapped into the region (-1, +1) by the transformation

Pm =

~hen the entire code word has been received, the symbols are sorted
according to increasing probability of error (or equivalently, magnitude
of Pm) so that the least reliable bits are to the right. The columns
of the parity check matrix of the code are then permuted to the same
order as the symbols. By using row operations only, the permuted parity
check matrix can be reduced to a form which has" a triangle of zeros
in the upper right hand corner. The first p rows of this matrix represent
the dependence between the k + p symbols with the least probability
of error. If the remaining n - (k + p) symbols are considered erased,
then an "optimum" decision, in the sense of minimum probability of
symbol error, can be made using only this portion of the matrJx. This
form of the matrix also leads to an iterative algorithm. Starting
with p = 0 and increasing p by one each iteration, successively poorer
received bits are considered in estimating the transmitted symbols,
until for p = n - k the "true" optimum estimate is reached.

The decoding rule, for minimum probability of symbol error,
u6ing the method of decoding in the dual space of the code, is from
equation (13) in Hartmann and Rudolph (Reference 2-2).

where

6m1 = if m = I

6m1 • 0 if m ~ I

H1
> 0 <
HO

C'jl is the Ith bit ~f the jth code in the dual code, whose code words
are formed by a linear oombination of the rows of the parity check matrix.
When estimating the mth bit, the term P, is included in the product if
the Ith bit of C'j = I and m ~ I, or the lth bit of C'j = 0 and m = I.

2-2

As an initial estimate of the transmitted symbols (p = 0),
6

let Ga = 1 if Pm> 0 and Cas = 0 if pm .i O. The first i tera tion uses
only a single parity check equation so that there are only two words
in the dual code--the all zero code word and the one equal to the first
row of the parity check matrix. The all zero vector contributes to

Am the term Pm' which is the initial estimate, and the single parity
check equation contributes a single product term of the p'ls.

The algorithm is then iterated, each time adding another
parity check equation and taking into consideration the "best" of the
remaining received bits. At each iteration the number of terms in
the sum is doubled. Because of the reduced form of the parity check
matrix, with zeros in the upper right hand corner, the termsAm from
previous iterations are not changed when a new row of the matrix is
added and the new terms can be added directly to the previous stage's
estimate. At each iteration the estimate of each bit is improved and
the bit probability of error decreases.

AN EXAMPLE USING THE (23,11) GOLAY CODE

A detailed example of this algorithm will be given for
the (23,11) Golay code. The block length of this code is long enough
to see the convergence of the algorithm to the optimum solution as
the number of iterations increase and yet short enough that a complete
decoding can be done in a reasonable time. In order to estimate the
performance of the algorithm at a given signal-to-noise ratio, a large
number of received vectors were generated and fully decoded. Only
the 12 most reliable bits are estimated by the algorithm. The ~emainder
are calculated through the parity check matrix. This forces the estimat~
of the transmitted vector to be a code word. The estimate of these
bits was stored after each iteration and the code word was considered
correctly decoded when the 12 bits indicated as most reliable were
estimated correctly.

Since the code is linear, the code space looks the same when
viewed from any code word. Therefore, it can be assumed, without loss of
generality, t~at the all zero code word is transmitted. The received word
can be represented by a vector of dimension 23, y = (Yl' Y2' •.• 'Y23). Each
element of the vector is of the form Yi = 1 + ni where ni is a sample of
a zero mean Gaussian process of variance

(T 2 =

As a numerical example, consider a received code word which
contains four hard errors and therefore cannot be decoded correctly
using algebraic decoding. In addition, one of the errors is among
the 12 best bits so that the initial estimate of this algorithm would
also be in error. A received vector (SNR = 1.0 d) and the corresponding
likelihood ratios are tabulated in Table 2-1.

2-3

m 1

Table 2-1. Amplitude, Likelihood Ratio, and Transformed
Likelihood Ratio for Bit Locations

2 3 4 5 6 7 8 9 10 11 12

Am .99 1.25 .44 -.63 .52 .25 .01 .97 .36 -.901.13.41

Am .074 .041 .26 3.04 .22 .41 .70 .808 .32 5.62 .054 .28

Pm .86 .92 .39 -.50 .64 .42 .17 .86 .32 -.70 .90 .56

13 14 15 16 17 18 19 20 21 22 23

Am .11 .06 1.12 .33 -.74 -.24 .94 1.86 .71 2.87 1.73

Am .36 .62 .054 .33 3.90 1.24 .083 .010 .14 .001 .013

Pm .28 .24 .90 .50 -.59 -.11 .85 .98 .75 .99 .97

m = Bit number.
Am = Amplitude of mth bit.

Am = Likelihood ratio of mth bit.
Pm = Transformed likelihood ratio

of mth bit.

The first step of the algorithm is to sort the bits according
to the absolute values of the transformed likelihood ratios Pm' The
sorted order, shown in Table 2-2, is:

Table 2-2. New Bit Labeling Ordered by Transformed Likelihood Ratio

Sorted Bit Order 2 3 4 5 6 7 8 9 10 11 12

Original Bit Order 22 20 23 2 11 15 8 19 21 10 5

Sorted Pm .99 .98 .97 .92 .90 .90 .86 .86 .85 .75 -. 10 .64

Sorted Bit Order 13 14 15 16 17 18 19 20 21 22 23

Original Bit Order 17 3 12 9 16 4 6 13 14 7 18

Sorted Pm -.59 .59 .56 .52 .50 -.50 .42 .28 .24 .17 -.11

2-4

The original parity check matrix for this code is

10100100111110000000000
01010010011111000000000
00101001001111100000000
00010100100111110000000
00001010010011111000000
00000101001001111100000
00000010100100111110000
00000001010010011111000
00000000101001001111100
00000000010100100111110
00000000001010010011111

The columns are permuted to the same order as the received
symbols to yield

00001010001001110011000
00011000001000101001110
00001101000101100001100
00000100000000111111100
00000100001110000101110
00011010000100001101010
00000100100010110100011
01000001101010000101001
01001000110010010000101
11000100111000100000001
11101000110000000101000

Reducing this matrix by row operations to form a triangle of
zeros in the upper right hand corner yields

00111010110110000000000
11110000011101000000000
01101101100010100000000
11001001010001110000000
10000101100100111000000
1100110~001100000100000
01000101110000010110000
10000101010010100101000
10001100001010110000100
11000000011010010100010
11000100111000100000001

2-5

The estimator

A (i) _ " n c' j I e6m t
m - ~ P,

j I

where i = iteration number will b~ used with this matrix and the sorted
Pm's. For the ith iteration the coae words C'j are formed by all linear
combinations of the first i rows of the matrix.

The initial estimate can be thought of as using the estimator
with a dual code consisting of the all zero vector alone. The index
j, which indicates the jth code word in the dual code, has only the
value 1, and C'jt is zero for all values of I. In this case,

(0)
Since 0ml = 0 for m ~ I and 1 for m = I, Am = Pm' When the only
code word in the dUal code is the all zero one, the code itself contains
all possible binary n-tuples. All the bits are independent and the
best estimate of any bit depends only upon the likelihood ratio of
that bit itself.

The first iteration begins to use the dependence between
the bits as expressed by the first parity check equation (the first
row) of the H matrix

h1 = (00111010110110000000000)

There are only two code words in the dual oode; the all zero oode word
and

(1) P3 P4 P5 P1 P9 P10 P12 P13
h1 so that Am = Pm + for m = 3, 4, 5, 1. 9,

Pm 10, 12, 13

otherwise.

Note that eaoh term oorresponds to a oode word in the dual oode. Eaoh
term oontains the produot of the transformed likelihood ratios of all the
bits in the oode word whioh are equal to one multiplied or divided by the
ratio of the mth bit.

The second iteration uses two parity check equations h1 and h2'

h2 = (111100000111010000000000)

2-6

The four oode words in the dual oode are

C1 = 0 h2 + 0 hl = 00000 00000 00000 00000 000

C2 = 0 h2 + 1 h1 = 00111 01011 01100 00000 000

C3 = 1 h2 + 0 hl = 11110 00001 11010 00000 000

C4 = 1 h2 + 1 h1 = 11001 01010 10110 00000 000

At this step the purpose of permuting the oolumns of the
H matrix and reduoing it to one with all zeros in a triangle in the
upper right hand oorner beoomes clear. First, the code words in the
dual code at the Itb iteration contain all the code words of the
(I-1st) iteration so that

new products. These new products are formed from the coae words generated
by adding modulo 2 the new parity check equation hI to all the code
words of the previous iteration. Second, all the new products include
the transformed likelihood ratio of the (K + I)th bit but not of bits
less reliable than this. Thus the th iteration uses the previous
estimate and the parity check equation containing the best bit not
yet used to obtain an improved estimate.

At each iteration the estimate as to whic;h bits are best
may change. This is seen in Figure 2-1 where the Am (l) 's are plot ted
as a function of iteration number. As more parity check equations
are used, the absolute value of A (which is a measure of goodness)
of the bits whose initial estimate was wrong, decreases relatively
rapidly. At the seventh iteration the best 13 bits are correct and
the code word would be decoded correctly if the algorithm would be
stopped at this point. At the final iteration, using the full decoding
algorithm (equivalent to maximum likelihood decoding), the best 17
bits are correct. Of the four bits whose initial estimate was wrong,
only the one with the poorest initial estimate was corrected. In cases
where there are fewer errors or the likelihood ratios of the correct
bits are initially higher, the wrong bits are also corrected, but this
is not necessary for correct decoding using this algorithm.

The performance of this code as a function of number of
iterations is shown in Figure 2-2. The zero iteration curve illustrates
the performance possible by assuming there are no errors in the best 12
bits, while the 11th iteration curve represents the performance using
the full decoding algorithm. Note that in the sixth iteration, using
26 = 64 terms in the sum of the estimator, the performance is almost
equivalent to the full decoding algorithm which requires 211 = 2048
terms in the sum.

2-7

'" 0

~
c

2
:;
III w:
::;

~
!2
11'1

Z

~

1.0 I
2
3

4

5

;\
8
9

0.8

10

12

0.6 13
14
IS

19
0.4

20

21

0.2

22

23 __ ---

I
2
3

4
6
5
9

7

8

14

12

19
16

20

10

18

15

-- --, ---------------- \ /23

ITERATION NUMBER

, I
\ I

Figure 2-1. Improvement of Bit Estimates as a Function of
Iteration Number

2-8

~
:5
loC

~ ...
0
0
U ...
0
~
:::;
iii
~
0
f

I.Or------,.------....----..-----,----,

0.1

0.01

O.OOII,---__ ~-.--~---~----'_--_:!
035

alT SNR. da

Figure 2-2. Performance of the Algorithm for the (23,12) Golay Code

2-9

,

SECTION 3

ERROR PATTERNS AND ALGEBRAIC DECODING

Algebraic decoding can be used to correct errors within a
distance dm/2 (where dm = the minimum distance of the code) of any
error pattern by adding it modulo 2 to the hard limited received vector
and then decoding. Proper selection of a set of such patterns, which
will be called masks, results in searching a region of space where the
errors are most likely for a set of candidate code words. These code
words are then correlated with the received vector and the one with the
highest correlation is selected as the best estimate of the transmitted
code word.

D. Chase (Reference 1-3) suggested using the 212 words of
the (23,12) Golay code as masks on the 23 least reliable bits of the
(128,64) BCH code. Since any vector of dimension 23 is within a distance
3 of at least one of the Golay code words, any error pattern in the 23
bits will be reduced to 3 or less errors when added to some mask. The
larger code can correct up to 10 errors overall. Therefore, depending
upon how many errors in the least reliable 23.bits are left uncorrected,
patterns of 7 to 10 .errors in the most rel1abl~ 105 bits can be corrected.

The performance of this decoding algorithm is within 1/2 dB
of maximum likelihood (Figure 3-1) and requires 4096 algebraic decodings
and correlations. This is considerably more computation than required
to obtain comparable performance using the algorithms described in
later chapters and is due mainly to three factors. First, this algorithm
is based upon detecting errors in contrast to erasing them. For the
(128,64) BeH code, the redundancy is 64 bits as compared to an error
correcting power of 10 bits and erasing errors is more effective than
correcting them. Second, the division into two groups of 23 and 105 was
not based upon any property of the large code but only upon the perfection
of the Golay code. It may possibly be more efficient to divide the
(128,64) BCH code into two more evenly balanced groups. Fewer errors
would exist, on the average, in the more reliable group so that, while
the less reliable group is larger, one needn't have to correct so many
errors in it. Third, th(~ symbols are divided arbitrarily into two
groups, one of relatively high and one of relatively low probability
of error. Within these groups all bits are considered equal. However,
it is more efficient to take into consideration, even approximately,
that the bits have a continuous distribution of probability of error.

~k"CEDING PAGE BLANK NOT FILIVI ... v

3-1

MAXIMJM lIKELIHOOO\
\

IO-3'-:-___ ._ ____ -'-___ ---I ____ ~

-I 0 1 3

(bINO

F1sure 3-1. Relative Pertor.anoe ot the Chase Deooding Algorithm
tor the (128.6_) BeH Code

"

3-2

SECTION 4

DECODING WITH ERASURES AND ERROR PATTERNS

4.1 INTRODUCTION

For most codes the redundancy is Ireater than the minimum
distance between code words so that it is possible to correct many
more erasures than errors. The simplest erasure correct ins scheme
is one that erases the n-k bits whose estimated probability of error
are hilhest and reconstructs these bits from the k remaininl ones by
means of the parity check matrix. This scheme will yield the correct
estimate only when all the k non-erased bits are estimated correctly by
a hard decision decoder. At low silnal-to-noise ratios the performance
of such a scheme is quite a bit poorer than maximum likelihood but
can be improved by expandinl the schem! to produce a set of possible
oode words.

In the k remaininl bits which are not erased, there are 2k
possible error patterns. If the decoder correlates with the received
vector all of the 2k possible code words lenerated by adding these error
patterns to the unerased bits, maximum likelihood performance will be
achieved. (Note that there is not a one-to-one oorrespondence between
error patterns and code words. If the k-bits are not all independent,
there will be no solution when the dep~ndent bits are not oonsistent
with the values of the independent ones and more when they are.) Between
the extreme of tryinl no error patterns and tryinl them all, one can
choose a reasonably sized subset.

To aohieve a level of performance of less than 0.5 dB from
maximum likelihood approximately 10,000 oandidate oode words are required.
In spite of the large number, this decoding scheme is competitive with
the others because of the small number of operations needed to generate
each candidate. In this section it will be shown how one should select
an efficient set of error patterns and arrange the calculation such
that the number of operations will be the minimum possible.

4.2 GENERATING ERASURE PATTERNS ORDERED ACCORDING TO PROBABILITY

Assuming that only a fixed number of error patterns can be
tried, it is worthwhile to use the set which contains the ones which
are oost probable. If the channel is memoryless then the probability
of a given error pattern in a block of m bits is

m
Pr(.I.) = n qi

1=1

4-1

.-i(i;;CEDING PAGE BlANK NOT F'L~1!::,~

where

ei = , if the ith bit is in
the error pattern;

= o otherwise
Pi = probability of ith bit being 1n error
qi = probability of ith bit being correct.

The first product is independent of the error pattern chosen. Repre
sentins it by the constant C,

taking logarithms

Pr(~) = C,. Ii (ii)e

i

1=,

In Pr(.§.) = In C, - i: ei In (ti). 1=,

For a Gaussian channel the log likelihood ratio is proportional to
the bit amplitude ai.

m
In Pr(.§.) = In C, - C2 E eiai. 1=,

The logarithm is a monotonic function of its argument so that ordering
the error patterns by decreasing probability of occurrence is equivalent
to ordering them by increasing dl where

It is not necessary to calculate the most probable error
patterns for each received vector; a set of fixed-error patterns,
independent of the received signal-to-noise ratio, can be used with
negligible loss of performance. This simplification has been justified
by Simulation, but it can be demonstrated simply by observing the mean
amplitude of the received bits after sorting. An example for a block
length of 128 is shown in Fig~re 4.1. The curves are linear over most
of their length, except for a few of the worst and best bits, and change
slowly with signal-to-noise ratio. As the signal-to-noise ratio increases,
the variation in bit amplitude decreases and approaches one for all
bit positions. Thus, the algorithms which depend upon sorti"~ the
received bits according to their amplitudes become less effi~ient.

4-2

0.5 l
O~ ____ ~~I ______ ~I~ ____ ~I~ ____ ~I ______ ~I ______ ~I __ -J

o 10 20 30 40 SO 60

lIT NUM&£a

Figure 4-1. Average Bit Amplitude of Received Bits After Ordering
Block Length = 128

However, at these signal-to-noise ratios, practically all received
vectors are within half the minimum distance between code words so
that maximum radius decoding algorithms can be used. For signal-to
noise ratios of 1.0 - 5.0 dB the algorithms discussed here are superior.
In this region a good approximation to the mean bit amplitude is

where bi = sorted bit position. The denominator is just a scale factor
and may be dropped without affecting the ordering.

Dei"ining an error pattern index f as

n
f = 128n - E bi

1=1

where n : number of errors in error pattern.
error patterns accordir~ to ascending index.

4-3

It is easy to generate
Figure 4-2 illustrates

the number of error patterns as a function of the error pattern index.
All single errors have a lower index than any double error, but there
are triple errors with lower index than some double errors. There
are 2080 single and double error patterns. Checking them all, in order
of asce,)ding index, reduces the probabil1 ty of error, as a function
of number of patterns, more slowly than using the set of patterns that
allow triple errors. The overall performance for this error and erasure
decoding algorithm, as a function of the number of error patterns,
is shown in Figure 4-3. To achieve a given level of performance, e.g.
wi thin 112 dB of a maximum likelihood decoder, t.he number of error
patterns (or candidate code words) required decreases slowly as the
slgnal-to-nolse ratio increases.

4.3 GENERATING CANDIDATE CODE WORDS FROM THE ERROR PATTERNS

The generatlon of candidate code words from a particular error
pattern is done in two stages. First the error pattern is checked for
consistency with the parity check equations. Then, if it is consistent,
a set of code words is generated. Consistency requires that [Pla]~ = ~,
In addltion to a compare and branch, the number of vector additlons
needed to check thls is equal to the welght of ~, which is one, two
or three In the practlcal cases dlscussed here. If the set of error
patterns Is determined beforehand, then they can be arranged in such
a way that only one vector addltlon is needed. In achlevl~g thls savings,
however, the error patterns are no longer checked In order of ascendlng
error pattern index.

When the error pattern is consistent wlth the parity check
equatlons, then candidate code words exlst. The bits of the candldate
code words can be dlvlded Into 3 sets:

(1) A1' contalnlng the blts which were checked for conslstency

(2) .2a' a number of arbitrary bits

(3) 42b' containing the blts calculated from (1) and (2)

The first two sets are calculated once, requiring a maximum of three
additions (when the weight of ~ = 3). This generates the first cr~didate
code word corresponding to 42a =~. The remaining bit patterns ot
A2a can then be generated in Grey code sequence so that the succeeding
code words can be calculated by using only a single vector addition
per code word.

4-4

'" z
flI
£

10,000r----r------,-----,----.-------y----.

1000

§
115 100

o ,
~
Z

10

DOt., 8. ,
ERR()~ ,

TRIPU
ERRORS

Iu-____ ~ ___ -L _____ ~ __ ~L_ ___ ~ __ ~

64 128 192 256
ERROR PATTERN INDEX

Figure 4-2. CUMulative Number of Error Patterns for a Given Index

4-5

0
~
0
U
II>

~
0
z
0
;:
~ 10-2

NUMBER OF ERROR PATTERNS

Figure 4-3. Performanoe of the Error and Erasure Deooding Algorithm

4-6

SECTION 5

DECODING USING SETS OF ERASURE PATTERNS

5.1 INTRODUCTION

A more efficient method of generating candidate code words,
in the sense of requiring fewer of them to obtain a given level of
performance, is to use sets of erasure patterns. For each erasure
pattern 1n the set, the corresponding bits in the received word are
erased and then reconstructed by means of the parity check equations.
A correct decoding requires that for at least one of the patterns,
all of the unerased bits be error free.

One approach to constructing sets of erasure patterns is
to try to cover as many error patterns as possible with as few masks
as possible. A combinatoric solution to this problem is by means of
t-designs (Reference 5-1). Given a set of v elements, a t-design is
a collection of subsets of k elements with the property that any subset
of t elements is contained in exactly A blocks. The design is represented
as t - (v, k, A) and is sometimes called a taqtical configuration.
When used to construct erasure masks, v corresponds to the block size
and k to the number 'of erased bits. All errors of weight t or less
are covered A times. The difficulty of this approach is that designs
are known only for small t and are U,~refore useful only for codes
of short block length. By relaxing the requirement that all error
patterns be covered exactly t times, L. Baumert, R. McEliece and G.
Solomon have devised a method of generating masks from sets of code
words (Reference 5-2). However, both these methods have the disadvantage
that all patterns are treated equally. A more efficient set of masks
would consider the probability of a given error pattern occurring rather
than just its weight. This criterion leads to a statistical approach
for the design of sets of masks.

The first set of such masks was generated by L. Baumert and
R. McEliece using a weighing based upon the entropy of the error proba
bility of each bit (Reference 1-4). (The entropy could not be used di
rectly because it violated the constraints on allowable weighing functions,
which will be seen in the next section.) This approach will be used here
to generate a good set of erasure masks. Starting w~th P. linear weighing,
sets of masks with slightly perturbed weighings are generated. The best
ones are selected and the process is repeated until it converges to e
good weighing function. This approach is possible since the performance
varies only slowly with changes in weighing. ,~e set of masks arrived
at in this manner was almost identical to that :;f Baumert and McEliece,
which confirmed the accuracy of their intuition.

With 1000 masks, maximum likelHlOod performance is approached
to within a few tenths of a dB. However, the generation of candidate code
words from these masks and the received code word requires a relatively
long calculation. In the latter part of this section it is shown that the
masks can be ordered within a given set so that the number of calculations
per candidate code word is considerably reduced.

5-1
·:~,.:(;f:D'NG PAGE BLANK HO'T FJ •.

L.i,l,. oJ

5.2 GENERATING AN EFFICIENT SET OF ERASURE MASKS

The statistical method generates a set of masks which covers
each bit, on the average, a given percent of the time but does not
attempt to cover a specific set of errors. The advantage of this method
is that it is relatively easy to generate a set with a given number of
masks and a wide range of distributions and which, almost always, cover
the errors in an efficient manner. The exact distribution is not criti
cal; however, the bits with a probability of error close to zero should
hardly ever be covered and those with a probability of error close to
one-half should almost always be covered. Also, since the fraction of
bits left uncovered by each mask must equal the rate of the code, the
entire distribution must also satisfy that constraint. These constraints
may be written as:

(1) '1 :::: m ; 1m = 0

(2) Ii 2. Ij if i > j
n

(3) L 'i = m·n·r
1=1

where

'i = the number of times the ith bit is covered

m = number of masks

n = number of bits in code word

r = rate of code

There are an extremely large number of functions that satis
fy these constraints. However, it is not difficult to find good ones
by trial and error since their performance is relatively insensitive to
the exact shape of the function. For example, consider a code of rate
1/2. From the third constraint the area under the function must equal
(m.n)/2, one half the area enclosed by the graph. One function that
satisfies these constraints is linear in percent of bits covered versus
bit number, Figure 5.1, curve a. Others, such as band c, which empha
size the covering of bits with a high or low probability of error, and
d, which has a large discontinuity, are also possible. By simulation it
has been found that functinns with the ~eneral shape of b generate masks
with best performance. This will be discussed in greater detail in the
following section.

If the fractional area under the desired function equals the
rate of the code, then one need only find the appropriate scale factor
and compensate for the small errors intl'oduced by rounding off the
function to integral values. For example, the linear function

i
1 i = m(l - -)

n

5-2

satisties

m.n
'i = --- . 2

so that it is suitable tor a rate 1/2 code.

Host ot the values ot 'i are non-integral and truncating or
rounding ot these numbers may produce a sum not equal to (m o n)/2.
The slight adjustment required may be made by letting 'i equal the
integral part ot

and varying E until

'i = Im(l - -=-)J r n+E

For a general tunction, however, the fractional area under
it does not equal the rate and some distortion must be introduced in
order to meet this constraint. One possibility, used by L. Baumert for
function& which enclose a fractional area less than the rate, is to
multiply the function by a scale factor which will generate values of
'i (for some i) greater than m and then limiting these values to m. The
scale factor (and area) is increased until the third constraint is met.
This procedure usually results in functions similar to curve b of
Figure 5-1 which have been found to yield efficient masks.

Given the normalized distribution which satisfies this
constraint, the cover is generated by randomly selecting a mask and
placing a one in the ith bit position until 'i ones have been placed.
As i approaches n, certain moves will be forced in order to place the
proper number of ones and zeros in each mask. These are done first,
before the remaining ones are placed randomly. The algorithm will fail
if the forced moves require more than 'i ones in the ith position.
However, this occurs very rarely in practice and can be remedied by some
slight adjustment of the bits in previous positions. In the generation
of many sets of masks, these slight deviations from a purely random
placement of ones and zeros has not been found to produce any adverse
effects.

The linear distribution function is a good starting point
for investigating masks suitable for codes of rate 1/2. Using the
(128,64) BCH code as an example, a set of 1000 masks were generated and
tested against 10,000 received vectors at various signal-to-noise ratios.
The received vectors were sorted, hard limited and the bit positions
containing errors were noted. The masks were then successively placed
over the error pattern and the number of masks tested before the error
pattern was completely covered and recorded. No attempt was made to
order the masks in any particular way.

5-3

"

100

0 ...
~
8
on ...
;; 50 ...
0 ... z
lj ..
~

O~--------~~----~-----~----------~--------~~ o 32 64 96 128

BIT NUMBER

Figure 5-1. Weighing Functions for the (128,64) BCH Code

The resulting curves, seen 1n Figure 5-2, are an approxima
tion to a lower bound on the probability of error. If the error vector
is not covered then the decoder, using these masks, will surely be in
error. If the error is covered, the transmitted code word will be
among the candidate code words, but there still may exist another code
word that has a larger correlation with the received vector. This bound
is generally a good approximation except when the decoding algorithm is
operating very close to maximum likelihood performance. Using 1000
masks, the performance of the decoding algorithm is approximately 0.15
dB worse then the maximum likelihood.

The linear distribution was selected as one satisfying a
number of simple heuristic considerations. That these considerations
are valid is demonstrated by the fact that performance equal to that
obtained with erasure and error patterns requires only one-tenth the
number of candidate code words. It may be, however, that other distribu
tions can generate a set of masks that perform even better. To check
this, two distributions symmetric about the linear one, band c of
Figure 5-1, were tried in order to get an idea in which direction to
proceed. Their performance, shown in Figure 5-3, and that of others not
shown, indicated that better performance can be obtained with weighings
which cover the bits with high probability of error more often than the
linear weighing.

A family of distributions with this property was then inves
tigated. Rather than using a set of symmetric functions, a set which
always covered a given number of bits with the highest probability of
error was selected (see Figure 5-4). The performance is only slightly
different from that of a similar symmetrio distribution and inoludes,
as distribution g, the one originally used by L. Baumert. Using 1000

5-4

Q
10.1

~ ...
>
0 u
VI ..
~
(5
z
0 ;:::;
';i 10.2

NUM8ElI OF MASKS

Figure 5-2. Performance of a Set of Masks with Linear Weighing

masks and 10,000 received vectors at an SNR = 2.0, the probability of
an error pattern not being covered is

Distribution a e f g h i

Probability error
pattern not covered .020 .015 .011 .011 .021 .030

Distribution g is among the best and was investigated further.
Its performance at various signal-to-noise ratios is given in Figure 5-5.
Note that the performance curves are very similar to that of the linear
distribution with a small displacement. This is another indication that
the performance changes slowly with changes 1n distribution. The
performance is only slightly changed when different sets of masks,
generated from the same distribution, are used. Figure 5-6 illustrates
this point using two sets generated from distribution g.

5.3 ORDERING THE MASKS FOR EFFICIENT DECODING

When a code word is received, the bits are sorted in order
of their absolute magnitude and the columns of the parity check matrix

5-5

"

Q ...
m

10.1 >
0 u ...
0 z
'" ~ ..
55 ...
0
z
0
;::

10.2
'::i
If

NUMBER OF MASKS

Figure 5-3. Relative Performance of Sets of Masks Using the
Weighing Fun~tion of Figure 5-1. (SNR· 2.0 dB)

5-6

"
".-,,",,~~ ,, .. :~

C
III

~
0
u
~
~
;:: ...
0 ...
Z
III
U

i:

20

arT NUMBER

Figure 5-4. Weighing Functions for Rate 1/2 Codes

5-7

Q ...
:5 10.1 >
0
V ..
0 z
'" e
II
0
z
0
;:

10.2
~
~

NUMBER OF MASKS

Figure 5-5. Performance Using the Weighing Function of
L. Baumert (g)

5-6

.,

0 ...
'" 10- 1 ...
>
0
u ...
0
Z
!!!

~
'" '" ...
>-...
::l
;;
~
0

10-2

f

NUMW Of MASKS

Figure 5-6. Comparison of Performance Using Different Sets of
Masks Generated from the Same Weighing Function

5-9

are permuted accordingly. Each mask erases n - k bits and these must be
determined from the unerased ones in order to generate a candidate code
word. This operation requires solving a set of simultaneous equations,
or in terms of matrix operations, the reduction of the permuted parity
check matrix to standard form. Since each mask erases a different set of
bits, the reduction must be done anew for each candidate code word.
This calculation is by far the most time consuming and its efficiency
determines the overall efficiency of the entire algorithm. It is there
fore worthwhile to reduce the computation of the reduction of the
parity check matrix to a minimum.

As before, the rate 1/2, (128,64) 8CH code will be used as
an example. Given the parity check matrix H, for any code word ~,
[H]~ =~. If H is in reduced echelon form then it can be partitioned
into two parts, one of them an identity matrix. Partitioning ~ corre
sponding to the partition in H

[PII]

or

In this form the parity check bits ~2 can be determined directly from
the information bits ~l.

Each mask erases 64 of the 128 bits which must be recon
structed from the remaining 64. This can be done by permuting the
erased bits to one side of the matrix, the unerased to the other, and
reducing the resulting matrix. (The original matrix P is non-singular.
However, it may be that for a particular permutation it is not. This
case can be handled in a manner similar to the one described in the Appendix.)

For a general matrix H this would require on the order of
(64)2/2 vector operations. However, in this particular case, one can get
by with much less.

How much less depends uJ~n the Hamming distance between two
successive masks. Since the weight of each mask is identical, transform
ing one mask into another can be th()ught of as interchanging pairs of
bits from the set of erased bits to ~he set of unerased bits. Two masks
with a Hamming distance dH between them require dH/2 interchanges.
Transforming the parity check matrix corresponding to one mask to a
matrix corresponding to the next requires the interchange of dH/2 pairs
of columns and the reduction to standard form. The 64 - (dH)/2 columns
in the erased set which have not been interchanled contain only a single
one and are already in reduoed form. The number of row operations
required to reduce the remaining columns are on the order of 1/2 (dH/2)2
rather than 1/2(64)2.

The average distance between masks in a set depends only
upon the distribution that was used to generate the masks and not upon

5-10

· ~"""'4A""lIfl"'.'"'~""""""""-"".""~ '''rl<'-. ___ .-__ r ... ',~",,~~<- .. ~--'''''''''--''''''''''_·_--·

the partioular set used. Given a set ot n .. sks with a distribution
(i • number ot times the ith bit is oovered), the sum ot the distanoes
between the ith bit ot a partioular .. sk (m • mj) and the Ith bit ot all
other .. aka is

it the bit il a 1

it the bit is a o.

Slnoe there are 'i ones and n - 'i zeros, the sum over all .. sks is

E EdiCmj,mk): 'i(n-/i) + (n-'i) Ii = 2/i(n-'i)
j k

mj~mk

Dlvidins by the number ot terms in the summation, the ave rase distanoe
between the Ith bits is

Summins over i sives the ave rase distanoe between masks

_ ~ - ~ 'ien-'i)
d :~ di = 2~ •

i i n(n-1)

For the 'i'S ot distribution D, d = 28. It all the words
were equidistant trom eaoh other (desirable trom the point ot view ot
ooverins as many error patterns as possible) then the number ot veotor
additions required to reduoe the parity check matrix tor each mask would
be on the order ot

The masks are probabilistically senerated and the aotual
distanoes are distributed about the mean, as shown in Fisure 5-7. Given
an arbitrary order!ns ot masks, the number ot vector additions required
to reduce the parity oheck matrix m times would be even sreater than

However, it the masks are sorted to an order in which the distances
between sucoessive masks are as small as possible, the number ot computa-

5-11

I I I I

150 -

~ 100 f- -
i

50 -

1 1
o 10 20 JO 40 50

DISTANCE

Figure 5-7. Hamming Distance Between 1000 Arbitrary Ordered
Masks with Weighing 'g'

150

~ 100

i
o
i
;:,
z

-

l-

I
o

1

I I I
10 20 30 40

DISTANCE

Figure 5-8. Hamming Distanc& Between Masks After Sorting to
Reduce Distance Between Successive Masks

5-12

tions will be reduced signif1cantly. A simple sorting algorithm is
as follows:

Starting with an arbitrary mask, the mask closest to it
is placed second. The sort 1s cont1nued by searching the remaining
masks and again placing at the end of the chain the one closest to
the mask currently last. The algorithm is continued until all the
masks have been ordered.

The resulting distribution of distances betwc~n successive
masks is shown in Figure 5-8. With a little bit of work, a chain could
undoubtedly be constructed which would have successive distances between
masks of 20 or less and require only

vector additions to convert one reduced matrix to another. With this
simplification this decoding method becomes competitive with other
schemes discussed in this report.

5-13

SECTION 6

DECODING USING BOTH SETS OF ERASURE PATTERNS
AND ERROR PATTERNS OF LOW WEIGHT

The most time consuming operation in the decoding scheme using
sets of erasure masks is the reduction of the parity check matrix each
time a new mask is used. The number of masks required is determined
by the desired probability that an error is completely covered by at
least one mask. If the requirements are reduced to allow a maximum of
one or two errors to remain exposed, the number of masks required is
reduced by a large factor. Locating these errors requires a certain
amount of computation, but in most cases the total computation required
to achieve a given level of performance will be less than in the original
algorithm.

In order to estimate the advantages of such a schems, consider
the set of 1000 masks with a performance represented by curve g ::'n
Figure 5-4. The curve shows the number of masks required to cover,
at least once, all the errors in a received code word a given fraction
of the time. This curve is repeated in Figure 6-1 and is accompanied
by curves showing the fraction of time a maximum of one, two or three
errors are exposed.

To achieve a level of performance equal to 1000 masks and
no errors exposed requires 50 masks if one, 6 masks if two, and 2 masks
if three errors remain exposed. This scheme will therefore be more
efficient if locating single errors requires less computation than
reducing the parity check matrix 20 times, double errors 166 times, and
triple errors 500 times.

Single errors may be located by assuming one of the exposed
bits to be in error and calculating the erased bits, given this assumption,
for each of the exposed bits. Assuming the reduced parity check matrix
is in the form (H] : (PII], the calculation of the candidate code
words is straightforward. (This implies that the erased bits are all
independent. The case for which this is not true is discussed in the
Appendix.) The parity check equations can be written as

(H] .I. : .a.
where

.1.1 : exposed bits,

or

6-1
PRECEDING PAGE BLANK NOT FILMf:'~\

Q ... 10.1
'" 0 ...
x
~
'" III

!a
III ...
~
::::;
;;
~
0
~

NUMBER OF MASKS

Figure 6-1. Probability of errors not being covered when using
masks of 64 bits out of 128

where

A2 = erased bits assuming no errors in 41

which is equivalent to

Assuming an error pattern represented by ones in the vector~, the
erased bits are equal to

A3 = [P141 + [P]~ = A2 + [P]~.

The calculation of 42 requires a number of vector additions
equal to the number of ones in 41. (This calculation is also required
when decoding using erasure masks only.) Assuming an error pattern~,
[P]~ equals the sum of the corresponding columns of the matrix [PJ.
Thus, if there are k independent bits in the code word, to calculate
the candidate code words corresponding to no and single errors requires,
at most, 2k vector additions.

6-2

Considering the previous example of a (128,64) BCH code
with 1000 masks and an average distance of 16 between masks, calculat~ng
the code word corresponding to each mask requires approximately 1/2(2)
= 128 vector additions. Calculating the candidate code words corresponding
to single errors in the exposed bits also require~ 2k = 2(64) = 128
vector additions, at most. Since using 1000 erasure masks yields the
same performance as using 50 erasure masks and allowin~ single errors,
the second method requires one-tenth the amount of computation as the
first.

Extending this comparison to error patterns of greater than
one error, there are

64 + (6~) = 2080

single and double error patterns. These can be checked in the time
required to reduce the parity check matrix 16 times again giving a
savings of about 10 times. The savings can be even greater if error
patterns are ordered so that those of higher probability are used first.
In this case some triple error patterns will precede some double error
patterns. In this case, to get the performance equivalent to all single
and double error patterns, only about one-half the number of patterns
need to be used, giving a savings of 20 times over using erasure masks
only.

6-3

SECTION 7

AN EFFICIENT HYBRID ALGORITHM

INTRODUCTION

The previous chapters have disoussed ways to improve the
efficiency of previously known decoding algorithms which are based
upon selecting a small set of candidate code words. By suitably com
bining the best features of these algorithms, an algorithm has been
developed which is more efficient than any of those previously known.
This algorithm uses a small number of erasure masks, assumes errors
of low weight in the unerased bits and uses redundancy to reduce the
number of error patterns that need to be checked. The input to the
algorithm is a vector whose elements are quantized amplitudes of the
symbols of the received code word and the output is an estimate of
the transmitted code word. A flow chart of the major sections of the
algorithm is shown in Figure 7-1.

The first step of the algorithm, as in all the ones pre
viously discussed, is to sort the symbols of the received code word
according to their absolute magnitude, permute the columns of the parity
check matrix, and reduce it to standard form. (Efficient sorting and
matrix reduction algorithms are described in the Appendix.) At this
point the algorithm diverges from those previously considered.

PARTIAL SYNDROME DECODING

When the unerased bits are not all independent, there arises
the possibility that cert~in values of the bits do not satisfy the
parity check equations. In previous sections these cases were considered
to be a decoding failure. However, it is possible to take advantage
of the dependency in order to determine which error patterns in these
bits satisfy the parity check equations. Only these patterns need
to be used to generate candidate code words. The number of such error
patterns of a given weight can be a small fraction of the total number
of error patterns of that weight, greatly reducing the number of candi
dates required for a given level of performance.

Calculating the error patterns which will be consistent with
the parity check equations can best be done by conSidering a portion
of the syndrome and determining the error patterns, which, when added
to the initial estimate of the received vector, will make that portion
equal to zero. Since a code word must satisfy [H]~ = Q, it will also
satisfy this equation for any subset of rows of H. Reducing the
parity check matrix and partitioning Has:

7-1
t:C£DING PAGE BLANk NOT FILMED

SOlT SYMIOLS OF RECEIVED
CODE WOlD ACCORDING TO
AMPLITUDE

GET NEXT ERASURE tMSK

PERMJTE COLUMNS OF H MATRIX
INTO TWO SETS CORRESPONDING
TO THE ERASED AND UNERASED IITS

REDUCE H MATRIX TO
STANDARD FORM

EXTRACT PARTIAL PARITY CHECK
MATRIX AND PARTIAL SYNDROME

CALCULATE POSSIBLE ERROR PATTERNS
OF WEIGHT 2 OR LESS

DETERMINE CANDIDATE CODE WORD
AND CORRElATE WITH RECEIVED VECTOR

STORE CANDIDATE WITH
HIGHEST CORRELA TlON

lAST ERASURE MASK USED?
NO

Figure 7-1. Flow chart of Soft Decision Decoding Algorithm

7-2

it is seen that [Pl]~' = Q. Therefore, the first r bits of the code
word must also be the solution of a set of homogeneous equations.

For an arbitrary received vector &, the project [H]& = 4
is oalled the syndro~ and specifies the coset containing the possible
errOl' patterns in &. The same notion can be used when considering
only the first r bits of the received word. Then [P,]~, = 4, is the
partial syndrome which specifies the possible error patterns in &,.
Representing &, by ~, + ~" where ~, is the partial error pattern
corresponding to the partial code word ~"

[P,] [~, + ~,] = A,

or

Given [P,J and 4" there are a large number of partial error patterns
~, that will satisfy this equation. However, for the decoding algorithm
to be considered here, it is sufficient to consider patterns of 0, ,
or 2 errors. Note that even though the adjective "partial" is applied
to ~1' ~" and 41' the remainder of the code word is completely determined
from ~1 by ~2 = [P2J~,· The advantage of thiB approach is that candidate
code words are determined only by possible error patterns in the most
reliable received bits &,. The remaining received bits ~ do not enter
at all into the calculation and can be considered erasures.

No errors as a possible error pattern can only occur if
the partial syndrome equals zero; single errors can occur in those
bits whose corresponding columns of [P,] are identical to .1.1, and double
error patterns in those bits whose corresponding columns of [P,J sum
to A," In general, for an error pattern of weight w to be a possibility,
the sum of the w corresponding columns of [P,J must equal A,.

To find possible double error patterns, represent the columns
of [p,] by vectors p" P2, ••• ,Pm

A possible double error in bits i and j must satisfy

where

i ~ j.

Considering the vectors Pi and A1 as binary numbers, construct a table
of the 2r -' pairs of numbers satisfying the above equation. Under
each entry of the table place the index of the columns which have this
value. The possible double error patterns are then taken from this
table. As an example, consider the reduced parity check matrix of
Section 2.3 and the received vector

7-3

At z [00000 00000 10100 01000 001].

The first three row of H generates the partial syndrome

[P1]41 = 41

00 1110 1 0 110 11 00
111101000111010
011011011000101

41 =
1
1
1

Table 7-1 shows the possible double e~ror patterns.

Table 7-1. Possible Double ~rror Patterns

li PJ i J Possible Double Error Patterns

000 111 3
001 110 8,15 4,10,2 (8,4) (8,10) (8,2) (15,4) (15,10 (15,2)
010 101 1,11,14 5,9,3 (1,5) (1,9) (1,3) (11,5) (11,9) (11,3)

(14,5) (14,9) (14,3)
011 100 2,6 7 (2,7) (6,7)

In this example there are only 17 possible double error patterns when
considering the partial syndromes, as compared to

(1~) = 105

total pairs of columns. The actual e~ror pattern (11,13) is among
these.

The average number of t-error patterns, Et(m), that can
occur in a partial received vector of dimension m and that are consistent
with a given partial syndrome can be estimated using a combinatorial
argument if it is assumed that, on the average, all possible values
for the columns of [P1] and also all values of the syndrome are equally
likely.

Given the partial parity check matrix [Pl] with r rows and
m columns, there are 2r possible values for the syndrome and for the
columns of [Pl]' The probability that zero errors in the first m bits
satisfy the parity check equations is the probability of a zero syndrome,
or

1 - .

7-4

Sinsle errors that aatisfy [P,l imply that a oolumn of [P,l equals
the syndrome. If all syndromes are equally likely, then the probability
that a siven oolumn equals that value is '/2r • For a matrix of m oolumns

Possible double error patterns are those whose correspondins columns
aum to the syndrome. For a siven syndrome there are u = 2r-' pairs
of values, a and b, whose sum equals that syndrome. If there are na
columns with value a, and nb columns with value b, then the contribution
of these columns to the total number of error patterns is nanb. Con
siderins k = na + nb fixed, the ave rase value of the product nanb is

The probability that there will be k columns out of m with values a
or b is

(:) 2k(2u_2)m-k

(2u)m

There are u equally likely pairs, each with an average value of nanb
equal to F2(k). Therefore, the average of the total number of double
error patterns is

u

Simplifying this expression,

u E (~) 1 (m
2

) (u_1)m-k 2
k=O

7-5

(u-1)m-2-1

= 2u (~)

In general,

The number of possible t-error patterns is reduced, on the average, by
a factor of 2r given a redundancy of r bits.

Considering only error patterns less than a given weight,
increasing the number of redundant bits decreases the number of error
patterns that need to be checked but increases the overall probability
of error since fewer bits are erased. To improve the performance using
this technique, one can either increase the maximum weight of the error
patterns that are checked, or one can use the erasure masks and error
patterns scheme of Section 6.

Returning to the (128,64) BCH code as an example, the prob
ability of an error of weight greater than t, 0 ~ t ~ 4, as a function
of the number of bits not erased for a signal-to-noise ratio of 2.0 dB
is given in Figure 7-2. At this signal-to-noise ratio, in order to
closely approach maximum likelihood performance, one must at least
test all triple error patterns and some four error patterns if the
redundancy is greater than 5 bits. With such a large number of error

7-6

Q

~
)(...

o

8

NUMlUOf
REDUNDANT 81TS

10-3 '--__ '"--__ -I-_..o..--I-...... _-'--__ ~ _ __I. _ __L~
I 10 100

NUMBER Of MASKS

Figure 7-2. Performance as a Function of Number of
Redundant Bits and Number of Masks.

patterns, it is more efficient to use sets of erasure masks and test
only for double error patterns.

7.3 GENERATING AND TESTING CANDIDATE CODE WORDS

For each of the possible error patterns a code word is generated
and oorrelated with the received vector. The form of oorrelation which
is most suitable is to minimize

where ~: (e"e2, ••• ,en)t is the error vector and Li i~ the amplitude
of the ith reoeived bit. The errors in the unerased bits are those
oaloulated in the previous step, while those in the erased bits oan
be found by a small number of veotor additions, at most equal to the
weight of the error in the unerased bits. Given the error vector, the
oorrelation is oaloulated by summing those amplitudes for whioh ei ~ O.
On the average, this will be about half the number of erased bits in
the summa tion •

7-7

7.~ AN ESTIMATE OF THE COMPLEXITY OF THE ALGORITHM

As each symbol is detected, it is linked into the sortins
table. Nothing more can be done until the entire word is received,
at which time the amplitudes are sorted. This requires only one pass
through the list which contains 128 + 6~ = 192 items assumins the
amplitude is quantized to six bits masnitude.

The remainder of the alsorithm, as seen in Fisure 7-1 is
a sinsle loop containins almost all of the required computation. Each
pass throush the loop is independent and can be done in any order or
in parallel. Considerins only a single pass, the first operation is
to permute the columns of the parity check matrix and reduce the permuted
matrix to standard form. This is most easily done by copying the columns,
in permuted order, into the area of memory that will be aoceesed by
the reduction alsorithm.

The un permuted H matrix is stored in reduced form so that
half the columns contain only a sinsle one. After the initial permutation,
on the averase, half of these columns correspond to erased bits and
can be isnored in the reduction. The number of checks that must be
made to see whether there is a zero or one in a particular bit position
in the pivotal row is

If half of these are ones, 248 vector additions are required.

The calculation of the correlation requires approximately
30 arithmetic additions per candidate code word. Because of the la~se
number of operations required, a real time decoder using this alsorithm
should have a special arithmetic unit performing the summations. Ideally,
the correIa tor should work as fast as the candidate code word generator
so that each code word may be checked as it is generated. It may be
possible to perform an approximate calculation, with negligible loss
of performance, directly from the error vector based upon its weisht
and the position of the errors but this has not yet been investisated.

The redundancy corresponding to the minimum amount of computa
tion requires a number of assumptions. First, a received .isnal-to-noi.e
ratio of 2.0 dB is still assumed. At this .ignal-to-noi.e ratio the
bit probability of error of a maximum likelihood decoder i. 10-3, which
i. close to the tolerable limit for mo.t applications. For higher
sisnal-to-noise ratio., the performance of decodins algorithm. of this
type with a fixed set of parameter. senerally get. better, that i.,
approaches the maximum likelihood performance more olo.ely. Second,
the level of performance that will be a •• umed for this .ignal-to-noise
ratio is a probability of 0.9 x 10-3 that an error pattern will not
be covered or corrected. With these a.sumptions the mini.ua occurs for
a redundancy or 6. At this redundanoy 20 erasure masks are required
to achieve the de.ired performance.

7-8

The two major units of the decoder are the matrix reducer
and the candidate code word generator and correlator. Using the param
eters mentioned previously, 20 matrix reductions are performed per
received code word and approximately _0 candidate code words are gen
erated per matrix reduction. If the matrix reductions are done serially,
the time required for these two operations should be the same so that
each unit will not have to wait for the other to complete its computation.

Assuming the speed of the algorithm is fixed by the time
required for the matrix reduction, the time required to decode a single
code word is approximately the time required to reduce the matrix 20
times. A conservative estimate is that the initial reduction can be
done in 1000 steps and subsequent reductions in 200 steps, or 5000
steps overall. At a computation rate of 100 nanoseconds per step,
one word c.n be decoded in 0.5 milliseconds. There are 6_ information
bits per code word so thAt at this computation rate a jata rate of
128 kbits/second can be handled. Higher data rates will require a
faster rate of computation or more parallelism while lower data rates
can shift some of the computational overhead and bookkeeping from special
purpose to general purpose hardware.

7-9

SECTION 8

SUMMARY AND r,ONCLUSIONS

Approxlmate maxlmum 11kellhood deoodlng algorlthms based
upon seleotlng • small set of oandldate code words to be oorrelated
wlth the recelved veotor, oan glve a olose to optimum performanoe wlth
a reasonable amount of oomputatlon. Thls report desoribes the searoh
for oomputatlonally efflolent algor1thms of thls typP.. Emphasis has
been placed upon the (128,64) BCH oode of mlnimum distanoe 22 slnce
it is one of the shortest oodes whose maximum likelihood performance
at low signal-to-noise rat los Is better, by more than 1 dB, than the
rate 1/2, enooding oon$tralnt length 7 convolutional code In wide use
today.

The most effiolent algorithm found for deooding this oode
is one whioh sorts the reoelved bits aooording to their estlmated
probability of error and then seleots oandidate oode words by:

(1) uslng a small number of erasure masks,

(2) assum1ng errors of weight two or less in the unerased
bits,

(3) using six bits of redundanoy to reduoe the number
of error patterns that need be ohecked, and

(4) using the oomputationally most effioient algorithm
at eaoh step of the decoding.

This algorithm is oompetitive with the Viterbi deooding
of t~e (7,1/2) convolutional code in number of computations though
not in simplicity of the program.

The principle found most useful in developing the algorithm
is to take as much advantage as possible of the sorting of the reoeived
bits acoording to their estimated probability of error. This is best
illustrated by the inorease of efficienoy when using weighted masks
rather than combinatorially generated ~nes which consider all erased
bits equally. In addition, maximum utilization should be made of the
structure of the oode. A possible explanation of the relative efficienoy
of this deooding algorlthm is, that in addition to the use of linearity
of the oode to calculate the erased bits, it is also used to correot
errors in the unerased ones. E. Berlekamp's soft decision decoding
algorithm (Reference 1-7) also takes advantage of the cyclic and alge
braic structure of the code. If a way oan be found to use these properties
for decoding random errors, it is highly probable that such a scheme will
be even more efficient for a given level of performanoe than those
described In this report.

In the algorlthms of Sectlons 5, 6 and 7, sets of weighted
erasure masks were used. These sets were first defined by L. Baumert
and R. HcEliece (Reference 1-4) and were constructed using a random

8-1 PRiC£D1NG PAGE BLANK NOT r'· .

number generator. For sets with a large number of masks this is the
easiest method of constructing them and, as Figure 5-6 shows, it is
probably close to the best. However, for sets with a small number
of masks, as those of Section 7, a more deterministic method may be
superior. Constructing such sets, which have given covering and dis
tance properties, is an interesting combinatorial problem and should
be pursued further.

The advantage of the algorithms described in this report
over that of the Viterbi decoding of convolutional codes is due mainly
to the ability to decode codes of higher Q for a given computational
complexity. It is very likely that an exponential increase of complex
ity will be necessary if an attempt is made to decode larger codes
of higher Q just as is now the case with Viterbi deooding. The algorithms
disoussed here are useful for oodes up to the length for which the
exponential incre9se in complexity begins. It would be worthwhile
to find the length for which this ocours, for it is at this point that
these algorithms operate at their best.

1-1

1-2

1-3

'-5

1-6

1-7

2-1

2-2

2-3

5-1

5-2

A-1

REFERENCES

Forney, G. D., Jr., "The Viterbi Algorithm," Proc. IEEE,
Vol. 61, March, 1973, pp. 268-276.

Chase, D. "A Class of Algorithms for Decoding Block Codes
with Channel Measurement Information," IEEE Trans. Inform.
Theory, Vol. IT-18, January, 1972, pp. 170-182.

Chase, D. and Goldfein, H. D., "Long Block Codes Can Offer
Good Performance," Information Theory International Symposium,
Cornell, N.Y., October, 1977.

Baumert, L. D., and McEliece, R. J., "Soft Decision Decoding
of Block Codes," The Deep Space Progress Report 42-47, Jet
Propulsion Laboratory, Pasadena, CA., August, 1978, pp. 60-64.

Dorsch, B. G., "A Decoding Algorithm for Binary Block Codes
and J-ary Output Channels," IEEE Trans. Inform. Theory,
Vol. IT-20, May, 1974, pp. 391-39~.

Forney, G. D., Jr., Concatenated Codes, Chapter 3, The MIT
Press, Cambridge, Mass., 1966.

Berlekamp, E. R., "Long Block Codes Which Use Soft Decisions and
Correct Erasure Burst Without Interleaving," Conference Record,
National Telecommunications Conference, Los Angeles, Calif.,
December, 1977, pp. 36:1.1-36:1.2.

Bahl, L. R., Cocke, J., Jelinek, F., and Raviv, J., "Optimal
Decoding of Linear Codes for Minimizing Symbol Error Rate,"
IEEE Trans. Inform. Theory, Vol. IT-20, March, 1974, pp.284-287.

Hartmann, C., and Rudolph, L., "An Optimum Symbol-by-Symbol
Decoding Rule for Linear Codes," IEEE Trans. Inform. Theory,
Vol. IT-22, September, 1976, pp. 514-517.

Greenberger, H., "An Iterative Algorithm for Decoding Block
Codes Transmitted over a Memoryless Channel," j~eep Space
Prosress Report 42-47, Jet Propulsion Laboratory, Pasadena, CA.,
August, 1978, pp. 53-59

MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error
Correcting Codes, North-Holland Publishing Co., New York, N.Y.,
1977, pp. 58-64.

Baumert, L., McEl1ece, R., and Solomon, G., "Decoding with
Multipliers," The peep~ce Network. Progress ~~port 42-34, Jet
Propulsion Laboratory, Pas,itiena, CA., August, 1976, pp. 43-46.

Knuth, D. E., The Art of Co~pu~er Programming, Vol. 3, Sorting
Alsorithms, Addison Wesley, Reading, Mass., 1966.

rr<ECEDING PAGE BLANK NOT FIUv.
9-1

APPENDIX

EFFICIENT ALGORITHMS FOR SORTING AND MATRIX REDUCTION

A.l INTRODUCTION

The sorting of real numbers can be done efficiently by
many algorithms all requiring, on the average, n log n operations to
sort n bits (Reference A-1). The sorting can be done even more
efficiently with neglible loss of performance by quantizing the ampli
tudes to a fairly large number of levels. Representative of algorithms
which sort into a finite number of bins is the link sort , which requires
on the order of L + N (L = number of bins, N = number of items to be
sorted) operations.

Reducing the parity check matrix to standard form can best
be done by Gaussian reduction. In this case the matrix elements can
only have the values 0 or 1 and the computation is best done as vector
exclusive or addition. In the general case the reduction requires
on the order of n212 such operations, where n = the rank of the matrix.
As seen in Section 5.3, the matrix can be arranged beforehand in such
a way so that the number of operations is considerably less than this.

A.2 SORTING THE RECEIVED SYMBOLS ACCORDING TO THEIR
RELIABILITY

Common to all the algorithms analyzed here is the sorting
of the received symbols according to their reliability. It is assumed
that the received signal has been demodulated and reduced to a form
in which each symbol is represented by a real number of the form
Yi = si + n where si = ±1 and n is an independent sample of a zero
mean Gaussian process with variance

NO
(1"2 = =

This can be shown to be a sufficient statistic; that is, it represents
the received signal without loss of information.

A good measure of the reliability of each bit is the absolute
magnitude of its log likelihood ratio

Pr(Yilxi=+1)
Li = In -----

Pr(Yilxi =-1)

A-1
.r<t:CEOING PAGE BLANK NOT FILM~ L

This measure is intuitively satisfying and, in addition, is required
for estimating the transmitted code word. For the memoryless Gaussian
channel

1 [(yt-1)2]
- exp -
CT.ff; ar2

Li = In -------1 [(Yi+1)2]
- exp -
CT~ 2CT2

=

so that the absolute magnitude of the received symbol is a measure
of the reliability of that symbol and the required sorting can be done
on the received vector directly.

An efficient algorithm for sorting amplitudes into a small
number of bins is the linksort. The version described here sorts integers
according to absolute value as required for ordering the received symbols
according to their relative reliability. The algorithm requires only
a single pass through the data to construct a table and a single pass
through the table to output the integers in sorted order along with
their input index. The number of memory locations required is the
number of items to be sorted plus the absolute value of the largest
integer on the data list.

A flow graph of the algorithm is shown in Figure A-1.
The variables used in the algorithm are:

n = number of items to be sorted

m = absolute value of largest integer in data list

Li = list of integers to be sorted, 1 ~ i ~ n

Ai = output list of integers sorted according to absolute
value

Pi = output list of indices associated with each Ai

Sj = special links used internally in algorithm, 0 ~ j ~ m

The algorithm can be divided into three stages:

(1) Initialize the chain. The Si are the special links
in the chain which point to data of absolute amplitude
1. At the beginning of the algorithm each special
link points to the next special link in the chain.
The value of z can be any number larger than n so
as to be able to distinquish between pointers to
special links and pointers to data links. If z is

A-2

E(
i-O

I S._z+ j

J I

i -i+1

IF i 5 m GO TO I

.~
i_I

2 j-Ilil ~
li- j
S.- i • SIGN l.
J I

i ~i+1

1
IF i 5 n GO TO 2 r-

l
j--I
i_+1

3 j-jt I
'NO

z BIT OF Sj : I? YES
j >m

YES
END

rO

4 Qi- j • SIGN Sj r--
, Pj-ISjl

i __ i t 1

z BIT OF II S.I" I?
J ~

IYES

Figure A-1. Flow Chart of the Linksort Algorithm

A-3

LINEAR FOaM DATA INPUT MEMOIY MAl

I 1 I j + 1 I Sj

Lj ~-j

I 0 I -j I Sj

II I j + t I Lj
~ ~ ij

I 0 I It I Sj

II I j + 1 I Lj

I 0 I -j I~

Figure A-2. Schematic Representation of the Links in
the Linksort Algorithm

the first power of 2 greater than n, then special
links will be characterized by a 1 in the highest
order bit. This can be thought of as a special sign
bit.

(2) Link data into the chaio. The ith data symbol has
absolute magnitude j. The contents of memory location
Sj are stored in Li and the index i, along with the
sign of the ith data symbol, is stored in Sj. The
memory locations can either contain a special pointer,
indicated by the z bit pointing to the next amplitude,
or an index i, depending on whether or not the amplitude
j has been encountered before. These two cases can
be schematically represented as in Figure A-2.

(3) Construct the output amplitude and index chaios. The
chain is read out starting at location SO. Pointers
with the z bit equal to zero correspond to data of
amplitude j and position index i. Those with the z
bit equal to one correspond to a special link indicating
an amplitude increase of one. The algorithm is completed
when the last link in the chain is detected.

In order to demonstrate this algorithm, a step-by-step
development of the arrays {L} and IS} is shown in Figure A-3. The
input list contains 12 numbers with maximum amplitude 6. The value

A-4

DATA 1 2 3 5 6 7

INITIAL
STATE

4 105

-3 105 104

0 105 104 101

-6 105 104 101 107

:.- 2 105 104 101 107 103
I

V1

3 105 104 101 107 103 -2

5 105 104 101 107 103 -2 106

-4 105 104 101 107 103 -2 106

4 105 104 101 107 103 -2 106

6 105 104 101 107 103 -2 106

0 105 104 101 107 103 -2 106

0 105 104 101 107 103 -2 106

Figure A-3. Development

MEMORY LOCATIONS

8 9 10 11 12 100 101 102

101 102 103

101 102 103

101 102 103

3 102 103

3 102 103

3 102 5

3 102 5

3 102 5

1 3 102 5

1 -8 3 102 5

1 -8 -4 3 102 5

-8 -4 3 11 102 5

-8 -4 3 11 12 102 5

of the Chain in the Linksort Algorithm

103 104

104 105

104 1

-2 1

-2 1

-2

-2 1

6 1

6 1

6 -8

6 9

6 9

6 9

6 9

105

106

106

106

106

106

106

106

7

7

7

7

7

7

106

107

107

107

107

-4

-4

-4

-4

-4

-4

10

10

10

~

-"""'lin.

of 100 is used for z rather than a power of 2 since, in an example,
decimal numbers are visually more convenient.

In an actual decoding algorithm many more amplitude levels
would be used. The number of memory locations required for the arrays
are 3n + q (where n = the number of symbols to be sorted and q = the
number of amplitude levels). The amount of computation required in
building the linked list is independent of q, while reading out the
data requires n + q steps. For a code of block length 128, q equal
to 64 or 128, corresponding to 6 or 7 bits plus a sign bit, is reason
able. The advantages of fine quantization are that the decoder is
much less sensitive to changes in noise and signal power and the
quantization loss, which is on the order of 0.2 to 0.25 dB for 3 bit
quantization usually used in soft decision decoders, is negligible.

A.3 REDUCING THE PARITY CHECK MATRIX TO STANDARD FORM

?he decoding algorithms which assume erasures calculate
the erased bits from a linear combination of the unerased ones. By
permuting the columns of the parity check matrix which correspond to
the erased bits to the right, the matrix may then be partitioned into
two parts, a k x (n - k) partition corresponding to the known bits
[P1 1 and a (n - k) x (n - k) partition corresponding to the unknown
ones [P2].

The entire parity check matrix is then reduced by row oper
ations until [P2] is in triangular form. The parity check equations
require

[H]4 = Q or

After reduction this becomes

Considered as a set of simultaneous linear equations with all the bits
of 41 known, one can, starting with the first bit of 42' calculate
the values of the erased bits from those of 4, and the previously calcu
lated ones of 42. The procedure is straightforward unless there is
a zero element along the diagonal of [P2]. This indicates that the
bit corresponding to the column containing the zero is independent
of the bits in 4, and that there exists a dependency relationship among
the bits of 4, so that not all values are permissible.

A-6

In order to handle this case simply, it is worthwhile
to reduce the matrix turther. By row operations all the off-diagonal
terms of the columns of [P21 which contain a one along the dIagonal
can be reduced to zero, and all the rows of [P21 which contaIn a zero
along the diagonal can be reduced completely to zero. The form of
the H matrix is now

1
o all zeros in this row

[H] = 1
1

1

~possible ones
the diagonal

in this column off

The matrix can be simplified by permuting the zero row to the top,
and the zero column, along with its corresponding bit in 42. to the
left. The parity check equations are then

P'a 0
I

0 ~,

I

[H]A = Q; ------1-----1----- = ~ .
~a

P
lb P3 I

~2b

This corresponds to three sets of equations:

(2) ~2a arbitrary

(3) ~2b = [Plb JAl + [P3J42a

The first equation expresses the dependency relationships
among the unerased bits which must be satisfied if a solution is to
exist. If the bits of Al satisfy these equations, then the number of
possible code words with these unerased bits is 2r (r = the number
of bits in A2a) , all of which can be used for candidate code words.

The reduction of the parity check matrix requires a significant
portion of the total computation time of the algorithm so that it is
worthwhile to seek efficient teohniques to perform this caloulation.
First, permuting the rows and oolumns need not actually be done. It
is suffioient to keep a table of the proper order of the row and column
indices. Second, most of the operations in reducing the matrix and
generating candidate code words are performed most efficiently as vector
additions. At various stages of the algorithm both rows and columns
are treated as vectors, and converting from one to the other in the

A-7

oomputer is a time oonsuming operation. This is not neoessary, however,
sinoe row operations may be performed on data stored as oolumns. The
flowohart of a matrix reduotion algorithm whioh represents eaoh oolumn
of the H matrix as a binary veotor stored in a single word of memory
is shown in Figure A-4. The algorithm reduoes this matrix by row oper
ations without oonverting from oolumn veotor to row veotor form.

With this algorithm, the time required to arrange the data
for oaloulation is a minimum and the overall,deooding time oan be estimated
from the number of veotor additions that have to be performed.

A-a

SET COLUMN INDEX TO m
a_III

SET REDUCED lOW INDICATOR
TO ALL ONES

SET eUltRENT lOW INDEX
(ell) TO IOTTOM ROW

HAS lOW aEEN REDUCED YET? ... Y...;E;.;.S ________ ---.

NO

DOES liT IN CUlIENT ROW
OF Ha 2 I?

ADD Ha MOD 2 TO ALL
COLUMNS WHICH HAVE
A ONE IN eUtlENT lOW

SET alT CORRESPONDING TO
eUltIENTlOW IN REDUCED
ROW INDICATOR TO ZEIO

ALL COLUMNS DQNE?

NO

NO

MOVE ell UP ONE lOW

ANY lOWS LEFT?

NO

YES

Figure A-~. Matrix Reduction Algorithm

	0016A02.TIF
	0016A03.TIF
	0016A04.TIF
	0016A05.TIF
	0016A06.TIF
	0016A07.TIF
	0016A08.TIF
	0016A09.TIF
	0016A10.TIF
	0016A11.TIF
	0016A12.TIF
	0016A13.TIF
	0016A14.TIF
	0016B01.TIF
	0016B02.TIF
	0016B03.TIF
	0016B04.TIF
	0016B05.TIF
	0016B06.TIF
	0016B07.TIF
	0016B08.TIF
	0016B09.TIF
	0016B10.TIF
	0016B11.TIF
	0016B12.TIF
	0016B13.TIF
	0016B14.TIF
	0016C01.TIF
	0016C02.TIF
	0016C03.TIF
	0016C04.TIF
	0016C05.TIF
	0016C06.TIF
	0016C07.TIF
	0016C08.TIF
	0016C09.TIF
	0016C10.TIF
	0016C11.TIF
	0016C12.TIF
	0016C13.TIF
	0016C14.TIF
	0016D01.TIF
	0016D02.TIF
	0016D03.TIF
	0016D04.TIF
	0016D05.TIF
	0016D06.TIF
	0016D07.TIF
	0016D08.TIF
	0016D09.TIF
	0016D10.TIF
	0016D11.TIF
	0016D12.TIF
	0016D13.TIF
	0016D14.TIF
	0016E01.TIF
	0016E02.TIF
	0016E03.TIF
	0016E04.TIF
	0016E05.JPG
	0016E05.TIF
	0016E06.TIF
	0016E07.TIF
	0016E08.TIF
	0016E09.TIF
	0016E10.TIF
	0016E11.TIF

